
On the Feasibility of Peer-to-Peer Web Indexing and Search

Jinyang Li∗ Boon Thau Loo† Joseph M. Hellerstein† M. Frans Kaashoek∗

David Karger∗ Robert Morris∗

∗MIT Lab for Computer Science †UC Berkeley
jinyang@lcs.mit.edu, {boonloo, jmh}@cs.berkeley.edu, {kaashoek, karger, rtm}@lcs.mit.edu

Abstract
This paper discusses the feasibility of peer-to-peer
full-text keyword search of the Web. Two classes of
keyword search techniques are in use or have been
proposed: flooding of queries over an overlay net-
work (as in Gnutella), and intersection of index lists
stored in a distributed hash table. We present a sim-
ple feasibility analysis based on the resource con-
straints and search workload. Our study suggests
that the peer-to-peer network does not have enough
capacity to make naive use of either of search tech-
niques attractive for Web search. The paper presents
a number of existing and novel optimizations for
P2P search based on distributed hash tables, esti-
mates their effects on performance, and concludes
that in combination these optimizations would bring
the problem to within an order of magnitude of feasi-
bility. The paper suggests a number of compromises
that might achieve the last order of magnitude.

1 Introduction
Full-text keyword search of the Web is arguably one
of the most important Internet applications. It is also
a hard problem; Google currently indexes more than
2 billion documents [2], a tiny fraction of the esti-
mated 550 billion documents on the Web [5]. While
centralized search engines such as Google work well,
peer-to-peer (P2P) Web search is worth studying
for the following reasons. First, Web search offers
a good stress test for P2P architectures. Second,
P2P search might be more resistant then centralized
search engines to censoring or manipulated rankings.
Third, P2P search might be more robust than central-
ized search as the demise of a single server or site is
unlikely to paralyze the entire search system.

A number of P2P systems provide keyword

search, including Gnutella [1] and KaZaA [4]. These
systems use the simple and robust technique of flood-
ing queries over some or all peers. The estimated
number of documents in these systems is 500 mil-
lion [3]; documents are typically music files, and
searches examine only file meta-data such as title and
artist. These systems have performance problems [6]
even with workloads much smaller than the Web.

Another class of P2P systems achieve scalabil-
ity by structuring the data so that it can be found
with far less expense than flooding; these are com-
monly called distributed hash tables (DHTs) [19,
16, 18, 23]. DHTs are well-suited for exact match
lookups using unique identifiers, but do not directly
support text search. There have been recent propos-
als for P2P text search [17, 20, 11, 10] over DHTs.
The most ambitious known evaluation of such a sys-
tem [17] demonstrated good full-text keyword search
performance with about 100,000 documents. Again,
this is a tiny fraction of the size of the Web.

This paper addresses the question Is P2P Web
search likely to work? The paper first estimates the
size of the problem: the size of a Web index and the
rate at which people submit Web searches. Then it
estimates the magnitude of the two most fundamen-
tal resource constraints: the capacity of the Internet
and the amount of disk space available on peer hosts.
An analysis of the communication costs of naive P2P
Web search shows that it would require orders of
magnitude more resources than are likely to be avail-
able. The paper evaluates a number of existing and
novel optimizations, and shows that in combination,
they should reduce costs to within an order of mag-
nitude of available resources. Finally, the paper out-
lines some design compromises that might eliminate
the last order of magnitude difference.

1

The main contribution of this paper is an evalua-
tion of the fundamental costs of, and constraints on,
P2P Web search. The paper does not claim to have
a definitive answer about whether P2P Web search is
likely to work, but it does provide a framework for
debating the question.

2 Background
A query consists of a set of search terms (words)
provided by a user. The result is usually a list of
documents that contain the terms, ranked by some
scoring mechanism. Search engines typically pre-
compute an inverted index: for each word, a posting
list of the identifiers of documents that contain that
word. These postings are intersected in a query in-
volving more than one term. Since the intersection is
often large, search engines usually present only the
most highly ranked documents. Systems typically
combine many ranking factors; these may include
the importance of the documents themselves [15],
the frequency of the search terms, or how close the
terms occur to each other within the documents.

3 Fundamental Constraints
Whether a search algorithm is feasible depends on
the workload, the available resources, and the algo-
rithm itself. We estimate the workload first. Google
indexes more than 2 billion Web documents [2], so to
be conservative we assume 3 billion. Assuming 1000
words per document, an inverted index would con-
tain 3∗109∗1000 document identifiers (docIDs). In a
DHT, a docID would likely be a key with which one
could retrieve the document; typically this is a 20-
byte hash of the document’s content. The large do-
cID space simplifies collision avoidance as different
peers independently generate docIDs when inserting
documents into the P2P network. The total inverted
index size for the Web is about 6 ∗ 1013 bytes. We
assume the system would have to serve about 1000
queries per second (Google’s current load [2]).

A P2P search system would have two main re-
source constraints: storage and bandwidth. To sim-
plify subsequent discussion, we present concrete es-
timates based on informed guesses.

• Storage Constraints: Each peer host in a P2P
system will have a limit on the disk space it can
use to store a piece of the index; we assume one

gigabyte, a small fraction of the size of a typical
PC hard disk. It is not atypical today for some
large desktop applications to have an installed
size of around 1GB. An inverted index of size
6 ∗ 1013 bytes would require 60,000 PCs, as-
suming no compression.

• Communication Constraints: A P2P query
consumes bandwidth on the wide-area Internet;
the total bandwidth consumed by all queries
must fit comfortably within the Internet’s ca-
pacity.

Given the importance of finding information on
the Web, we assume that it is reasonable for it
to consume a noticeable fraction of Internet ca-
pacity. DNS uses a few percent of wide-area In-
ternet capacity [21]; we optimistically assume
that Web search could consume 10%. One way
to estimate the Internet’s capacity is to look at
the backbone cross-section bandwidth. For ex-
ample, the sum of the bisection bandwidths of
Internet backbones in the U.S. was about 100
gigabits in 1999 [7]. Assuming 1,000 queries
per second, the per-query communication bud-
get is 10 megabits, or roughly one megabyte.
This is a very optimistic assessment.

Another way to derive a reasonable query com-
munication cost is to assume that the query
should send no more data than the size of the
document ultimately retrieved. Assuming that
the average Web page size is about 10 kilobytes,
this leads to a pessimistic query communication
budget of 10 kilobytes.

The rest of this paper assumes the more opti-
mistic budget of one megabyte of communica-
tion per query.

4 Basic Cost Analysis
This section outlines the costs of naive implemen-
tations of two common P2P text search strategies:
partition-by-document and partition-by-keyword.

4.1 Partition by Document

In this scheme, the documents are divided up among
the hosts, and each peer maintains a local inverted
index of the documents it is responsible for. Each
query must be broadcast or flooded to all peers; each

2

peer returns its most highly ranked document(s).
Gnutella and KaZaA use partition by document.

Flooding a query to the 60,000 peers required
to hold an index would require about 60,000 pack-
ets, each of size 100 bytes. Thus a query’s com-
munication cost would be 6 megabytes, or 6 times
higher than our budget. Of course, if peers were
able to devote more disk space to storing the in-
dex, fewer would be required, and the communica-
tion cost would be proportionately less.

4.2 Partition by Keyword

In this scheme, responsibility for the words that ap-
pear in the document corpus is divided among the
peers. Each peer stores the posting list for the
word(s) it is responsible for. A DHT would be used
to map a word to the peer responsible for it. A num-
ber of proposals work this way [17, 10].

A query involving multiple terms requires that the
postings for one or more of the terms be sent over the
network. For simplicity, this discussion will assume
a two-term query. It is cheaper to send the smaller of
the two postings to the peer holding the larger post-
ing list; the latter peer would perform the intersec-
tion and ranking, and return the few highest-ranking
document identifiers.

Analysis of 81,000 queries made to a search en-
gine for mit.edu shows that the average query
would move 300,000 bytes of postings across the
network. 40% of the queries involved just one term,
35% two, and 25% three or more. mit.edu has 1.7
million Web pages; scaling to the size of the Web (3
billion pages) suggests that the average query might
require 530 megabytes, requiring a factor of 530×
improvement.

Some queries, however, are much more expensive
than this average. Consider a search for “the who”.
Google reports that 3∗109 documents contain “the”,
and 2 ∗ 108 contain “who”. This query would send
4 GB over the network, exceeding our budget by
4000×.

Our analysis seems to imply that partition-by-
document is the more promising scheme, requiring
only a factor of 6× improvement. However, we fo-
cus instead on partition-by-keyword because it al-
lows us to draw on decades of existing research on
fast inverted index intersection. As we will see later,
by applying a variety of techniques we can bring the

partition-by-keyword scheme to the same order-of-
magnitude bandwidth consumption as the partition-
by-document approach.

5 Optimizations
In this section, we discuss optimization techniques
for partition-by-keyword. We evaluate the optimiza-
tions using our data set of 81,000 mit.edu queries
and 1.7 million web pages crawled from MIT.

5.1 Caching and Precomputation

Peers could cache the posting lists sent to them for
each query, hoping to avoid receiving them again for
future queries. This technique reduces the average
query communication cost in the MIT query trace by
38%. The modest improvement can be attributed to
the fact that many queries appear only once in the
trace.

Precomputation involves computing and storing
the intersection of different posting lists in advance.
Precomputing for all term pairs is not feasible as it
would increase the size of the inverted index signif-
icantly. Since the popularity of query terms follows
a Zipf distribution [17], it is effective to precompute
only the intersections of all pairs of popular query
terms. If 7.5 million term pairs (3% of all possible
term pairs) from the most popular terms are precom-
puted for the MIT data set, the average query com-
munication cost is reduced by 50%.

5.2 Compression

Compression provides the greatest reduction in com-
munication cost without sacrificing result quality.

5.2.1 Bloom Filters

A Bloom filter can represent a set compactly, at the
cost of a small probability of false positives. In a
simple two-round Bloom intersection [17], one node
sends the Bloom filter of its posting list. The receiv-
ing node intersects the Bloom filter and its posting
list, and sends back the resulting list of docIDs. The
original sender then filters out false positives. The
result is a compression ratio of 13 1.

When the result set is small, we propose multi-
ple rounds of Bloom intersections. In this case, the

1This is a best case compression ratio which assumes that the
intersection is empty and that the two posting lists have similar
sizes.

3

compression ratio is increased to 40 with four rounds
of Bloom filter exchange 2. Compressed Bloom fil-
ters [14] give a further 30% improvement, resulting
in a compression ratio of approximately 50.

5.2.2 Gap Compression

Gap compression [22] is effective when the gaps be-
tween sorted docIDs are small. To reduce the gap
size, we propose to periodically remap docIDs from
160-bit hashes to dense numbers from 1 to the num-
ber of documents. In the MIT data set, gap com-
pression with dense IDs achieves an average com-
pression ratio of 30. Gap compression has the added
advantage over Bloom filters that it incurs no extra
round-trip time, and the compression ratio is inde-
pendent of the size of the final intersection.

5.2.3 Adaptive Set Intersection

Adaptive set intersection [8] exploits structure in
the posting lists to avoid having to transfer entire
lists. For example, the intersection {1, 3, 4, 7} ∩
{8, 10, 20, 30} requires only one element exchange,
as 7 < 8 implies an empty intersection. In
contrast, computing the intersection {1, 4, 8, 20} ∩
{3, 7, 10, 30} requires an entire posting list to be
transferred.

Adaptive set intersection can be used in conjunc-
tion with gap compression. Based on the MIT data
set, an upper bound of 30% improvement could be
achieved on top of gap compression, resulting in a
compression ratio of 40.

5.2.4 Clustering

Gap compression and adaptive set intersection are
most effective when the docIDs in the posting lists
are “bursty”. We utilize statistical clustering tech-
niques to group similar documents together based on
their term occurrences. By assigning adjacent do-
cIDs to similar documents, the posting lists are made
burstier. We use Probabilistic Latent Semantic Anal-
ysis (PLSA) [13] to group all the MIT Web docu-
ments into 100 clusters. Documents within the same
cluster are assigned contiguous docIDs. Clustering
improves the compression ratio of adaptive set inter-
section with gap compression to 75.

2More than 4 rounds yield little further improvement.

Technique Improvement
Caching 1.5×

Precomputation 2×

Bloom Filters 50×

Gap Compression (GC) 30×

Adaptive Set (AS) + GC 40×

Clustering + GC + AS 75×

Table 1: Optimization Techniques and Improve-
ments

6 Compromises
Table 1 summarizes the performance gains of differ-
ent techniques proposed so far. The most promising
set of techniques result in a 75× reduction in aver-
age communication costs. However, achieving this
improvement would require distributed renumbering
and clustering algorithms which are rather complex.
Even a 75× reduction leaves the average query com-
munication cost an order of magnitude higher than
our budget. An extra 7× improvement is still needed.
This leads us into the softer realm of accepting com-
promises to gain performance.

6.1 Compromising Result Quality

Reynolds and Vahdat suggest streaming results to
users using incremental intersection [17]. Assum-
ing users are usually satisfied with only a partial
set of matching results, this will allow savings in
communication as users are likely to terminate their
queries early. Incremental intersection is most effec-
tive when the intersection is big relative to the post-
ings so that a significant number of matching results
can be generated without needing to transfer an en-
tire posting list 3.

While incremental results are useful, the likeli-
hood that users will terminate their queries early will
be increased if the incremental results are prioritized
based on a good ranking function. To achieve this
effect, Fagin’s algorithm (FA) [9] is used in conjunc-
tion with a ranking function to generate incremental
ranked results. The posting lists are sorted based on
the ranking function, and the top ranked docIDs are
incrementally transferred from one node to another
for intersection. Unfortunately, not all ranking func-

3This suggests that it might be preferable to precompute term
pairs with big posting lists and small intersections, which would
also reduce the storage overhead of precomputation.

4

tions are applicable. Examples of applicable rank-
ing functions include those based on PageRank, term
frequencies or font sizes. An example of a ranking
function that can not be used with FA is one based
on proximity of query terms. By limiting the choices
of useful ranking functions, we are left with incre-
mental results that are not as well-ranked compared
to the results of commercial search engines. To al-
leviate this shortcoming, we propose the use of mid-
query relevance feedback [12] that allows users to
control and change the order in which the posting
list intersections are performed. This leads to poten-
tial improvements in user experiences, and may re-
sult in earlier query termination. However, incorpo-
rating user feedback in the middle of a search query
introduces a number of challenges in designing ap-
propriate result browsing and feedback interfaces.

As we mentioned earlier, incremental intersection
results are more effective when the final result set is
big relative to the intersecting posting lists. To illus-
trate, consider two posting lists X and Y , and the
corresponding intersection Z where |X| > |Y | >

|Z|. Computing 10 matching results will require
transferring an average of 10∗|Y |

|Z| elements from the
smaller posting list Y . We quantify the savings of in-
cremental results based on the MIT data set. On av-
erage, computing 10 results using incremental inter-
section results in a 50× reduction in communication
cost 4. We would expect even greater performance
gains for the larger Web corpus. The savings of
incremental intersection is especially significant for
expensive queries such as “the who”. Google reports
that there are 107 results, hence roughly 2∗108

107 ∗10 =

200 docIDs need to be shipped to retrieve the top
10 ranked documents containing “the” and “who”.
This reduces the communication cost significantly to
200 ∗ 20B ≈ 4KB which is well within our budget
of one megabyte per query.

6.2 Compromising P2P Structure

The one megabyte communication budget is derived
from the bisection backbone bandwidth of the Inter-
net. The aggregate bandwidth summed over all links
is probably much larger than the bisection. We could
compromise the P2P network structure to exploit In-

4Incremental ranked intersection can be combined with com-
pression, but unfortunately the compression ratio will be re-
duced as a result.

ternet aggregate bandwidth for better performance.
One proposal is to replicate the entire inverted index,
with one copy per ISP. As a rough analysis, if the en-
tire inverted index can be replicated at 10 ISPs, there
is a 10× increase in the communication budget per
query.

7 Conclusion
This paper highlights the challenges faced in build-
ing a P2P web search engine. Our main contribution
lies in conducting a feasibility analysis for P2P Web
search. We have shown that that naive implementa-
tions of P2P Web search are not feasible, and have
mapped out some possible optimizations. The most
effective optimizations bring the problem to within
an order of magnitude of feasibility. We have also
proposed two possible compromises, one in the qual-
ity of results, and the other in the P2P structure of our
system. A combination of optimizations and com-
promises will bring us within feasibility range for
P2P Web search.

8 Acknowledgments
This research was conducted as part of the IRIS
project (http://project-iris.net/), sup-
ported by the National Science Foundation under
Cooperative Agreement No. ANI-0225660.

References
[1] Gnutella. http://gnutella.wego.com.

[2] Google Press Center: Technical Highlights. http:
//www.google.com/press/highlights.
html.

[3] Ingram: Record Industry Plays Hardball with Kazaa.
http://www.globeandmail.com/.

[4] Kazaa. http://www.kazza.com.

[5] The Deep Web: Surfacing Hidden Value. http:
//www.press.umich.edu/jep/07-01/
bergman.html.

[6] Why Gnutella Can’t Scale. No, Really. http:
//www.darkridge.com/˜jpr5/doc/
gnutella.html.

[7] Boardwatch Magazine’s Directory of Internet Service
Providers, 1999.

[8] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Adaptive Set Intersections, Unions, and Differences.
In Proceedings of the 11th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2000), January
2000.

5

[9] R. Fagin, A. Lotem, and M. Naor. Optimal Aggre-
gation Algorithms for Middleware. In Symposium on
Principles of Database Systems, 2001.

[10] O. D. Gnawali. A Keyword Set Search System
for Peer-to-Peer Networks. Master’s thesis, Mas-
sachusetts Institute of Technology, June 2002.

[11] M. Harren, J. M. Hellerstein, R. Huebsch, B. T.
Loo, S. Shenker, and I. Stoica. Complex Queries in
DHT-based Peer-to-Peer Networks. In 1st Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS’02),
March 2002.

[12] J. M. Hellerstein, R. Avnur, A. Chou, C. Olston,
V. Raman, T. Roth, C. Hidber, and P. Haas. Interactive
Data Analysis with CONTROL. In IEEE Computer,
1999.

[13] T. Hofmann. Probabilistic Latent Semantic Analy-
sis. In Proc. of Uncertainty in Artificial Intelligence,
UAI’99, Stockholm, 1999.

[14] M. Mitzenmacher. Compressed Bloom Filters. In
Twentieth ACM Symposium on Principles of Dis-
tributed Computing, August 2001.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical report, Stanford Digital Library Tech-
nologies Project, 1998.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Net-
work. In Proceedings of the 2001 ACM SIGCOM
Conference, Berkeley, CA, August 2001.

[17] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer
Keyword Searching. In Unpublished Manuscript,
June 2002.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. Lecture Notes in Com-
puter Science, 2218, 2001.

[19] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: Scalable Peer-To-Peer
Lookup Service for Internet Applications. In Proceed-
ings of the 2001 ACM SIGCOMM Conference, pages
149–160, 2001.

[20] C. Tang, Z. Xu, and M. Mahalingam. pSearch:
Information Retrieval in Structured Overlays. In
HotNets-I, October 2002.

[21] K. Thompson, G. Miller, and R. Wilder. Wide-area
Traffic Patterns and Characteristics. In IEEE Network,
vol. 11, no. 6, pp. 10-23, November/December 1997.

[22] I. H. Witten, A. Moffat, and T. C. Bell. Man-
aging Gigabytes: Compressing and Indexing Docu-
ments and Images. May 1999.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant Wide-
area Location and Routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

6

