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Abstract

Packrat parsing is a novel and practical method for implementing linear-time parsers for
grammars defined in Top-Down Parsing Language (TDPL). While TDPL was originally
created as a formal model for top-down parsers with backtracking capability, this thesis
extends TDPL into a powerful general-purpose notation for describing language syntax,
providing a compelling alternative to traditional context-free grammars (CFGs). Common
syntactic idioms that cannot be represented concisely in a CFG are easily expressed in
TDPL, such as longest-match disambiguation and “syntactic predicates,” making it pos-
sible to describe the complete lexical and grammatical syntax of a practical programming
language in a single TDPL grammar.

Packrat parsing is an adaptation of a 30-year-old tabular parsing algorithm that was
never put into practice until now. A packrat parser can recognize any string defined by
a TDPL grammar in linear time, providing the power and flexibility of a backtracking
recursive descent parser without the attendant risk of exponential parse time. A packrat
parser can recognize any LL(k) or LR(k) language, as well as many languages requiring
unlimited lookahead that cannot be parsed by shift/reduce parsers. Packrat parsing also
provides better composition properties than LL/LR parsing, making it more suitable for
dynamic or extensible languages. The primary disadvantage of packrat parsing is its storage
cost, which is a constant multiple of the total input size rather than being proportional to
the nesting depth of the syntactic constructs appearing in the input.

Monadic combinators and lazy evaluation enable elegant and direct implementations
of packrat parsers in recent functional programming languages such as Haskell. Three
different packrat parsers for the Java language are presented here, demonstrating the con-
struction of packrat parsers in Haskell using primitive pattern matching, using monadic
combinators, and by automatic generation from a declarative parser specification. The pro-
totype packrat parser generator developed for the third case itself uses a packrat parser to
read its parser specifications, and supports full TDPL notation extended with “semantic
predicates,” allowing parsing decisions to depend on the semantic values of other syntactic
entities. Experimental results show that all of these packrat parsers run reliably in linear
time, efficiently support “scannerless” parsing with integrated lexical analysis, and provide
the user-friendly error-handling facilities necessary in practical applications.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Practically all languages in common use today, both human-readable and machine-readable,
are founded on the idea of expressing information in linear form, as sequences of written
marks or symbols. Text in a written language is usually represented electronically as a string,
or a sequence of characters chosen from some standardized character set. The character set
in use may vary from one language or locale to another (e.g., ASCII versus Unicode), as well
as other details such as the normal writing direction, the conventions for expressing relevant
formatting information such as whitespace and line breaks, and the method of expressing
composite symbols such as accented letters. Regardless of such details, however, the first
task of any language processing application is to analyze these flat strings of characters
into meaningful higher-level groupings such as words, phrases, sentences, expressions, or
statements. This task of deriving useful high-level structural information from linear text
is known as syntax analysis or parsing.

1.1 Expressing Syntax with Grammars

In order to create a parser for a particular language, or even just to reason formally about
what kinds of strings are meaningful or well-formed in that language, we must have a way
of expressing and understanding the language’s syntactic structure. For this purpose we
commonly use a grammar, which is a concise representation of the structure of one language,
expressed in another (ideally very small and simple) language. The language whose structure
the grammar is intended to represent—the language we are “talking about”—is known as
the object language, whereas the language the grammar is expressed in is known as the
grammar definition language. Being able to express the syntactic structure of a language
concisely with a grammar is especially important for programming languages and other
languages expressly designed for precision and machine-readability, because grammars can
be used to reason about the properties of a language mathematically or with the help of
mechanical tools.

The most common type of grammar in use today is the context-free grammar (CFG),
typically expressed in the ubiquitous Backus-Naur Form (BNF). A context-free grammar
essentially specifies a set of mutually recursive rules that describe how strings in the de-
scribed language may be written. Each rule or production in a CFG specifies one way in
which a syntactic variable or nonterminal can be expanded into a string. A nonterminal may
expand to a string containing more nonterminals, which are expanded in turn until no non-
terminals remain. Because there can be multiple ways to expand a particular nonterminal,
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the grammar can express an infinite set of strings having a well-defined hierarchical struc-
ture. Parsing a string whose syntax is specified by a CFG involves reversing this process:
determining from a fully expanded string containing only atomic characters or terminals,
what sequence (or sequences) of expansion steps, if any, can produce that string. This task
is complicated by the fact that CFGs often contain ambiguities: both local ambiguities, in
which the correct interpretation of a portion of a string can only be determined from the
context in which it appears; and global ambiguities, in which a string as a whole may have
multiple valid syntactic interpretations.

1.2 Top-Down Parsing Language (TDPL)

Another method of expressing syntax formally is through a set of rules describing how the
strings in a language are to be read rather than written. Top-Down Parsing Language, or
TDPL [3], is a formal scheme for describing language syntax that shares a close relationship
with top-down or recursive-descent parsing. TDPL was developed at around the same time
most of the classic CFG parsing algorithms were invented, but at that time it was used only
as a formal model for the study of certain top-down parsing algorithms.

The first contribution of this thesis is to develop TDPL into a practical syntactic notation
in its own right, and to demonstrate the advantages in expressiveness of TDPL over the
CFG paradigm. Many machine-readable languages in use today are much easier to express
in TDPL than with a pure CFG, particularly because of TDPL’s natural support for the
pervasive longest-match disambiguation policy and other common localized disambiguation
rules. Both the low-level lexical and the high-level grammatical syntax of a language can
be expressed in a single unified TDPL grammar, whereas in the CFG paradigm these
two levels of syntax must usually be considered separately. Even when lexical analysis is
separated from grammatical analysis, most CFG-based specifications of practical languages
must include some “supplemental rules” describing how certain ambiguities in the CFG are
to be resolved. Usually these supplemental rules are described either only informally, or
in reference to the behavior of a specific parsing algorithm (e.g., a bottom-up shift/reduce
parser) that is expected to be used to parse the language. In the TDPL paradigm, these
rules fit cleanly into the basic syntactic notation and do not require any special extensions.

1.3 Packrat Parsing

The simplest method of parsing a string according to a TDPL grammar is using a top-
down, recursive-descent parser with backtracking capability. This observation should come
as no surprise since TDPL was created in the first place as a formalization for such parsers.
Unfortunately, on many TDPL grammars an ordinary recursive-descent parser can take
exponential runtime to parse input strings. The reason for this blow-up is that the back-
tracking recursive-descent parser may redundantly compute intermediate results multiple
times. If memoization is used to prevent this redundant computation, however, then any
TDPL grammar can be parsed in linear time, proportional to the size of the input string.

Although the theoretical existence of a linear-time TDPL parsing algorithm was previ-
ously known, it was apparently viewed as impractical and never implemented, because it
involves storing a large table of intermediate results that grows in proportion to the length
of the input string. Furthermore, the näıve approach to the construction of this table would
compute many results that are never needed, even though no single result is computed more
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than once. On modern machines, the storage cost of this memoization table is no longer a
serious problem for typical problem sizes, and lazy evaluation techniques make it possible
to avoid computing results that are not needed.

The second main contribution of this thesis is packrat parsing, a version of the tabular
linear-time TDPL parsing algorithm refined for practical use. Packrat parsing is particularly
well-suited to implementation in modern lazy functional programming languages such as
Haskell, though packrat parsing can of course be implemented in other languages. In a lazy
functional language, packrat parsing requires only ordinary algebraic data types, with no
explicit hash tables or other costly lookup structures. A packrat parser implemented in
this way is almost identical in style and structure to a conventional recursive-descent parser
with backtracking: the packrat parser essentially just uses a different method to “tie up”
the mutually recursive calls that are made between the functions comprising the parser, so
as to provide the memoization necessary to ensure parsing in linear time.

1.4 Automatic Generation of Packrat Parsers

Although packrat parsing is simple enough to implement by hand, particularly in a lazy
functional language, constructing packrat parsers would be even easier with the help of
an automatic parser generator along the lines of YACC in the C world or Happy [9] and
Mı́mico [5] in the Haskell world. The third major contribution of this thesis is Pappy, a
prototype packrat parser generator that takes declarative parser specifications and generates
packrat parsers in Haskell.

The parser specification language accepted by Pappy is based on the TDPL notation
developed in this thesis, with extensions to allow the parser to compute semantic values
such as abstract syntax trees as an input string is parsed. As is the tradition for such
parser generators, these semantic values are computed with the help of code fragments in
the implementation language (Haskell) embedded in the parser specification. Pappy also
extends the TDPL notation with support for semantic predicates, through which parsing
decisions can depend on semantic values and not just on the success or failure of a syntactic
rule. For example, using semantic predicates, syntactic character classes can be expressed
in terms of Haskell functions such as isAlpha without requiring specialized notation.

1.5 Thesis Overview

The rest of this thesis is organized into the following chapters:

• Chapter 2 briefly reviews the two most common syntax notation schemes, regular
expressions and context-free grammars, then presents the TDPL notation system
used in this thesis and explores its expressiveness in comparison with CFG notation.

• Chapter 3 introduces the packrat parsing algorithm and demonstrates the implemen-
tation of packrat parsers in Haskell through a series of examples. The chapter also
presents extended techniques such as integrated lexical analysis, packrat parsing with
monadic combinators, and user-friendly error handling.

• Chapter 4 presents Pappy, the prototype packrat parser generator. The chapter first
describes the TDPL-based specification language accepted by Pappy, then details its
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operation and the grammar transformations it performs in order to produce efficient
parsers.

• Chapter 5 describes experimental results measuring the storage cost and performance
of both hand-implemented and automatically-generated packrat parsers for the Java1

programming language.

• Chapter 6 details relevant prior work. The chapter begins by reviewing the origins and
background of TDPL, then provides detailed informal comparisons between packrat
parsing and other algorithms such as LL/LR, noncanonical LR, and generalized CFG
parsing.

• Finally, Chapter 7 concludes and points out possible directions for future work.

1.6 Code Availability

Complete versions of all of the examples and library code described in this thesis, as well
as Pappy, the packrat parser generator, can be found at the following web site:

http://pdos.lcs.mit.edu/~baford/packrat/thesis/

1Java is a trademark of Sun Microsystems, Inc.
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Chapter 2

Top-Down Parsing Language

The two most common methods of describing language syntax today are regular expres-
sions and context-free grammars [2, 3]. These formalisms are by no means the only ways of
precisely specifying the syntactic structure of a language, however. Another useful syntax
description paradigm, known as top-down parsing language or TDPL, bears a close rela-
tionship to context-free grammars but also has fundamental differences. To provide a flavor
of the relationship between these two paradigms, a context-free grammar is geared toward
writing text in a specified language based on high-level, structured information, whereas a
TDPL grammar is geared toward reading text strings and deriving structured information
from them: hence the name “parsing language.”

For the description of languages intended to be (mostly) written by humans but read by
machines, TDPL is often a more suitable specification tool than a context-free grammar.
Many common syntactic idioms in practical programming languages, such as longest-match
rules, are more easily and naturally expressed in TDPL. In addition, TDPL grammars can
always be parsed in linear time using the packrat parsing algorithm described in subse-
quent chapters, whereas only restricted subclasses of CFGs can be parsed in linear time.
The rest of this chapter consists of a brief review of regular expressions and context-free
grammars, followed by an in-depth exploration of the TDPL paradigm, and a comparison
of its expressive power in comparison with conventional CFG notation.

2.1 Regular Expressions

Regular expressions provide a way of specifying simple languages whose structure may
involve sequencing, choice, and repetition, but no recursive syntactic constructs. A regular
expression can be built using the following rules:

• Empty String: ‘()’ is a regular expression denoting the empty string. (In formal
descriptions the empty string is often denoted as ‘ε’.)

• Literal: If a is a single character, then ‘a’ is a regular expression denoting the corre-
sponding single-character string.

• Sequence: If e1, e2, . . ., en are regular expressions, then ‘(e1e2 . . . en)’ is a regular
expression denoting all strings that can be constructed by concatenating n strings,
where the first substring matches e1, the second substring matches e2, etc.
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• Choice: If e1 and e2 are regular expressions, then ‘(e1|e2)’ is a regular expression
denoting all strings that match either e1 or e2 or both.

• Repetition: If e is a regular expression, then ‘e∗’ is a regular expression denoting all
strings that can be constructed by concatenating any number of substrings together,
where each substring matches the regular expression e.

Practical regular expression languages typically use precedence rules to dispense with
unnecessary parentheses, and for convenience also usually support additional operators that
can be implemented in terms of the primitives above, such as the following:

• Optional: If e is a regular expression, then ‘e?’ is a regular expression denoting the
empty string in addition to all strings matching e. ‘e?’ is equivalent to ‘(e|())’.

• One-or-more: If e is a regular expression, then ‘e+’ is a regular expression denoting
all strings that can be constructed by concatenating one or more substrings together,
each of which matches e. ‘e+’ is equivalent to ‘(ee∗)’.

A regular expression essentially provides simple, concise, rules for writing strings in
the language denoted by the regular expression. For example, the regular expression
‘(a(b|c)*)’ is a shorthand for the following “recipe” for generating strings consisting of an
‘a’ followed by any number of ‘b’s and/or ‘c’s:

1. Process the subexpression ‘a’ by generating the single character ‘a’.

2. To process the subexpression ‘(b|c)*’:

(a) Decide how many repetitions of the subexpression ‘(b|c)’ to generate.

(b) For each individual repetition:

i. Choose which of the alternative subexpressions, ‘b’ or ‘c’, to generate

ii. If the first alternative is chosen, generate the single character ‘b’. If the
second alternative is chosen, generate the single character ‘c’.

If the strings in this trivial language were intended to convey useful information of
some kind, then the various choices made in the recipe above would be determined by the
content to be transmitted. For example, each of the ‘b’ versus ‘c’ choices might be intended
to transmit one bit of a binary number, and the number of repetitions decided in step 2(a)
might be determined by the number of bits in that binary number. But the important point
is that the structure of regular expressions is defined fundamentally in terms of how strings
are produced rather than how they are recognized or read.

There is no a priori guarantee that strings produced from a given regular expression
will be unambiguous or readable in general. For example, the regular expression ‘(a|a()*)’
is perfectly legitimate, but any information that may be used to direct the choice and
repetition operators is lost in the generated string, since the expression can ultimately only
yield the single string ‘a’.

Although recognizing strings defined by regular expressions is not nearly as straight-
forward as generating strings from them, the recognition problem is not that difficult and
can always be done in linear time, proportional to the length of the input string. The rel-
evant algorithms can be found in any compiler textbook [2]. Because of their conciseness,
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E → N
| ‘(’ E ‘+’ E ‘)’
| ‘(’ E ‘-’ E ‘)’

N → D
| D N

D → ‘0’ | . . . | ‘9’

Figure 2-1: Context-free grammar for a trivial arithmetic expression language

simplicity, and efficiency, regular expressions have become the de facto basis for generic
searching and text manipulation tools of all kinds, as well as for defining the lexical stage
of many conventional language processors. Issues of ambiguity and information preserva-
tion are not usually considered highly important for regular expression processing, since in
practice regular expressions are primarily used merely to find or identify strings matching
a pattern for subsequent (manual or automatic) processing by other methods, and not to
extract information from those strings directly.

2.2 Context-Free Grammars

The most important limitation of regular expressions is that they cannot express recursive
syntactic constructs. The syntax of most practical languages inherently involves recursive
rules such as, “If e1 and e2 are expressions, then ‘e1 + e2’ is an expression,” or “If e is an
expression and s1 and s2 are statements, then ‘if (e) then s1 else s2’ is a statement.”
Even the informal definition of regular expressions above uses such rules; regular expressions
are not powerful enough even to express their own syntax effectively.

A context-free grammar (CFG) solves this problem by representing syntax not by a single
rule but by a set of rules that can refer to each other recursively. Two classes of symbols
are utilized in a CFG: terminals, which represent atomic syntactic elements and correspond
to literal characters in regular expressions; and nonterminals, which represent higher-level,
composite constructs such as expressions and statements. In the most common practical
representation for context-free grammars, known as Backus-Naur Form (BNF), each rule
has the form ‘n → v1| . . . |vn’, where n is the nonterminal symbol that the rule defines,
and each vi on the right-hand side is a string consisting of any number of terminals and/or
nonterminals. Each vi in the rule represents an alternative syntactic expansion or derivation
for the nonterminal on the left. No significance is attached to the order in which multiple
alternatives appear in a rule, or to the order in which rules appear in the grammar.

As with regular expressions, a context-free grammar essentially provides a recipe for
writing strings in the language expressed by the grammar. For example, Figure 2-1 shows a
context-free grammar for a trivial expression language featuring addition, subtraction, and
decimal numbers. The grammar uses three nonterminal symbols: E represents expressions,
N represents decimal numbers consisting of one or more digits, and D represents individual
decimal digits. If we want to generate an expression (E), the grammar gives us three
choices: either write a number using the rule for N, or write a string of the form ‘(e1+e2)’ or
‘(e1-e2)’, where e1 and e2 are expression strings likewise generated by the E rule. Similarly,
to generate a number (N), there are two choices: either just write a single digit (the “base
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case”), or prepend a digit (D) to another number generated by this same rule.
Although BNF notation is often extended in practice with repetition operators such as

‘∗’ and ‘+’, repetition is not usually considered “primitive” in context-free grammars since
it can be easily expressed in terms of recursion, as demonstrated by the N nonterminal in
the example grammar.

As with regular expressions, ambiguity and information preservation are issues for
context-free grammars. Ambiguity is a much more important problem in practice for
CFGs than for regular expressions, because the primary goal is usually not just to rec-
ognize whether a string conforms to a particular CFG, but to parse the string, effectively
reconstructing the full set of decisions (that would have been) used to generate the string
from the CFG.

Both recognizing and parsing CFGs is a much harder problem than recognizing regular
expressions. Parsing arbitrary CFGs is equivalent in complexity to boolean matrix mul-
tiplication [13], which is generally believed to lie between O(n2) and O(n3). The fastest
known algorithm to recognize arbitrary unambiguous CFGs is O(n2), but the question of
whether an arbitrary CFG is unambiguous is undecidable in general [3].

Various linear-time algorithms exist to recognize useful but often restrictive classes of
CFGs. Top-down, predictive parsing algorithms start with high-level syntactic constructs
as “goals” and break them into progressively smaller subgoals while recognizing a string,
whereas bottom-up, shift/reduce algorithms start with the atomic units (terminals) of the
string and progressively clump or “reduce” them into higher-level constructs (nonterminals).
These algorithms are explored and contrasted with packrat parsing later in Chapter 6.

2.3 TDPL and Parsing Grammars (PGs)

A different but equally legitimate approach to expressing language syntax is to represent
it not as a set of rules for writing strings in the language, but as a set of rules for reading
them. A top-down parsing language (TDPL) is one notation that can be used to express
grammars in this way. As its name implies, TDPL is geared toward a top-down style of
parsing: it can be seen as a simple programming language for writing top-down parsers.
A grammar in TDPL or a similar “parsing-oriented” notation will be referred to here as a
top-down parsing grammar, or just parsing grammar (PG) for short.

2.3.1 Definition of Parsing Grammars

As with CFGs, a parsing grammar makes use of both terminal and nonterminal symbols,
and consists of a set of rules to provide definitions for each nonterminal. Each rule can
refer to other rules in the grammar recursively. Parsing grammar definitions will be given
the notation ‘n← e’, where n is a nonterminal and e is a parsing expression to be defined
below. The use of a left-arrow instead of a right-arrow expresses the conceptual difference
in “natural information flow” between a PG and a CFG. Whereas the rules of a CFG most
directly represent “expansions” from nonterminals to right-hand-side strings, the rules of a
PG most directly represent “reductions” from right-hand-side parsing expressions to non-
terminals. Furthermore, whereas the expansions expressed in a CFG represent operations
on whole strings, the reductions expressed in a TDPL grammar represent operations on
prefixes of an input string.

For example, the CFG rule ‘A → B C’ can be read as, “To produce a string matching
nonterminal A, first generate a string matching B and a string matching C, and concatenate
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the two to form the result.” The interpretation of the similar-looking PG rule ‘A ← B C’
is quite different: “To read an instance of nonterminal A from a string, look for an instance
of nonterminal B followed by an instance of nonterminal C, possibly followed by additional,
unrecognized input. If both B and C are found, then succeed and consume the corresponding
portion of the input string. Otherwise, fail and do not consume anything.” The subtle but
important difference between these interpretations is elaborated below.

In the TDPL notation used in this thesis, parsing expressions are constructed as follows:

• Empty String: ‘()’ is a parsing expression denoting the empty string. Its interpre-
tation is, “Don’t try to read anything: just trivially succeed without consuming any
input.”

• Terminal: If a is a terminal symbol (e.g., a single character), then ‘a’ is a parsing
expression whose interpretation is, “If the next input terminal is a, then consume that
one terminal and succeed. Otherwise, fail without consuming anything.”

• Nonterminal: If A is a nonterminal symbol, then ‘A’ is a parsing expression whose
interpretation is, “Try to read input according to the grammar rule for nonterminal
A, and succeed or fail accordingly.”

• Sequence: If e1, e2, . . ., en are parsing expressions, then ‘(e1e2 . . . en)’ is a parsing
expression whose interpretation is as follows: “First try to read a string matching
e1. If e1 succeeds, then try to read a string matching e2, starting with the remaining
input text left unconsumed by e1. If e2 succeeds, then continue with e3, and so on
up to en. If all n expressions are successfully recognized consecutively, then succeed
and consume all of the corresponding input text. If any sub-expression fails, then the
sequence as a whole fails without consuming any text.”

• Ordered Choice: If e1, e2, . . ., en are parsing expressions, then ‘(e1/e2/. . ./en)’
is a parsing expression whose interpretation is as follows: “First try to read a string
matching e1. If that succeeds, then the choice expression succeeds and consumes the
corresponding input text. Otherwise, try e2 with the original input text, then e3, and
so on, in order up to en, stopping with the first matching alternative. If none of the
n alternatives match, then fail without consuming any text.” The parsing expression
‘(e1/e2)’ can be read, “e1 or else e2.” We use the forward slash symbol (‘/’) to
denote choice in TDPL in place of the vertical bar symbol (‘|’) used in CFGs, in order
to emphasize the critical difference that choice in a CFG is symmetric (order is not
important), whereas choice in TDPL is asymmetric and implies a priority relationship.

• Greedy Repetition: If e is a parsing expression, then ‘e*’ is a parsing expression
with this interpretation: “Apply expression e repeatedly to the input text, consuming
input text progressively with each iteration for as long as it continues to succeed. At
the first failure, consume all of the successfully matched text and succeed. If e did
not match even once, then succeed anyway but do not consume anything.”

• Greedy Positive Repetition: If e is a parsing expression, then ‘e+’ is a parsing
expression with this interpretation: “Apply expression e repeatedly, then succeed and
consume all matched text as long as at least one instance of e is recognized. If not,
then fail without consuming anything.”
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E ← N
/ ‘(’ E ‘+’ E ‘)’
/ ‘(’ E ‘-’ E ‘)’

N ← D N
/ D

D ← ‘0’ | . . . | ‘9’

Figure 2-2: Parsing grammar for a trivial arithmetic expression language

• Optional: If e is a parsing expression, then ‘e?’ is a parsing expression with this
interpretation: “Try to apply expression e to the input. If it succeeds, then consume
the matched text and succeed. If e fails, then succeed anyway but do not consume
any input.”

• Followed-By Predicate: If e is a parsing expression, then ‘&(e)’ is a parsing expres-
sion with this interpretation: “Try to apply expression e to the input. If it matches,
then succeed but do not consume any input (i.e., back up to the original position
before e was applied). If e fails, then fail.”

• Not-Followed-By Predicate: If e is a parsing expression, then ‘!(e)’ is a parsing
expression with this interpretation: “Try to apply expression e to the input. If it
matches, then fail without consuming any input. If e fails, then succeed without
consuming any input.”

Despite the richness of this vocabulary, all of the TDPL constructs defined above can
easily be reduced to a small “kernel” of primitive constructs. Since the most appropriate
choice of primitives depends on the intended use of the language (e.g., for formal analysis
versus practical parser implementation), this issue will be dealt with later.

2.3.2 An Example Parsing Grammar

Figure 2-2 shows a parsing grammar for the same trivial arithmetic expression language
that the CFG in Figure 2-1 represents. The structure is essentially the same, except for
the order of the alternatives for the N construct; this difference is important and will be
explained shortly.

Figure 2-3 shows an illustration of how the string ‘(12-3)’ can be read according to the
parsing grammar in Figure 2-2. We start by trying to read an expression (E) starting from
the beginning of the string. The first alternative for E is N, so we try both alternatives of N
in succession at this position, but neither of them matches because the first character is an
opening parenthesis and not a digit. Next we try the second alternative for E, the rule for
addition expressions. This rule successfully matches the opening parenthesis, and directs
us to read a (sub-)expression starting at position 2. To read this sub-expression, we again
first try the N alternative. In this case, the first alternative of N successfully matches a
digit at position 2, then recursively looks for a second instance of N at position 3. The first
alternative of this second instance of N (D N) fails because the digit at position 3 is not
followed by any more digits, but the second alternative (D) succeeds in matching that digit,
producing the result labeled N3 in the figure. This success result enables the earlier attempt
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Figure 2-3: Reading the string ‘(12-3)’ according to the grammar in Figure 2-2

to read N starting at position 2 to succeed, yielding in a two-character-wide instance of N
at position 2, labeled N2, and this result in turn leads to the corresponding two-character
expression E2. Returning to the attempt to read an expression at position 1, the second
alternative now fails because expression E2 is followed in the input by a ‘-’ instead of a
‘+’. However, upon subsequently attempting the third alternative for E, this alternative
succeeds because it matches the opening parenthesis and E2 in the same way that the first
alternative did, then continues to match the ‘-’, the single-digit expression E5 at position
5, and the closing parenthesis. Thus, expression E1 is generated, which matches the entire
input string.

2.3.3 Greedy versus Nondeterministic Repetition

The rule for the N nonterminal above illustrates one of the most important differences
between a parsing grammar and a context-free grammar. In the CFG in Figure 2-1, the
order of the two alternatives for N is unimportant because the choice between them is
nondeterministic and is oriented toward writing strings rather than reading them. In the
PG of Figure 2-2, the order of the two alternatives is critical: if we attempted the shorter
alternative (D) first, then the longer one would never be used, because in a PG the first
alternative to succeed is always the one used. The resulting grammar would not be able to
read the example input string ‘(12-3)’ because the reading of nonterminal N at position
2 would only consume the ‘1’ in the number ‘12’, leaving the ‘2’ to befuddle subsequent
attempts to parse a larger expression starting at position 1.

Because of this difference, repetition constructs in a parsing grammar are naturally
“greedy” rather than nondeterministic: a repetitive construct by default always consumes
as much text as it can, regardless of the context in which it is used. The nonterminal N in
the example parsing grammar can be eliminated by replacing the first alternative of E with
‘D+’, but the result is exactly the same, which is why the + operator in a parsing grammar
is known as “greedy positive repetition.”

In practice, greedy repetition is almost always what we want when dealing with lan-
guages intended to be unambiguous and machine-readable. It is easy to create “pathologi-
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cal” examples of context-free grammars that are unambiguous but depend on nondetermin-
istic choice, such as the following one:

S → A a
A → a A | a

If this CFG is converted directly to a PG in the obvious way, by reversing the arrows
and changing the ‘|’ to a ‘/’, then the resulting grammar will not match any string at all.
The nonterminal A in the PG will always consume as many consecutive ‘a’s as it can and
cause the subsequent attempt by S to match a trailing ‘a’ to fail. But even in pathological
cases such as these, usually a PG can be written to achieve the desired effect. For example,
the following PG is equivalent to the above CFG:

S ← A a
A ← a A &(a) | a

The use of the “followed-by” operator in the first alternative for A ensures that exactly
one ‘a’ is left unconsumed following the text matched by A, so that S will be able to succeed.

2.3.4 Parsing Complete Strings

If the grammar in Figure 2-2 is used to read the string ‘(12-3)XYZ’ starting with the
nonterminal E, then the result is a success, but only the ‘(12-3)’ part of the string is
actually read, leaving ‘XYZ’ as an “unconsumed” remainder. When the intention is to read
an input string of a known length, it is usually desirable that the parsing process “succeed”
only if the entire input is accepted, not just part of it. Fortunately, this behavior is easy to
accomplish by adding a special “start symbol” S, as follows:

S ← E !(C)
E ← . . .
. . .
C ← any single character

The start symbol looks for an expression E, then uses the “not-followed-by” operator
to ensure that nothing follows the recognized expression in the input. If there is more text
following the E, then the C will match, causing S to fail; otherwise C fails and S succeeds.

C in this example is a nonterminal representing a character class. As long as the
character set in use is finite, nonterminals representing character classes can in theory be
written out directly as a list of individual alternatives. Particularly with the shift from
ASCII and its 8-bit relatives to Unicode, however, it is usually easier to consider character
classes to be “primitive.” More specialized character classes typically include letters, digits,
whitespace characters, control characters, punctuation, and symbols.

2.3.5 Left Recursion

In a context-free grammar, both left recursion and right recursion are allowed. A left-
recursive nonterminal is one that, after being expanded one or more times, can yield a
string starting with the same nonterminal. Similarly, a right-recursive nonterminal is one
that can expand to a string ending in the same nonterminal. For example, it is typical to
express the syntax of left-associative operators in terms of left-recursive CFG definitions,
and right-associative operators in terms of right-recursive definitions:
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Unary → ‘+’ Unary
| ‘-’ Unary
| Primary

Additive → Additive ‘+’ Unary
| Additive ‘-’ Unary
| Unary

In the right-recursive definition of Unary, the ‘+’ and ‘-’ symbols serve as right-associative
unary operators (e.g., sign flags under the standard interpretation). The right-recursive
self-reference of Unary from its own definition allows multiple unary operators to precede
a Primary expression. For example, if p is a Primary expression, then the string ‘+-p’ is a
Unary ‘+’ expression containing a nested Unary ‘-’ expression: i.e., ‘+[-p]’, In contrast, the
definition for Additive is left-recursive, with the result that successive expansions of this
nonterminal will build toward the right from a leading Unary expression. For example, if e1,
e2, and e3 are Unary expressions, then ‘e1+e2-e3’ can be naturally interpreted as a binary
‘-’ expression whose left-hand operand is a nested binary ‘+’ expression: i.e., ‘[a+b]+c’.

In TDPL, while right recursion works in much the same way as it does in a CFG,
a left-recursive definition is considered erroneous, because its interpretation under TDPL
rules leads to a degenerate self-reference. For example, changing the definition of Additive
above directly into a TDPL definition in the obvious way would lead to this interpretation:
“To read an Additive expression, first try to read an Additive expression followed by . . .”
There would be no way to read an Additive expression at all, because doing so would
require already having read an Additive expression starting at that same position. Recursive
nonterminals in TDPL function properly only if some “progress” is made rightwards through
the input string before the next recursive invocation of the same nonterminal. For example,
the definition of Unary above can be converted directly into a valid right-recursive TDPL
definition whose interpretation is as follows: “To read a Unary expression, first try to read
a ‘+’ sign, then read another Unary expression following the ‘+’ sign. . .”

In a CFG, left recursion can be convenient but is not essential to the expression of
language syntax, because any CFG involving left recursion can be rewritten into a CFG
representing the same language without left recursion. In TDPL, it is usually more conve-
nient and concise to use the repetition operators ‘∗’ and ‘+’ instead of either left or right
recursion. For example, the above CFG can be written in TDPL as follows:

Unary ← (‘+’ / -’)* Primary
Additive ← Unary ((‘+’ / ‘-’) Unary)*

2.4 The Expressiveness of CFGs Versus PGs

For the purpose of expressing languages that are intended to be unambiguous and machine-
readable, parsing grammars are both more powerful and more convenient than CFGs in
practice. Part of this expressiveness arises from TDPL’s natural support for reading text
with a longest-match (“greedy”) policy, which is pervasively used in practical languages.
Another important part of this expressiveness is provided by the ‘&’ and ‘!’ operators
demonstrated above. These operators represent syntactic predicates [16], which allow ar-
bitrary syntactic patterns to be used to direct decisions without actually consuming any
input text. The following subsections provide a few practical examples of the expressive
power of PGs in comparison with CFGs.
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2.4.1 Tokens and Whitespace

In most programming languages, the lowest “level” of syntax apart from atomic characters
themselves is the level of tokens. A token corresponds to a string of one or more directly
consecutive characters, such as a word or a decimal number. Tokens may be separated
by whitespace characters such as spaces, tabs, and newlines, but whitespace padding never
appears within a token. Often tokens must be separated by whitespace characters in order
to make them readable. For example, the two consecutive words ‘bar’ and ‘fly’ must be
separated by at least one whitespace character in order for them to be distinguishable from
the single word ‘barfly’.

Despite its apparent simplicity and obviousness, standard tokenization rules are difficult
to express in a pure context-free grammar. For this reason, CFGs are usually not used
to express language syntax at the character level, but instead only down to the token
level. Converting strings of characters into strings of tokens is usually left for a separate
preprocessing phase before parsing, known as lexical analysis. This difficulty is also the
primary historical reason the atomic symbols used in a context-free grammar are often
referred to as “tokens” or “terminals” rather than “characters.”

Consider a simple “S-expression” language, in which an expression is either an identifier
or a parenthesized sequence of consecutive expressions. If identifiers (IDENT) and paren-
theses (OPEN and CLOSE) are assumed to be atomic terminals produced by a separate
lexical analysis phase, then this language is easily expressed as a CFG:

Expr → IDENT
| OPEN Exprs CLOSE

Exprs → (empty)
| Expr Exprs

Suppose we want to express tokenization directly in the CFG however. According to
standard rules, identifiers cannot contain parentheses, so whitespace padding is optional
between two parentheses or between a parenthesis and an identifier. Two consecutive iden-
tifiers, however, must be separated by at least one whitespace character. To express these
tokenization rules, the original S-expression grammar must be “unfolded” in some way so
that these contexts can be distinguished. For example, here is one way the grammar can
be rewritten:

Expr → Identifier SpacesOpt
| ‘(’ SpacesOpt Exprs ‘)’ SpacesOpt

Exprs → ParenExprs
| IdentExprs

ParenExprs → (empty)
| ‘(’ SpacesOpt Exprs ‘)’ SpacesOpt Exprs

IdentExprs → Identifier SpacesOpt ParenExprs
| Identifier Spaces IdentExprs

Identifier → Letter
| Letter Identifier

SpacesOpt → (empty)
| Spaces

Spaces → Space
| Space Spaces
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In this example, Letter and Space are assumed to denote character classes representing
identifier-letters and whitespace characters, respectively. In order to isolate the case in which
two identifiers appear consecutively, the Exprs nonterminal has been factored into two other
nonterminals, one (ParenExprs) for empty expression lists and expression lists starting with
a parenthesized subexpression, and the other for expression lists starting with an identifier.
The rule for IdentExprs can then make whitespace mandatory between an Identifier and a
nested IdentExprs “tail,” and optional between an Identifier and a ParenExprs “tail.”

Even after this unfolding, however, the tokenization rules are still expressed only im-
plicitly and in a rather cumbersome way, through the uses of the Spaces and SpacesOpt
nonterminals sprinkled throughout the grammar. Furthermore, in the process of unfolding
the grammar, the simplicity, elegance, and clarity of the original grammar has been ob-
scured considerably. In a language even marginally more complex, expressing tokenization
rules implicitly in this way quickly becomes impractical.

In contrast, because of its natural predisposition for longest-match repetition, tokeniza-
tion can easily be expressed in a natural and modular fashion in a parsing grammar. Here
is a PG for the S-expression language above with integrated tokenization:

Expr ← Identifier
/ Open Expr* Close

Identifier ← Letter+ Space*
Open ← ’(’ Space*
Close ← ’)’ Space*

The Identifier nonterminal, for example, has a very simple and natural informal interpre-
tation: “To parse an identifier, read as many consecutive letters as possible, ensuring that
at least one is present, followed by as many consecutive space characters as possible.” The
implicit longest-match policy directly yields the desired behavior. Rules for any number of
other kinds of tokens can be expressed similarly.

2.4.2 Reserved Words

The possibility of expressing the syntax of a conventional programming language “top-to-
bottom” in a context-free grammar becomes even more remote if the language includes
reserved words, as most programming languages do. A reserved word is a syntactic con-
struct that takes the basic form of an identifier, typically consisting of a fixed sequence of
consecutive letters, but which serves some completely different purpose in the higher-level
syntax. Reserved words generally serve as syntactic markers used to introduce or delineate
specific kinds of statements, definitions, or other programming language constructs. In or-
der to serve as syntactic markers reliably, it is usually critical that they never be mistaken
for identifiers. Therefore, the nonterminal in a syntax representing identifiers must not
match reserved words: reserved words must actually be “reserved” syntactically from the
space of identifiers.

Unfortunately, a pure CFG provides no direct way to express the notion that we want
a nonterminal such as Identifier to represent all strings in some large class except for a few
specific strings. Instead the definition for Identifier would have to be unfolded so as to “feel
around the edges” of the set of reserved words. For example, if a language has only a single
reserved word, ‘foo’, then the CFG rules for recognizing these tokens could be written as
follows:
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FOO → ‘foo’
Identifier → NotF LettersOpt

| ‘f’ NotO LettersOpt
| ‘f’ ‘o’ NotO LettersOpt
| ‘f’ ‘o’ ‘o’ Letter LettersOpt

LettersOpt → (empty)
| Letter LettersOpt

NotF → any letter except ‘f’
NotO → any letter except ‘o’

This approach is obviously too cumbersome to be practical, especially as the number of
reserved words increases.

In contrast, reserved words are easy to express in a parsing grammar using the “not-
followed-by” syntactic predicate operator. For example, a parsing grammar might use the
following rules to express the tokenization of identifiers and reserved words, including the
handling of trailing whitespace:

Identifier ← !(ReservedWord) Letter+ Space*
ReservedWord ← IF / ELSE / WHILE / DO / . . .
IF ← ‘if’ !(Letter) Space*
ELSE ← ‘else’ !(Letter) Space*
WHILE ← ‘while’ !(Letter) Space*
DO ← ‘do’ !(Letter) Space*
. . .

The definition of Identifier can be read as follows: “To read an Identifier, first check that
there is no ReservedWord at this position, and if there is, fail. Otherwise, read one or more
letters followed by any number of spaces.” Each reserved word has its own corresponding
nonterminal, named in all capitals by historical convention. The nonterminal for a reserved
word first matches the appropriate string, then checks that this word is not followed by any
more letters (since the recognized sequence could be the first part of a longer identifier such
as ‘iffy’), and finally consumes any whitespace padding following the reserved word.

2.4.3 Operators with Variable Precedence

Although the examples above have focused on tokenization issues, parsing grammars are
often more convenient than CFGs for expressing practical higher-level language constructs
as well. For example, in C-like languages, there is a classic ambiguity relating to the if

statement, which allows an optional else clause:

Statement → IF ‘(’ Expression ‘)’ Statement
| IF ‘(’ Expression ‘)’ Statement ELSE Statement
| . . .

When reading a statement of the form, ‘if (e1) if (e2) s1 else s2’, the above CFG
leaves it undecided whether the final ‘else s2’ part of the statement is associated with the
outer if or the inner one. The Haskell language [12] includes more severe examples of the
same kind of ambiguity, because of its ‘\’ (lambda), ‘let’, and ‘if’ operators, which have a
high precedence themselves but accept a low-precedence expression as a “tail,” unguarded
by any syntactic marker to indicate the end of this tail:
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Exp → low-precedence expressions
...

Exp10 → ‘\’ . . . ‘->’ Exp
| ‘let’ . . . ‘in’ Exp
| ‘if’ Exp ‘then’ Exp ‘else’ Exp
| other high-precedence expressions

The above CFG does not specify whether a string of the form ‘let . . . in x + 1’ should
be interpreted as ‘let . . . in (x + 1)’ or as ‘(let . . . in x) + 1’.

In essentially all practical situations of this kind, the desired behavior is for the “dangling
tail” to bind to the innermost possible construct. For example, the dangling-else exam-
ple above should be resolved ‘if (e1) { if (e2) s1 else s2 }’, and the Haskell example
should be resolved ‘let . . . in (x + 1)’. This rule makes some intuitive sense because
the innermost construct is the one closest to the dangling tail, and thus is probably the
one the programmer had been thinking about “most recently” when the dangling tail was
written. This “innermost-binding” rule does cause occasional confusion in practice, but it
is well-accepted and its use can provide substantial notational flexibility.

This disambiguation rule is just a higher-level variant of the longest-match policy that is
needed to parse tokens and whitespace effectively, and for this reason this policy is extremely
natural in a PG. Both of the above examples, if converted directly to a PG in the obvious
way, yield the desired behavior.

In the earlier dangling-else case it is possible to rewrite the original CFG to resolve
the ambiguity according to the innermost-binding rule, by unfolding and duplicating the
Statement nonterminal. In the Haskell case, however, the number of operators contributing
to the ambiguity, and the large difference between the precedences of the relevant operators
and the precedences of their tail expressions, make the prospect of disambiguating the CFG
in this way inconceivable in practice. As a result, the Haskell specification, as with the
specifications of most other programming languages in similar situations, simply provide an
ambiguous CFG and an informal side-note specifying how a parser for the language should
resolve the ambiguity. In essence, the language specification is “stepping across the gap”
from the CFG paradigm of describing how phrases are written, into the TDPL paradigm
of describing how phrases are read. The frequency with which this gap must be crossed in
practice might be taken as a compelling argument for starting on the TDPL side in the first
place.

2.4.4 Limitations of Parsing Grammars

The primary limitation of the TDPL notation and parsing grammars is that they cannot
express ambiguous syntax even if there is a need to. For expressing natural languages,
for example, in which ambiguity is a fact of life, context-free grammars are clearly more
appropriate because they enable a parser to enumerate all of the possible ways of reading
a string. In natural language, there are usually no simple, purely local syntactic rules like
the innermost-binding rule above to resolve various ambiguities consistently. Instead, a
language recognizer must rely on global syntactic structure or, most often, on semantics
(i.e., which readings make “sense”).

If attention is restricted to unambiguous context-free grammars, there are pathological
CFGs such as the following, for which there appear to be no PG recognizing the same
language:
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S → a S a | a S b | b S a | b S b | a

However, pathologies of this sort seem rather unlikely to occur in practical programming
languages designed to be legible to humans as well as machines.

It might be argued that specifying grammars via CFGs is useful because automatic tools
can then check the grammar for unintended ambiguities. Checking grammars in this way
is indeed a worthwhile goal, but in current practice it is undermined by several practical
problems. First, since it is undecidable whether an arbitrary CFG is unambiguous, these
tools at best check that the grammar is within some conservative class of grammars that
is known to be “safe,” such as LALR(1). Second, the grammars for useful programming
languages often have so many intended ambiguities that any unintended ones are easily
overlooked amid the warnings. At best you might be lucky to notice that the number of
shift/reduce conflicts reported by the parser generator has increased since the last compile.

It should be possible to extend TDPL notation with an “unordered choice” operator,
which expresses the intention that all of the alternatives are supposed to be unambiguously
differentiable from each other (i.e., non-overlapping). This “claim” could then be checked
automatically using methods similar to those used by tools for CFGs, and then reduced
to simple ordered choice once the claim has been verified. This approach would have the
notable benefit of still allowing the ordered choice operator to be used in parts of the
grammar in which ambiguity is expected and the desire is to resolve it with an explicit
priority relationship. Although an unordered choice operator with this interpretation is
easy to add to TDPL, appropriate algorithms to check for overlap between alternatives in
a PG are not as obvious, and so this extension is left for future work.
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Chapter 3

Packrat Parsing

In this chapter we address the problem of efficiently parsing strings whose syntax is spec-
ified in TDPL. We will use the programming language Haskell [12] as the implementation
language, because it is currently the most popular and well-established of the non-strict
functional programming languages. As we shall see, the lazy evaluation capabilities of non-
strict languages such as Haskell makes the implementation of packrat parsers direct and
elegant. Of course, there is no reason a packrat parser could not or should not be imple-
mented in other languages; doing so would merely be slightly less straightforward because
of the need to hand-code the lazy evaluation functionality that Haskell provides as part of
the language.

In the first section of this chapter, we describe the basic principles behind the packrat
parsing algorithm by first creating a backtracking recursive-descent for a trivial language,
then converting that parser into a packrat parser. In the second section, we present use-
ful extensions to this basic parser to demonstrate practical methods of handling of left
recursion, integrated lexical analysis, constructing parsers with monadic combinators, and
user-friendly error handling. The third section explores some practical issues and limitations
of packrat parsers: localized backtracking, limited state, and high space consumption.

3.1 Building a Packrat Parser

Packrat parsing is essentially a top-down parsing strategy, and as such packrat parsers are
closely related to recursive descent parsers. For this reason, we will first build a recursive
descent parser for a trivial language and then convert it into a packrat parser.

Additive ← Multitive ‘+’ Additive / Multitive
Multitive ← Primary ‘*’ Multitive / Primary
Primary ← ‘(’ Additive ‘)’ / Decimal
Decimal ← ‘0’ / . . . / ‘9’

Figure 3-1: Grammar for a trivial language
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3.1.1 Recursive-Descent Parsing

Consider the TDPL grammar shown in Figure 3-1 for a trivial arithmetic expression lan-
guage. This grammar can be viewed as a direct short-hand representation for a recursive-
descent parser with backtracking. To construct a recursive-descent parser for this grammar,
we define four functions, one for each of the nonterminals in the grammar. Each function
takes takes the string to be parsed, attempts to recognize some prefix of the input string as
a derivation of the corresponding nonterminal, and returns either a “success” or “failure”
result. On success, the function returns the remainder of the input string immediately fol-
lowing the part that was recognized, along with some semantic value computed from the
recognized part. Each function can recursively call itself and the other functions in order to
recognize the nonterminals appearing on the right-hand sides of its corresponding grammar
rules.

Since the purpose of a practical parser is usually not just to recognize a string but
to derive meaningful semantic information from its structure, the example parser to be
developed here will also act as a simple calculator by computing the integer value of an
arithmetic expression it recognizes.

To implement this recursive-descent parser in Haskell, we first need a type describing
the result of a parsing function:

data Result v = Parsed v String

| NoParse

In order to make this type generic for different parsing functions producing different
kinds of semantic values, the Result type takes a type parameter v representing the type
of the associated semantic value. A success result is built with the Parsed constructor and
contains a semantic value (of type v) and the remainder of the input text (of type String).
A failure result is represented by the simple value NoParse. In this particular parser, each
of the four parsing functions takes a String and produces a Result with a semantic value
of type Int:

pAdditive :: String -> Result Int

pMultitive :: String -> Result Int

pPrimary :: String -> Result Int

pDecimal :: String -> Result Int

The definitions of these functions have the following general structure, directly reflecting
the mutual recursion expressed by the grammar in Figure 3-1:

pAdditive s = ... (calls itself and pMultitive) ...

pMultitive s = ... (calls itself and pPrimary) ...

pPrimary s = ... (calls pAdditive and pDecimal) ...

pDecimal s = ...

For example, the pAdditive function can be coded as follows, using only primitive
Haskell pattern matching constructs:
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-- Parse an additive-precedence expression

pAdditive :: String -> Result Int

pAdditive s = alt1 where

-- Additive <- Multitive ’+’ Additive

alt1 = case pMultitive s of

Parsed vleft s’ ->

case s’ of

(’+’:s’’) ->

case pAdditive s’’ of

Parsed vright s’’’ ->

Parsed (vleft + vright) s’’’

_ -> alt2

_ -> alt2

_ -> alt2

-- Additive <- Multitive

alt2 = case pMultitive s of

Parsed v s’ -> Parsed v s’

NoParse -> NoParse

To compute the result of pAdditive, we first compute the value of alt1, representing the
first alternative for this grammar rule. This alternative in turn calls pMultitive to recognize
a multiplicative-precedence expression. If pMultitive succeeds, it returns the semantic
value vleft of that expression and the remaining input s’ following the recognized portion
of input. We then check for a ‘+’ operator at position s’, which if successful produces the
string s’’ representing the remaining input after the ‘+’ operator. Finally, we recursively
call pAdditive itself to recognize another additive-precedence expression at position s’’,
which if successful yields the right-hand-side result vright and the final remainder string
s’’’. If all three of these matches were successful, then we return as the result of the
initial call to pAdditive the semantic value of the addition, vleft + vright, along with
the final remainder string s’’’. If any of these matches failed, we fall back on alt2, the
second alternative, which merely attempts to recognize a single multiplicative-precedence
expression at the original input position s and returns that result verbatim, whether success
or failure.

The other three parsing functions are constructed similarly, in direct correspondence
with the grammar. Of course, there are easier and more concise ways to write these parsing
functions, using an appropriate library of helper functions or combinators. These tech-
niques will be discussed later in Section 3.2.3, but for clarity we will stick to simple pattern
matching for now.

3.1.2 Backtracking Versus Prediction

The parser developed above is a backtracking parser. If alt1 in the pAdditive function
fails, for example, then the parser effectively “backtracks” to the initial position, starting
over with the original input string s in the second alternative alt2, regardless of whether
the first alternative failed to match during its first, second, or third stage. If the input s

consists of only a single multiplicative expression, then the pMultitive function will be
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called twice on the same string: once in the first alternative, which will fail while trying
to match a nonexistent ‘+’ operator, and then again while successfully applying the second
alternative. This backtracking and redundant evaluation of parsing functions can lead to
parse times that grow exponentially with the size of the input, and this blow-up is the
principal reason why a “näıve” backtracking strategy such as the one above is never used
in realistic parsers for inputs of substantial size.

The standard strategy for making top-down parsers practical is to design them so that
they can “predict” which of several alternative rules to apply before actually making any
recursive calls. In this way it can be guaranteed that parsing functions are never called
redundantly and that any input can be parsed in linear time. For example, although the
grammar in Figure 3-1 is not directly suitable for a predictive parser, it can be converted
into the TDPL equivalent of an LL(1) grammar, suitable for prediction with one lookahead
token, by “left-factoring” the Additive and Multitive nonterminals as follows:

Additive ← Multitive AdditiveSuffix
AdditiveSuffix ← ‘+’ Additive / ()
Multitive ← Primary MultitiveSuffix
MultitiveSuffix ← ‘*’ Multitive / ()

Now the decision between the two alternatives for AdditiveSuffix can be made before
making any recursive calls simply by checking whether the next input character is a ‘+’.
However, because the prediction mechanism only has “raw” input tokens (characters in
this case) to work with, and must itself operate in constant time, only a restricted class
of grammars can be parsed predictively. Care must also be taken to keep the prediction
mechanism consistent with the grammar, which can be difficult to do manually and highly
sensitive to global properties of the language. For example, the prediction mechanism for
MultitiveSuffix would have to be adjusted if a higher-precedence exponentiation operator
‘**’ was added to the language; otherwise the exponentiation operator would falsely trigger
the predictor for multiplication expressions and cause the parser to fail on valid input.

Some top-down parsers use prediction for most decisions but fall back on full back-
tracking when more flexibility is needed. This strategy often yields a good combination
of flexibility and performance in practice, but it still suffers the additional complexity of
prediction, and it requires the parser designer to be intimately aware of where prediction
can be used and when backtracking is required.

3.1.3 Tabular Top-Down Parsing

As pointed out by Birman and Ullman [4], a backtracking top-down parser of the kind pre-
sented in Section 3.1.1 can be made to operate in linear time without the added complexity
or constraints of prediction. The basic reason the backtracking parser can take super-linear
time is because of redundant calls to the same parsing function on the same input substring,
and these redundant calls can be eliminated through memoization.

Each parsing function in the example is dependent only on its single parameter, the
input string. Whenever a parsing function makes a recursive call to itself or to another
parsing function, it always supplies either the same input string it was given (e.g., for the
call by pAdditive to pMultitive), or a suffix of the original input string (e.g., for the
recursive call by pAdditive to itself after matching a ‘+’ operator). If the input string is of
length n, then there are only n + 1 distinct suffixes that might be used in these recursive
calls, counting the original input string itself and the empty string. Since there are only four
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Figure 3-2: Matrix of parsing results for string ‘2*(3+4)’

parsing functions, there are at most 4(n + 1) distinct intermediate results that the parsing
process might require.

We can avoid computing any of these intermediate results multiple times by storing
them in a table. This table has one row for each of the four parsing functions and one
column for each distinct position in the input string. We fill the table with the results of
each parsing function for each input position, starting at the right end of the input string
and working towards the left, column by column. Within each column, we start from the
bottommost cell and work upwards. By the time we compute the result for a given cell,
the results of all would-be recursive calls in the corresponding parsing function will have
already computed and recorded elsewhere in the table; we merely need to look up and use
the appropriate results.

Figure 3-2 illustrates a partially-completed result table for the input string ‘2*(3+4)’.
For brevity, Parsed results are indicated as (v,c), where v is the semantic value and c is
the column number at which the associated remainder suffix begins. Columns are labeled
C1, C2, and so on, to avoid confusion with the integer semantic values. NoParse results are
indicated with an X in the cell. The next cell to be filled is the one for pPrimary at column
C3, indicated with a circled question mark.

The rule for Primary expressions has two alternatives: a parenthesized Additive expres-
sion or a Decimal digit. If we try the alternatives in the order expressed in the grammar,
pPrimary will first check for a parenthesized Additive expression. To do so, pPrimary first
attempts to match an opening ‘(’ in column C3, which succeeds and yields as its remainder
string the input suffix starting at column C4, namely ‘3+4)’. In the simple recursive-descent
parser pPrimary would now recursively call pAdditive on this remainder string. However,
because we have the table we can simply look up the result for pAdditive at column C4
in the table, which is (7,C7). This entry indicates a semantic value of 7—the result of the
addition expression ‘3+4’—and a remainder suffix of ‘)’ starting in column C7. Since this
match is a success, pPrimary finally attempts to match the closing parenthesis at position
C7, which succeeds and yields the empty string C8 as the remainder. The result entered
for pPrimary at column C3 is thus (7,C8).

Although for a long input string and a complex grammar this result table may be large,
it grows only in proportion to the size of the input string. As long as the computation
of each cell looks up only a limited number of previously-recorded cells in the matrix and
completes in constant time, the parsing process as a whole completes in linear time.
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Due to the “forward pointers” embedded in the results table, the computation of a given
result may examine cells that are widely spaced in the matrix. For example, computing the
result for pPrimary at C3 above made use of results from columns C3, C4, and C7. This
ability to skip ahead arbitrary distances while making parsing decisions is the source of
the algorithm’s unlimited lookahead capability, making the algorithm more powerful than
linear-time predictive parsers or LR parsers.

3.1.4 Packrat Parsing

An obvious practical problem with the tabular right-to-left parsing algorithm above is that it
computes many results that are never needed. An additional inconvenience is that we must
carefully determine the order in which the results for a particular column are computed,
so that parsing functions such as pAdditive and pMultitive that depend on other results
from the same column will work correctly.

Packrat parsing is essentially a lazy version of the tabular algorithm above that solves
both of these problems. A packrat parser computes results only as they are needed, in
the same order as the original recursive descent parser would. However, once a result is
computed for the first time, it is stored for future use by subsequent calls.

A non-strict functional programming language such as Haskell provides an ideal imple-
mentation platform for a packrat parser. In fact, packrat parsing in Haskell is particularly
straightforward because it does not require arrays or any other explicit lookup structures
other than the language’s ordinary algebraic data types.

Types for Packrat Parsing

First we will need a new type to represent a single column of the parsing result matrix,
which we will call Derivs (“derivations”). This type is merely a tuple with one component
for each nonterminal in the grammar. Each component’s type is the result type of the
corresponding parsing function. The Derivs type also contains one additional component,
which we will call dvChar, to represent “raw” characters of the input string as if they were
themselves the results of some parsing function. The Derivs type for our example parser
can be conveniently declared in Haskell as follows:

data Derivs = Derivs {

dvAdditive :: Result Int,

dvMultitive :: Result Int,

dvPrimary :: Result Int,

dvDecimal :: Result Int,

dvChar :: Result Char}

This Haskell syntax declares the type Derivs to have a single constructor, also named
Derivs, with five components of the specified types. The declaration also automatically
creates a corresponding data-accessor function for each component: dvAdditive can be
used as a function of type Derivs → Result Int, which extracts the first component of a
Derivs tuple, and so on.

Next we modify the Result type so that the “remainder” component of a success result
is not a plain String, but is instead an instance of Derivs:

data Result v = Parsed v Derivs

| NoParse
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The Derivs and Result types are now mutually recursive: the success results in one
Derivs instance act as links to other Derivs instances. These result values in fact provide
the only linkage we need between different columns in the matrix of parsing results.

Packrat Parsing Functions

Now we modify the original recursive-descent parsing functions so that each function takes
a Derivs instead of a String as its parameter:

pAdditive :: Derivs -> Result Int

pMultitive :: Derivs -> Result Int

pPrimary :: Derivs -> Result Int

pDecimal :: Derivs -> Result Int

Wherever one of the original parsing functions examined input characters directly, the
new parsing function instead refers to the dvChar component of the Derivs object. Wher-
ever one of the original functions made a recursive call to itself or another parsing function,
in order to match a nonterminal in the grammar, the new parsing function instead instead
uses the Derivs accessor function corresponding to that nonterminal. Sequences of termi-
nals and nonterminals are matched by following chains of success results through multiple
Derivs instances. For example, the new pAdditive function uses the dvMultitive, dvChar,
and dvAdditive accessors as follows, without making any direct recursive calls:

-- Parse an additive-precedence expression

pAdditive :: Derivs -> Result Int

pAdditive d = alt1 where

-- Additive <- Multitive ’+’ Additive

alt1 = case dvMultitive d of

Parsed vleft d’ ->

case dvChar d’ of

Parsed ’+’ d’’ ->

case dvAdditive d’’ of

Parsed vright d’’’ ->

Parsed (vleft + vright) d’’’

_ -> alt2

_ -> alt2

_ -> alt2

-- Additive <- Multitive

alt2 = dvMultitive d
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The Recursive Tie-Up Function

Finally, we create a special “top-level” function, parse, to produce instances of the Derivs

type and “tie up” the recursion between all of the individual parsing functions:

-- Create a result matrix for an input string

parse :: String -> Derivs

parse s = d where

d = Derivs add mult prim dec chr

add = pAdditive d

mult = pMultitive d

prim = pPrimary d

dec = pDecimal d

chr = case s of

(c:s’) -> Parsed c (parse s’)

[] -> NoParse

The “magic” of the packrat parser is in this doubly-recursive function. The first level of
recursion is produced by the parse function’s reference to itself within the case statement.
This relatively conventional form of recursion is used to iterate over the input string one
character at a time, producing one Derivs instance for each input position. The final
Derivs instance, representing the empty string, is assigned a dvChar result of NoParse,
which effectively terminates the list of columns in the result matrix.

The second level of recursion is via the symbol d. This identifier names the Derivs

instance to be constructed and returned by the parse function, but it is also the parameter
to each of the individual parsing functions. These parsing functions, in turn, produce the
rest of the components forming this very Derivs object.

This form of data recursion works only in a non-strict programming language, which
allows some components of an object to be accessed before other parts of the same object
are available. In any Derivs instance created by the above function, for example, the
dvChar component can be accessed before any of the other components of the tuple are
available. Attempting to access the dvDecimal component of this tuple will cause pDecimal
to be invoked, which in turn uses the dvChar component but does not require any of the
other “higher-level” components. Accessing the dvPrimary component will similarly invoke
pPrimary, which may access dvChar and dvAdditive. Although in the latter case pPrimary
is accessing a “higher-level” component, doing so does not create a cyclic dependency in
this case because it only ever invokes dvAdditive on a different Derivs object from the
one it was called with: namely the one for the position following the opening parenthesis.
Every component of every Derivs object produced by parse can be lazily evaluated in this
fashion.

Data and Evaluation in a Packrat Parser

Figure 3-3 illustrates the data structure produced by the parser for the example input
text ‘2*(3+4)’, as it would appear in memory under a modern functional evaluator after
fully reducing every cell. Each vertical column represents a Derivs instance with its five
Result components. For results of the form ‘Parsed v d’, the semantic value v is shown in
the appropriate cell, along with an arrow representing the “remainder” pointer leading to
another Derivs instance in the matrix. In any modern lazy language implementation that
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Figure 3-3: Derivs data structure produced by parsing the string ‘2*(3+4)’

properly preserves sharing relationships during evaluation, the arrows in the diagram will
literally correspond to pointers in the heap, and a given cell in the structure will never be
evaluated twice. Shaded boxes represent cells that would never be evaluated at all in the
likely case that the dvAdditive result in the leftmost column is the only value ultimately
needed by the application.

This illustration should make it clear why this algorithm can run in O(n) time under
a lazy evaluator for an input string of length n. The top-level parse function is the only
function that creates instances of the Derivs type, and it always creates exactly n + 1
instances. The parsing functions only access entries in this structure instead of making
direct calls to each other, and each function examines at most a fixed number of other cells
while computing a given result. Since the lazy evaluator ensures that each cell is evaluated
at most once, the parser has the critical memoization property necessary to guarantee linear
parse time, even though it evaluates these results in a completely different order from the
tabular, right-to-left, bottom-to-top algorithm presented earlier.

3.2 Practical Extensions to the Algorithm

The previous section provided the basic principles and tools required to create a packrat
parser, but building parsers for real applications involves many additional details, some of
which are affected by the packrat parsing paradigm. In this section we will explore some of
the more important practical issues, while incrementally building on the example packrat
parser developed above. We first examine the annoying but straightforward problem of left
recursion. Next we address the issue of lexical analysis, seamlessly integrating this task into
the packrat parser. Finally, we explore the use of monadic combinators to express packrat
parsers more concisely.

3.2.1 Left Recursion

One limitation packrat parsing inherits from TDPL and shares with other top-down parsing
schemes is that it does not directly support left recursion. For example, suppose we wanted
to add a subtraction operator to the above example and have addition and subtraction be
properly left-associative. In a context-free grammar, the natural approach would be to use
a left-recursive rules such as the following one:
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Additive → Additive ‘+’ Multitive
| Additive ‘-’ Multitive
| Multitive

If m1, m2, and m3 are Multitive expressions, then the string ‘m1-m2-m3’ would be
correctly interpreted as ‘[m1-m2]-m3’ and never as ‘m1-[m2-m3]’.

However, as described earlier in Section 2.3.5, a rule of this form is erroneous in TDPL
because it expresses a degenerate cycle. In a recursive descent parser constructed from
such a rule, the pAdditive function would recursively invoke itself with the same input
it was provided, and therefore would get into an infinite cycle of recursive function calls.
In a packrat parser with such a rule, pAdditive would attempt to access the dvAdditive

component of its own Derivs tuple—the same component it is supposed to compute—and
thus create a circular data dependency. In either case the parser fails, although the packrat
parser’s failure mode might be viewed as slightly “friendlier” since modern lazy evaluators
often detect circular data dependencies at run-time but cannot detect infinite recursion.

Fortunately, a left-recursive context-free grammar can always be rewritten into an equiv-
alent right-recursive one [2], from which it is generally easy to construct a corresponding
TDPL grammar. The desired left-associative semantic behavior is easily reconstructed by
using higher-order functions as intermediate parser results.

For example, to make additive expressions left-associative in the example parser, we
can split the definition for Additive into two nonterminals, Additive and AdditiveSuffix,
yielding the following TDPL definitions:

Additive ← Multitive AdditiveSuffix
AdditiveSuffix ← ‘+’ Multitive AdditiveSuffix

/ ‘-’ Multitive AdditiveSuffix
/ ()

Figure 3-4 shows how the corresponding functions in a packrat parser can be defined.
The pAdditiveSuffix parsing function collects a series of infix operators and right-hand-
side operands, and builds a semantic value of function type ‘Int → Int’. This higher-order
function value, in turn, takes an argument to be used as an initial left-hand-side operand,
and computes a result according to the addition/subtraction operators and right-hand-side
operands represented by the suffix. The pAdditive function recognizes a single Multitive
expression followed by an AdditiveSuffix, and then uses the higher-order function produced
by pAdditiveSuffix as a “modifier” to perform the operations indicated by the suffix on
the left-hand-side value.

The alt3 case in the pAdditiveSuffix function also demonstrates how to implement
“empty string” rules in TDPL notation: simply return the original Derivs object as the
“remainder” without parsing anything. Care must be taken that the use of such rules does
not introduce subtle left recursion elsewhere in the parser. For example, the definition
‘Foo ← Bar Foo’ becomes left-recursive if nonterminal Bar can match the empty string.

3.2.2 Integrated Lexical Analysis

Traditional parsing algorithms usually assume that the “raw” input text has already been
partially digested by a separate lexical analyzer into a stream of tokens. The parser then
treats these tokens as atomic units even though each may represent multiple consecutive
input characters. This separation is usually necessary because conventional linear-time
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-- Additive <- Multitive AdditiveSuffix

pAdditive :: Derivs -> Result Int

pAdditive d = case dvMultitive d of

Parsed vl d’ ->

case dvAdditiveSuffix d’ of

Parsed f d’’ ->

Parsed (f vl) d’’

_ -> NoParse

_ -> NoParse

-- AdditiveSuffix <-

-- ’+’ Multitive AdditiveSuffix

-- / ’-’ Multitive AdditiveSuffix

-- / ()

pAdditiveSuffix :: Derivs -> Result (Int -> Int)

pAdditiveSuffix d = alt1 where

-- Alternative 1: ’+’ Multitive AdditiveSuffix

alt1 = case dvChar d of

Parsed ’+’ d’ ->

case dvMultitive d’ of

Parsed vr d’’ ->

case dvAdditiveSuffix d’’ of

Parsed f d’’’ ->

Parsed (\vl -> f (vl + vr))

d’’’

_ -> alt2

_ -> alt2

_ -> alt2

-- Alternative 2: ’-’ Multitive AdditiveSuffix

alt1 = case dvChar d of

Parsed ’-’ d’ ->

case dvMultitive d’ of

Parsed vr d’’ ->

case dvAdditiveSuffix d’’ of

Parsed f d’’’ ->

Parsed (\vl -> f (vl - vr))

d’’’

_ -> alt3

_ -> alt3

_ -> alt3

-- Alternative 3: (empty string)

alt3 = Parsed (\v -> v) d

Figure 3-4: Packrat parsing functions for left-associative addition and subtraction
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parsers can only use primitive terminals in their lookahead decisions and cannot refer to
higher-level nonterminals. This limitation was explained in Section 3.1.2 for predictive top-
down parsers, but bottom-up LR parsers also depend on a similar token-based lookahead
mechanism sharing the same problem. If a parser can only use atomic tokens in its lookahead
decisions, then parsing becomes much easier if those tokens represent whole keywords,
identifiers, and literals rather than raw characters.

Packrat parsing suffers from no such lookahead limitation, however. Because a packrat
parser reflects a true backtracking model, decisions between alternatives in one parsing
function can depend on complete results produced by other parsing functions. For this
reason, lexical analysis can be integrated seamlessly into a packrat parser with no special
treatment.

Implementing Tokens

To extend the packrat parser example with “real” lexical analysis, we add some new non-
terminals to the Derivs type:

data Derivs = Derivs {

-- Expressions

dvAdditive :: Result Int,

...

-- Lexical tokens

dvDigits :: Result (Int, Int),

dvDigit :: Result Int,

dvSymbol :: Result Char,

dvSpacing :: Result (),

-- Raw input

dvChar :: Result Char}

The pSpacing parsing function consumes any whitespace that may separate lexical
tokens:

pSpacing :: Derivs -> Result ()

pSpacing d = case dvChar d of

Parsed c d’ ->

if isSpace c

then pSpacing d’

else Parsed () d

_ -> Parsed () d

The pSpacing function illustrates the handling of longest-match disambiguation, as
described earlier in Section 2.4.1. In a more complete language, this function might have
the task of “eating” comments as well as space characters. Since the full expressive power
of TDPL notation and packrat parsing is available for lexical analysis, comments may
have a complex hierarchical structure of their own, such as nesting or markups for literate
programming.

Continuing with the lexical analysis example, the function pSymbol recognizes “operator
tokens” consisting of an operator character followed by optional whitespace:
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-- Parse an operator followed by optional whitespace

pSymbol :: Derivs -> Result Char

pSymbol d = case dvChar d of

Parsed c d’ ->

if c ‘elem‘ "+-*/%()"

then case dvSpacing d’ of

Parsed _ d’’ -> Parsed c d’’

_ -> NoParse

else NoParse

_ -> NoParse

Using Tokens in High-Level Constructs

To make use of the lexical analysis defined functions above, we now modify the higher-level
parsing functions for expressions to invoke dvSymbol instead of dvChar to scan for operators
and parentheses. For example, pPrimary can be implemented as follows:

-- Parse a primary expression

pPrimary :: Derivs -> Result Int

pPrimary d = alt1 where

-- Primary <- ’(’ Additive ’)’

alt1 = case dvSymbol d of

Parsed ’(’ d’ ->

case dvAdditive d’ of

Parsed v d’’ ->

case dvSymbol d’’ of

Parsed ’)’ d’’’ -> Parsed v d’’’

_ -> alt2

_ -> alt2

_ -> alt2

-- Primary <- Decimal

alt2 = dvDecimal d

This function demonstrates how parsing decisions can depend not only on the existence
of a match at a given position for a nonterminal such as Symbol, but also on the seman-
tic value associated with that nonterminal. In this case, even though all symbol tokens
are parsed together and treated uniformly by pSymbol, other rules such as pPrimary can
still distinguish between particular symbols. In a more sophisticated language with multi-
character operators, identifiers, and reserved words, the semantic values produced by the
token parsers might be of type String instead of Char, but these values can be matched
in the same way. Such dependencies of syntax on semantic values, known as semantic
predicates [16], provide a powerful and useful capability in practice. As with the syntactic
predicates expressed by the & and ! operators in TDPL, semantic predicates require unlim-
ited lookahead in general and cannot be implemented by conventional parsing algorithms
without giving up their linear time guarantee.

There is no direct equivalent to the pPrimary function in basic TDPL notation, because
basic TDPL cannot express semantic values or semantic predicates. However, the next
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chapter will present a “semantic extension” of TDPL in which semantic values and semantic
predicates can be expressed.

Advanced Lexical Analysis Capabilities

In a packrat parser with an integrated lexical analyzer, the link between lexical and high-
level syntax does not need to be unidirectional. Not only can high-level syntax make
reference to lexical elements, but lexical parsing functions can potentially refer “upwards”
to the parsing functions for high-level syntactic constructs. For example, a language’s syntax
could allow identifiers or code fragments embedded within comments to be demarked so the
parser can find and analyze them as actual expressions or statements, making intelligent
software engineering tools more effective. Similarly, escape sequences in string literals could
contain generic expressions representing static or dynamic substitutions.

Another example of the use of lexical tokens with a complex hierarchical structure will be
seen in the next chapter, where structured fragments of code in one language are embedded
as “literals” in another language.

3.2.3 Monadic Packrat Parsing

A popular method of constructing parsers in functional languages such as Haskell is using
monadic combinators [11, 14]. Unfortunately, the monadic combinator approach usually
comes with a performance penalty, and with packrat parsing this tradeoff presents a dif-
ficult choice. Implementing a packrat parser as described so far assumes that the set of
nonterminals and their corresponding result types is known statically, so that they can be
bound together in a single fixed tuple to form the Derivs type. Constructing entire packrat
parsers dynamically from other packrat parsers via combinators would require making the
Derivs type represent a dynamic lookup structure, associating a variable set of nonterminals
with corresponding results. This approach would be much slower and less space-efficient.

A more practical strategy, which provides most of the convenience of combinators with
a less significant performance penalty, is to use combinators to define the individual parsing
functions comprising a packrat parser, while keeping the Derivs type and the “top-level”
recursion structure static.

The Parser Type

Since we would like our combinators to build the parsing functions we need directly, the
obvious method would be to make the combinators work with a simple type alias:

type Parser v = Derivs -> Result v

Unfortunately, in order to take advantage of Haskell’s useful do syntax, the combinators
must use a type of the special class Monad, and simple aliases cannot be assigned type
classes. We must instead wrap the parsing functions with a “real” user-defined type:

newtype Parser v = Parser (Derivs -> Result v)

Basic Combinators

We can now implement Haskell’s standard sequencing (>>=), result-producing (return),
and error-producing combinators:

44



instance Monad Parser where

(Parser p1) >>= f2 = Parser pre

where pre d = post (p1 d)

post (Parsed v d’) = p2 d’

where Parser p2 = f2 v

post (NoParse) = NoParse

return x = Parser (\d -> Parsed x d)

fail msg = Parser (\d -> NoParse)

Finally, for parsing we need an ordered choice combinator:

(</>) :: Parser v -> Parser v -> Parser v

(Parser p1) </> (Parser p2) = Parser pre

where pre d = post d (p1 d)

post d NoParse = p2 d

post d r = r

With these combinators in addition to a trivial one to recognize specific characters, the
pAdditive function in the original packrat parser example can be written as follows:

Parser pAdditive =

(do vleft <- Parser dvMultitive

char ’+’

vright <- Parser dvAdditive

return (vleft + vright))

</> (do Parser dvMultitive)

Iterative Combinators

It is tempting to build additional combinators for higher-level idioms such as repetition and
infix expressions. However, using iterative combinators within packrat parsing functions
violates the assumption that each cell in the result matrix can be computed in constant
time once the results from any other cells it depends on are available. Iterative combinators
effectively create “hidden” recursion whose intermediate results are not memoized in the
result matrix, potentially making the parser run in super-linear time.

For example, suppose the rule ‘A ← x∗’ is implemented using a “zero-or-more repeti-
tions” combinator, and applied to an input string consisting of n ‘x’s. If we compute the
parsing matrix cell for nonterminal A for each of the n + 1 possible positions in this string,
the computation of each result would start “from scratch” and iterate through the remain-
ing part of the string, making the computation of each cell run in O(n) and making the
computation of the entire parsing matrix run in O(n2). In contrast, if the same grammar
is written in terms of primitive, constant-time combinators using the rule ‘A ← x A / ()’,
then the result for each input position builds on the results for positions farther right, and
the O(n) time guarantee is preserved.

This problem is not necessarily serious in practice, as the experimental results in Chap-
ter 5 will show. When iterative combinators are used in practical grammars, often only the
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result for the cell at the beginning of the sequence is ever needed. In this case, lazy eval-
uation ensures that none of the result cells for the “tails” of this sequence is computed at
all, and the effective amount of work done is the same. What this situation amounts to is a
partial regression to the more conventional functional backtracking approach, and for many
practical grammars occasional backtracking is acceptable. However, it may be difficult to
predict whether there are combinations of input strings that might lead to exponential parse
times in a complex grammar, and what forms those input strings might take.

A Packrat Parser Combinator Library

The on-line examples for this thesis include a full-featured monadic combinator library that
can be used to build large packrat parsers conveniently. This library is substantially inspired
by the Parsec combinator library [14], which is designed for the construction of top-down
predictive parsers with support for occasional backtracking. The combinators in the packrat
parsing library are much simpler than those in Parsec, however, since they do not have to
treat lexical analysis as a separate phase or implement the one-token-lookahead mechanism
used by traditional predictive parsers. The full packrat parsing combinator library provides
a variety of “safe” constant-time combinators, as well as a few “dangerous” iterative ones,
which are convenient but not necessary to construct useful parsers. The combinator library
can be used simultaneously by multiple parsers with different Derivs types, and supports
user-friendly error detection and reporting as described next.

3.2.4 Error Handling

Graceful error handling is critical for practical parsers that are expected to interpret source
files of nontrivial size written by humans. Error handling techniques for conventional LL
and LR parsers and their variants are well-studied, but these techniques are not directly
applicable to packrat parsers because they generally assume that the parser performs a de-
terministic left-to-right scan on the input and can simply stop and report an error whenever
it gets “stuck.” With packrat parsing it is somewhat more difficult to localize or determine
the true cause of an error, because most “failures” that occur in the parsing process do
not represent errors but merely cause backtracking to an alternate path. Even a “success”
result might indicate an error condition: whether a particular result actually contributes to
an error fundamentally depends on the context in which the result is used.

Consider the following definition, which might appear in a grammar for an imperative
language such as C:

Block ← ‘{’ Statement* ‘}’

Suppose that the third Statement in a Block in the input text is malformed. In this
case the ‘Statement*’ portion of the rule succeeds anyway, because a ‘∗’ operator always
succeeds even if it matches nothing. Since only the first two Statements in the block have
been consumed, however, the next character after the matched portion is not be the expected
closing brace (‘}’), and the Block fails to match. What position should be reported as the
location of the error? If we use the position at which at which we expected to find the
closing brace, then the error will be reported at the beginning of the invalid statement.
The invalid statement may itself be a complex construct many lines long, however, such
as a nested Block containing many embedded statements. If the actual error is in one of
these embedded statements, then reporting the position of the beginning of the block may
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data Pos = Pos {

posFile :: String,

posLine :: Int,

posCol :: Int}

data ErrorDescriptor =

Expected String

| Message String

data ParseError =

ParseError {

errorPos :: Pos,

errorDescrs :: [ErrorDescriptor]}

data Result d v =

Parsed v d ParseError

| NoParse ParseError

Figure 3-5: Result type augmented with error information

provide little useful information. In order to locate the actual error precisely, we must be
able to “descend into” the apparent success result generated by the ‘Statement*’ subrule,
and discover why that subrule did not match more text than it did.

Representing Error Information

The error handling method presented here is inspired by the method used in the Parsec

combinator library mentioned above. In this solution, all results generated by the parsing
functions, both success and failure, are augmented with error information, as shown in
Figure 3-5. The error information in each Result contains two components: a position
in the input text (e.g., file name, line number, and column number), and a set of error
descriptors. Each error descriptor indicates one possible reason for any error that may be
detected at this position. It is legal for a ParseError instance to have no error descriptors;
this situation simply means that no information is available (yet) about an error other than
the position.

There are two kinds of error descriptors. The first variant, of the form ‘Expected s’,
indicates that a syntactic element named or described by the string s was scanned for start-
ing at this position, but not found. For example, s may name a specific keyword, operator,
or punctuation symbol, or it may name a larger composite construct such as ‘expression’
or ‘declaration’. This first kind of error descriptor is by far the most common. The sec-
ond variant, of the form ‘Message s’, indicates a more general syntax error of some kind
described by the error message s. This variant allows more specific information to be pro-
vided about the cause of an error, which is particularly useful if some amount of “semantic
checking” is performed by the parser in addition to pure syntax analysis. For example, if
a parsing function for a decimal number successfully reads a string of digits, but discovers
that the value of the number is out of the legal range for numeric literals, it might produce
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-- Two positions are ordered by line number, then column number.

instance Ord Pos where

Pos f1 l1 c1 <= Pos f2 l2 c2 =

(l1 < l2) || (l1 == l2 && c1 <= c2)

-- Join two ParseErrors, giving preference to the one farthest right,

-- or merging their descriptor sets if they are at the same position.

joinErrors :: ParseError -> ParseError -> ParseError

joinErrors (e @ (ParseError p m)) (e’ @ (ParseError p’ m’)) =

if p’ > p || null m then e’

else if p > p’ || null m’ then e

else ParseError p (m ‘union‘ m’)

Figure 3-6: Joining sets of error descriptors

a Message error descriptor with the string ‘Numeric literal out of range.’

Propagating Error Information

Because of the inherently speculative nature of packrat parsing, it is generally never known
at the time a ParseError instance is produced whether the information it contains actually
indicates an error. Instead, the error information produced by each parsing function is
filtered, combined, and propagated upwards through other parsing functions according to
well-defined rules. These rules are defined so that if there is an error in the input string,
then the most relevant information will “trickle upward” and eventually emerge as part of
the failure result produced by the top-level parsing function.

Though there is probably no perfect method of deciding exactly what information is
the “most relevant” to an error, a simple heuristic that provides good results in practice is
simply to prefer information produced at positions farthest to the right in the input stream.
Since TDPL and packrat parsing are inherently oriented toward reading text from left to
right, error information corresponding to positions farthest “forward” is generally the most
specific and the closest to the actual error.

The core of the error information combination and filtering process is implemented
by the joinErrors function shown in Figure 3-6. This function takes two ParseError

instances and combines them into a single instance. If the two instances indicate errors
at different positions, then the one farthest forward is returned. If the two instances are
associated with the same position, however, then their respective sets of error descriptors
are combined with Haskell’s union function, which merges the elements of two lists while
discarding duplicates.

With this function, we now modify the monadic combinators defined in the last section
as shown in Figure 3-7. The return combinator produces a ParseError with no error infor-
mation other than the position at which the result was produced, and the fail combinator
produces a ParseError with the supplied message in the obvious way.

The sequencing combinator operates as follows. First, the combinator invokes the left-
hand-side parser p1. If p1 fails, then the combinator returns this result verbatim including
the error information it contains. If p1 succeeds, however, then the combinator’s first
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-- Standard monadic combinators

instance Derivs d => Monad (Parser d) where

-- Sequencing combinator

(Parser p1) >>= f = Parser parse

where parse dvs = first (p1 dvs)

first (Parsed val rem err) =

let Parser p2 = f val

in second err (p2 rem)

first (NoParse err) = NoParse err

second err1 (Parsed val rem err) =

Parsed val rem (joinErrors err1 err)

second err1 (NoParse err) =

NoParse (joinErrors err1 err)

-- Result-producing combinator

return x = Parser (\dvs -> Parsed x dvs (ParseError (dvPos dvs) []))

-- Failure combinator

fail msg = Parser (\dvs -> NoParse (ParseError (dvPos dvs)

[Message msg]))

-- Ordered choice

(</>) :: Derivs d => Parser d v -> Parser d v -> Parser d v

(Parser p1) </> (Parser p2) = Parser parse

where parse dvs = first dvs (p1 dvs)

first dvs (result @ (Parsed val rem err)) = result

first dvs (NoParse err) = second err (p2 dvs)

second err1 (Parsed val rem err) =

Parsed val rem (joinErrors err1 err)

second err1 (NoParse err) =

NoParse (joinErrors err1 err)

Figure 3-7: Monadic parser combinators with error handling
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function invokes the right-hand-side parser p2 and calls second with p2’s result, passing
along the error information generated by p1. The function second, in turn, combines the
error information from p1 with the error information from p2 in generating the sequencing
combinator’s final result, regardless of whether p2 succeeds or fails.

Suppose for example that p1 is the parsing function for the ‘Statement*’ subrule in the
Block construct presented above, and p2 is the parsing function for the closing brace. If
there is a syntax error in one of the statements in the sequence parsed by p1, then p1 still
produces a success (Parsed) result, but that result includes error information describing
why another Statement could not be parsed following the text successfully consumed. The
result subsequently produced by p2 will indicate an error at the beginning of the invalid
statement, such as ‘Expected "}"’. If the error detected by p1 indicates a position farther
right than this (i.e., if some portion of the invalid statement was successfully parsed before
the failure occurred), then the error information from p1 overrides the information from p2.

If, on the other hand, p1 did not get any farther than the end of the last successfully
parsed statement (e.g., if the sequence of statements is correct but the block was accidentally
terminated with a ‘]’ instead of a ‘}’), then p1’s ParseError will have the same position
as p2’s, and the sequencing combinator will merge their error descriptors. For example,
if the error information from p1 indicates ‘Expected "statement"’, then the combined
ParseError contains the descriptor list ‘[Expected "statement", Expected "}"]’ which
might produce the descriptive error message ‘(position): Expected statement or }’.

The ordered choice operator combines error information in a similar fashion. It first
invokes the parser for the first alternative, p1, and returns p1’s result directly if successful,
including any error information p1 might have produced about why it could not parse a
longer string than it did. If p1 failed, then p2 is invoked, and the error information in its
result is combined with the error information from p1 regardless of whether p2 succeeded
or failed. It is obvious that the two ParseErrors should be combined when p1 and p2 both
fail: e.g., if p1 looks for a statement beginning with the keyword ‘for’, and p2 looks for a
statement beginning with the ‘while’, then if neither is found the parser might produce an
error message such as ‘(position): Expected "for" or "while"’.

To see why the two sets of ParseErrors should be combined even if p2 succeeds, consider
the parsing of the actual ‘Statement*’ subrule in the statement-block example above. This
subrule is functionally equivalent to the following right-recursive definition:

Statements ← Statement Statements
/ ()

Suppose p1 is the parsing function for the first alternative, ‘Statement Statements’,
and p2 is the parsing function for the second alternative, which merely parses the empty
string. Parser p2 always succeeds, producing a ParseError with no error descriptors (since
no “error” occurred and nothing was “expected”). Therefore, if some statement in the
sequence is invalid, then the information about that error must come from p1 even though
p2 succeeded.

Injecting Error Information

The final basic error-handling primitive we need is a convenient way to “inject” error in-
formation in the first place. The fail combinator can be used to inject general-purpose
error messages. However, error information is more commonly produced through the use of
the error annotation combinator ‘<&>’, shown in Figure 3-8. This combinator associates a
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(<?>) :: Derivs d => Parser d v -> String -> Parser d v

(Parser p) <?> desc = Parser (\dvs -> munge dvs (p dvs))

where munge dvs (Parsed v rem err) =

Parsed v rem (fix dvs err)

munge dvs (NoParse err) =

NoParse (fix dvs err)

fix dvs (err @ (ParseError p ms)) =

if p > dvPos dvs then err

else ParseError (dvPos dvs) [Expected desc]

Figure 3-8: Error annotation combinator

human-readable name with the syntactic construct a parsing function is looking for. When
a parser annotated with this combinator generates a result, the combinator compares the
position of the ParseError in that result against the starting position of the annotated
construct. If the error information in the result is to the right of that starting position, the
combinator assumes that it represents more detailed information about a syntactic element
within the annotated construct, and returns the parser’s result unmodified. Otherwise, the
combinator replaces the error information from the annotated parser’s result with its own
Expected descriptor containing the name attached to the combinator.

For example, consider the following annotated monadic parsing function, corresponding
to the TDPL definition ‘Expression ← ‘(’ Expression ‘+’ Expression ‘)’ / Decimal’:

pExpression :: Derivs -> Result ArithDerivs Int

Parser pExpression =

(do char ’(’

l <- Parser dvExpression

char ’+’

r <- Parser dvExpression

char ’)’

return (l + r))

</> (do Parser dvDecimal)

<?> "expression"

Suppose pExpression is invoked, and it finds neither an opening parenthesis (‘(’) nor a
decimal digit at that position. Then both alternatives of the choice combinator (</>) fail,
the first one indicating ‘Expected "("’ at the starting position, the second perhaps indi-
cating ‘Expected "decimal digit"’ at the same input position. Since neither alternative
got any farther in the input text than the beginning of the expression, the annotation com-
binator replaces the error information they produced with the single “higher-level” error
descriptor, ‘Expected "expression"’.

On the other hand, suppose that the input text at this position starts with ‘(1+x. . .’.
The first three characters in this string appear to be the beginning of a expression, but the ‘x’
represents a syntax error. In this case, the first alternative of pExpressionmatches the ‘(1+’
part of the string and fails at the ‘x’, yielding a ParseError indicating the position of the ‘x’.
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The choice combinator then invokes the second alternative, which fails without successfully
parsing any text, and its error information is therefore overridden by the ParseError from
the first alternative. The error annotation combinator likewise passes on this ParseError

information without modification, because its position indicates that it represents more
detailed information about an error within the expected expression.

Even if most the parsers for high-level constructs in a language are not annotated in this
way, useful and detailed error messages can often be produced merely by using appropriate
library functions to parse low-level lexical tokens such as keywords and operators. The
monadic combinator library includes the following function for this purpose:

-- ’string <s>’ matches all the characters in <s> in sequence.

string :: Derivs d => String -> Parser d String

string str = p str <?> show str

where p [] = return str

p (ch:chs) = do { char ch; p chs }

For example, ‘string "for"’ creates a Parser that scans for the keyword ‘for’, and if
not found, produces the error descriptor ‘Expected "\"for\""’. The extra pair of double-
quotes in the string literal is generated by the use of Haskell’s show function in string,
and helps to clarify to the user that the sequence of characters f-o-r was expected, and not
some kind of syntactic construct known as a “for.”

Maintaining Input Position Information

The error handling facilities described above depend on being able to determine the input
position corresponding to any Derivs tuple. For this purpose we add an additional element
to this tuple, with an accessor named dvPos:

data Derivs = Derivs {

...

dvChar :: Result Char,

dvPos :: Pos}

These position values are produced by the top-level “tie-up” function for the packrat
parser, which we modify as follows:

parse :: Pos -> String -> Derivs

parse pos s = d where

d = Derivs ... chr pos

...

chr = case s of

(c:s’) -> Parsed c (parse (nextPos pos c) s’)

(ParseError pos [])

[] -> NoParse (ParseError pos

[Message "unexpected end of input"])

The parse function now takes as an additional argument the position at which to start
“counting” at the beginning of the input text (e.g., ‘Pos filename 1 1’), and increments
it appropriately after each character using the function nextPos:
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-- Incrementally compute the next position in a text file

-- if ’c’ is the character at the current position.

-- Follows the standard convention of 8-character tab stops.

nextPos (Pos file line col) c =

if c == ’\n’ then Pos file (line + 1) 1

else if c == ’\t’ then Pos file line

((div (col + 8 - 1) 8) * 8 + 1)

else Pos file line (col + 1)

3.2.5 Packrat Parsing with State

The final extension to the packrat parsing algorithm that we sometimes need in practical
situations is the ability to parse context-sensitive grammars, in which parsing decisions
can depend on some kind of state built up incrementally throughout the parsing process.
The most well-known example of this requirement is in the grammars for C and C++, in
which various constructs can be disambiguated properly only through a knowledge of which
identifiers are the names of types and which represent ordinary variables. Since new type
names can be declared throughout a source file, a symbol table must be kept during the
parsing process and updated each time a new type is declared, so that constructs following
these declarations can be parsed properly.

State is inherently a problem for packrat parsing, because the algorithm assumes that
there is “only one way” to parse a given nonterminal at any given input position. The
presence of state violates this assumption because it means there can be many (usually
an infinite number of) ways to parse a nonterminal for the same input text, and the state
used in parsing one region of the text may be different from that used in parsing another.
This problem is not necessarily insurmountable; it just means that wherever a state change
occurs, the parser must create and switch to a new derivations structure in mid-stream.

Maintaining State

To add state to a packrat parser, we first incorporate the desired state element as a com-
ponent in the “derivations” tuple. In addition, efficiency is improved considerably during
state changes if we also record in each Derivs instance the original input string supplied
to the parse function that created that Derivs instance. For example, if the state element
we want to maintain is of type SymbolTable, then we can extend the Derivs type used in
the last section as follows:

data Derivs = Derivs {

...

dvChar :: Result Char,

dvPos :: Pos,

dvInput :: String,

dvState :: SymbolTable}

We now add a parameter to the parse function specifying the initial state value to be
used at the beginning of the parsing process:
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parse :: Pos -> String -> SymbolTable -> Derivs

parse pos str symtab = d where

d = Derivs ... chr pos str symtab

...

chr = case str of

(c:s’) -> Parsed c (parse (nextPos pos c) s’ symtab)

(ParseError pos [])

[] -> NoParse (ParseError pos

[Message "unexpected end of input"])

Referencing State

The parsing functions in the packrat parser can now reference the “current state” simply
by using the dvState accessor on the appropriate Derivs instance. In parsing functions
defined using monadic combinators, the following combinator makes it easy to access the
current state:

getState :: Parser SymbolTable

getState = Parser (\d -> dvState d)

With this combinator, the current state can be accessed in a Haskell do block with a
statement of the form, ‘symtab <- getState’, after which the identifier symtab is bound
to the state in effect at the the getState combinator was invoked.

Changing State

Since every Derivs instance has an associated dvState element, and the top-level parse
function always replicates the state value it was invoked with throughout all of the Derivs

instances it creates up to the end of the input string, we cannot use any of these Derivs

instances after a state change. Instead, a parsing function making a state change must
create an entirely new result matrix starting from the point at which the state change
occurred. The parsing function then returns a Derivs instance from this new result matrix
in the “remainder” portion of its result. Since this parsing function was probably called
in order to produce some cell in the original result matrix, this result cell in the original
matrix becomes a direct “link” into the new one. Other parsing functions in the original
result matrix that subsequently use the remainder part of this result as a continuation point
for further parsing will be automatically “forwarded” into the new result matrix, causing
these subsequent actions to occur in the context of the new state.

State changes can be most easily implemented with the help of the following combinator,
which complements the getState combinator above:

setState :: SymbolTable -> Parser ()

setState newstate = Parser p

where p d = Parsed () d’ (ParseError pos [])

where pos = dvPos d

input = dvInput d

d’ = parse pos input newstate

The setState function extracts the position and the input string from the original
Derivs instance, and calls the top-level parse function with this position and input string
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but with the new state value, in order to create a Derivs instance representing the first
column in the result matrix for the new state. The parsing function p then returns the new
Derivs instance as the “remainder” part of its success result.

The Dangers of State

It should be obvious that making state changes in a packrat parser is potentially an expen-
sive operation, in terms of both speed and storage consumption. Lazy evaluation is crucial
in a stateful packrat parser, since without it we would end up computing a complete parsing
matrix for the entire remainder of the input text at every state change. With lazy evalu-
ation, only the cells in each result matrix that are needed by parsing actions that actually
occur in the corresponding state are computed. A stateful packrat parser in effect computes
no more results than a backtracking recursive-descent parser would compute. State changes
create the risk, however, that result cells for the same nonterminal and input position may
be computed multiple times in different parsing matrices for different states. Results com-
puted in parallel states in this way can defeat the packrat parser’s memoization capability
and create the potential for super-linear runtime. If state changes occur too often, then
packrat parsing is likely to yield no practical benefit over simple backtracking but instead
just consume additional storage. For this reason, the viability of packrat parsing with state
depends on the properties of the specific language being parsed.

3.3 General Issues and Limitations of Packrat Parsers

Although packrat parsing is powerful and efficient enough for many applications, there are
three main issues that can make it inappropriate in some situations. First, packrat parsing
only supports localized backtracking in which each parsing function produces at most one
result. Second, a packrat parser depends for its efficiency on being mostly or completely
stateless. Finally, due to its reliance on memoization, packrat parsing is inherently space-
intensive. These three issues are discussed in this section.

3.3.1 Localized Backtracking

An important assumption we have made so far is that each of the mutually recursive parsing
functions from which a packrat parser is built will return at most one result. If there are any
ambiguities in the grammar the parser is built from, then the parsing functions must be able
to resolve them locally, within that parsing function. In the example parsers developed in
this thesis, multiple alternatives have always been implicitly disambiguated by the order in
which they are tested: the first alternative to match successfully is the one used, independent
of whether any other alternatives may also match. This behavior is both easy to implement
and useful for performing longest-match and other forms of explicit local disambiguation.
A parsing function could even try each of several possible alternatives and produce a failure
result if more than one alternative matches. What parsing functions in a packrat parser
cannot do is return multiple results to be used in parallel or disambiguated later by some
global strategy.

In languages designed for machine consumption, the requirement that multiple matching
alternatives be disambiguated locally is not much of a problem in practice because ambiguity
is usually undesirable in the first place, and localized disambiguation rules are preferred over
global ones because they are easier for humans to understand. However, for parsing natural

55



languages or other grammars in which global ambiguity is expected, packrat parsing (and
TDPL notation) is less likely to be useful. Although a classic generalized top-down parser for
context-free grammars in which the parsing functions return lists of results [26, 10, 7] could
be memoized in a similar way, the resulting parser would not be linear time, and would likely
be comparable to existing tabular algorithms for ambiguous context-free grammars [3, 23].
Since generalized CFG parsing is equivalent in computational complexity to boolean matrix
multiplication [13], a linear-time solution to this more difficult problem is unlikely to be
found.

3.3.2 Limited State

A second limitation of packrat parsing is that it is fundamentally geared toward stateless
parsing. A packrat parser’s memoization system assumes that the parsing function for
each nonterminal depends only on the input string, and not on any other information
accumulated during the parsing process. Although Section 3.2.5 demonstrated how stateful
packrat parsers can be implemented, if state changes occur too frequently the algorithm
may become inefficient, or under certain conditions even “blow up” and take exponential
time and space. In contrast, Traditional top-down (LL) and bottom-up (LR) parsers have
little trouble maintaining state while parsing. Since these algorithms perform only a single
left-to-right scan of the input and never look ahead more than one or at most a few tokens,
nothing is “lost” when a state change occurs.

3.3.3 Space Consumption

Probably the most striking characteristic of a packrat parser is the fact that it literally
squirrels away everything it has ever computed about the input text, including the entire
input text itself. For this reason packrat parsing always has storage requirements equal to
some possibly substantial constant multiple of the input size. In contrast, LL(k), LR(k),
and backtracking recursive-descent parsers can be designed so that space consumption grows
only with the maximum nesting depth of the syntactic constructs appearing in the input.
This nesting depth in practice is often orders of magnitude smaller than the total size of
the text. Although LL(k) and LR(k) parsers for any non-regular language still have linear
space requirements in the worst case, this “average-case” difference can be important in
practice.

One way to reduce the space requirements of the derivations structure, especially in
parsers for grammars with many nonterminals, is by splitting up the Derivs type into
multiple levels. For example, suppose the nonterminals of a language can be grouped into
several broad categories, such as lexical tokens, expressions, statements, and declarations.
Then the Derivs tuple itself might have only four components in addition to dvChar, one
for each of these nonterminal categories. Each of these components is in turn a tuple con-
taining the results for all of the nonterminals in that category. For the majority of the
Derivs instances, representing character positions “between tokens,” none of the compo-
nents representing the categories of nonterminals will ever be evaluated, and only the small
top-level object and the unevaluated closures for its components occupy space. Even for
Derivs instances corresponding to the beginning of a token, often the results from only one
or two categories are needed depending on what kind of language construct is located at
that position.
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Even with such optimizations a packrat parser can consume many times more working
storage than the size of the original input text. For this reason there are some application
areas in which packrat parsing is probably not the best choice. For example, for parsing
XML streams, which have a fairly simple syntax but often encode large amounts of relatively
flat, machine-generated data, the power and flexibility of packrat parsing is not needed and
its storage cost is not justified.

On the other hand, for parsing complex modern programming languages in which the
source code is usually written by humans and the top priority is the power and expressive-
ness of the language, the space cost of packrat parsing is probably reasonable. Standard
programming practice involves breaking up large programs into modules of manageable size
that can be independently compiled, and the main memory sizes of modern machines leave
at least three orders of magnitude in “headroom” for expansion of a typical 10–100KB
source file during parsing. Even when parsing larger source files, the working set may still
be relatively small due to the strong structural locality properties of realistic languages.
Finally, since the entire derivations structure can be thrown away after parsing is complete,
the parser’s space consumption is likely to be irrelevant if its result is fed into some other
complex computation, such as a global optimizer, that requires as much space as the pack-
rat parser used. Chapter 5 will present evidence that this space consumption is reasonable
in practical applications.

3.4 A Packrat Parser for Java

In order to illustrate the construction of a full-scale packrat parser for a practical program-
ming language, a parser for the Java programming language is available on-line along with
the smaller examples developed in this chapter. This parser is not described here in detail,
however, since it is structurally and functionally equivalent to the parser specification that
will be explored in the next chapter: only the notational details are different.
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Chapter 4

Pappy: A Packrat Parser
Generator for Haskell

The last chapter demonstrated how packrat parsers can be expressed directly and concisely
in a non-strict functional language such as Haskell, using only the standard features of the
language. Since non-strict functional languages are at the present time still little more
than a curiosity outside the academic research community, however, we would like to be
able to implement packrat parsers easily in more conventional languages as well. For such
languages, the obvious approach is to create a “compiler-compiler” tool along the lines of
YACC in the C world, which would accept a grammar in a concise notation and produce a
working packrat parser in the target language.

Even in the Haskell world, there is practical benefit in using an automatic parser gen-
erator instead of coding packrat parsers directly. For example, a grammar compiler can
generate not only the parsing functions themselves, but also the appropriate “derivations”
type declaration and the top-level recursive “tie-up” function, making it easier to add or
remove nonterminals in the grammar. The compiler can also rewrite left-recursive rules
in terms of right-recursive ones to make it easier to express left-associative constructs in a
grammar, and reduce iterative notations such as the ‘+’ and ‘∗’ repetition operators into
a low-level grammar that uses only primitive constant-time operations to ensure that the
linear parse time guarantee is preserved. Finally, using a specialized high-level notation to
express language syntax makes it possible to check and analyze the grammar automatically
(e.g., to verify that it does not contain any illegal recursion cycles), and makes it easier to
re-use the grammar in different applications.

This chapter presents Pappy, a prototype packrat parser generator that performs all
of the functions described above. Pappy is written in Haskell and currently generates
only Haskell parsers. Pappy is designed to be retargetable in order to generate parsers
for other languages such as Java and C++, but extending it in this way is left for future
work. The next section describes Pappy’s parser specification language, and the following
sections describe the operation of the parser generator and present an example Pappy parser
specification for the Java language.

4.1 Parser Specification Language

Naturally, the parser specification language accepted by Pappy is based on TDPL. In addi-
tion, the parser specification language will be presented here in terms of TDPL. Although
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Start ← Spacing Grammar EOF

Identifier ← IdentStart IdentCont* Spacing
IdentStart ← Letter / ‘_’
IdentCont ← IdentStart / Digit / ‘’’

CharLit ← ‘’’ (!(‘’’) QuotedChar) ‘’’ Spacing
StringLit ← ‘"’ (!(‘"’) QuotedChar)* ‘"’ Spacing
QuotedChar ← ‘\n’ / ‘\r’ / ‘\t’ / ‘\\’ / ‘\’’ / ‘\"’

/ !(‘\’) Char

Spacing ← (SpaceChar / LineComment)*
LineComment ← ‘--’ (!(LineTerminator) Char)* LineTerminator

SpaceChar ← ‘ ’ / TAB / CR / LF
LineTerminator ← CR LF / CR / LF

EOF ← !(Char)

Figure 4-1: Syntax of basic lexical elements in Pappy parser specifications

the details of the specification language’s syntax are not of primary importance, a com-
plete definition of the syntax is included here in order to provide a practical example of
a full-scale TDPL syntax specification, complementing the “toy” grammars presented in
Chapter 2. The TDPL syntax of Pappy’s specification language is included in fragments
throughout this section, and can be found as a single unified listing in Appendix B.

4.1.1 Basic Lexical Elements

Figure 4-1 presents the syntax of the basic lexical elements used throughout Pappy’s parser
specification language. By convention, each construct representing a lexical token is respon-
sible for “consuming” any whitespace and/or comments following the token; the nonterminal
Spacing serves this purpose. Comments in Pappy specifications have the same syntax as
Haskell comments: they are indicated with a double dash (‘--’), and continue through the
end of the line.

The special nonterminal Start is the “top-level” symbol representing a complete Pappy
specification file. This nonterminal is merely a “wrapper” for Grammar, to be defined later,
which represents the high-level global structure of a Pappy specification. The Start symbol
first invokes Spacing in order to allow comments and whitespace to precede the first regular
token, and after the complete Grammar has been parsed it checks that the end of file (EOF)
has been reached as described in Section 2.3.4.

4.1.2 Semantic Values and Haskell Code Blocks

As with most practical parser generators, Pappy is designed to create parsers that not
only recognize the language specified by a grammar, but also compute semantic values for
recognized constructs. These semantic values can then be used for subsequent processing
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by code written in the target programming language (in this case Haskell). The semantic
values generated by a parser are most commonly used to form an abstract syntax tree (AST)
representing the the parsed string. An AST represents the high-level structure of the input
in a convenient hierarchical form, eliminating irrelevant syntactic details such as textual
layout, comments, and syntactic markers such as parentheses and keywords.

In order for an automatically-generated parser to produce meaningful semantic values,
the user of the parser generator must have some way to specify how those semantic values
are generated. The most common and flexible method of specifying semantic values is to
allow actual fragments of code in the target language (Haskell) to be included in the parser
specification itself at well-defined points. These code fragments are completely uninter-
preted by the parser generator, but instead are simply “pasted” into the generated parser
at the appropriate locations. This traditional solution is the one Pappy adopts. In effect,
the parser specification language accepted by Pappy is not “pure” TDPL, but rather a
language supporting TDPL-like rules containing fragments of Haskell code to specify how
semantic values are generated.

The advantage of this approach is that the full power of the target language is available
for the computation of semantic values, and the code to compute these values is conveniently
located with the corresponding syntax definitions. There are two main disadvantages to this
scheme, however:

• Using target-language code fragments in a parser specification makes the specification
dependent on the target language and on the type of semantic values to be computed.
For example, with this approach a single parser specification cannot be used directly
to generate parsers in multiple target languages.

• Since it is usually impractical to re-implement the target language’s full syntax and
type checking in the parser generator, any erroneous target-language code fragments
in a parser specification will generally not be caught by the parser generator. Instead,
a source file in the target language will be “successfully” generated, which the target
language compiler will subsequently fail to compile. The actual cause of the error in
the specification may not be obvious from the error message produced by the target
language compiler. This problem is compounded in Pappy because the Haskell target
language has no equivalent for the ‘#line’ preprocessor directive in C and C++,
which can be placed in automatically-generated C or C++ source files to indicate the
original source of a code fragment (e.g., a particular line in the parser specification
file).

The syntax of Haskell code blocks embedded in Pappy specifications is shown in Figure 4-
2. Although the contents of a code block is “mostly” uninterpreted, the syntax of the Haskell
code it contains must be examined enough to determine where the block ends—i.e., where
the closing brace is. Since the code block itself may contain nested brace pairs as part of
Haskell expressions, these nested braces must be matched properly while reading the code
block. Since Haskell character and string literals contained in the code blocks may contain
unmatched curly braces, character and string literals and character escape sequences within
them must in turn be detected properly. Finally, since Haskell identifiers can include single-
quote characters, all Haskell identifiers in the code block must be parsed as atomic units to
prevent a quote character embedded in an identifier from being improperly interpreted as
the beginning of a character literal.
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RawCode ← HaskellBlock Spacing

HaskellBlock ← ‘{’ HaskellToken* ‘}’
HaskellToken ← HaskellBlock

/ HaskellIdentifier
/ HaskellCharLiteral
/ HaskellStringLiteral
/ !(‘{’ / ‘}’ / ‘’’ / ‘"’) Char

HaskellIdentifier ← IdentStart IdentCont*

HaskellCharLiteral ← ‘’’ HaskellSingleQuoteChar* ‘’’
HaskellSingleQuoteChar ← ‘\’ Char

/ !(‘’’ / CR / LF) Char

HaskellStringLiteral ← ‘"’ HaskellDoubleQuoteChar* ‘"’
HaskellDoubleQuoteChar ← ‘\’ Char

/ !(‘"’ / CR / LF) Char

Figure 4-2: Syntax of raw Haskell code blocks embedded in Pappy specifications

All of this syntactic machinery is easily expressed in TDPL, and it serves as a prime ex-
ample of the advantages of TDPL over traditional “two-stage” syntactic paradigms in which
lexical analysis is considered separate from parsing. In Pappy’s parser specification syntax,
a Haskell code block is treated as a single lexical token, representing an uninterpreted string
of characters to be deposited verbatim in the Haskell source file for the generated parser.
Nevertheless, the syntactic specification of this special kind of “token” involves complex
recursive structures such as HaskellBlock, which conventional lexical analyzer generators
based on regular expressions could not be expected to handle. For this reason, the syntax
of embedded code fragments of this kind is traditionally not expressed in a formal syntax at
all, but is instead merely described informally and used to construct a hand-coded lexical
analyzer.

4.1.3 Global Structure

Now that the lexical building blocks of Pappy’s syntax have been established, we move to
the global structure of a Pappy specification, which is summarized in Figure 4-3. A parser
specification consists a text file containing of the following main components in order:

1. The first component is a header of the form, ‘parser name:’, where name is a legal
Haskell identifier that will be used as a prefix in various other identifiers in the gener-
ated parser. It does not matter whether name starts with an uppercase or lowercase
letter: Pappy will convert its first letter to uppercase when generating Haskell type
or constructor names, and to lowercase when generating ordinary Haskell identifiers.

2. An optional block of Haskell code can be included following the header, enclosed
in curly braces ({}), which will be inserted verbatim (without the braces), into the
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Grammar ← Header RawCode? TopDecl Definition* RawCode?

Header ← PARSER Identifier COLON
TopDecl ← TOP Nonterminal (COMMA Nonterminal)*

Nonterminal ← Identifier

PARSER ← ‘parser’ Spacing
TOP ← ‘top’ Spacing
COLON ← ‘:’ Spacing
COMMA ← ‘,’ Spacing

Figure 4-3: Global structure of Pappy’s parser specification language

generated parser as “top-level” Haskell code, before any other Haskell declarations
produced by the parser generator. This code block is typically used to declare Haskell
types and type classes for the semantic values to be generated by the parser.

3. Next comes a mandatory declaration of the form, ‘top names’, where names is a list
of one or more nonterminal names used in the grammar, separated by commas. Each
nonterminal listed in this declaration will be considered by the parser generator to be a
“top-level” nonterminal, which ensures that it will have a corresponding component in
the “derivations” tuple for the generated packrat parser, with a corresponding Haskell
accessor function. Other nonterminals not declared “top-level” in this way may be
inlined or otherwise “optimized away” by Pappy before the parser is generated.

4. The main component of the specification is the grammar itself. The grammar is a
sequence of definitions, one for each nonterminal, with an associated Haskell type and
a corresponding right-hand-side expression indicating how that nonterminal is to be
parsed and how any associated semantic value is to be generated.

5. Finally, a second optional block of Haskell code can be included at the end of the spec-
ification, again enclosed in curly braces ({}). This block is included in the generated
parser in the same way as the one above.

4.1.4 Nonterminal Definitions

Figure 4-4 presents the syntax of nonterminal definitions, of which the bulk of a Pappy
parser specification is composed. Each definition consists of a nonterminal name, a Haskell
type, and a parsing rule expression.

The Haskell type in a definition describes the semantic value for the nonterminal, and
can be expressed either as a single Haskell identifier or as a raw Haskell code block. A
code block can be used to express complex Haskell types such as functions, tuples, lists, or
user-defined parameterized types. For example, the following Pappy definition assigns the
nonterminal Comment a Haskell type of ‘()’, the empty tuple type:

Comment :: {()} =

TraditionalComment
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Definition ← Nonterminal DOUBLECOLON HaskellType EQUALS Rule

HaskellType ← Identifier
/ RawCode

DOUBLECOLON ← ‘::’ Spacing
EQUALS ← ‘=’ Spacing

Figure 4-4: Syntax of nonterminal definitions in Pappy

/ EndOfLineComment

4.1.5 Parsing Rules

The syntax of Pappy parsing rules is shown in Figure 4-5. Rules have four precedence
levels: in order from highest to lowest, primary rules, unary operators, sequencing, and
ordered choice. Primary rules consist of nonterminal names, character and string literals
for matching raw input characters, and rules enclosed in parentheses. The unary postfix
operators are ‘?’ (optional), ‘*’ (zero-or-more), and ‘+’ (one-or-more). In order to handle the
construction of semantic values, the syntax of the sequencing operator in a Pappy parser
specifications is somewhat different from basic TDPL notation, as described in the next
section. Finally, the ordered choice operator ‘/’ has lowest precedence.

All of these operators express parsing rules that produce semantic values, and since the
target language is Haskell, each semantic value must have a Haskell type. The Haskell type
for the semantic value of any given rule expression can be determined as follows:

• The Haskell type of a primary rule consisting of a simple nonterminal identifier is the
Haskell type associated with that nonterminal in its definition.

• A character literal rule yields a semantic value of Haskell type ‘Char’.

• A string literal rule yields a semantic value of Haskell type ‘String’.

• If rule r has Haskell type t, then the rule ‘r?’ has Haskell type Maybe t (i.e., an
optional instance of type t).

• If rule r has Haskell type t, then the rules ‘r*’ and ‘r+’ have Haskell type [t] (i.e., a
list of elements of type t).

• If rules r1, . . . , rn all have Haskell type t, then the rule ‘r1 / . . . / rn’ has type t.

Pappy does not perform full checking of Haskell types: doing so would be difficult in
general because of the sequencing operator described below, which allows semantic values to
be computed by arbitrary Haskell expressions. If there is a mismatch between a definition’s
declared type and the type of semantic value produced by the rule on the definition’s
right-hand side, or if different sub-rules in an alternation expression have different types,
then the error will not be detected until the Haskell compiler attempts to compile the
generated parser. These types must nevertheless be declared for the nonterminals in a
Pappy specification, because they are required by the parser generator in order to produce
a Haskell declaration for the Derivs tuple type in the resulting packrat parser.
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PrimRule ← Nonterminal
/ CharLiteral
/ StringLiteral
/ OPEN Rule CLOSE

UnaryRule ← PrimRule QUESTION
/ PrimRule STAR
/ PrimRule PLUS
/ PrimRule

SeqRule ← Sequence
/ UnaryRule

AltRule ← SeqRule (SLASH SeqRule)*
Rule ← AltRule

OPEN ← ‘(’ Spacing
CLOSE ← ‘)’ Spacing
QUESTION ← ‘?’ Spacing
STAR ← ‘*’ Spacing
PLUS ← ‘+’ Spacing
SLASH ← ‘/’ Spacing

Figure 4-5: Syntax of parsing rules in Pappy

4.1.6 The Sequencing Operator

The standard TDPL notation for sequencing, in which multiple subexpressions are merely
adjoined end-to-end, is not directly suitable for Pappy specifications because it provides no
indication of how a semantic result for the sequence is to be computed from the semantic
results of the individual components of the sequence. For this reason, Pappy uses an explicit
binary operator, ‘->’, to indicate sequencing. The syntax of this operator is shown in
Figure 4-6.

On the left-hand side of a ‘->’ operator is a series of matchers specifying the elements
of the sequence to match, and on the right-hand side is a result expression indicating how
the final semantic value is to be computed. Matchers serve two primary purposes: first, to
specify the parsing rule to be used to parse each component in the sequence; and second, to
specify how the semantic value resulting from that parsing rule is to be matched and bound
to Haskell identifiers so that it can be used in the computation of the result. In addition,
matchers also serve the purpose of expressing syntactic and semantic predicates.

The semantic value to be computed by a sequence can be expressed in two ways. First,
the result can be expressed as a single Haskell identifier, in which case that identifier must
be bound (i.e., produced) by one of the matchers on the left-hand side of that sequence
operator. Second, the result can be computed by an arbitrary Haskell expression enclosed
in curly braces. In this case, the expression can refer to any number of semantic values
bound to different Haskell identifiers by matchers on the left-hand side of the sequence
operator.
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Sequence ← SeqMatcher* ARROW SeqResult
SeqMatcher ← Identifier COLON UnaryRule

/ RawCode COLON UnaryRule
/ CharLiteral COLON UnaryRule
/ StringLiteral COLON UnaryRule
/ AND UnaryRule
/ NOT UnaryRule
/ AND RawCode
/ UnaryRule

SeqResult ← Identifier
/ RawCode

ARROW ← ‘->’ Spacing
COLON ← ‘:’ Spacing
AND ← ‘&’ Spacing
NOT ← ‘!’ Spacing

Figure 4-6: Syntax of the Pappy sequencing operator

Here is an example definition involving two sequencing operators:

ExponentPart :: Integer =

(’e’ | ’E’) ’-’ v:Digits -> {-v}

| (’e’ | ’E’) ’+’? v:Digits -> v

Both sequences have three matchers on their left-hand sides. In the first sequence, the
semantic result is computed by the Haskell expression ‘-v’, where v is an identifier bound to
the semantic value produced by the Digits component. In the second sequence, the result
is expressed as the simple identifier v instead of a Haskell expression.

Pappy supports the following kinds of matchers in a sequence operator:

• An anonymous matcher consists of an unadorned UnaryRule (the final, “default”
alternative in the SeqMatcher definition in Figure 4-6). An anonymous matcher causes
the rule to be invoked in the sequence, but “throws away” the resulting semantic value
without binding it to any Haskell identifier.

The first component of both sequences in the example above is an anonymous matcher
consisting of the sub-rule ‘(’e’ | ’E’)’, which matches an ‘e’ or ‘E’ character in the
input without binding the semantic value of the subrule to any Haskell identifier. The
second component of each sequence is also an anonymous matcher, matching a ‘-’
sign in the first case and an optional ‘+’ sign in the second.

• An identifier matcher takes the form i:r, where i is a Haskell identifier and r is a
unary parsing rule. An identifier matcher invokes the rule and binds its semantic
value to the Haskell identifier i for use in the result computation for the sequence.

The third component of both sequences above is the identifier matcher ‘v:Digits’,
which binds the Haskell identifier v to the semantic value produced by the subrule
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Digits. This semantic value of Digits should be of Haskell type Integer, in order
to be compatible with the declared type of ExponentPart.

• A pattern matcher takes the form {p}:r, where p is an arbitrary Haskell pattern and
r is a parsing rule. The Haskell pattern p may bind any number of identifiers, and will
be used to match against the semantic result produced by the rule r in order to assign
values to those identifiers. For example, if the semantic value of nonterminal Foo is a
pair, then the sequence expression ‘{(x,y)}:Foo -> x’ invokes the nonterminal Foo
and returns the first component of its semantic value as the semantic value of the
sequence.

The Haskell pattern used in a pattern matcher does not need to be exhaustive (“ir-
refutable”). If the rule r succeeds but the pattern p fails to match its semantic result,
then the entire sequence will fail exactly as if the rule r itself had failed. Thus, using
a refutable pattern in a matcher is a simple way to express a semantic predicate, al-
lowing parsing decisions for one syntactic construct to depend on the semantic values
computed for other constructs. For example, if nonterminal Bar yields a semantic
value of Haskell type Maybe Integer, then the sequence rule ‘{Just x}:Bar -> x’
will succeed only if the rule for nonterminal Bar succeeds and generates a value match-
ing the Just constructor. If Bar fails or if it produces the value Nothing, then the
sequence as a whole fails to match.

• A character matcher has the form ’c’:r, where c is a single character or a Haskell
character escape sequence and r is a unary parsing rule. The rule r must produce a
semantic value of Haskell type Char; if the semantic result of r is not the designated
character, then the sequence as a whole fails. This notation is essentially a shorthand
for the Haskell pattern matcher {’c’}:r.

• A string matcher has the form "s":r, where s is any number of characters suitable for
a Haskell string literal, and r is a unary parsing rule. As with a character matcher, a
string matcher is just a shorthand notation for the pattern matcher {"s"}:r.

• An “and-followed-by” matcher has the form &r, where r is a unary rule. This matcher
implements syntactic predicates: it causes the rule r to be invoked at the appropriate
position in the sequence, and if it succeeds, the input position is backed up to the
position before r was invoked, acting as if r had not consumed any input text. If r
fails, then the sequence as a whole fails.

• A “not-followed-by” matcher has the form !r, where r is a unary rule, and implements
the negative form of syntactic predicate: if r succeeds, then the sequence as a whole
fails; but if r fails, then the matcher succeeds without consuming any input text, and
parsing of the sequence is allowed to continue.

• The final type of matcher, an “and-predicate” matcher, implements semantic predi-
cates in a general form. An and-predicate matcher takes the form &{e}, where e is
arbitrary Haskell expression producing a value of type Bool. If the predicate expres-
sion evaluates to True, then parsing of the sequence is allowed to continue; if the
semantic predicate evaluates to False, then the sequence fails.

The expression e can refer to any Haskell identifiers bound by matchers in this se-
quence up to the point at which this matcher appears. For example, in the sequence
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‘x:Foo &{e} y:Bar -> y’, the semantic predicate expression e can make reference to
x but not to y.

One simple example of how semantic predicates can be used is to implement character
classes generically in terms of built-in Haskell functions:

Letter :: Char = c:Char &{isAlpha c} -> c

Digit :: Char = c:Char &{isDigit c} -> c

. . .

4.2 Parser Specification Reduction and Validation

After reading a parser specification, Pappy automatically performs several basic validity
checks on the specification. For example, it ensures that no nonterminal is defined more
than once, and that every nonterminal referenced in a rule has a definition. The parser
generator then performs two transformations on the specification, in order to rewrite it into
a form that can be used to implement a linear-time packrat parser directly. First, simple
left-recursive definitions are rewritten into right-recursive ones. Second, iterative ‘*’ and ‘+’
rules are rewritten in terms of simple right-recursive definitions. These two transformations
and their implications for parser specifications are described in detail below.

4.2.1 Rewriting Left-Recursive Definitions

As described earlier in Section 2.3.5, left recursion in a TDPL grammar is normally consid-
ered erroneous. A TDPL definition of the form ‘A← A . . .’ cannot be used to read anything
because it effectively means, “In order to read an A, first try to read an A . . .” In ordinary
TDPL notation whose purpose is only to express a language’s syntax, there is usually little
need for the equivalent of a left (or right) recursive CFG definition because the same effect
can be achieved more concisely using the ‘∗’ and ‘+’ repetition operators.

For a parser generator such as Pappy, however, in which the generated parser is expected
not just to recognize a string but to compute semantic values based on its syntactic structure,
left and right recursion can be useful because they allow the semantic value of a sequence of
syntactic elements to be computed incrementally from the values of the individual elements
in the sequence. The ‘*’ and ‘+’ operators always produce lists, which may not be the type
of semantic value desired from the sequence.

For example, consider the following fragment of a trivial expression language:

Expression ← Number (‘+’ Number)*

If we just wanted the semantic value of Expression to be a list of the semantic values
of the Numbers in the sequence, then we could convert this definition directly into the
following Pappy definition:

Expression :: {[Integer]} =

n:Number ns:(’+’ m:Number -> m)* -> {n : ns}

However, if what we really want is to add the numbers together and use the sum as the
semantic value of the Expression, then using the * operator would mean building a useless
list only to take it apart again:
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Expression :: Integer =

n:Number ns:(’+’ m:Number -> m)* -> {foldl (+) n ns}

This task becomes more cumbersome if there is more than one kind of operator:

Expression :: Integer =

n:Number t:ExprOp* -> {foldl (\n’ op -> op n’) n ns}

ExprOp :: {Integer -> Integer}

’+’ m:Number -> {\n -> n + m}

/ ’-’ m:Number -> {\n -> n - m}

For right-associative operators, or operators such as addition or multiplication for which
associativity does not matter, using right recursion makes it easy and natural to add up the
numbers incrementally:

Expression :: Integer =

n:Number ’+’ m:Expression -> {n + m}

/ Number

If we attempted to parse a binary subtraction operator using right recursion in this way,
however, a string such as ‘4 - 3 - 2’ would be improperly interpreted as ‘5 - (3 - 2)’
instead of ‘(5 - 3) - 2’, leading to the incorrect result 4 instead of 0. Clearly what we
want is to be able to express left recursion directly.

Simple Left Recursion

Since left-recursive definitions would otherwise be invalid in a Pappy specification, we are
free to assign a meaning that suits our pragmatic needs even if that meaning does not
quite fit into the TDPL paradigm. Therefore, for convenience in expressing left-associative
constructs, Pappy automatically rewrites certain kinds of left-recursive definitions in terms
of right-recursive definitions. Only direct left recursion can be rewritten in this way: all
left-recursive references in the parsing rule on the right-hand side must refer directly to
the nonterminal on the left-hand side of the definition, and not indirectly through other
nonterminals. The right-hand side of the left-recursive definition must be a choice construct,
and all of the left-recursive alternatives in this construct must have exactly the form ‘i:n . . .
-> . . .’ where i is a Haskell identifier and n is the nonterminal being defined. Alternatives
on the right-hand side that are not left-recursive can take other forms. For example, here
is a left-recursive definition for the simple language above with addition and subtraction:

Expression :: Integer =

n:Expression ’+’ m:Number -> {n + m}

/ n:Expression ’-’ m:Number -> {n - m}

/ Number

To rewrite a definition such as this one, Pappy separates all of the left-recursive alter-
natives from the rest (the first two in this case), and transforms the definition into a pair
of definitions like this:
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Expression :: Integer =

n:Number f:ExpressionTail -> {f n}

ExpressionTail :: Integer =

’+’ m:Number f:ExpressionTail -> {\n -> f (n + m)}

/ ’-’ m:Number f:ExpressionTail -> {\n -> f (n + m)}

/ -> {\n -> n}

In essence, Pappy automatically performs the “left factoring” that we did in Section 3.2.1
to construct a packrat parser manually for left-associative operators.

Due to the basic left-to-right asymmetry of the TDPL paradigm, left-recursive Pappy
definitions that are transformed in this way do not behave exactly like “mirrored” right-
recursive definitions. For example, because the left-recursive alternatives are separated out
from the original definition, the relative order of a left-recursive alternative and a non-
recursive alternative in the definition does not matter, although the relative order of the
alternatives in each category might be important. For example, the following left-recursive
definition is functionally equivalent to the previous one:

Expression :: Integer =

Number

/ n:Expression ’+’ m:Number -> {n + m}

/ n:Expression ’-’ m:Number -> {n - m}

In a comparable right-recursive definition, the second and third alternatives would never
match because the first alternative would always succeed first and override them. For
practical purposes, however, this asymmetry should not usually be an issue.

Indirect Left Recursion

After simple left-recursive definitions have been rewritten as described above, Pappy checks
the entire grammar for any less direct forms of left recursion, and signals an error if illegal
recursion is found. This check ensures that the parsing process will terminate—assuming,
of course, that all of the Haskell expressions that compute semantic values or predicates
terminate.

An obvious question is whether Pappy’s support for rewriting left-recursive definitions
could be made more general, for example to handle indirect left recursion among multiple
nonterminals. Although such a transformation should be possible to implement, it is not
clear how the behavior of the transformed grammar could be characterized in an a clear
and meaningful way in the TDPL paradigm. A “generalized” left-recursive TDPL construct
can be expected to behave differently from a superficially similar left-recursive construct in
a CFG, given the fundamental differences between the two paradigms. Furthermore, it is
clear that due to the left-to-right asymmetry of TDPL noted above, such a construct could
not be expected to behave like a mirrored version of a right-recursive TDPL construct. At
least until left recursion in TDPL is studied further, utilizing such a feature would amount
to opening a syntactic Pandora’s Box, which clearly defeats the pragmatic purpose for which
the simple left recursion transformation is provided. There is a clear danger that generalized
left recursion rewriting would be triggered by language designers accidentally more often
than intentionally, through subtle dependencies between nonterminals that unexpectedly
lead to left recursion. In such cases, it is probably much more useful for the language
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designer to be informed about the problem up front than for the parser generator to “solve”
it silently, in an obscure way that may lead to unexpected results.

4.2.2 Rewriting Iterative Rules

As pointed out in Section 3.2.3, it is not difficult to implement iterative syntactic constructs
such as those expressed by the ‘*’ and ‘+’ operators via Haskell combinators or direct
functional code, but implementing them in this way can invalidate the packrat parser’s linear
time guarantee. Pappy instead implements repetition operators in a parser specification by
rewriting them in terms of basic sequencing, choice, and recursion.

To rewrite a subexpression ‘r*’ within a parsing rule definition, Pappy creates a new
right-recursive nonterminal to match a sequence of instances of r and build their semantic
values into a list. The parser generator then substitutes the new nonterminal for the ‘r*’
in the original definition. For example, consider the following definition:

Word :: String =

c:Letter cs:LetterOrDigit* Spacing -> {c : cs}

Pappy expands this definition into a pair of definitions with the following structure:

Word :: String =

c:Letter cs:LetterOrDigitStar Spacing -> {c : cs}

LetterOrDigitStar :: {[Char]} =

c:LetterOrDigit cs:LetterOrDigitStar -> {c : cs}

/ -> {[]}

Instances of the one-or-more repetitions operator, ‘+’, are rewritten similarly, except
that the second alternative in the iterative rule (the “base case”) expects one instance of
the repeated subrule and produces a one-element list, rather than matching nothing and
producing an empty list:

LetterOrDigitPlus :: {[Char]} =

c:LetterOrDigit cs:LetterOrDigitPlus -> {c : cs}

/ c:LetterOrDigit -> {[c]}

Unfortunately a minor practical difficulty arises with rewriting rules in this way. The
subrule r to which the repetition operator is applied can be an arbitrary parsing rule
expression. In order to create the new iterative definition, however, Pappy must be able to
determine the Haskell type of the semantic value it generates, so that it can associate the
proper corresponding list type with the newly created nonterminal. (As mentioned earlier,
Pappy must know the Haskell type associated with every nonterminal in the grammar in
order to declare an appropriate Derivs tuple type in the generated parser.)

In the most common cases, Pappy can infer the Haskell type for the iterated subrule
based on examination of the subrule. For example, in the above case where the subrule
is the name of a nonterminal (LetterOrDigit), the Haskell type is simply taken from the
definition of that nonterminal (Char in this case) and enclosed in brackets to create the
corresponding Haskell list type ([Char], which in Haskell is the same as String). However,
Pappy does not have the machinery to parse, let alone type-infer, the arbitrary Haskell
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patterns and expressions that may be used to compute semantic values in a sequence rule.
If the appropriate Haskell type for the subrule of a repetition operator cannot be inferred
due to dependence on Haskell patterns or expressions, then Pappy aborts with an error.
For example, Pappy can infer the appropriate Haskell type for the iterated subrule in the
first of the following three examples, but not the other two:

TraditionalComment :: {()} =

"/*" (!"*/" c:Char -> c)* "*/" -> {()} -- Legal

TraditionalComment :: {()} =

"/*" (!"*/" c:Char -> {c})* "*/" -> {()} -- ILLEGAL

TraditionalComment :: {()} =

"/*" (!"*/" {c}:Char -> c)* "*/" -> {()} -- ILLEGAL

In the first case, it is clear to Pappy that the subrule ‘(!"*/" c:Char -> c)’ generates
a semantic value of Haskell type Char, because the result to be generated by the sequence
is derived directly from the result of the second matcher in the sequence, and this binding
is expressed via simple identifiers. In the second case, however, the result of the sequence is
computed by a Haskell expression (albeit a seemingly trivial one), which Pappy is unable to
interpret. In the third case, the result of the sequence is indicated with a simple identifier,
but Pappy cannot determine how this identifier is bound because its binding is within a
Haskell pattern. This limitation is occasionally inconvenient, but does not cause a serious
problem in practice, because it can always be solved by separating out the iterated subrule
into a nonterminal definition of its own, with an explicitly declared Haskell type.

4.3 A Pappy Parser Specification for Java

This section describes an example Pappy parser specification for the Java language, which
is functionally equivalent to the example monadic packrat parser mentioned earlier in Sec-
tion 3.4. While only fragments of the Pappy specification for Java will be presented here,
the complete specification is available on-line.

This parser specification provides a good illustration of the power and expressiveness
of the Pappy specification language. The Pappy specification is just over 700 lines long,
significantly shorter than the monadic Haskell version, which is over 1000 lines. Apart
from the trivial preprocessing of Unicode escape sequences, lexical analysis is seamlessly
integrated into the parser specification, instead of being implemented in a separate stage as
would be necessary with a traditional LR parser generator.

Figure 4-7 summarizes the header portion of the Pappy specification for Java. Aside
from the declaration of the parser name (‘Java’) at the top and the declaration of the top-
level nonterminal (CompilationUnit), the header primarily consists of raw Haskell code.
The purpose of most of this code is to declare the Haskell data types used to represent Java
abstract syntax trees. The keywords constant is a list of the reserved words in the Java
language, and is used later in the parsing of identifiers.

Next in the parser specification comes the grammar proper, which begins with the
definitions for nonterminals representing the lexical elements of the language. As we did in
the earlier TDPL specification of the syntax of Pappy’s parser specification language itself,
the Java parser specification adopts the convention that the parsing rule for each token is
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-- Pappy packrat parser specification for the Java language version 1.1

parser Java:

{

import Char

import System

import Numeric

-- Abstract syntax tree data types

type Identifier = String

type Name = [Identifier]

data Literal = LitInt Integer

| LitLong Integer

| LitFloat Float

| LitDouble Double

| LitChar Char

| LitString String

| LitBool Bool

| LitNull

data Expression = ExpLiteral Literal

| ExpIdent Identifier

| ...

. . . (other abstract syntax tree data types) . . .

-- List of Java’s reserved words, used in Keyword below

keywords = [

"abstract",

"boolean", "break", "byte",

"case", "catch", "char", "class", "const", "continue",

...

]

}

top CompilationUnit

Figure 4-7: Header portion of Pappy parser specification for Java
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Spacing :: {()} =

Space* -> {()}

Space :: {()} =

WhiteSpace -> {()}

/ Comment -> {()}

WhiteSpace :: Char =

’ ’ / ’\t’ / ’\f’ / LineTerminator

Comment :: {()} =

TraditionalComment

/ EndOfLineComment

TraditionalComment :: {()} =

"/*" (!"*/" c:Char -> c)* "*/" -> {()}

EndOfLineComment :: {()} =

"//" (!LineTerminator c:Char -> c)* ’\n’ -> {()}

Figure 4-8: Parsing rules for Java whitespace and comments

responsible for consuming any whitespace and comments following the token itself. This
function is performed by the Spacing nonterminal, defined in Figure 4-8. Since whitespace
and comments are normally ignored in subsequent processing, most of these definitions
simply produce the empty tuple (‘()’) as their semantic result value. However, if it was
important to retain this information, for example in an application that reads a Java source
file and then writes it back out as modified Java source, then the text comprising whitespace
and comments could be retained in the abstract syntax tree as well.

Both traditional C-style comments (‘/* comment */’) and C++-style comments (‘//
comment extending to the end of line’) are easily handled using the ‘*’ repetition op-
erator. For example, between the ‘/*’ and ‘*/’, TraditionalComment expects any number
of characters matching the subrule ‘(!"*/" c:Char -> c)’, which means, “any character
as long as it is not the beginning of a ‘*/’ sequence.” Since Java disallows nested com-
ments, any ‘/*’ sequences within the comment are ignored. Changing the definition to
support nested comments would also be easy, in contrast with traditional lexical analyzer
generators, which are usually limited to non-recursive regular expressions:

TraditionalComment :: {()} =

"/*" (TraditionalComment -> {’ ’} / !"*/" c:Char -> c)* "*/"

-> {()}

Figure 4-9 shows the rules for parsing Java reserved words (“keywords”) and identifiers.
The use of semantic predicates makes possible an even simpler approach to this task than the
one we outlined in Section 2.4.2 using pure “syntax-only” TDPL. In the approach adopted
here, a single nonterminal, Word, is responsible for parsing “words” of any kind, whether they
represent identifiers or keywords. The semantic value of a Word is the string of characters
comprising the identifier or keyword. The Keyword nonterminal then uses a Haskell semantic
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-- Keywords and identifiers

Identifier :: Identifier =

!Keyword !BooleanLiteral !NullLiteral s:Word -> s

Keyword :: String =

s:Word &{s ‘elem‘ keywords} -> s

Word :: String =

c:JavaLetter cs:JavaLetterOrDigit* Spacing -> {c : cs}

JavaLetter :: Char =

c:Char &{isAlpha c} -> c

/ ’_’

/ ’$’

JavaLetterOrDigit :: Char =

c:Char &{isAlphaNum c} -> c

/ ’_’

/ ’$’

Figure 4-9: Parsing rules for Java keywords and identifiers

predicate to recognize keywords in the keywords list defined earlier. Finally, the Identifier
nonterminal uses negative syntactic predicates to prevent keywords or “word-literals” from
being accepted as identifiers. (The Java language specification classifies the special words
true, false, and null separately as “literals” rather than as “keywords,” and the Pappy
parser adopts the same convention for consistency with the language specification, even
though treating these names as keywords might yield a slightly simpler and more efficient
parser.)

Java operators and punctuation are handled together by the definitions in Figure 4-10.
As with most practical programming languages, Java includes a number of operators con-
sisting of multiple characters, and the standard “longest-match” rule applies when reading
such operators. For example, the character sequence ‘>>’ is always interpreted as a single
logical right shift operator and never as two consecutive greater than (‘>’) operators. For
this reason, all of the operators and punctuation symbols in Java are listed together in the
definition of SymChars, with the longest ones first so that they have priority. The Sym non-
terminal represents a “symbol token” and matches SymChars followed by optional Spacing.
As with keywords, the semantic value of a Sym is the sequence of characters comprising
the operator, and it is this semantic value that is used later in the grammar to distinguish
different symbols from one another.

The parsing of integer, floating point, character, string, boolean, and null literals is
straightforward but involves many details that are not important to this thesis, so the def-
initions for these lexical constructs are not described here. However, Pappy’s left recursion
rewriting comes in particularly useful in parsing numbers:
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-- Symbols (operators and punctuation)

Sym :: String =

s:SymChars Spacing -> s

SymChars :: String =

">>>="

/ ">>=" / "<<=" / ">>>"

/ ">>" / "<<"

/ "+=" / "-=" / "*=" / "/=" / "%=" / "&=" / "^=" / "|="

/ "++" / "--" / "&&" / "||" / "<=" / ">=" / "==" / "!="

/ ";" / ":" / "," / "." / "{" / "}" / "(" / ")"

/ "[" / "]" / "!" / "~" / "+" / "-" / "*" / "/"

/ "%" / "<" / ">" / "=" / "&" / "^" / "|" / "?"

Figure 4-10: Parsing rules for Java symbols

Digits :: Integer =

v:Digits d:Digit -> {v * 10 + toInteger d}

/ d:Digit -> {toInteger d}

Digit :: Int =

c:Char &{isDigit c} -> {digitToInt c}

Figure 4-11 shows the parsing rules for type expressions, providing an example of how the
basic lexical elements above such as identifiers, keywords, and symbols are used throughout
the grammar. For example, the definition for PrimitiveType has eight alternatives, each
of which refer to the same nonterminal Word. Each of these references is qualified using
a specific string as a semantic predicate, however, in order to recognize the specific Java
keywords denoting primitive types. The definition of PrimitiveType can be informally
interpreted, “Look for a Word with the semantic value ‘byte’, or else a Word with the
semantic value ‘short’, or else . . .” The definition of Dims similarly uses string matchers to
recognize the specific symbols ‘[’ and ‘]’. Using semantic predicates in this way allows basic
syntactic elements such as keywords and symbols to be treated uniformly at a low level (the
lexical level in this case), but to be used in different ways in higher syntactic levels.

Figure 4-12 shows a sample of the rules for Java expressions, including both right-
associative operators such as assignment (the lowest precedence level), and left-associative
operators such as postfix array access and method calls, which make use of left recursion
rewriting. Although traditional parser generators such as YACC often allow the precedence
levels of infix operators to be specified using special-purpose “auxiliary” annotations that
control the parser’s disambiguation process, Pappy does not provide such a feature because
the notion of “disambiguation” does not have the same meaning in TDPL as it does for
CFGs, and it is not obvious how some appropriate equivalent could be expressed cleanly in
the TDPL paradigm. At any rate, it is not that cumbersome to express each precedence
level as a separate nonterminal.

The remaining definitions for statements, declarations, and related constructs, are all
straightforward translations from the Java language specification, and therefore are not
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TypeSpec :: DeclType =

t:TypeName d:Dims -> {DtArray t d}

/ TypeName

TypeName :: DeclType =

PrimitiveType

/ n:QualifiedName -> {DtName n}

PrimitiveType :: DeclType =

"byte":Word -> {DtByte}

/ "short":Word -> {DtShort}

/ "char":Word -> {DtChar}

/ "int":Word -> {DtInt}

/ "long":Word -> {DtLong}

/ "float":Word -> {DtFloat}

/ "double":Word -> {DtDouble}

/ "boolean":Word -> {DtBoolean}

QualifiedName :: {[Identifier]} =

i:Identifier is:(".":Sym i:Identifier -> i)* -> {i : is}

DimsOpt :: Int =

d:Dims -> d

/ -> {0}

Dims :: Int =

"[":Sym "]":Sym d:Dims -> {d+1}

/ "[":Sym "]":Sym -> {1}

Figure 4-11: Parsing rules for Java type expressions
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Expression :: Expression =

l:CondExpr op:AssignmentOperator r:Expression -> {ExpBinary op l r}

/ CondExpr

AssignmentOperator :: String =

"=":Sym -> {"="}

/ "+=":Sym -> {"+="}

/ "-=":Sym -> {"-="}

/ ...

. . . (other precedence levels) . . .

PostfixExpr :: Expression =

l:PostfixExpr "[":Sym r:Expression? "]":Sym -> {ExpArray l r}

/ l:PostfixExpr a:Arguments -> {ExpCall l a}

/ l:PostfixExpr ".":Sym r:PrimExpr -> {ExpSelect l r}

/ l:PostfixExpr ".":Sym "class":Word -> {ExpDotClass l}

/ l:PostfixExpr "++":Sym -> {ExpPostfix "++" l}

/ l:PostfixExpr "--":Sym -> {ExpPostfix "--" l}

/ PrimExpr

PrimExpr :: Expression =

l:Literal -> {ExpLiteral l}

/ i:Identifier -> {ExpIdent i}

/ "(":Sym e:Expression ")":Sym -> e

/ ...

Figure 4-12: Parsing rules for Java expressions
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discussed further here. For more details please see the full parser specification available
on-line.

4.4 Internal Grammar Representations and Transformations

After accepting a parser specification and rewriting any repetition operators and left-
recursive definitions, Pappy uses a three-stage “back-end” pipeline to produce a working
parser from the specification. The first back-end stage simplifies the grammar using a vari-
ety of local and global optimizations. The second stage analyzes the grammar to determine
which nonterminals should be memoized in the parser’s Derivs tuple, and which can be
more efficiently implemented in terms of simple functions. Finally, in the last stage, the code
generator uses the simplified grammar and the results of memoization analysis to write the
parser. The remainder of this section describes the important details of each these stages.

4.4.1 Grammar Simplification

The number of nonterminals that must be memoized in a packrat parser’s Derivs tuple
is of critical importance to the parser’s space consumption, since the parser must store
an instance of this tuple for every character position in the input string. Experimentation
reveals that, at least in Haskell, the number of nonterminals is also an important factor in the
packrat parser’s performance. For this reason, Pappy implements a number of optimizations
designed primarily to reduce the number of nonterminals in the grammar, and secondarily
to reduce the complexity of the rules themselves whenever possible.

Since the application of one optimization may create further optimization opportunities,
Pappy invokes all of these optimizations repeatedly until none of them can be applied
anymore. This process terminates because all of the optimizations strictly reduce the size
of the grammar, where the grammar’s “size” is measured first by the number of nonterminals
and second by the aggregate size of the rules in the definitions.

Peephole Optimizations

A simple “peephole optimizer” performs two simple local transformations to reduce the
complexity of rules in the parser specification:

1. Redundant sequencing operators containing only one component, and choice operators
containing only one alternative, are eliminated.

2. Sequence operators nested directly within other sequence operators, and choice op-
erators nested directly within other choice operators, are “flattened.” For example,
‘r1/(r2/r3)/r4’ is rewritten ‘r1/r2/r3/r4’.

In addition, to improve lexical analysis performance, the peephole optimizer detects
and “left-factors” constructs consisting of a choice between several literal characters or
strings, such as the rule for SymChars in the Java parser specification above. When multiple
alternatives start with common characters, the common prefix is factored out so that it needs
to be tested only once in the sequence. For example, the rule (‘>=’ / ‘>’ / ‘<=’ / ‘<’) would
be rewritten in the form (‘>’ (‘=’ / ()) / ‘<’ (‘=’ / ())).

In addition, rather than implementing these factored constructs in terms of normal
sequencing and choice, Pappy’s optimizer uses a special internal switch operator. This

79



operator cannot be invoked directly by the user in a parser specification, but only gener-
ated internally through the left-factoring optimization. The use of the switch operator for
implementation of these “prefix recognition trees” preserves the knowledge that all of the
“branches” of the tree are disjoint: if one prefix matches the input stream, then none of
the other prefixes need to be tested even if the subrule for the matched prefix subsequently
fails. The result is that the recognition of simple operators and other literal symbols used
in a language can be implemented directly and efficiently in terms of nested Haskell case
expressions. For example, with this optimization the SymChars definition in the Java parser
results in in a Haskell expression of this form:

javaParseSymChars :: JavaDerivs -> Result JavaDerivs (String)

javaParseSymChars d =

case javaChar d of

Parsed ’>’ d3 _ ->

case javaChar d3 of

Parsed ’>’ d5 _ ->

case javaChar d5 of

Parsed ’>’ d7 _ ->

case javaChar d7 of

Parsed ’=’ d9 _ ->

Parsed (">>>=") d9 (...)

_ ->

Parsed (">>>") d7 (...)

Parsed ’=’ d7 _ ->

Parsed (">>=") d7 (...)

_ ->

Parsed (">>") d5 (...)

Parsed ’=’ d5 _ ->

Parsed (">=") d5 (...)

_ ->

Parsed (">") d3 (...)

Parsed ’<’ d3 _ ->

...

Redundant Rule Elimination

When repetition operators are applied to the same subrule in multiple places in the user’s
original parser specification, the rewriting of these operators creates multiple nonterminals
with equivalent definitions. Therefore, Pappy’s optimizer scans for and combines any re-
dundant nonterminals created in this way, as well as any that the original specification may
have contained. The structural equivalence analysis is relatively primitive, eliminating only
redundant nonterminals that can be identified one at a time. Multiple redundant sets of
mutually recursive nonterminals are not detected, for example, but this limitation is not a
problem in practice since the rewriting of repetition operators does not produce such sets
and they are unlikely to occur naturally in typical grammars.
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Inlining

Grammar specifications often have many nonterminals that have simple, non-recursive def-
initions. Pappy attempts to eliminate such nonterminals through the classic process of
inlining: folding copies of their definitions directly into all of their call points in the gram-
mar. As with inlining in general-purpose programming languages, the inlining of definitions
in a Pappy grammar must be done cautiously to avoid a blow-up in the size and complexity
of the grammar and the resulting parser. For this reason, Pappy inlines only two kinds of
definitions: “tiny” definitions containing at most two operators on their right-hand side,
and definitions that are only referenced once in the entire grammar. Experience demon-
strates that even inlining conservatively in this way reduces the number of nonterminals
in a grammar substantially, and can “open the door” for other local optimizations to be
applied to the inlined parsing rules.

4.4.2 Memoization Analysis and Virtual Inlining

Although only the smallest nonterminal definitions can be safely inlined through direct
substitution in the parser specification, many more nonterminals can be eliminated from
the Derivs tuple through virtual inlining. A virtually-inlined nonterminal remains part
of the grammar, and corresponds to a separate Haskell parsing function in the generated
parser. A virtually-inlined nonterminal has no corresponding component in the Derivs

tuple, however. Instead, at every location in the parser where that nonterminal is invoked,
the parsing function for the nonterminal is used directly instead of a Derivs data-accessor
function. In effect, virtually-inlined functions are simply “de-memoized.”

In order to ensure that the packrat parser’s linear time guarantee is not invalidated
by this transformation, only nonterminals that could be inlined through direct substitution
are ever selected for virtual inlining. Specifically, virtually-inlined definitions cannot be
recursive, either directly or indirectly through other virtually-inlined definitions. As long as
all recursion in the grammar is broken through memoization, each virtually-inlined definition
still only accesses a fixed number of other “cells” in the parsing structure and performs a
fixed number of primitive parsing operations in order to compute each result, though these
constants could be increased by virtual inlining.

Although much larger definitions can be virtually-inlined safely than can be directly
inlined, caution is still required to prevent the possibility of too much redundant computa-
tion. Pappy will therefore not virtually-inline any nonterminal whose definition consists of
more than about 25 operators, including the size of the definitions of any other nonterminals
that are invoked by the nonterminal under consideration and have already been selected for
virtual-inlining.

Even with these limitations, judicious virtual inlining can substantially reduce the num-
ber of memoized nonterminals and hence the size of a packrat parser’s Derivs tuple, leading
to reduced storage consumption and increased performance due to lower garbage collection
overhead. For example, the packrat parser generated for the example Java grammar above
contains 90 nonterminals after rewriting and simplification, but only 51 of those nontermi-
nals are memoized.

4.4.3 Code Generation

The final step in Pappy’s internal pipeline is writing the Haskell code for the parser. Al-
though code generation is a relatively straightforward process directly following the struc-
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ture of the internal parser specification, and will not be described in detail, there is one
important feature of the code generator that is worthy of note.

In order to reduce the space consumption further, Pappy’s code generator uses the trick
described in Section 3.3.3 of breaking the Derivs structure into two levels. The “top-level”
Derivs tuple consists of dvChar, dvPos, and a set of “sub-tuples,” each of which in turn
contains the result components for a number of nonterminals. Pappy attempts to balance
the number of sub-tuples in the top-level Derivs tuple against the number of components
in each sub-tuple, and distributes the nonterminals in the specification evenly among the
sub-tuples. No special attempt is made to “cluster” nonterminals in some appropriate way,
but nonterminals are assigned to sub-tuples in the order in which they appear in the parser
specification, preserving the natural proximity of of related nonterminals that tends to be
present in specifications written by humans. In the Java parser specification, for example,
all of the lexical analysis rules are clustered toward the beginning of the specification, with
the result that their corresponding components in the Derivs tuple are memoized in the
first one or two sub-tuples. Since the lexical analysis rules always consume complete tokens,
the parser usually evaluates results in only one of these sub-tuples at “internal” character
positions after the beginning of a multi-character token.

Experimentation reveals that the use of this two-level Derivs structure is critical in
packrat parsers for Haskell, not only for space consumption but for performance. Using
a simple “flat” Derivs tuple in the example Java parser makes the parser over an order
of magnitude slower under GHC, the Glaskow Haskell Compiler. This effect is caused not
by the size of the Derivs tuple itself, but by the size of the top-level parse function,
which the lazy evaluator must “instantiate” once for each input position. This effect is is
probably specific to Haskell and other languages with a similar lazy evaluation model; space
consumption behavior is likely to be substantially different in other target programming
languages.
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Chapter 5

Experimental Results

This chapter presents preliminary experimental results to demonstrate the practicality of
packrat parsing. These experiments study the performance of hand-coded and automatically-
generated packrat parsers for the Java1 programming language. Java was chosen because it
has a rich and complex grammar, but nevertheless adopts a fairly clean syntactic paradigm.
For example, Java does not require the parser to maintain state about declared types as
C and C++ parsers do, or to perform special processing between lexical and hierarchical
analysis as Haskell’s layout scheme requires.

5.1 The Parsers

The experiments use three different functionally equivalent packrat parsers for Java. Apart
from a trivial preprocessing stage to canonicalize line breaks and Java’s Unicode escape
sequences, lexical analysis for all three parsers is fully integrated into the parser. All three
parsers use the technique described in Section 3.3.3 of splitting the Derivs tuple into two
levels, in order to increase modularity and reduce space consumption.

The first two parsers are manually written in Haskell, using the methods described
in Chapter 3. One of these parsers uses monadic combinators exclusively throughout the
parser, whereas the other parser uses primitive pattern matching directly to code the pars-
ing functions for the most frequently used lexical constructs such as keywords, operators,
identifiers, and integer literals. Both parsers use monadic combinators, however, to con-
struct all higher-level parsing functions. The second, “hybrid” monadic/pattern-matching
parser was created in order to study the practical cost of using monadic combinators in
packrat parsers. The third parser used in the experiments is the parser generated by Pappy
from the parser specification presented in Section 4.3.

The test suite used in all of these experiments consists of 60 unmodified Java source files
from the Cryptix library2. Cryptix was chosen primarily because it is well-known, freely
available, and includes a substantial number of relatively large Java source files. (Java
source files are small on average because the compilation model encourages programmers
to place each class definition in a separate file.)

In the following sections, we study two aspects of the performance of these three Java
parsers. First, we examine their space utilization (maximum heap size), in order to address

1Java is a trademark of Sun Microsystems, Inc.
2http://www.cryptix.org/
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Figure 5-1: Maximum heap size versus input size

the important question of whether a packrat parser’s result matrix consumes too much
storage to make the algorithm practical. Second, we measure the absolute performance of
the three parsers, in order to provide a feel for their general performance, and to compare
the effects of the different methods of constructing packrat parsers.

5.2 Space Efficiency

In the first set of experiments, the three Java parsers were compiled with the Glasgow Haskell
Compiler3 version 5.04, with optimization and profiling enabled. GHC’s heap profiling
system was used to measure live heap utilization, which excludes unused heap space and
collectible garbage when samples are taken.

Figure 5-1 shows a plot of each parser’s maximum live heap size against the size of the
input files being parsed. Because some of the smaller source files were parsed so quickly
that garbage collection never occurred and the heap profiling mechanism did not yield any
samples, the plot includes only 47 data points for the hand-coded parser that uses monadic
combinators exclusively, 27 data points for the hybrid parser using a combination of monadic
combinators and pattern matching, and 33 data points for the packrat parser generated by
Pappy. One data point, for a Java source file 130 KB in size, was included in the analysis
but not shown on the graph, because compressing the horizontal axis sufficiently to include
it unacceptably obscures the more densely-packed portion of the graph to the left.

3http://www.haskell.org/ghc/
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Averaged across the test suite, the fully monadic parser uses 646 bytes of live heap per
byte of input, while the hybrid parser uses only 297 bytes of heap per input byte, and the
Pappy-generated parser falls in the middle at 441 bytes of heap per input byte. In general,
these results are encouraging: although packrat parsing can consume a substantial amount
of space, a typical modern machine with 128KB or more of RAM should have no trouble
parsing source files up to 100-200KB. Furthermore, even though the first two parsers use
some iterative monadic combinators, which can break the linear time and space guarantee in
theory, the space consumption of these parsers nevertheless appears to grow fairly linearly.

The use of monadic combinators clearly has a substantial penalty in terms of space
efficiency. Modifying the parser to use direct pattern matching alone may yield further
improvement, though the degree is difficult to predict since the cost of lexical analysis
often dominates the rest of the parser. The parser generated by Pappy uses direct pattern
matching exclusively in its parsing functions, but due to its many other differences from the
hand-coded parsers, its performance cannot be considered directly indicative of the result
of switching to pure pattern matching.

Although the Pappy-generated parser consumes more storage than the hand-coded
pattern-matching parser, it is considerably more space-efficient than the monadic parser.
The space consumption of the Pappy-generated parser is, furthermore, noticeably more
consistent than either of the hand-coded parsers. Across the data points produced by this
test suite, the standard deviation of the monadic parser from its average heap/input ratio
is 301, the standard deviation for the hybrid parser is 106, and the standard deviation
for the Pappy parser is 87. This difference is directly apparent from the graph, on which
the points for the Pappy-generated parser (the ‘∗’s) can be seen to follow the middle line,
representing the average for that parser, much more closely than the data points for the
two hand-coded parsers follow their corresponding lines. This improvement in predictabil-
ity can be attributed to the fact that the parsing functions in the Pappy parser contain
no hidden recursion as the other two parsers do. Because the repetition operators in the
Pappy specification are rewritten in terms of constant-time primitives before the parser is
generated, the Pappy parser can guarantee asymptotically linear execution time whereas the
hand-coded parsers containing hidden recursion cannot. This result indicates that avoiding
hidden recursion can indeed be important in practice, though not necessarily critical.

5.3 Parsing Performance

The second experiment compares the absolute execution time of the three packrat parsers.
For this test, the parsers were compiled by GHC 5.04 with optimization but without pro-
filing, and timed on a 1.28GHz AMD Athlon processor running Linux 2.4.17. Only the 28
source files in the test suite larger than 10KB were included in this test, because the smaller
files were parsed so quickly that the Linux time command did not yield adequate precision.
Again, the data point for the one 130 KB source file in the test suite was included in the
analysis but omitted from the graph for purposes of clarity. Figure 5-2 shows the resulting
execution times plotted against source file size. On these inputs the fully monadic parser
averaged 26.3 KBytes per second with a standard deviation of 8.9 KB/s, while the hybrid
parser averaged 52.1 KB/s with a standard deviation of 17.1 KB/s, and the Pappy parser
averaged 34.4 KB/s, with a standard deviation of 5.9 KB/s.

In these tests, the parser generated by Pappy once again comes in at an intermediate
level between the two hand-coded parsers, but its performance is noticeably more linear.
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Whereas the standard deviation in the performance of each of the hand-coded parsers
represents about 33% of their respective averages, the standard deviation of the Pappy
parser represents only 17% of its average performance. These numbers suggest that packrat
parsing can provide dependable linear-time parsing of real source files in complex languages,
especially when an automatic parser generator such as Pappy is used to rewrite repetition
operators in the parser specification.
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Chapter 6

Related Work

This chapter relates the TDPL notation developed in this thesis and the packrat parsing
algorithm to relevant prior work. First we briefly review the historical background of TDPL
and the theoretical results that have been derived. Second, we informally explore the
relationship between packrat parsing and the ubiquitous LL and LR parsing algorithms.
Next, we examine noncanonical extensions to the LR paradigm, which address some of the
same limitations in LR that packrat parsing does, though in a different way. Finally, we
discuss general CFG parsing algorithms and practical parser generators based on them.

6.1 TDPL Background

Birman and Ullman [4] first developed the formal properties of parsing algorithms with
localized backtracking. This work was refined by Aho and Ullman [3] and classified as “top-
down limited backtrack parsing,” in reference to the restriction that each parsing function
can produce at most one result and hence backtracking is localized to that function.

Two specific formal models of limited backtrack parsing were developed. The first
model, referred to as the “TMG recognition scheme” (TS) in the original work and later
renamed “top-down parsing language” (TDPL), was inspired by TMG, an early syntax-
directed compiler generation system [15]. The second formal model, originally referred to
as “generalized TS” (gTS) and later as “generalized TDPL” (GTDPL), was inspired by
META II, another early compiler-compiler [20]. To keep the distinction clear between the
overall TDPL notational and parsing paradigm used in this thesis, and the specific formal
systems developed in the prior theoretical work, the latter formal systems will be referred
to here as TS/TDPL and gTS/GTDPL respectively.

6.1.1 The TS/TDPL Formal System

In the formal model of TS/TDPL, the definitions of nonterminals are restricted to the
following two primitive forms:

1. A← BC/D, where A, B, C, and D are all nonterminals.

2. A ← a, where A is a nonterminal and a is either a terminal (character), the empty
string ε, or a distinguished symbol f representing failure.

The first form of rule, A ← BC/D, embodies both sequencing and ordered choice. In
its operational interpretation, B is first invoked. If B succeeds, then C is invoked on the
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Description Extended TDPL Formal TS/TDPL

Empty string A← () A← ε

Terminal A← a A← a

Nonterminal A← B A← BE/F
E ← ε
F ← f

n-ary sequence A← r1r2 . . . rn A← BC/F
B ← r1

C ← r2 . . . rn

F ← f

n-ary ordered choice A← r1/r2/ . . . /rn A← BE/C
B ← r1

C ← r2/ . . . /rn

E ← ε

Greedy repetition A← r∗ A← BA/E
B ← r
E ← ε

Positive repetition A← r+ A← CB/F
B ← CB/E
C ← r
E ← ε
F ← f

Optional A← r? A← BE/E
B ← r
E ← ε

Figure 6-1: Rules for rewriting extended TDPL definitions into formal TS/TDPL

input text unconsumed by B. If both B and C succeed, then the rule succeeds. However, if
either B or C fail, then D is invoked at the original input position at which B was invoked,
backtracking in the input string if necessary. The second form of the rule, A ← a, is used
to match constant terminal symbols (characters), to produce unconditional success without
consuming anything (ε), or to produce unconditional failure (f).

Any nonterminal definition in the extended TDPL notation used in this thesis can be
reduced to the primitives supported by this formal model, provided that they do not contain
syntactic predicate operators (& or !). Syntactic predicates appear to require the additional
functionality of the gTS/GTDPL system, below. For reference, Figure 6-1 provides a set of
rewrite rules that can be used to reduce extended TDPL notation to rules in the primitive
TS/TDPL formal system. Many of the rules involve introducing new nonterminals into the
grammar: any nonterminal letter appearing on the right side of a rewrite rule but not on the
left is assumed to be a fresh nonterminal. In the rewrite rules containing variables appearing
on both sides of the rule, representing parsing subrule expressions (r, r1, r2, etc.), the new
definitions produced by the transformation may in turn have to be rewritten in order to
decompose these subrule expressions. The primitive TS/TDPL grammars produced using
these rules are by no means likely to be optimal.
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Description Extended TDPL Formal gTS/GTDPL

TS/TDPL sequencing/choice A← BC/D A← X[E,D]
X ← B[C,F ]
E ← ε
F ← f

Not-followed-by predicate A← !(r) A← B[F,E]
B ← r
E ← ε
F ← f

Followed-by predicate A← &(r) A← B[F,E]
B ← C[F,E]
C ← r
E ← ε
F ← f

Figure 6-2: Rules for rewriting formal TS/TDPL and extended TDPL syntactic predicates
into formal gTS/GTDPL

6.1.2 The gTS/GTDPL Formal System

The gTS/GTDPL formal system uses primitive rules taking a slightly different form:

1. A← B[C,D], where A, B, C, and D are all nonterminals.

2. A← a, where A is a nonterminal and a is a terminal, ε, or f .

Only the first form of rule differs from TS/TDPL. This form, though involving the
same number of nonterminals as the sequencing/choice rule in the TS/TDPL system, is
interpreted differently. Invoking A first causes B to be invoked. If B succeeds, then C is
invoked starting at the position following the text consumed by B, and the result of C,
whether success or failure, is used as the result for A. However, if B fails, then D is invoked
instead at the same position at which B was called, and the result of the call to D becomes
the result of A. The important point is that after B is invoked, either C or D is invoked, but
never both. The gTS/GTPL rule ‘A← B[C,D]’ is functionally equivalent to the definition
‘A← B C / !(B) D’ in the extended TDPL notation of this thesis.

Birman and Ullman proved that any TS/TDPL grammar can be transformed into an
equivalent gTS/GTDPL by rewriting the primitive sequence/choice rules in the TS/TDPL
grammar using a rule such as the one shown in the first row of the table in Figure 6-2.
Therefore, gTS/GTDPL is at least as powerful as TS/TDPL.

It appears that gTS/GTDPL is properly more powerful than TS/TDPL, though this
conjecture has not yet been proven. The syntactic predicate operators of the extended
TDPL notation used in this thesis can be rewritten in terms of GTDPL using the second and
third rules shown in Figure 6-2. An example language that probably cannot be recognized
by a well-formed TS/TDPL grammar is {a, b}∗ − {anbn|n > 0}. This language, consisting
of all strings of ‘a’s and ‘b’s except those in which they form exactly matched pairs, is easily
expressed by the following extended TDPL grammar:
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S ← !(A EOF) (a,b)*
A ← a A b / a b

EOF ← !(any character)

gTS/GTDPL is more well-behaved than TS/TDPL in certain respects. It is possi-
ble to detect all potential “loop failures” caused by direct or indirect left recursion in a
gTS/GTDPL grammar, and to rewrite the grammar into a form that recognizes the same
language without causing loop failures. In contrast, there is strong evidence that eliminating
loop failures in TS/TDPL grammars is impossible in general.

Birman and Ullman’s left recursion elimination algorithm for gTS/GTDPL serves a
different purpose from the one implemented in Pappy. The former algorithm rewrites the
grammar so as to fail gracefully on strings in which the original grammar would get into
an infinite loop, whereas the purpose of Pappy’s left recursion elimination is to make the
grammar succeed in a pragmatically useful way where it would otherwise fail. Pappy’s left
recursion elimination is intentionally not an equivalence-preserving transformation.

6.1.3 Relationship Between TDPL and CFGs

gTS/GTDPL is known to be powerful enough to recognize some non-context free languages.
The language {anbncn|n > 0}, for example, cannot be expressed by any CFG. The following
parsing grammar recognizes this language, however:

S ← &(A c) a+ B
A ← a A b / a b

B ← b B c / b c

This parsing grammar can be reduced to formal gTS/GTDPL using the rules above.
The nonterminal S in this grammar first uses a syntactic predicate to check that the ‘a’s
and ‘b’s are matched, without actually consuming them. The rule then skips past the ‘a’s
and matches the ‘b’s with the ‘c’s.

It is also known that TDPL is powerful enough to simulate any push-down automaton,
and can therefore recognize any LL(k) or LR(k) language.

Although not yet formally proven, it appears that the set of context-free languages and
the set of languages expressible in TDPL are incomparable. For example, the pathological
CFG presented earlier in Section 2.4.4 appears not to be expressible in TDPL:

S → a S a | a S b | b S a | b S b | a

This CFG describes a language consisting of odd-length strings of ‘a’s and ‘b’s, in which
the middle character is always an ‘a’. The problem here is that in TDPL there is no
way to “find the middle” of a homogeneous string containing no distinguishable syntactic
“signposts,” but the middle character must be found in this case in order to reject strings
that have a ‘b’ at that position.

6.1.4 Practical TDPL Parsing

Birman and Ullman demonstrated the existence of a linear-time parsing algorithm for both
TS/TDPL and gTS/GTDPL grammars, of the tabular variety described in Section 3.1.3.
However, this linear-time algorithm was apparently never implemented, probably because
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computers at the time had much more limited RAM. Compilers in this period often had to
operate in “streaming” fashion, generating output progressively as input text was consumed
rather than keeping a complete intermediate representation in memory, so that large source
files could be processed in near-constant space. Both of the compiler-compiler systems from
which TDPL theory was inspired took the basic recursive descent approach; META II, in
fact, did not even fully support backtracking as modeled by the formal system.

The formal TDPL work appears to have been largely neglected after its initial devel-
opment, likely in part as a result of the excitement over the LR algorithms, which were
newly-developed at the time and probably were seen as more practical. Adams [1] recently
used TDPL in a modular language prototyping framework. In addition, many practical
top-down parsing libraries and toolkits, including the popular ANTLR [17] and the Parsec

combinator library for Haskell [14], provide similar limited backtracking capabilities which
the parser designer can invoke selectively in order to overcome the limitations of predic-
tive parsing. In effect, by providing ad hoc backtracking support, many practical recursive
descent parsers such as these effectively adopt the TDPL paradigm without explicitly rec-
ognizing it as such. However, these parsers still implement backtracking in the traditional
recursive-descent fashion without memoization, creating the danger of exponential worst-
case parse time, and thereby making it impractical in general to rely on backtracking as a
substitute for prediction or to integrate lexical analysis with parsing.

6.2 LL and LR Parsing

Although LR parsing is commonly seen as “more powerful” than limited-lookahead top-
down or LL parsing, the class of languages these parsers can recognize is the same [3]. As
Pepper points out [18], LR parsing can be viewed simply as LL parsing with the grammar
rewritten so as to eliminate left recursion and to delay all important parsing decisions as
long as possible. The result is that LR provides more flexibility in the way grammars can
be expressed, but no actual additional recognition power. For this reason, we will treat LL
and LR parsers here as essentially equivalent.

6.2.1 Lookahead

The most critical practical difference between packrat parsing and LL/LR parsing is the
lookahead mechanism. A packrat parser’s decisions at any point can depend on all the
text up to the end of the input string. Although the computation of an individual result
in the parsing matrix can perform only a constant number of “basic operations,” these
basic operations include following forward pointers in the parsing matrix, each of which can
skip over a large amount of text at once. Therefore, while LL and LR parsers can look
ahead only a constant number of terminals in the input, packrat parsers can look ahead
a constant number of terminals and nonterminals in any combination. This ability for
parsing decisions to take arbitrary nonterminals into account is what gives packrat parsing
its unlimited lookahead capability.

From a viewpoint of computational complexity, packrat parsing inherently requires, and
takes advantage of, a more powerful computational model than LL or LR parsing. Whereas
LL and LR parsers can be implemented by a simple stack machine or deterministic push-
down automata [2], linear-time packrat parsing inherently requires a machine with random-
access memory. Conversely, the claim that packrat parsing is a “linear-time” algorithm

91



depends on the assumption that RAM can be accessed in constant time. With log-cost
RAM, packrat parsing becomes O(n log n).

To illustrate the difference in language recognition power between packrat parsing and
LR, the following CFG expresses the language {anbn|n > 0} ∪ {anb2n|n > 0}:

S → E | F
E → a b | a E b

F → a b b | a F b b

This CFG is not LR(k) for any k, nor is there any other LR-class CFG that can recognize
this language. Once an LR parser has encountered the boundary between the ‘a’s and ‘b’s
in a string in this language, it must decide immediately whether to start reducing them by
matching ‘a’s with ‘b’s one-to-one or by matching ‘a’s with pairs of ‘b’s. However, there is
no way for the LR parser to make this decision until as many ‘b’s have been encountered
as there were ‘a’s on the left-hand side.

This non-LR language can be recognized by a packrat parser by converting the above
CFG directly into a TDPL grammar in the obvious way:

S ← E / F
E ← a b / a E b

F ← a b b / a F b b

A packrat parser for this grammar operates in a speculative fashion, potentially reducing
the complete input string using both E and F in parallel. The ultimate decision between E
and F is effectively delayed until the entire input string has been parsed, where the decision
is merely a matter of checking which of E or F (if either) succeeded. Mirroring the above
grammar left to right does not change the situation, making it clear that the difference
is not merely a side-effect of the fact that an LR parser’s decisions depend primarily on
“leftward” context with limited “rightward” lookahead, whereas a packrat parser’s decisions
depend on unlimited “rightward” lookahead but have no leftward context.

6.2.2 Grammar Composition

The limitations of LR parsing due to fixed lookahead are frequently felt when designing
parsers for practical languages, and many of these limitations stem from the fact that
LL and LR grammars are not cleanly composable. For example, the following grammar
represents a simple language with expressions and assignment, which only allows simple
identifiers on the left side of an assignment:

S ← R | ID ‘=’ R
R ← A | A EQ A | A NE A
A ← P | P ‘+’ P | P ‘-’ P
P ← ID | ‘(’ R ‘)’

If the symbols ID, EQ, and NE are terminals, representing tokens produced by a separate
lexical analysis phase, then an LR(1) parser has no trouble with this grammar. However,
if we try to integrate this tokenization into the parser itself with the following simple rules,
the grammar is no longer LR(1):
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ID ← ’a’ | ’a’ ID
EQ ← ’=’ ’=’
NE ← ’!’ ’=’

The problem is that after scanning an identifier, an LR parser must decide immediately
whether it is a primary expression or the left-hand side of an assignment, based only on the
immediately following token. But if this token is an ‘=’, the parser has no way of knowing
whether it is an assignment operator or the first half of an ‘==’ operator. In this particular
case the grammar could be parsed by an LR(2) parser. In practice LR(k) and even LALR(k)
parsers are uncommon for k > 1.

Even when lexical analysis is separated from parsing, the limitations of LR parsers often
surface in other practical situations, frequently as a result of seemingly innocuous changes
to an evolving grammar. For example, suppose we want to add simple array indexing to the
language above, so that array indexing operators can appear on either the left or right side
of an assignment. One possible approach is to add a new nonterminal, L, to represent left-
side or “lvalue” expressions, and incorporate the array indexing operator into both types
of expressions as shown below:

S ← R | L ‘=’ R
R ← A | A EQ A | A NE A
A ← P | P ‘+’ P | P ‘-’ P
P ← ID | ‘(’ R ‘)’ | P ‘[’ A ‘]’
L ← ID | ‘(’ L ‘)’ | L ‘[’ A ‘]’

Even if the ID, EQ, and NE symbols are again treated as terminals, this grammar is
not LR(k) for any k, because after the parser sees an identifier it must immediately decide
whether it is part of a P or L expression, but it has no way of knowing this until any
following array indexing operators have been fully parsed. Again, a packrat parser has
no trouble with this grammar because it effectively evaluates the P and L alternatives “in
parallel” and has complete derivations to work with (or the knowledge of their absence) by
the time the critical decision needs to be made.

In general, grammars for packrat parsers are composable because the lookahead a pack-
rat parser uses to make decisions between alternatives can take account of arbitrary nonter-
minals, such as EQ in the first example or P and L in the second. Because a packrat parser
does not give “primitive” syntactic constructs (terminals) any special significance as an LL
or LR parser does, any terminal or fixed sequence of terminals appearing in a grammar can
be substituted with a nonterminal without “breaking” the parser.

6.3 Noncanonical Bottom-Up Parsing Algorithms

Substantial efforts have been made to develop practical extensions to the LR class of parsing
algorithms that solve some of the problems described above without giving up its linear
time guarantee. Such algorithms are known as noncanonical bottom-up algorithms because
they operate in the same general bottom-up fashion as an LR parser, successively reducing
phrases in the input to their corresponding nonterminals, but unlike LR they can perform
reductions on phrases other than the leftmost one in the stream at any given point. The
effect of this modification is that under certain conditions, nonterminals as well as terminals
can be used in lookahead decisions.
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6.3.1 NSLR(1)

The only noncanonical bottom-up algorithm that is known to be practical is the NSLR(1)
algorithm created by Tai [22]. The following example CFG by Tai expresses the language
{anbnc|n > 0} ∪ {anb2nd|n > 0}, which is not LR(k) for any k but is NSLR(1):

S → E c | F d

E → a B | a E B
B → b

F → a B’ B’ | a F B’ B’
B’ → b

However, this grammar is also indicative of the limitations of the algorithm: if the
seemingly redundant nonterminals B and B’ are replaced with the simple terminal ‘b’, then
the grammar is no longer NSLR(1). The reason for this limitation is that, like an LR(1)
parser, after the boundary between the ‘a’s and the ‘b’s in the input string is found, the
NSLR(1) parser must decide with only one symbol of lookahead whether to start reducing
the matched ‘a’s and ‘b’s using nonterminal E or F. With the grammar shown above in
which the distinct nonterminals B and B’ represent “a ‘b’ to be used in E” and “a ‘b’ to be
used in F” respectively, the NSLR(1) algorithm first reduces the last ‘b’ in the string to a
B or a B’ depending on whether the lookahead character is a ‘c’ or a ‘d’. Then the parser
reduces the next-to-last ‘b’ to a B or a B’ depending on whether the lookahead symbol for
that phrase (the ‘b’ just reduced) is a B or a B’, and so on. Once all the ‘b’s are reduced,
the algorithm can then start reductions via E or F. Without the B and B’ nonterminals,
however, the NSLR(1) algorithm has no way to “transmit” the information that the last
character in the string is a ‘c’ or a ‘d’ back to the boundary between the ‘a’s and ‘b’s where
it is needed to make the choice between E and F.

In contrast, a packrat parser can speculatively reduce instances of E and F and delay
the decision between them until their results are needed by S. For this reason, the example
language can be recognized by a packrat parser with a TDPL grammar constructed without
the redundant B or B’ nonterminals:

S ← E c | F d

E ← a b | a E b

F ← a b b | a F b b

Despite this limitation, NSLR(1) has been shown by Salomon and Cormack [19] to be
powerful enough to implement some types of “scannerless parsers,” in which the lexical
analyzer is integrated into the parser. Achieving this goal, however, involved augmenting
the context-free grammar with a set of restrictive disambiguation rules of two kinds. First,
exclusion rules serve a comparable function to the negative syntactic predicate (‘!’) operator
in TDPL, by disallowing certain derivations that would otherwise be allowed. Exclusion
rules are used by Salomon and Cormack to prevent reserved words from being recognized
as identifiers, for example. Second, adjacency restriction rules disallow specific pairs of
nonterminals from appearing directly adjacent to each other in the input string. This
rule is used to handle the problem discussed in Section 2.4.1 of expressing the notion that
whitespace is optional most of the time but mandatory between identifiers and keywords.
In general the ‘!’ operator in TDPL can be used to provide the functionality of adjacency
rules as well: for example, ‘Foo !(Bar)’ matches Foo as long as it is not immediately followed

94



by Bar. In the case of handling whitespace, however, it is not necessary to use syntactic
predicates because of TDPL’s inherent support for longest match parsing.

It is unknown whether there are NSLR(1) languages that cannot be recognized by a
packrat parser: i.e., whether packrat parsing is more expressive than NSLR(1) or the two
classes of languages are incomparable. Packrat parsing is clearly less restrictive of rightward
lookahead, but NSLR(1) can also take leftward context into account when making reduction
decisions.

In practice, NSLR(1) is probably more space-efficient, but packrat parsing is simpler
and cleaner. As with LR grammars, the NSLR grammars represent a mathematically
complicated subclass of the context-free grammars, which is unlikely to be closed under
composition as TDPL rules are.

6.3.2 Bounded Context Parsable Grammars

The Bounded Context Parsable (BCP) grammars [27] represent the largest known class
of languages that is decidable and can be parsed by a noncanonical bottom-up parser in
linear time. Unfortunately, although a parsing algorithm exists for BCP grammars, it has
never been put into practice because it requires an unmanageably large table of “parsing
contexts.” Since BCP grammars were developed and explored in 1972, it is possible that
BCP grammar parsing would be manageable on modern machines, in the same way that
tabular GTDPL parsing has become practical. However, even if BCP parsing has become
practical, it still suffers from the limitation discussed above that a conventional bottom-up
parser cannot make speculative reductions. For example, although the example language
discussed in the last section is BCP, the language expressed by this simpler variant is not:

S → E | F
E → a b | a E b

F → a b b | a F b b

Without the trailing c or d in the former example, a noncanonical bottom-up parser
has no syntactic markers anywhere in the input that allow it to determine whether to start
reducing via E or F. The only way for a parser to distinguish the two alternatives of S in
this case is to perform actual reductions of E and F in parallel, successively matching a’s
with single b’s and pairs of b’s until one of the branches of exploration fails.

6.3.3 Other Noncanonical Algorithms

Szymanski and Williams [21] developed a general formal model for bottom-up parsing algo-
rithms and used it to analyze various classes of noncanonical bottom-up parsable grammars
including BCP. The broadest of these classes in terms of language recognition power, the
LR(k,∞) grammars, consists of all unambiguous CFGs in which every sentential form (i.e.,
every possible “state” a bottom-up parser could arrive at) has some reducible phrase that
can be uniquely distinguished by examining all the symbols to the left of the phrase and
the first k symbols (terminals or nonterminals) to the right. Even this class of languages,
in which membership is undecidable, does not include the language described by the ex-
ample grammar above. In any string of the language serving as the “initial state” for the
bottom-up parser, the only reducible phrase is the innermost ‘ab’ or ‘abb’, and which of
these reductions to start with can only be determined by counting all the symbols to the
left and to the right of the phrase.
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Therefore, even though the expressiveness of GTDPL and noncanonical bottom-up al-
gorithms has not been compared formally, it appears that all algorithms that fit into the
non-speculative reduction model share a common limitation that GTDPL grammars do not.
It is not known whether there exist bottom-up parsable languages that are not recognizable
with GTDPL.

6.4 General CFG Parsing Algorithms

A recursive descent parser in a functional language can be built to recognize any context-free
language by making the parsing functions return a list of results and allowing unrestricted
backtracking [26, 10, 7]. However, this approach risks exponential worst-case execution time
in general and makes useful error detection much more difficult.

More efficient general parsing algorithms for CFGs exist, such as those of Earley [3] and
Tomita [23], which can handle arbitrary context-free grammars including ambiguous ones.
Earley’s algorithm, the asymptotically fastest known, runs in O(n3) on arbitrary CFGs and
in O(n2) on unambiguous CFGs. The tabular structures used in Earley’s algorithm bear
some resemblance to the tabular result matrix constructed by a packrat parser. Due to the
greater difficulty of the general CFG parsing problem, however, Earley’s algorithm must
store sets of results or “items” in each “cell” in the table, rather than merely one result per
cell as a packrat parser does, leading to the super-linear parse time of Earley’s algorithm.

SDF, a practical parser generation system, uses generalized CFG parsing based on
Tomita’s Generalized LR (GLR) algorithm to support parsing with integrated lexical anal-
ysis [25, 24]. Due to the limited expressiveness of pure CFG notation, SDF provides exten-
sions allowing useful disambiguation rules of various kinds to be declared. The parser uses
these disambiguation rules to trim the set of alternative parse trees produced by the parser
both during and after the parsing process. Among these forms of disambiguation rules
are the adjacency restrictions and exclusion rules introduced by Salomon and Cormack in
NSLR(1) specifically for lexical analysis. In addition, SDF supports rules for specifying the
precedence and associativity of binary operators, and rules enabling the parser to choose a
“default” among multiple alternative parse trees when a ambiguity occurs.

Although the disambiguation rules provided by SDF provide much of the same practical
expressive power as TDPL, this expressive power is achieved at the cost of linear-time
parsing. Furthermore, although these disambiguation rules are “declarative” in the sense
of expressing high-level intentions concisely, these declarations seem more consistent with
the TDPL paradigm than the CFG paradigm because they essentially represent direct
instructions to the SDF parser. A disambiguation rule inherently describes how a language
is read, rather than how a language is written: in general it is not at all straightforward to
generate strings in a language automatically from a CFG annotated with disambiguation
rules, as it is for a pure CFG. If we must cross partway into the TDPL paradigm anyway
in order to gain the expressiveness we seek, it becomes questionable whether the CFG
paradigm is the right starting point.
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Chapter 7

Conclusion and Future Work

In this thesis we have explored top-down parsing language (TDPL), a powerful notation for
the specification of language syntax, and packrat parsing, a practical algorithm for parsing
any TDPL grammar in linear time.

7.1 TDPL

While TDPL was originally created as a formal model for top-down parsers with backtrack-
ing capability, this thesis has developed an extended TDPL notation that serves as a viable
and compelling alternative to traditional context-free grammars (CFGs) for describing the
syntax of programming languages and other machine-readable languages. The fundamental
difference between TDPL and CFG notation is that while a CFG specifies how strings in a
language are written, TDPL specifies how strings in a language are read.

Many common syntactic idioms that are impossible to represent concisely in a pure CFG
are easily expressed in TDPL. For example, TDPL is naturally oriented toward longest-
match disambiguation, which is pervasive at the lexical level of most programming lan-
guages and frequently used in higher-level syntax as well. More sophisticated decision rules
including general syntactic predicates are also supported directly by TDPL. In contrast with
CFG notation, it is possible to express precisely the complete syntax of many practical pro-
gramming languages, including lexical syntax, as a unified TDPL grammar.

7.2 Packrat Parsing

Packrat parsing is an adaptation of a classic tabular parsing algorithm whose existence
has been known since the development of TDPL in the 1970s, but which apparently has
never been put into practice until now. A packrat parser can recognize any string defined
by a TDPL grammar in linear time, providing the power and flexibility of a backtracking
recursive descent parser without the attendant risk of exponential parse time. A packrat
parser can recognize any LL(k) or LR(k) language, as well as many languages requiring
unlimited lookahead that cannot be parsed by shift/reduce parsers. Packrat parsing also
provides better composition properties than LL/LR parsing, making it more suitable for
dynamic or extensible languages. The primary limitation of the algorithm is its considerable,
though asymptotically linear, storage cost.

This thesis has explored the implementation of packrat parsers both manually and au-
tomatically with a parser generator. The monadic combinators and lazy evaluation ca-
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pabilities of modern functional programming languages such as Haskell make the manual
implementation of packrat parsers particularly simple and elegant. Packrat parsing is nearly
as easy to implement in a non-strict language as recursive descent parsing with backtrack-
ing, and even simpler than predictive parsing because no special lookahead mechanism is
necessary. Though graceful error handling in a packrat parser is slightly more involved than
it is in a conventional deterministic parser, the use of monadic combinators to implement a
packrat parser makes implementation of sophisticated error handling straightforward and
painless.

7.3 Pappy

Finally, this thesis has presented Pappy, an automatic packrat parser generator that further
simplifies parser implementation by creating packrat parsers from declarative specifications.
Pappy parser specifications support the full generality of TDPL for the purpose of specifying
syntax. In addition, Pappy extends TDPL notation with features that allow the generated
parser to compute semantic values for recognized constructs using arbitrary fragments of
Haskell code. Finally, Pappy complements TDPL’s capability of expressing syntactic pred-
icates with an analogous capability of representing semantic predicates, allowing parsing
decisions to be made based on semantic values. In the example parsers presented here,
semantic predicates are used to implement character classes, and to allow keywords and
operators in a language to be handled uniformly at the lexical level while remaining distin-
guishable by high-level syntactic constructs.

7.4 Practical Experience

Both hand-implemented and automatically-generated packrat parsers for the Java program-
ming language were developed in this thesis in order to evaluate the packrat parsing algo-
rithm. The example parsers demonstrate that packrat parsing is a viable method of parsing
real programming languages with complex grammars. Packrat parsers provide reliable
linear-time performance, particularly when when repetition constructs in the grammar are
rewritten to avoid hidden recursion. The packrat parsers consume 300–650 bytes of heap
storage on average per byte of input text, which is reasonable for typical problem sizes on
modern modern machines.

The example packrat parsers demonstrate practical linear-time “scannerless” parsing,
in which the lexical analyzer is fully integrated with the parser. Packrat parsing is the first
practical parsing algorithm to support scannerless parsing in linear time, without imposing
complex constraints on the grammar used to specify the language.

7.5 Future Work

While the results presented here demonstrate the power and practicality of packrat parsing,
more experimentation is needed to evaluate its flexibility, performance, and space consump-
tion on a wider variety of languages. For example, languages that rely extensively on parser
state, such as C and C++, as well as layout-sensitive languages such as ML and Haskell,
may prove more difficult for a packrat parser to handle efficiently.

On the other hand, the syntax of a practical language is usually designed with a particu-
lar parsing technology in mind. For this reason, an equally compelling question is what new
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syntax design possibilities are created by the “free” unlimited lookahead and unrestricted
grammar composition capabilities of packrat parsing. Section 3.2.2 suggested a few simple
extensions that depend on integrated lexical analysis, but packrat parsing may be even
more useful in languages with extensible syntax [6] where grammar composition flexibility
is important.

One practical area in which packrat parsing may have difficulty and warrants further
study is in parsing interactive streams. For example, the “read-eval-print” loops in lan-
guage interpreters often expect the parser to detect at the end of each line whether or not
more input is needed to finish the current statement, and this requirement violates the
packrat algorithm’s assumption that the entire input stream is available up-front. A similar
open question is under what conditions packrat parsing may be suitable for parsing infinite
streams.

There is much opportunity for additional formal development of the TDPL paradigm.
It is still unproven whether or not gTS/GTDPL is in fact more powerful than TS/TDPL, or
even whether context-free languages exist that cannot be recognized by a TDPL grammar.
It would be highly useful to have algorithms available that could “bridge the gap” between
CFGs and parsing grammars, for example by testing for language-equivalence or converting
useful subclasses of grammars from one form to the other. Methods of “unparsing,” or
writing a string according to a TDPL grammar given structured high-level information
such as an abstract syntax tree, would also be useful.

99



100



Appendix A

Example Packrat Parsers

This appendix contains complete listings of two of the example packrat parsers developed in
Chapter 3. The next section contains the full version of the basic packrat parser described in
Section 3.1.4, and Section A.2 contains an equivalent parser constructed using the monadic
combinators developed in Section 3.2.3.

A.1 Basic Expression Parser

-- Packrat parser for trivial arithmetic language.

module ArithPackrat where

data Result v =

Parsed v Derivs

| NoParse

data Derivs = Derivs {

dvAdditive :: Result Int,

dvMultitive :: Result Int,

dvPrimary :: Result Int,

dvDecimal :: Result Int,

dvChar :: Result Char

}

-- Evaluate an expression and return the unpackaged result,

-- ignoring any unparsed remainder.

eval s = case dvAdditive (parse s) of

Parsed v rem -> v

_ -> error "Parse error"
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-- Construct a (lazy) parse result structure for an input string,

-- in which any result can be computed in linear time

-- with respect to the length of the input.

parse :: String -> Derivs

parse s = d where

d = Derivs add mult prim dec chr

add = pAdditive d

mult = pMultitive d

prim = pPrimary d

dec = pDecimal d

chr = case s of

(c:s’) -> Parsed c (parse s’)

[] -> NoParse

-- Parse an additive-precedence expression

pAdditive :: Derivs -> Result Int

pAdditive d = alt1 where

-- Additive <- Multitive ’+’ Additive

alt1 = case dvMultitive d of

Parsed vleft d’ ->

case dvChar d’ of

Parsed ’+’ d’’ ->

case dvAdditive d’’ of

Parsed vright d’’’ ->

Parsed (vleft + vright) d’’’

_ -> alt2

_ -> alt2

_ -> alt2

-- Additive <- Multitive

alt2 = case dvMultitive d of

Parsed v d’ -> Parsed v d’

NoParse -> NoParse

-- Parse a multiplicative-precedence expression

pMultitive :: Derivs -> Result Int

pMultitive d = alt1 where

-- Multitive <- Primary ’*’ Multitive

alt1 = case dvPrimary d of

Parsed vleft d’ ->

case dvChar d’ of

Parsed ’*’ d’’ ->

case dvMultitive d’’ of

Parsed vright d’’’ ->

Parsed (vleft * vright) d’’’
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_ -> alt2

_ -> alt2

_ -> alt2

-- Multitive <- Primary

alt2 = case dvPrimary d of

Parsed v d’ -> Parsed v d’

NoParse -> NoParse

-- Parse a primary expression

pPrimary :: Derivs -> Result Int

pPrimary d = alt1 where

-- Primary <- ’(’ Additive ’)’

alt1 = case dvChar d of

Parsed ’(’ d’ ->

case dvAdditive d’ of

Parsed v d’’ ->

case dvChar d’’ of

Parsed ’)’ d’’’ -> Parsed v d’’’

_ -> alt2

_ -> alt2

_ -> alt2

-- Primary <- Decimal

alt2 = case dvDecimal d of

Parsed v d’ -> Parsed v d’

NoParse -> NoParse

-- Parse a decimal digit

pDecimal :: Derivs -> Result Int

pDecimal d = case dvChar d of

Parsed ’0’ d’ -> Parsed 0 d’

Parsed ’1’ d’ -> Parsed 1 d’

Parsed ’2’ d’ -> Parsed 2 d’

Parsed ’3’ d’ -> Parsed 3 d’

Parsed ’4’ d’ -> Parsed 4 d’

Parsed ’5’ d’ -> Parsed 5 d’

Parsed ’6’ d’ -> Parsed 6 d’

Parsed ’7’ d’ -> Parsed 7 d’

Parsed ’8’ d’ -> Parsed 8 d’

Parsed ’9’ d’ -> Parsed 9 d’

_ -> NoParse
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A.2 Monadic Expression Parser

-- Packrat parser for trivial arithmetic language.

module ArithPackrat where

import Pos

import Parse

data ArithDerivs = ArithDerivs {

dvAdditive :: Result ArithDerivs Int,

dvMultitive :: Result ArithDerivs Int,

dvPrimary :: Result ArithDerivs Int,

dvDecimal :: Result ArithDerivs Int,

advChar :: Result ArithDerivs Char,

advPos :: Pos

}

instance Derivs ArithDerivs where

dvChar d = advChar d

dvPos d = advPos d

-- Evaluate an expression and return the unpackaged result,

-- ignoring any unparsed remainder.

eval s = case dvAdditive (parse (Pos "<input>" 1 1) s) of

Parsed v d’ e’ -> v

_ -> error "Parse error"

-- Construct a (lazy) parse result structure for an input string,

-- in which any result can be computed in linear time

-- with respect to the length of the input.

parse :: Pos -> String -> ArithDerivs

parse pos s = d where

d = ArithDerivs add mult prim dec chr pos

add = pAdditive d

mult = pMultitive d

prim = pPrimary d

dec = pDecimal d

chr = case s of

(c:s’) -> Parsed c (parse (nextPos pos c) s’) (nullError d)

[] -> NoParse (eofError d)
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-- Parse an additive-precedence expression

pAdditive :: ArithDerivs -> Result ArithDerivs Int

Parser pAdditive =

(do vleft <- Parser dvMultitive

char ’+’

vright <- Parser dvAdditive

return (vleft + vright))

</> (do Parser dvMultitive)

-- Parse a multiplicative-precedence expression

pMultitive :: ArithDerivs -> Result ArithDerivs Int

Parser pMultitive =

(do vleft <- Parser dvPrimary

char ’*’

vright <- Parser dvMultitive

return (vleft * vright))

</> (do Parser dvPrimary)

-- Parse a primary expression

pPrimary :: ArithDerivs -> Result ArithDerivs Int

Parser pPrimary =

(do char ’(’

vexp <- Parser dvAdditive

char ’)’

return vexp)

</> (do Parser dvDecimal)

-- Parse a decimal digit

pDecimal :: ArithDerivs -> Result ArithDerivs Int

Parser pDecimal =

(do c <- digit

return (digitToInt c))
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Appendix B

TDPL Grammar for the Pappy
Parser Specification Language

Start ← Spacing Grammar EOF

Grammar ← Header RawCode? TopDecl Definition* RawCode?

Header ← PARSER Identifier COLON
TopDecl ← TOP Nonterminal (COMMA Nonterminal)*

Nonterminal ← Identifier

Definition ← Nonterminal DOUBLECOLON HaskellType EQUALS Rule

HaskellType ← Identifier
/ RawCode

PrimRule ← Nonterminal
/ CharLiteral
/ StringLiteral
/ OPEN Rule CLOSE

UnaryRule ← PrimRule QUESTION
/ PrimRule STAR
/ PrimRule PLUS
/ PrimRule

SeqRule ← Sequence
/ UnaryRule

AltRule ← SeqRule (SLASH SeqRule)*
Rule ← AltRule
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Sequence ← SeqMatcher* ARROW SeqResult
SeqMatcher ← Identifier COLON UnaryRule

/ RawCode COLON UnaryRule
/ CharLiteral COLON UnaryRule
/ StringLiteral COLON UnaryRule
/ AND UnaryRule
/ NOT UnaryRule
/ AND RawCode
/ UnaryRule

SeqResult ← Identifier
/ RawCode

Identifier ← IdentStart IdentCont* Spacing
IdentStart ← Letter / ‘_’
IdentCont ← IdentStart / Digit / ‘’’

CharLit ← ‘’’ (!(‘’’) QuotedChar) ‘’’ Spacing
StringLit ← ‘"’ (!(‘"’) QuotedChar)* ‘"’ Spacing
QuotedChar ← ‘\n’ / ‘\r’ / ‘\t’ / ‘\\’ / ‘\’’ / ‘\"’

/ !(‘\’) Char

RawCode ← HaskellBlock Spacing

HaskellBlock ← ‘{’ HaskellToken* ‘}’
HaskellToken ← HaskellBlock

/ HaskellIdentifier
/ HaskellCharLiteral
/ HaskellStringLiteral
/ !(‘{’ / ‘}’ / ‘’’ / ‘"’) Char

HaskellIdentifier ← IdentStart IdentCont*

HaskellCharLiteral ← ‘’’ HaskellSingleQuoteChar* ‘’’
HaskellSingleQuoteChar ← ‘\’ Char

/ !(‘’’ / CR / LF) Char

HaskellStringLiteral ← ‘"’ HaskellDoubleQuoteChar* ‘"’
HaskellDoubleQuoteChar ← ‘\’ Char

/ !(‘"’ / CR / LF) Char

PARSER ← ‘parser’ Spacing
TOP ← ‘top’ Spacing
DOUBLECOLON ← ‘::’ Spacing
EQUALS ← ‘=’ Spacing
COLON ← ‘:’ Spacing
COMMA ← ‘,’ Spacing
OPEN ← ‘(’ Spacing
CLOSE ← ‘)’ Spacing
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QUESTION ← ‘?’ Spacing
STAR ← ‘*’ Spacing
PLUS ← ‘+’ Spacing
SLASH ← ‘/’ Spacing
ARROW ← ‘->’ Spacing
AND ← ‘&’ Spacing
NOT ← ‘!’ Spacing

Spacing ← (SpaceChar / LineComment)*
LineComment ← ‘--’ (!(LineTerminator) Char)* LineTerminator

SpaceChar ← ‘ ’ / TAB / CR / LF
LineTerminator ← CR LF / CR / LF

CR ← ‘\r’
LF ← ‘\n’
TAB ← ‘\t’

EOF ← !(Char)
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