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Abstract

OKWS is a Web server specialized for secure and fast delivery of dynamic content. It
provides Web developers with a small set of tools powerful enough to build complex Web-
based systems. Despite its emphasis on security, OKWS shows performance improvements
compared to popular systems: when servicing fully dynamic, non-disk-bound database
workloads, OKWS’s throughput and responsiveness exceed that of Apache 2 [3], Flash [42]
and Haboob [76]. Experience with OKWS in a commercial deployment suggests it can
reduce hardware and system management costs, while providing security guarantees absent
in current systems. In the end, lessons gleaned from the OKWS project provide insight into
how operating systems might better facilitate secure application design.
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Chapter 1

Introduction

Many of today’s dynamic Web sites are nothing more than HTTP interfaces to centralized,
managed databases. As such they are gatekeepers, tasked with showing Alice only the
small part of the database that pertains to her, while keeping Bob and Charlie’s private data
out of her reach. This task is critical and difficult in practice. One need only browse the IT
headlines to get a taste for the flagrant access control failures that plague commercial Web
Sites [47, 48]. Such attacks have yielded millions of e-mail addresses in some cases, and
millions of credit card accounts in others. Attacks against Web sites often exploit weak-
nesses in popular Web servers or bugs in custom application-level logic. In theory, HTTP
(or HTTPS) exposes narrow interfaces to remote clients and should not allow the litany of
attacks that have surfaced over the years. In practice, emphasis on rapid deployment and
performance often comes at the expense of security.

Consider the following example: Web servers typically provide Web programmers
with powerful and generic interfaces to underlying databases and rely on coarse-grained
database-level permission systems for access control. Web servers also tend to package
logically separate programs into one address space. If a particular Web site serves its search
and newsletter-subscribe features from the same machine, a bug in the former might allow
a malicious remote client to select all rows from a table of subscribers’ email addresses. In
general, anything from a buffer overrun to an unexpected escape sequence can expose pri-
vate data to an attacker. Moreover, few practical isolation schemes exist aside from running
different services on different machines. A large Web site, serving thousands of different
functions, might only be as strong as it weakest service.

1.1 A Solution

To plug the many security holes that plague existing Web servers, and to limit the severity
of unforeseen problems, we have designed, implemented and deployed OKWS, the OK
Web Server. Unlike typical Web servers, OKWS is specialized for dynamic content and is
currently not well-suited to serving files from disk. It relies on existing Web servers, such as
Flash [42] or Apache [3], to serve images and other static content. In deployment, we found
that this separation of static and dynamic content is natural and, moreover, contributes to
security.
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Supporting dynamic content on Unix necessitates a trade-off between security and per-
formance. On the one hand, the most secure Web architecture on Unix is one in which
remote Web clients connect to a single dedicated server-side process. The user’s data on
the server, whether in memory or on disk, is only available to that one process. This
architecture is impractical: storage constraints dictate that user data be aggregated into
searchable databases; the operating system cannot handle too many active processes, nor
can it afford to fork processes as users connect. On the other hand, most Web servers in the
literature (such as Apache, Flash, and Haboob [76]) assign processes to users and services
to maximize performance and without regard to security.

OKWS chooses a different point in the design space: it confines each service that a
Web server runs to a single process, so that if there are any security problems in one ser-
vice, they will not spread to others. OKWS’s alignment of services and processes is an
implementation of the natural principle of least privilege [54], beneficial in this case for
both performance and security.

1.2 Contributions

The main contributions of this thesis are the design and implementation of the OKWS, and
an analysis of its security, performance, and usability. We believe OKWS has carved out a
new niche in the crowded Web server design space, achieving security properties that other
Web servers have not, while still outperforming all the servers we tested it against. No
mere academic exercise, OKWS is a real system currently used in at least one large-scale
commercial Web site; details about OKWS’s commercial deployment are discussed. For
businesses and academics alike, OKWS is freely available under an open source license.

Though OKWS goes to great lengths to squeeze the maximum set of security properties
out of the Unix interface, in some respects, it still falls short. Experience with OKWS
suggests that writing secure Web servers is hard, and that the operating system should
provide better security primitives to secure application programmers. This thesis sketches
the more promising experimental OS designs that would make OKWS simpler and more
secure, without sacrificing its current features, usability or performance.

1.3 Thesis Organization

The next two chapters examine popular Web technology, arguing that today’s Web servers
have a bad track record in security and do not seem to be improving. Yet, the simple design
principles in Chapter 4 would go a long way to closing many Web server vulnerabilities,
and Chapter 5 discusses OKWS’s implementation of these principles. Chapters 6 and 7
argue that the resulting system is practical for building large systems, and Chapter 8 an-
alyzes its performance, showing that OKWS’s specialization for dynamic content helps it
achieve better performance in simulated dynamic workloads than general purpose servers.
Chapter 9 discusses the security achieved by the implementation, and Chapter 10 covers
the overarching lessons learned from two years of experience with OKWS and explores
new ideas in operating systems inspired by the work.
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Chapter 2

Related work

There is a wide range of related work in Web servers—both static and dynamic. Many Web
servers do not specialize in dynamic content, and none to our knowledge have achieved
OKWS’s security and performance properties.

Despite its problems, Apache is today’s most popular popular Web Server [3]. Apache’s
many configuration options and modules allow Web programmers to extend its function-
ality with a variety of different programming languages. However, neither 1.3.x’s multi-
process architecture nor 2.0.x’s multi-threaded architecture is conducive to process iso-
lation. Also, its extensibility and mushrooming code base make its security properties
difficult to reason about.

Highly-optimized event-based Web servers such as Flash [42] and Zeus [79] have
eclipsed Apache in terms of performance. While Flash in particular has a history of out-
standing performance serving static content, our performance studies here indicate that its
architecture is less suitable for dynamic content. In terms of process isolation, one could
most likely implement a similar separation of privileges in Flash as we have done with
OKWS. However, as shown in Chapter 8, Flash’s architecture might not be well-suited for
dynamic content.

FastCGI [20] is a standard for implementing long-lived CGI-like helper processes. It
allows separation of functionality along process boundaries but neither articulates a specific
security policy nor specifies the mechanics for maintaining process isolation in the face of
partial server compromise. Also, FastCGI requires the leader process to relay messages
between the Web service and the remote client. OKWS passes file descriptors to avoid the
overhead associated with FastCGI’s relay technique.

The Haboob server studied here is one of many possible applications built on SEDA, an
architecture for event-based network servers. In particular, SEDA uses serial event queues
to enforce fairness and graceful degradation under heavy load. Larger systems such as
Ninja [62] build on SEDA’s infrastructure to create clusters of Web servers with the same
appealing properties. However, performance measurements in Chapter 8 show that Haboob
achieves between one fifth and one tenth the throughput of OKWS despite a strictly worse
security model.

Other work has used the SFS toolkit to build static Web Servers and Web proxies [78].
Though the current OKWS architecture is well-suited for SMP machines, the adoption of
libasync-mp would allow for finer-grained sharing of a Web workload across many CPUs.
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OKWS uses events but the same results are possible with an appropriate threads library.
An expansive body of literature argues the merits of one scheme over the other, and most
recently, Capriccio’s authors [63] argue that threads can achieve the same performance as
events in the context of Web servers, while providing programmers with a more intuitive
interface. Other recent work suggests that threads and events can coexist [1]. Such tech-
niques, if applied to OKWS, would simplify stack management for Web developers.

In addition to the PHP [44] scripting language investigated here, many other Web de-
velopment environments are in widespread use. Zope [81], a Python-based platform, has
gained popularity due to its modularity and support for remote collaboration. CSE [25]
allows developers to write Web services in C++ and uses some of the same sandboxing
schemes we use here to achieve fault isolation. In more commercial settings, Java-based
systems often favor thin Web servers, pushing more critical tasks to application servers
such as JBoss [30] and IBM WebSphere [28]. Such systems limit a Web server’s access
to underlying databases in much the same way as OKWS’s database proxies. Most Java
systems, however, package all aspects of a system in one address space with many threads;
our model for isolation would not extend to such a setting. Furthermore, our experimen-
tal results indicate significant performance advantages of compiled C++ code over Java
systems.

Other work has proposed changes to underlying operating systems to make Web servers
fast and more secure. The Exokernel operating system [31] allows its Cheetah Web server
to directly access the TCP/IP stack, in order to reduce buffer copies allow for more effective
caching. The Denali isolation kernel [77] can isolate Web services by running them on
separate virtual machines.
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Chapter 3

A Brief Survey of Web Server Bugs

To justify our approach to dynamic Web server design, we briefly analyze the weaknesses
of popular software packages. The goal is to represent the range of bugs that have arisen
in practice. Historically, attackers have exploited almost all aspects of conventional Web
servers, from core components and scripting language extensions to the scripts them-
selves. The conclusion we draw is that a better design—as opposed to a more correct
implementation—is required to get better security properties.

In our survey, we focus on the Apache [3] server due to its popularity, but the types of
problems discussed are common to all similar Web servers, including IBM WebSphere [28],
Microsoft IIS [38] and Zeus [79].

3.1 Apache Core and Standard Modules

There have been hundreds of major bugs in Apache’s core and in its standard modules.
They fit into the following categories:

Unintended Data Disclosure. A class of bugs results from Apache delivering files over
HTTP that are supposed to be private. For instance, a 2002 bug in Apache’s mod dav
reveals source code of user-written scripts [74]. A 2003 bug in a default installation of
Apache Tomcat on Gentoo Linux publicly revealed authentication credentials [13]. An-
other recent vulnerability in Apache Tomcat causes the server to return unprocessed source
code, as opposed to executing the source code and outputting the result [73]. Similarly,
Tomcat’s improper handling of null bytes (%00) and escape sequences has allowed remote
attackers to view hidden directory contents [66].

A recent discovery of leaked file descriptors allows remote users to access sensitive
log information [12]. On Mac OS X operating systems, a local find-by-content indexing
scheme creates a hidden yet world-readable file called .FBCIndex in each directory in-
dexed. Versions of Apache released in 2002 expose this file to remote clients [72]. In all
cases, attackers can use knowledge about local configuration and custom-written applica-
tion code to mount more damaging attacks.
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Buffer Overflows and Remote Code Execution. Buffer overflows in Apache and its
modules are common. Unchecked boundary conditions found recently in mod alias
and mod rewrite regular expression code allow local attack [69]. In 2002, a common
Apache deployment with OpenSSL had a critical bug in client key negotiation, allowing
remote attackers to execute arbitrary code with the permissions of the Web server. The
attacking code downloads, compiles and executes a program that seeks to infect other ma-
chines [65].

There have been less-sophisticated attacks that resulted in arbitrary remote code exe-
cution. Some Windows versions of Apache execute commands in URLs that follow pipe
characters (‘|’). A remote attacker can therefore issue the command of his choosing from
an unmodified Web browser [71]. On MS-DOS-based systems, Apache failed to filter out
special device names, allowing carefully-crafted HTTP POST requests to execute arbitrary
code [75]. Other problems have occurred when site developers call Apache’s htdigest
utility from within CGI scripts to manage HTTP user authentication [10].

Denial of Service Attacks. Aside from TCP/IP-based DoS attacks, Apache has been vul-
nerable to a number of application-specific attacks. Apache versions released in 2003 failed
to handle error conditions on certain “rarely used ports,” and would stop servicing incom-
ing connections as a result [68]. Another 2003 release allowed local configuration errors
to result in infinite redirection loops [14]. In some versions of Apache, attackers could
exhaust Apache’s heap simply by sending a large sequence of linefeed characters [67].

3.2 Scripting Extensions to Apache

Apache’s security worsens considerably when compiled with popular modules that enable
dynamically-generated content such as PHP [44]. In the past two years alone, at least 13
buffer overruns have been found in the PHP core, some of which allowed attackers to re-
motely execute arbitrary code [16,56]. In six other cases, faults in PHP allowed attackers to
circumvent its application level chroot-like environment, called “Safe Mode.” One vulner-
ability exposed /etc/passwd via posix getpwnam [9]. Another allowed attackers to
write PHP scripts to the server and then remotely execute them; this bug persisted across
multiple releases of PHP intended as fixes [64].

Even if a correct implementation of PHP were possible, it would still provide Web
programmers with ample opportunity to introduce their own vulnerabilities. A canonical
example is that beginning PHP programmers fail to check for sequences such as “..” in
user input and therefore inadvertently allow remote access to sensitive files higher up in
the file system hierarchy (e.g., ../../../etc/passwd). Similarly, PHP scripts that
embed unescaped user input inside SQL queries present openings for “SQL Injection.” If a
PHP programmer neglects to escape user input properly, a malicious user can turn a benign
SELECT into a catastrophic DELETE.

The PHP manual does state that PHP scripts might be separated and run as different
users to allow for privilege separation. In this case, however, PHP cannot run as an Apache
module, and the system requires a new PHP process forked for every incoming connection.
This isolation strategy compromises performance, and is seldom used in practice.
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Chapter 4

Design

If we assume that bugs like the ones discussed in Chapter 3 are inevitable when building a
large system, the best remedy is to limit the effectiveness of attacks when they occur. This
section presents four simple guidelines for protecting sensitive site data in the worst-case
scenario, in which an adversary remotely gains control of a Web server and can execute
arbitrary commands with the Web server’s privileges. We also present OKWS’s design,
which follows the four security guidelines without sacrificing performance.

Throughout, we assume a cluster of dynamic Web servers and database machines con-
nected by a fast, firewalled LAN. Site data is cached at the Web servers and persistently
stored on the database machines. The site’s static data can be served from outside of the
firewall since static content servers typically do not require access to sensitive site data.
This type of configuration, exemplified in Figure 4.1, is common for high-volume Web
sites. With this server setup, the primary security goals are to prevent intrusion into the
firewalled cluster and to prevent unauthorized access to site data.

4.1 Four Practical Security Guidelines

(1) Server processes should be chrooted. chrooting privileged server processes is a
commonly-accepted though infrequently-applied Unix security technique.1 The rationale
behind chroot is that privileged processes, if compromised, would do less damage if
they could not access sensitive parts of the file system. In particular, secure systems can
use chroot to hide local passwords, private keys, startup scripts, commonly-executed ex-
ecutable images (such as the kernel) and local configuration files from privileged servers. If
a privileged server cannot access these files due to chroot, then a compromised privileged
server cannot learn their secrets or sully their integrity.

From a more technical perspective, OS-level chroot-jails ought to hide all setuid2

executables from the Web server, to prevent compromised processes from escalating priv-

1chroot is a system call, available only to the superuser, that changes an application’s idea of what the
file system root is. Calling chroot(dir) renders only the files and directories under dir accessible to the
process [52].

2If a file is set to setuid, then any process that executes that file has its user ID set to the file’s owner [52].
Typically, su is owned by the superuser and is marked setuid, allowing non-privileged users to execute it
and become privileged.
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Figure 4.1: An example server setup, in which Web clients download HTML data from
a firewalled clusted, and then are redirected to a content distribution network (CDN) or
external image servers for downloading graphics.

ileges (examples include the ptrace and bind attacks mentioned in [32]). Privilege escala-
tion is possible without setuid executables but requires OS-level bugs or race conditions
(such as a recently discovered flaw in Linux’s mremap system call [70]) that are typically
rarer.

Moreover, developers should design their application around the chroot call as op-
posed to blindly applying a chroot container ex-post facto. Consider the Apache exam-
ple. Once chrooted, Apache still needs access to configuration files, source files, and
binaries that correspond to services the site administrator wants to make available; these
files, in turn, are valuable to attackers who can compromise the server. For instance, PHP
scripts often include the username and plaintext password used to gain access to a MySQL
database. If an attacker can control Apache, he can read PHP scripts and wreak havoc by
controlling the databases those PHP scripts access. OS-enforced policy ought to hide even
application-specific source, binary and configuration files from running Web servers.

(2) Server processes should run as unprivileged users. To do otherwise—to run a server
process as a privileged user— opens to the door to significant damage, even if the process
is chrooted. A privileged, chrooted process can bind to a well-known network port. A priv-
ileged process might also interfere with other system processes, especially those associated
with the Web server, by tracing their system calls, sending them signals or tampering with
their binaries so that they exhibit unintended behavior on future executions.

(3) Server processes should have the minimal set of database access privileges nec-
essary to perform their task. Separate processes should not have access to each other’s
databases. Moreover, if a Web server process requires only row-wise access to a table, an
adversary who compromises it should not have the authority to perform operations over the
entire table.

(4) A server architecture should separate independent functions into independent pro-
cesses. An adversary who compromises a Web server can examine its in-memory data
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structures, which might contain soft state used for user session management, or possibly
secret tokens that the Web server uses to authenticate itself to its database. With control of a
Web server process, an adversary might hijack an existing database connection or establish
a new one with the authentication tokens it acquired. Though more unlikely, an attacker
might also monitor and alter network traffic entering and exiting a compromised server.

The important security principle here is to limit the types of data that a single process
can access. Site designers should partition their global set of site data into small, self-
contained subsets, and their Web server ought to align its process boundaries with this
partition.

If a Web server implements principles (1) through (4), and if there are no critical kernel
bugs, an attacker cannot move from vulnerable to secure parts of the system. The same
defenses also protect careless Web programmers from their own mistakes. For example,
if a server architecture denies a successful attacker access to /etc/passwd, then a pro-
grammer cannot inadvertently expose this file to remote clients. Similarly, if a successful
attacker cannot arbitrarily access underlying databases, then even a broken Web script can-
not enable SQL injection attacks.

4.2 OKWS Design

We designed OKWS with these four principles in mind. OKWS provides Web developers
with a set of libraries and helper processes so they can build Web services as independent,
stand-alone processes, isolated almost entirely from the file system. The core libraries
provide basic functions of receiving HTTP requests, accessing data sources, composing
an HTML-formatted response, responding to HTTP requests, and logging the results to
disk. A process called OK launcher daemon, or okld, launches custom-built services and
relaunches them should they crash. A process called OK dispatcher, or okd, routes incom-
ing requests to appropriate Web services based on URL. A helper process called pubd
provides Web services with limited read access to configuration files and HTML template
files stored on the local disk. Finally, a dedicated logger daemon called oklogd writes log
entries to disk. Figure 4.2 summarizes these relationships.

This architecture allows custom-built Web services to meet our stated design goals:

(1) OKWS chroots all services to a remote jail directory. Within the jail, each process
has just enough access privileges to read shared libraries upon startup and to dump
core upon abnormal termination. The services otherwise never access the file system
and lack the privileges to do so.

(2) Each service runs as a unique non-privileged user.

(3) OKWS interposes a structured RPC interface between the Web service and the database
and uses a simple authentication mechanism to align the partition among database
access methods with the partition among processes.

(4) Each Web service runs as a separate process. The next section justifies this choice.
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Figure 4.2: Block diagram of an OKWS site setup with three Web services (svc1, svc2, svc3)
and two data sources (data1, data2), one of which (data2) is an OKWS database proxy.

4.3 Process Isolation

Unlike the other three principles, the fourth, of process isolation, implies a security and
performance tradeoff since the most secure option—one Unix process per external user—
would be problematic for performance. OKWS’s approach to this tradeoff is to assign one
Unix process per service.

Our approach is to view Web server architecture as a dependency graph, in which the
nodes represent processes, services, users, and user state. An edge (a, b) denotes b’s depen-
dence on a, meaning an attacker’s ability to compromise a implies an ability to compromise
b. The crucial design decision is thus how to establish dependencies between the more ab-
stract notions of services, users and user states, and the more concrete notion of a process.

Let the set S represent a Web server’s constituent services, and assume each service
accesses a private pool of data. Two services are defined as distinct if they access disjoint
pools of data—whether in-memory soft state or database-resident hard state. A set of users
U interacts with these services, and the interaction between user uj and service si involves
a piece of state ti,j. If an attacker can compromise a service si, he can compromise state
ti,j for all j; thus (si, ti,j) is a dependency for all j. Compromising state also compromises
the corresponding user, so (ti,j, uj) is also a dependency.

Let P = {p1, . . . , pk} be a Web server’s pool of processes. The design decision of how
to allocate processes reduces to where the nodes in P belong on the dependency graph. In
the Apache architecture [3], each process pi in the process pool can perform the role of
any service sj. Thus, dependencies (pi, sj) exist for all j. For the Flash Web server [42],
each process in P is associated with a particular service: for each pi, there exists sj such
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Figure 4.3: Dependency graphs for various Web server architectures.

that (pi, sj) is a dependency. The size of the process pool P is determined by the number
of concurrent active HTTP sessions; each process pi serves only one of these connections.
Java-based systems like the Haboob Server [76] employ only one process; thus P = {p1},
and dependencies (p1, sj) exist for all j.

Figures 4.3(a)-(c) depict graphs of Apache, Flash and Haboob hosting two services for
two remote users. Assuming that the “dependence” relationship is transitive, and that an
adversary can compromise p1, the shaded nodes in the graph show all other vulnerable
entities.

This picture assumes that the process of p1 is equally vulnerable in the different archi-
tectures and that all architectures succeed equally in isolating different processes from each
other. Neither of these assumptions is entirely true, and we will return to these issues in
Section 9.2. What is clear from these graphs is that in the case of Flash, a compromise of
p1 does not affect states t2,1 and t2,2. For example, an attacker who gained access to ui’s
search history (t1,i) cannot access the contents of his inbox (t2,i).

A more strict isolation strategy is shown in Figure 4.3(d). The architecture assigns a
process pi to each user ui. If the attacker is a user ui, he should only be able to compromise
his own process pi, and will not have access to state belonging to other users uj. The
problem with this approach is that it does not scale well on current operating systems. A
Web server would either need to fork a new process pi for each incoming HTTP request
or would have a large pool of mostly idle processes, one for each currently active user (of
which there might be tens of thousands).

OKWS does not implement the strict isolation strategy but instead associates a single
process with each individual service, shown in Figure 4.3(e). As a result OKWS achieves
the same isolation properties as Flash but with a process pool whose size is independent
of the number of concurrent HTTP connections. OKWS thus requires significantly fewer
processes than Flash under heavy load.
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Chapter 5

Implementation

OKWS is a portable, event-based system, written in C++ with the SFS toolkit [37]. It has
been successfully tested on Linux and FreeBSD. In OKWS, the different helper processes
and site-specific services shown in Figure 4.2 communicate among themselves with SFS’s
implementation of Sun RPC [61]; they communicate with external Web clients via HTTP.
Unlike other event-based servers [42, 76, 79], OKWS exposes the event architecture to
Web developers. We could most likely have achieved equivalent security and performance
results through the use of cooperative user-level threading, or perhaps through a hybrid
scheme [1].

To use OKWS, an administrator installs the helper binaries (okld, okd, pubd and oklogd)
to a standard directory such as /usr/local/sbin, and installs the site-specific services
to a runtime jail directory, such as /var/okws/run. The administrator should allocate
two new UID/GID pairs for okd and oklogd and should also reserve a contiguous user and
group ID space for “anonymous” services. Finally, administrators can tweak the master
configuration file, /etc/okws config. Table 5.1 summarizes the runtime configuration
of OKWS.

5.1 okld

The root process in the OKWS system is okld—the launcher daemon. This process nor-
mally runs as superuser but can be run as a non-privileged user for testing or in other
cases when the Web server need not bind to a privileged TCP port. When okld starts up, it
reads the configuration file /etc/okws config to determine the locations of the OKWS
helper processes, the anonymous user ID range, which directories to use as jail directories,
and which services to launch. Next, okld launches the logging daemon (oklogd) and the
demultiplexing daemon (okd), and chroots into its runtime jail directory. It then launches
all site-specific Web services. The steps for launching a single service are:

1. okld requests a new Unix socket connection from oklogd.

2. okld opens 2 socket pairs; one for HTTP connection forwarding, and one for RPC
control messages.

3. okld calls fork.
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process chroot jail run directory uid gid

okld /var/okws/run / root wheel
pubd /var/okws/htdocs / www www

oklogd /var/okws/log / oklogd oklogd
okd /var/okws/run / okd okd

svc1 /var/okws/run /cores/51001 51001 51001
svc2 /var/okws/run /cores/51002 51002 51002
svc3 /var/okws/run /cores/51003 51003 51003

Table 5.1: An example configuration of OKWS. The entries in the “run directory” column
are relative to “chroot jails”.

4. In the child address space, okld picks a fresh UID/GID pair (x.x), sets the new pro-
cess’s group list to {x} and its UID to x. It then changes directories into /cores/x.

5. Still in the child address space, okld calls execve, launching the Web service. The
new Web service process inherits three file descriptors: one for receiving forwarded
HTTP connections, one for receiving RPC control messages, and one for RPC-based
request logging. Some configuration parameters in /etc/okws config are rele-
vant to child services, and okld passes these to new children via the command line.

6. In the parent address space, okld sends the server side of the sockets opened in Step 2
to okd.

Upon a service’s first launch, okld assigns it a group and user ID chosen arbitrarily from
the given range (e.g., 51001-51080). The service gets those same user and group IDs in
subsequent launches. It is important that no two services share a UID or GID, and okld
ensures this invariant. The service executables themselves are owned by root, belong to the
group with the anonymous GID x chosen in Step 4 and are set to mode 0410.

These settings allow okld to call execve after setuid but disallow a service process
from changing the mode of its corresponding binary. okld changes the ownerships and
permissions of service executables at launch if they are not appropriately set. The directory
used in Step 4 is the only one in the jailed file system to which the child service can write.
If such a directory does not exist or has the wrong ownership or permissions, okld creates
and configures it accordingly.

okld catches SIGCHLD when services die. Upon receiving a non-zero exit status, okld
changes the owner and mode of any core files left behind, rendering them inaccessible to
other OKWS processes. If a service exits uncleanly too many times in a given interval, okld
will mark it broken and refuse to restart it. Otherwise, okld restarts dead services following
the steps enumerated above.

okld runs as super-user but unlike other OKWS daemons does not drop its privileges.
However, it has many fewer potential vulnerabilities in that it does not listen for any explicit
messages—RPC, HTTP or otherwise. Rather, it responds only to SIGCHLD signals.
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5.2 okd

The okd process accepts incoming HTTP requests and demultiplexes them based on the
“Request-URI” in their first lines. For example, the HTTP/1.1 standard [21] defines the
first line of a GET request as:

GET /〈abs path〉?〈query〉 HTTP/1.1

Upon receiving such a request, okd looks up a Web service corresponding to abs path
in its dispatch table. If successful, okd forwards the remote client’s file descriptor to the
requested service. If the lookup is successful but the service is marked “broken,” okd sends
an HTTP 500 error to the remote client. If the request did not match a known service,
okd returns an HTTP 404 error. In typical settings, a small and fixed number of these
services are available—on the order of 10. The set of available services is fixed once okd
reads its configuration file at launch time. These restrictions would prove inconvenient for
a traditional static Web server, because site maintainers frequently add, rename and delete
static content. In our setting, we assume that site developers add, rename and delete Web
services infrequently.

Upon startup, okd reads the OKWS configuration file (/etc/okws config) to con-
struct its dispatch table. okd inherits two file descriptors from okld: one is a socket that
connects to oklogd, the other is a pipe across which okld will send it control messages. okd
uses its connection to the logger to log errors messages such as error 404 (file not found)
or error 500 (internal server error). okd uses the pipe from okld to listen for information
about Web services that are starting up. When okld starts up a service, it creates two socket
pairs, one for control messages, and one for HTTP connections. okld gives one half of
these connections to the service (see Section 5.1, Step 6). It sends the other half of these
socket pairs to okd over the okld- to - okd pipe.

Thus, okd receives two file descriptors from okld for each service launched. okd uses
one of these sockets to send service control messages. It uses the other socket to pass file
descriptors after successfully demultiplexing incoming HTTP requests.

okd typically is launched with supervisor privileges but drops them (via setuid) after
binding to its listen port and chrooting into its designated runtime jail directory. For testing
purposes, okd can run as a non-privileged user, assuming it does not need to bind to a
privileged port (such as a TCP port greater than 1024). If the given configuration uses a
local pubd, then okd must also launch pubd before dropping its privileges.

In addition to listening for HTTP connections on port 80, okd listens for internal re-
quests from an administration client. It services the two RPC calls: REPUB and RE-
LAUNCH. A site maintainer should call the former to “activate” any changes she makes
to HTML templates (see Section 5.4 for more details). Upon receiving a REPUB RPC, okd
triggers a simple update protocol that propagates updated templates.

A site maintainer should issue a RELAUNCH RPC after updating a service’s binary.
Upon receiving a RELAUNCH RPC, okd simply sends an EOF to the relevant service on
its control socket. When a Web service receives such an EOF, it finishes responding to
all pending HTTP requests, flushes its logs, and then exits cleanly. The launcher daemon,
okld, then catches the corresponding SIGCHLD and restarts the service.
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5.3 oklogd

All services, along with okd, log their access and error activity to local files via oklogd—
the logger daemon. Because these processes lack the privileges to write to the same log file
directly, they instead send log updates over a local Unix domain socket. To reduce the total
number of messages, services send log updates in batches. Services flush their log buffers
as they become full and at regularly-scheduled intervals.

Because only oklogd writes to the log file, we expect performance improvements over
multi-process architectures, in which atomic appends to log files can only be guaranteed
through kernel-level synchronization or spin-locks. For a busy Webserver, we would ex-
pect frequent contention over log file resources. But batched logging via oklogd has two
important downsides. First, logs are not locally ordered unless oklogd sorts and merges
batches from different processes. To avoid the additional computation and data manipula-
tion involved with a run-time sort, OKWS defers the responsibility of completely ordering
the log files to the offline tools.

Second, and more important, if a Web service crashes, its buffered batch of log entries
is lost. In the deployments we have seen, we do not anticipate the loss of a few seconds of
log entries to be a cause for concern. In our current implementation, the cause of the crash
is discernible from the core dump that the service produces upon abnormal termination.
In fact, for large HTTP POSTs that trigger server crashes, a core dump contains more
information about the offending request than a single HTTP log line. Future versions of
OKWS might ship log entries to oklogd via memory-mapped files (one for each service);
in this case, the logger can access a service’s cached log entries after it has crashed.

For security, oklogd runs as an unprivileged user in its own chroot environment. Also,
OKWS runs oklogd as a different user from the okd user. The combination of these two
methods ensures that a compromised okd or Web service cannot maliciously overwrite or
truncate log files; it would only have the ability to fill them with “noise”.

5.4 pubd

Dynamic Web pages often contain large sections of static HTML code. In OKWS, such
static blocks are called HTML “templates”; they are stored as regular files, can be shared by
multiple services and can include each other in a manner similar to Server Side Includes [4].

OKWS services do not read templates directly from the file system. Rather, upon
startup, the publishing daemon (pubd) parses and caches all required templates. It then
ships parsed representations of the templates over RPC to other processes that require
them. pubd runs as an unprivileged user, relegated to a jail directory that contains only
public HTML templates. As a security precaution, pubd never updates the files it serves,
and administrators should set its entire chrooted directory tree read-only (perhaps, on those
platforms that support it, by mounting a read-only nullfs).

Administrators in a cluster setting might chose to run pubd locally on an NFS-mounted
template directory. pubd also runs as a network service so that a single pubd instance can
serve a cluster of machines.
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Figure 5.1: A typical Database Proxy for a MySQL database, configured with five worker
threads.

5.5 Asynchronous Database Proxies

OKWS’s library implementation is agnostic to particular flavors of threading libraries and
currently allows the site developer to chose from one of three possibilities. For instance, a
site developer would choose kernel threads when implementing a database proxy for inter-
facing with an embedded database such as Berkeley DB and would choose cooperative user
threads for a socket-based database such as MySQL. The general architecture is reminis-
cent of Flash’s helper processes [42], and “manual calling automatic” in Adya’s work [1].

A database proxy has one dispatcher thread, and a pool of worker threads. The dis-
patcher thread receives incoming RPC requests and delegates it to one of its ready worker
threads, or queuing it if all threads are busy. Based on the given RPC, the worker thread
queries the database, perhaps blocking. Upon completion, it stores its response to a mem-
ory region shared among threads, and sends a small “I am finished” message to the dispatch
thread over a pipe. The dispatch thread then responds to the Web server’s RPC with the
appropriate result. This configuration is shown in Figure 5.1.

Database proxies employ a static number of worker threads and do not expand their
thread pool. A site maintainer should tune the database proxy’s concurrency factor to find
the minimum number of threads that allow the database to perform at maximum through-
put. The intent here is simply to overlap requests to the underlying data source so that it
might overlap its disk accesses and benefit from disk arm scheduling. An unnecessarily
large thread pool might be bad for performance, since databases like MySQL often require
significant per-thread state. A reasonable choice is 5 threads per database disk.

For security, database proxies ought to run on the database machines themselves. Such
a configuration allows the site administrator to “lock down” a socket-based database server,
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// can only occur at initialization time
q = mysql−>prepare ("SELECT age,name FROM tab WHERE id=?");

id = 1; // get ID from client
user t u; 5

stmt = q−>execute (id); // might block!
stmt−>fetch (&u.age, &u.name);
reply (u);

Figure 5.2: Example of database proxy code with MySQL wrapper library. In this case, the
Web developer is loading SQL results directly into an RPC XDR structure. Error conditions
ignored for brevity. The user xdt t structure is defined in the protocol file in Figure 5.3.

so that only local processes can execute arbitrary database commands. All other machines
in the cluster—such as the Web server machines—only see the structured, and thus re-
stricted, RPC interface exposed by the database proxy. Database proxies employ a simple
mechanism for authenticating Web services. After a Web service connects to a database
proxy, it supplies a 20-byte authentication token in a login message. The database proxy
then grants the Web service permission to access a set of RPCs based on the supplied au-
thentication token.

The database proxy libraries provide the illusion of a standard asynchronous RPC dis-
patch routine. Internally, these proxies are multi-threaded and can block; the library hides
synchronization and scheduling details. To facilitate development of OKWS database prox-
ies, we wrapped MySQL’s standard C library in an interface more suitable for use with
SFS’s libraries. We model our MySQL interface after the popular Perl DBI interface [43]
and likewise transparently support both parsed and prepared SQL styles. Figure 5.2 shows
a simple database proxy built with this library.

5.6 Building A Web Service

A Web developer creates a new Web service as follows:

1. Extends two OKWS generic classes: one that corresponds to a long-lived service
(ok service t), and one that corresponds to a short-lived, individual HTTP re-
quest (ok client t). Implements the initmethod of the former and the process
method of the latter.

2. Runs the source file through OKWS’s preprocessor, which outputs C++ code.

3. Compiles this C++ code into an executable, and installs it in OKWS’s service jail.

4. Adds the new service to /etc/okws config.

5. Restarts OKWS to launch.

The resulting Web service is a single-threaded, event-driven process.
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struct user t {
string name<30>;
int age;
};

5

program USER PROG {
version USER PROG 1 {

user t
GET USER(unsigned) = 1;

} = 1; 10

} = 10000;

Figure 5.3: user.x: the RPC protocol specification file used in client/server examples for
this section. The program has one RPC, GET USER, which takes as input an unsigned
user ID and outputs a user t structure.

The OKWS core libraries handle the mundane mechanics of a service’s life cycle and
its connections to OKWS helper processes. At the initialization stage, a Web service es-
tablishes persistent connections to all needed databases. The connections last the lifetime
of the service and are automatically reopened in the case of abnormal termination. Also
at initialization, a Web service obtains static HTML templates and local configuration pa-
rameters from pubd. These data stay in memory until a message from okd over the RPC
control channel signals that the Web service should refetch. In implementing the init
method, the Web developer need only specify which database connections, templates and
configuration files he requires.

The process method specifies the actions required for incoming HTTP requests. In
formulating replies, a Web service typically accesses cached soft-state (such as user session
information), database-resident hard state (such as inbox contents), HTML templates, and
configuration parameters. Because a Web service is implemented as a single-threaded pro-
cess, it does not require synchronization mechanisms when accessing these data sources.
Its accesses to a database on behalf of all users are pipelined through a single asynchronous
RPC channel. Similarly, its accesses to cached data are guaranteed to be atomic and can be
achieved with simple lightweight data structures, without locking. By comparison, other
popular Web servers require some combination of mmap’ed files, spin-locks, IPC synchro-
nization, and database connection pooling to achieve similar results.

Native Web service development in OKWS is with C++, with the same SFS event
library that undergirds all OKWS helper processes and core libraries. (See Section 7 for a
description of higher-level language support.) To simplify memory management, OKWS
exposes SFS’s reference-counted garbage collection scheme and high-level string library to
the Web programmer. OKWS also provides a C++ preprocessor that allows for Perl-style
“heredocs” and simplified template inclusion. Figure 5.4 demonstrates these facilities.

Developers using the OKWS system develop a standalone server process for each dis-
crete Web service they wish to deploy. In many cases, different services share many of the
same library routines, but should be separated into as many different processes as possible
while still allowing for effective caching. For instance, a Web site’s mail and search fea-

31



void my_srvc_t::process ()
{
str color = param["color"];
/*o
print (resp) <<EOF;

<html>
<head>
<title>${param["title"]}</title>

</head>
EOF

include (resp, "/body.html",
{ COLOR => ${color}});

o*/
output (resp);

}

Figure 5.4: Fragment of a Web service programmed in OKWS. The remote client sup-
plies the title and color of the page via standard CGI-style parameter passing. The runtime
templating system substitutes the user’s choice of color for the token COLOR in the tem-
plate /body.html. The variable my svc t::resp represents a buffer that collects the
body of the HTTP response and then is flushed to the client via output(). With the
FilterCGI flag set, OKWS filters all dangerous metacharacters from the param asso-
ciative array.

tures access and cache almost entirely disjoint pools of data—perhaps mesage headers in
the former case and the results to the most common search results in the latter case. They
might, however, use the same codebase to effect a “look-and-feel” common to the whole
Website. They might also use local RPC servers to share small pieces of state, such as user
session information.

5.7 Code Size

Currently, OKWS is approximately 25,000 lines of C++, FLEX and YACC code. About
9200 lines of code implement the HTTP templating libraries, 6200 lines implement our
asynchronous HTTP libraries, 3000 lines round out the helper processes, and 1700 lines
implement the database proxy libraries.
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Chapter 6

OkCupid.com: OKWS In Action

The author and two other programmers built a commercial Web site using the OKWS
system in six months [41]. We were assisted by two designers who knew little C++ but
made effective use of the HTML templating system. The application is Internet dating,
and the site features a typical suite of services, including local matching, global matching,
messaging, profile maintenance, site statistics, and picture browsing. Almost a million
users have established accounts on the site, and at peak times, thousands of users maintain
active sessions. The current implementation uses 34 Web services and 12 database proxies.

For developers accustomed to higher level languages and direct programming seman-
tics, SFS’s continuation-style semantics took some time to acquaint to. We also have been
frustrated at times by OKWS’s long compile times (OKWS and SFS together make exten-
sive use of C++ templating). Finally, certain types of programming—database accesses in
particular—take more lines of code in OKWS as they would in a system like PHP, some-
times by factors of two or three.

Otherwise, we have found the system to be usable, stable and well-performing. In
the absence of database bottlenecks or latency from serving advertisements, OKWS feels
very responsive to the end user. Even those pages that require heavy iteration—like match
computations—load instantaneously. In terms of stability, we’ve gone weeks at a time
without the core OKWS processes crashing, and when they do, a core dump is usually
enough to reconstruct our error.

OkCupid.com’s Web cluster consists of four load balanced OKWS Web server ma-
chines, two read-only cache servers, and two read-write database servers, all with dual
Pentium 4 processors. We use multiple OKWS machines only for redundancy; one ma-
chine can handle peak loads (about 200 requests per second) at about 7% CPU utilization,
even as it gzips most responses. A previous incarnation of this Web site required six Mod-
Perl/Apache servers [39] to accommodate less traffic. It ultimately was abandoned due
prohibitive hardware and hosting expenses [59].

6.1 Separating Static From Dynamic

OKWS relies on other machines running standard Web servers to distribute static content.
This means that all pages generated by OKWS should have only absolute links to external
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static content (such as images and style sheets), and OKWS has no reason to support keep-
alive connections [21]. The servers that host static content for OKWS, however, can enable
HTTP keep-alive as usual.

Serving static and dynamic content from different machines is already a common tech-
nique for performance reasons; administrators choose different hardware and software con-
figurations for the two types of workloads. Moreover, static content service does not re-
quire access to sensitive site data and can therefore happen outside of a firewalled cluster,
or perhaps at a different hosting facility altogether. Indeed, some sites push static content
out to external distribution networks such as Akamai [2]. The OkCupid deployment hosts
a cluster of OKWS and database machines at a local colocation facility, where hands-on
hardware access and custom configuration is possible. OkCupid serves static content from
leased, dedicated servers at a remote facility where bandwidth is significantly cheaper.

6.2 Compression

To reduce bandwidth costs and to improve perceived site responsiveness, OKWS responds
to clients queries with gzip-encoded responses whenever possible. OKWS’s current ap-
proach is to encode the static HTML portions of responses with the densest possible com-
pression, and to encode dynamically-generated portions at lower compression levels. In
practice, this means that pubd compresses HTML templates as it reads them off disk, and
sends both plain and compressed versions to the OKWS services. Dynamic output from
OKWS services passes through a faster gzip filter, and the OKWS libraries perform the re-
quired checksums and concatenation. A sample August 2005 trace shows that 82% of client
browsers support gzip encoding. Using level 2 and 9 compression for dynamic and static el-
ements, respectively, OkCupid’s Web servers compress outgoing documents to about 37%
of their original size. Over all Web requests, OKWS’s compression strategy gives a 48%
savings in bandwidth. See Appendix A for more details and future work concerning com-
pression.
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Chapter 7

Python Support in OKWS

A recent addition to OKWS is support for Web services built in Python [50], a high level
interpreted language favored by Web serving systems like Zope [81]. There are some im-
portant advantages to writing Web applications in Python as opposed to C++: faster proto-
typing, no compilation, and less required programming expertise are just a few. In practice,
experienced programmers might write a Web site’s most CPU-intensive and frequently-
accessed services in C++, but a team of junior programmers might implement less popular
services in an interpreted language like Python. Indeed, a Web server like OKWS needs to
incorporate some higher level language support to be useful to commercial Web sites.

The choice of Python as an interpreted language was largely one of taste: Ruby and Perl
are similarly popular among programmers, also have a large repository of useful libraries
and would have provided the same core features.

Four important goals guided the introduction of Python into OKWS:

1. Minimal changes to the underlying OKWS code base. Because OKWS is rela-
tively stable, production software, we did not want to introduce regressions into the
system and therefore hoped to leave most of the current code intact.

2. Maximal reuse of exiting OKWS code. One possibility for a Python port would be
to implement services as pure Python processes, reimplementing in Python the Unix
protocols that C++ services use on startup, and REPUB. However, this approach
would require any future changes to the OKWS protocol to be made in two places:
the C++ classes and also the Python clone. We hoped to avoid this situation by
reusing as much of the OKWS libraries as possible.

3. Decent performance. Though a slowdown is inevitable when moving from com-
piled C/C++ code to an interpreted language such as Python, decent performance
should still be possible.

4. Preservation of all security properties. Processes running OKWS services written
in Python should be isolated from other Python and C++ OKWS services. Moreover,
Python interpreters should be unavailable to compromised Web services within the
jail.
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7.1 Approach

A hybrid C++ and Python approach satisfies all of these goals. The rough idea is one new
OKWS service written in C++ that acts as generic glue code. It negotiates with okd, pubd,
oklogd and okld as normal but calls into a Python interpreter at the init and process
methods. Python Web developers then implement init and process in Python, and the
generic glue service implements the mechanics of moving data into and out of the Python
environment.

This approach satisfies Requirements 1 through 3 listed above. First, OKWS need not
be modified at all to accommodate the Python glue service, since it has the same interface
into the OKWS system as native C++ Web services. Second, any changes made to the ini-
tialization or REPUB protocol would be automatically reflected in the Python glue service
after recompiling and relinking, since to OKWS, the Python glue service is indistinguish-
able from regular C++ services. Finally, some of the more computationally-expensive parts
of the HTTP request cycle — such as the core select loop or gzipping output — are still
handled in the C++ libraries and therefore will still perform well. Naturally, the application
logic, which might be doing iterative tasks like formatting HTML tables, will be in Python
and therefore slow when compared to compiled code.

A final detail to consider is database interaction: Python services need to access OKWS
database proxies over asynchronous RPC, much in the same way as native C++ services.
One approach to asynchronous RPC proxies is to implement the RPC transport and XDR
marshalling/unmarshalling routines in Python. This reimplementation of a feature already
available in the SFS libraries would contradict implementation goals 1 and 2. It might also
be slow.

But the hybrid or “glue” approach is also possible here. When a service needs to make
a database call, it calls a Python method that calls into the SFS RPC libraries, registering a
user-specified Python callback. An RPC compiler generates code to handle marshalling a
Python-accessible data representation into the standard XDR wire representation, and the
SFS libraries handle the details of sending the RPC as normal. When a response comes
back from the database, the SFS libraries call into autogenerated unmarshalling routines to
make the data available to Python. The SFS libraries then call a standard C++ callback,
which will in turn fire the Python callback that the Web service registered earlier, calling
back into the Python interpreter.

7.2 Implementation

7.2.1 Wrappers for the SFS Libraries

The first implementation detail for OKWS Python support is the “glue” between the SFS
libraries and Python, so that Python programs can access SFS’s core event loop, its asyn-
chronous network event dispatch, and its RPC libraries. Figure 7.1 shows a code sample
that uses the Python interface to the SFS libraries. This code sample is a client that cor-
responds to the database server seen in Figure 5.2. It makes a connection to the database
server with sock.connect(), gets an SFS-style asynchronous TCP transport at line 18,
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import sfs.core
import sfs.arpc
import socket
import xdr.user as user

5

def cb (err, res):
if err != 0:

print "RPC error: " + err
else:

print "Username: " + res.name + "; age: " + res.age 10

sfs.core.exit ()

port = 30888
uid = 1

15

sock = socket.socket (socket.AF INET, socket.SOCK STREAM)
sock.connect (("127.0.0.1", port))
x = sfs.arpc.axprt stream (sock)
client = sfs.arpc.aclnt (x, user.user prog 1 ())
client.call (user.GET USER, uid, cb) 20

sfs.core.amain ()

Figure 7.1: A sample Python application using SFS libraries

gets an RPC client that will appropriate marshall and unmarshall data at line 19, makes
the RPC call with client.call(), and finally, calls into the SFS select loop at line 22.
When the database has replied with a response, the callback cb() is called, with the first
argument being an error code, and the second argument the data sent back in response. As
line 10 shows, the data is now accessible as standard Python classes.

To run this code, the programmer first compiles user.x (as shown in Figure 5.3) with
a new Python-aware RPC compiler. The RPC compiler outputs header and source code
files in C++, which represent data structures, methods, and functions that will eventually
be made accessible to the Python interpreter. It also outputs marshalling and unmarshalling
routines that convert the Python-compatible structures to and from wire representation.
Compiling these source files with a standard C++ compiler, and linking them into a shared
object yields a resource that can be imported into Python, as seen in line 4 of Figure 7.1.
Now, the programmer is ready to run the given Python code with the standard Python
interpreter.

7.2.2 OKWS Glue

With an appropriate Python interface into the SFS libraries, the rest of the task is completed
with straightforward glue code. An example of how Python in OKWS is used is shown
in Figure 7.2. Like the C++ interface, the Python interface requires the programmer to
subclass two virtual base classes: service and client. Under the covers, these two
classes are actually Python wrappers around the C++ base classes ok service t and
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ok client t, respectively. Within these two classes, the programmer fills in code for
service. init and client.process.

In this particular example, the programmer is using the service. init method
to acquire an RPC connection to a database on line 27. The client.process method
is, as usual, where the HTTP connection is actually handled. In this example, the pro-
grammer checks the user’s request for the uid variable and then makes a database query
with that value as input. When the query returns, control is transfered to the callback
example client.cb(), and the database’s response is pasted into the given template
(/get user.html) by the publishing system. The zbuf object used to collect the re-
sponse and send it out to the client via self.output() is just a wrapper around the
OKWS smart gziper mentioned in Section 6.2.

To start this script, as in line 30, the programmer must furnish the underlying libraries
with the first command line argument sys.argv[1], which okld uses to pass config-
uration parameters to the Web service. These options are parsed and acted upon in the
service class’s init ()method, which calls into the OKWS libraries. The launch()
call on line 31 starts the standard service setup negotiation with okd. Finally, as in Fig-
ure 7.1, the Python script calls sfs.core.amain() to immediately enter into the SFS
select loop.

7.3 Launching Python Services and Security

Recall from Section 5.1, that the OK launcher daemon (okld) starts each OKWS service
process as its own anonymous user; furthermore, okld assigns each executable ownership
and permissions so that other services cannot read the file, and no service can write to it.
The same ideas should apply to Python OKWS services, but the situation is complicated
by the fact that each Python service requires two files: the Python interpreter itself, and the
script to be executed. By goal 4, we must ensure that no OKWS Python scripts can read
the text of any other script, or of any C++ service, and moreover, that no C++ service can
read the code of Python scripts, and that no C++ service can execute the Python interpreter.

If we consider all of these constraints, the more convenient solutions to jailing the
Python environment are insufficient. For instance, one approach is to copy the Python
interpreter into the jail, owned by root and belonging to group pysvc, and set to mode
0550. Then, all Python scripts in the jail are owned by unique anonymous users, and each
anonymous user is a member of pysvc. Python scripts are set to mode 0400 so that only
the owner of the script can read it and execute it with the interpreter. The problem, of
course, is that a compromised Python script can change the mode of its script and write to
it, so that any damage to the system can persist across reboots.

OKWS adopts a safer albeit clunkier approach:

1. For each Python service, okld picks a fresh UID/GID pair (x.x) as it does for C++
services.

2. okld copies the Python interpreter (python) to a new interpreter python-x, changes
its owner to root, its group to x, and it access mode to 0550.
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import okws.objs
from okws.client import client
from okws.service import service
import sfs.core
import sfs.arpc 5

import xdr.user as user

class example client (client):

def cb (self, err, res): 10

buf = okws.objs.zbuf ()
self.pub.include (buf, "/get_user.html",

{ "name" : res.name, "age" : res.age } )
self.output (buf)

15

def process (self):
uid = self.cgi.lookup (key="uid")
self.service.db.call (user.GET USER, int (uid), self.cb)

class example service (service): 20

def make newclient (self):
return example client ()

def init (self, servicename, parameters): 25

service. init (self, servicename, parameters)
self.db = self.add db (port=30888, host="127.0.0.1",

prog=user.user prog 1 ())

svc = example service (sys.argv[0], sys.argv[1]) 30

svc.launch ()
sfs.core.amain ()

Figure 7.2: An example OKWS service implemented in Python. No exceptions are caught
for brevity.
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3. okld changes the owner of the Python script to root, its group to x, and its access
mode to 0440.

4. okld sets its user ID to x after forking, but before executing the Python interpreter
with the required script.

Thus, OKWS’s approach in the case of Python scripts mimics its approach for C++ scripts
seen in Section 5.1. An unfortunate complication is that a fresh copy of the interpreter must
be made for each script.

7.4 Jailing Python

Coercing the Python interpreter to run inside a chroot jail is an onerous task. All Python
libraries and the shared libraries they link against must be copied over. The Python inter-
preter itself requires many shared libraries, some of which it dlopens and hence are not
reported by running ldd on the executable. To locate all shared libraries Python needs,
one must examine Python’s text segment while the interpreter is running, perhaps using the
lsof utility [15]. Finally, up-to-date versions of SFS/OKWS Python glue and compiled
Python XDR modules must also be copied into OKWS’s jail.

The Python 2.4 distribution and its required libraries consumes about 100 MB of disk
space in the jail on FreeBSD 5.4. The Python interpreter itself, copied over once per ser-
vice, consumes about 1MB of disk space. Appendix B details the mundane mechanics
of running Python in a chroot environment. This code gives a good flavor of Unix’s
hostility toward secure application development.
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Chapter 8

Performance Evaluation

OKWS design limits the process pool to a small and fixed size—one per service. To eval-
uate, we examined OKWS’s performance as a function of the number of active service
processes. We also present and test the claim that OKWS can achieve high throughputs
relative to other Web servers because of its smaller process pool and its specialization for
dynamic content.

8.1 Testing Method

Performance testing on Web servers usually involves the SPECweb99 benchmark [60],
but this benchmark is not well-suited for dynamic Web servers that disable Keep-Alive
connections and redirect to other machines for static content. We therefore devised a simple
benchmark that better models serving dynamic content in real-world deployments, which
we call the null service benchmark. For each of the platforms tested, we implemented a
null service, which takes an integer input from a client, makes a database SELECT on the
basis of that input, and returns the result in a short HTML response (see Figure 8.1). Test
clients make one request per connection: they connect to the server, supply a randomly
chosen query, receive the server’s response, and then disconnect.

<html><head><title>Test Result</title></head>
<body>
<?

$db = mysql_pconnect("okdb.lcs.mit.edu");
mysql_select_db("testdb", $db);
$id = $HTTP_GET_VARS["id"];
$qry = "SELECT x,y FROM tab WHERE x=$id";
$result = mysql_query("$qry", $db);
$myrow = mysql_fetch_row($result);
print("QRY $id $myrow[0] $myrow[1]\n");

?>
</body>
</html>

Figure 8.1: PHP version of the null service
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Figure 8.2: Throughputs achieved in the process pool test

8.2 Experimental Setup

All Web servers tested use a large database table filled with sequential integer keys and their
20-byte SHA-1 hashes [23]. We constrained our client to query only the first 1,000,000
rows of this table, so that the database could store the entire dataset in memory. The
database used was MySQL version 4.0.16.

All experiments used four FreeBSD 4.8 machines. The Web server and database ma-
chines were uniprocessor 2.4GHz and 2.6GHz Pentium 4s respectively, each with 1GB of
RAM. Our two client machines ran Dual 3.0GHz Pentium 4s with 2GB of RAM. All ma-
chines were connected via fast Ethernet, and there was no network congestion during our
experiments. Ping times between the clients and the Web server measured around 250 µs,
and ping times between the Web server and database machine measured about 150 µs.

The test clients uses the OKWS and SFS libraries. There was no resource strain on the
client machines during our tests.

8.3 OKWS Process Pool Tests

We experimentally validated OKWS’s frugal process allocation strategy by showing that
the alternative—running many processes per service—performs worse. We thus config-
ured OKWS to run a single C++ service as a variable number of processes, and collected
throughput measurements (in requests per second) over the different configurations. The
test client simulated either 500, 1,000 or 2,000 concurrent remote clients in the different
runs of the experiment.

Figure 8.2 summarizes the results of this experiment as the number of processes varied
between 1 and 450. We attribute the general decline in performance to increased context-
switching, as shown in Figure 8.3. In the single-process configuration, the operating system
must switch between the null service and okd, the demultiplexing daemon. In this configu-
ration, higher client concurrency implies fewer switches, since both okd and the null service

42



 0

 2000

 4000

 6000

 8000

 10000

 1  10  100

co
nt

ex
t s

w
itc

he
s 

pe
r 

se
co

nd

number of processes (log scale)

500 clients
1000 clients
2000 clients

Figure 8.3: Context switching in the process pool test

have more outstanding requests to service before calling sleep. This effect quickly disap-
pears as the server distributes requests over more processes. As their numbers grow, each
process has, on average, fewer requests to service per unit of time, and therefore calls sleep
sooner within its CPU slice.

The process pool test supports our hypothesis that a Web server will consume more
computational resources as its process pool grows. Although the experiments completed
without putting memory pressure on the operating system, memory is more scarce in real
deployments. The null service requires about 1.5MB of core memory, but our experience
shows real OKWS service processes have memory footprints of at least 4MB, and hence
we expect memory to limit server pool size. Moreover, in real deployments there is less
memory to waste on code text, since in-memory caches on the Web services are crucial to
good site performance and should be allowed to grow as big as possible.

8.4 Web Server Comparison

The other Web servers mentioned in Section 4.3—Haboob, Flash and Apache—are pri-
marily intended for serving static Web pages. Because we have designed and tuned OKWS
for an entirely dynamic workload, we hypothesize that when servicing such workloads, it
performs better than its more general-purpose peers. The experiments in this section test
this hypothesis.

Haboob is Java-based, and we compiled and ran it with FreeBSD’s native JDK, version
1.3. We tested Flash v0.1a, built with FD SETSIZE set high so that Flash reported an
ability to service 5116 simultaneous connections. Also tested was Apache version 2.0.47
compiled with multi-threading support and running PHP version 4.3.3 as a dynamic shared
object. We configured Apache to handle up to 2000 concurrent connections. OKWS ran
in its standard configuration, with a one-to-one correspondence between processes and
services. All servers enabled HTTP access logging, except for Haboob, which does not
support it.
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Figure 8.4: Throughputs for the single-service test
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Figure 8.5: Median latencies in the single-service test

8.4.1 Single-Service Workload

In the single-service workload, clients with negligible latency request a dynamically gen-
erated response from the null service. This test entails the minimal number of service pro-
cesses for OKWS and Flash and therefore should allow them to exhibit maximal through-
put. By contrast, Apache and Haboob’s process pools do not vary in size with the number
of available services. We examined the throughput (Figure 8.4) and responsiveness (Fig-
ure 8.5) of the four systems as client concurrency increased. Figure 8.6 shows the cumula-
tive distribution of client latencies when 1,600 were active concurrently. Of the four Web
servers tested, Haboob spent the most CPU time in user mode and performed the slowest.
A likely cause is the sluggishness of Java 1.3’s memory management.

When serving a small number of concurrent clients, the Flash system outperforms the
others; however, its performance does not scale well. We attribute this degradation to
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Figure 8.6: Client latencies for 1,600 concurrent clients in the single-service test

Flash’s CGI model: because custom-written Flash helper processes have only one thread
of control, each instantiation of a helper process can handle only one external client. Thus,
Flash requires a separate helper process for each external client served. At high concur-
rency levels, Flash ran a large number of processes (on the order of 2000), starving itself of
required OS resources. Flash also puts additional strain on the database, demanding one ac-
tive connection per helper—thousands in total. A database pooling system might mitigate
this negative performance impact. Flash’s results were noisy in general, and we can best
explain the observed non-monotonicity as inconsistent operating system (and database) be-
havior under heavy strain.

Apache achieves 37% of OKWS’s throughput on average. Its process pool is bigger and
hence requires more frequent context switching. When servicing 1,000 concurrent clients,
Apache runs around 450 processes, and context switches about 7500 times a second. We
suspect that Apache starts queuing requests unfairly above 1,000 concurrent connections,
as suggested by the plateau in Figure 8.5 and the long tail in Figure 8.6.

Apache with PHP makes frequent calls to the sigprocmask system call to serialize
database accesses among kernel threads within a process. In addition, Apache makes
frequent (and unnecessary) file system accesses, which though serviced from the buffer
cache still entail system call overhead. OKWS can achieve faster performance because of
a smaller process pool and fewer system calls.

8.4.2 Many-Service Workload

In attempt to model a more realistic workload, we investigated Web servers running more
services, serving more data, as experienced by clients over the WAN. Null services on all
platforms were modified to send out an additional 3000 bytes of text with every reply (larger
responses would have saturated the Web server’s access link in some cases). We made ten
uniquely-named copies of the new null service to model ten distinct services. Finally, the
client was modified to pause an average of 75 ms between establishing a connection and
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Figure 8.7: Throughputs for the many-service workload

Haboob Apache Flash OKWS

1 Service 490 895 1,590 2,401
10 Services 225 760 1,232 2,089

Change −54.0% −15.1% −22.5% −13.0%

Table 8.1: Average throughputs in connections per second

sending an HTTP request.
Figure 8.7 shows the achieved throughputs, and Table 8.1 compares these results to

those results observed in the single-service workload. Haboob’s performance degrades
most notably, probably because the many-service workload demands more memory allo-
cations. Flash’s throughput decreases by 23%. We observed that for this workload, Flash
requires even more service processes, and at times over 2,500 were running. When we
switched from the single-service to the many-service configuration, the number of OKWS
service processes increased from 1 to 10. The results from Figure 8.2 show this change has
little impact on throughput.
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Chapter 9

Security Analysis

9.1 Security Benefits

The security of OKWS is evaluated in terms of its implementation of the design goals in
Chapter 4.

Design Goal 1: Minimal Filesystem Privileges. An OKWS service has almost no access to
the file system when execution reaches site-specific service code. If compromised, a ser-
vice has write access to its coredump directory and can read from OKWS shared libraries.
Otherwise, it cannot access setuid executables, the binaries of other OKWS services, or
core dumps left behind by crashed OKWS processes. It cannot overwrite HTTP logs or
HTML templates. Other OKWS services such as oklogd and pubd have more privileges,
enabling them to write to and read from the file system, respectively. However, as OKWS
matures, these helpers should not present security risks since they do not run site-specific
code.

Design Goals 2 and 4: Separation of Privileges. Because OKWS runs logically separate
processes under different user IDs, compromised processes (with the exception of okld) do
not have the ability to kill or ptrace other running processes. Similarly, no process save for
okld can bind to privileged ports.

OKWS is careful to separate the traditionally “buggy” aspects of Web servers from the
most sensitive areas of the system. In particular, those processes that do the majority of
HTTP parsing (the OKWS services) have the fewest privileges. By the same logic, okld,
which runs as superuser, does no message parsing; it responds only to signals. For the other
helper processes, we believe the RPC communication channels to be less error-prone than
standard HTTP messaging and unlikely to allow intruders to traverse process boundaries.

Process isolation also limits the scope of those DoS attacks that exploit bugs in site-
specific logic. Since the operating system sets per-process limits on resources such as
file descriptors and memory, DoS vulnerabilities should not spread across process bound-
aries. We could make stronger DoS guarantees by adapting “defensive programming” tech-
niques [51]. Qie et al. suggest compiling rate-control mechanisms into network services,
for dynamic prevention of DoS attacks. Their system is applicable within OKWS’s archi-
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tecture, which relegates each service to a single address space. The same cannot be said for
those systems that spread equivalent functions across multiple address spaces.

Design Goal 3: Restricted Database Access. As described, all database access in OKWS
is achieved through RPC channels, using independent authentication tokens. As a result,
the attacker does not gain generic SQL Client access but instead gains access in the manner
specified by an RPC protocol declaration. This is a stronger restriction than simple database
permission systems alone can guarantee. For instance, on PHP systems, a particular ser-
vice might only have SELECT permissions to a database’s USERS table. But with control of
the PHP server, an attacker could still issue commands like SELECT * FROM USERS. With
OKWS, if the RPC protocol restricts access to row-wise queries and the keyspace of the
table is sparse, the attacker has significantly more difficulty “mining” the database.1

OKWS’s separation of code and privileges further limits attacks. If a service is com-
promised, it can attempt a new connection to any remote RPC database proxy, but it will
have little success. Because the service has no access to source code, binaries, or ptraces
of other services, it knows no authentication tokens aside from its own.

Finally, OKWS database libraries provide runtime checks to ensure that SQL queries
can be prepared only when a proxy starts up, and that all parameters passed to queries are
appropriately escaped. This check insulates sloppy programmers from the “SQL injection”
attacks mentioned in Section 3.2. We expect future versions of OKWS to enforce the same
invariants at compile time.

9.2 Security Shortcomings

The current implementation of OKWS supports C++ for service development. OKWS pro-
grammers should use the provided “safe” strings classes when generating HTML output,
and they should use only auto-generated RPC stubs for network communication. however,
OKWS does not prohibit programmers from using unsafe programming techniques and
can therefore be made susceptible to buffer overruns and stack-smashing attacks. OKWS
programmers can choose Python services if they fear vulnerabilities commonly associated
with lower-level languages.

However, higher-level languages are no cure-all for OKWS or any other Web server.
Many high-performance implementations of Python, Perl, PHP and Java use lower-level
libraries written in C or C++. Errors in these libraries can make the programs that link
against them vulnerable. For example, a recent bug in java.util.zip pushes some
Java Virtual Machine implementations [11] to crash or exhibit undefined behavior. A recent
bug in zlib shows that many higher-level languages (like Python, Perl and PHP) are
similarly vulnerable [8].

Another shortcoming of OKWS is that an adversary who compromises an OKWS ser-
vice can gain access to in-memory state belonging to other users. Developers might protect
against this attack by encrypting cache entries with a private key stored in an HTTP cookie

1Similar security properties are possible with a standard Web server and a database that supports stored
procedures, views, and roles.
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on the client’s machine. Encryption cannot protect against an adversary who can compro-
mise and passively monitor a Web server.

Finally, independent aspects of the system might be vulnerable due to a common bug
in the core libraries.
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Chapter 10

Discussion and Directions for Future
Research

OKWS can be seen as a concerted effort to apply the principle of least privilege (POLP) to a
Unix Web server. OKWS attempts to uphold POLP, but experience detailed here shows this
attempt is cumbersome and labor-intensive: following POLP feels more like an abuse of the
operating system’s interface than a judicious use of its features. As we draw lessons from
our experience with OKWS, we can ask if changes to the operating system could allow pro-
grammers to hold fast to privilege separation without all of the unpleasant implementation
details. Additionally, might better OS support address the security weaknesses discussed in
the previous chapter? We consider some changes to the Unix operating system—in order
of increasing severity—to answer these questions.

10.1 Restricting the Unix System Call Interface

One of the main difficulties with OKWS’s ad-hoc privilege separation is that starting
with a privileged process and subtracting privileges is more cumbersome and error-prone
than starting with a totally unprivileged process and adding privileges. Unix-like oper-
ating systems in general favor the subtractive model, while capability-based operating
systems [7, 58] favor the additive one. But Unix file descriptors are in fact capabilities.
By hobbling system calls sufficiently—either through system call interposition [26, 49] or
small kernel modifications—we can emulate those semantics of capability-based operating
systems that enable privilege separation.

The idea is to allow calls that use already-opened file descriptors (such as read,
write, and mmap), but shut off all “sensitive” system calls, including those that create
new capabilities (such as open), assign capabilities control of named resources (such as
bind), and perform file system modifications, permissions changes, or IPC without ca-
pabilities (such as chown, setuid, or ptrace). In OKWS, the launcher could apply
such a policy to the worker processes, which only require access to inherited or passed file
descriptors. The launcher could run without privilege, and would no longer navigate the
system call sequence seen in Sections 5.1 and 7.3. By disabling all unneeded privileges,
the operating system could enforce privilege separation by default.
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A benefit of Unix’s capability-like system calls is that they are virtualizable. Processes
are usually indifferent to whether a file descriptor is a regular file, a pipe to another pro-
cess, or a TCP socket, since the same read and write calls work in all three cases. In
practical terms, virtualization simplifies POLP-based application design. Splitting a sys-
tem into multiple processes often involves substituting user-space helper applications for
kernel services; for instance, OKWS services write log entries to the logger instead of a
Unix file. With virtualizable system calls, user processes can mimic the kernel’s interface;
programmers need not rewrite applications when they choose to reassign the kernel’s role
to a process.

More important, virtualizable system calls enable interposition. If an untrustworthy
process asks for a sensitive capability, a skeptical operator can babysit it by handing it a
pipe to an interposer instead. The interposer allows harmless queries and rejects those that
involve sensitive information. If the kernel API is virtualizable, then the operator need not
recompile an untrustworthy process to interpose on it.

Unfortunately, most Unix system calls resist virtualization. Some system calls do not
involve any capability-like objects; others use hard-wired capabilities hidden in the kernel,
such as “current working directory” and “file system root”. Exact user-level emulation of
these problematic calls—which include open and accept—is messy, if not impossible.

10.2 Alternatives to Unix

From above, we claim that a step in the right direction for secure applications is to hobble
the richness of the Unix interface to expose only capability-based system calls to appli-
cations. Such a scheme would give OKWS a stronger assurance of isolation between its
processes but might not simplify implementation due to bad support for virtualization.

An alternative to Unix is a hypothetical OS dubbed “Unestos” [33]. In Unestos, in-
teractions between a process and other parts of the system take the form of messages sent
to devices. Devices include processes and system services as well as hardware drivers.
Messages follow the outline “perform operation O on capability C, and send any reply to
capability R.” The kernel forwards this message to the device that originally issued C.

There are a small number of operation types, as in NFS [55] and Plan 9’s 9P [45]:
LOOKUP, READ, WRITE, and so forth. This design aids virtualization. All of a process’s
interactions with the system—whether with the kernel or other user applications—take the
same form, explicitly involve capabilities, and shun implicit state. Consider, for example,
the Unix call open("foo"). This call in Unestos would translate to a message that a
process P sends to the file server device FS:

P → 〈CCWD, LOOKUP, "foo", CP 〉 → FS.

The first argument is a capability CCWD that identifies P ’s current working directory. The
second is the command to perform, the third represents the arguments, and the fourth is the
capability to which the file system should send its response. Since Unestos makes explicit
the CWD state hidden in the Unix system call, either the file server or a user process
masquerading as the file server can answer the message.
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10.2.1 Naming and Managing Capabilities

When an Unestos process P1 launches a child process P2, it typically grants P2 a num-
ber of capabilities, ranging from directories on the file system to opened network con-
nections. How can P2 then access these capabilities? Traditional capability systems such
as EROS [58] favor global, persistent naming, but persistence has proven cumbersome to
kernel and application designers [57].

Instead, we advocate a per-process, Unix-style namespace. Under Unestos, P1 makes
capabilities available to P2 as files in P2’s namespace. Suppose P1’s namespace contains
a tree of files and directories under /secret, and P1 wishes to grant P2 access to files
under /secret/bob. As in Plan 9 [46], P1 can mount /secret/bob as the directory
/home in P2’s namespace. Unlike in Plan 9, the state implicit in the per-process namespace
is handled at user level, and the kernel only sends and receives messages to and from
capabilities. For example, when the process P2 opens a file under /home, the user level
libraries translate the directory /home to some capability C. The kernel sees a LOOKUP
message on C.

10.2.2 OKWS Under Unestos

We now consider what OKWS might look like on Unestos. Similar to before, the applica-
tion suite consists of a okld, okd and worker processes. Under Unestos, the logger process
simply enforces append-only access to a log file, and might be useful for many applications
(much like syslogd on today’s systems). pubd is no longer needed.

okld starts each process with an empty namespace (and thus no capabilities), then aug-
ments their namespaces as follows:

• In the logger’s namespace, mounts a logfile on /okws/log.

• In okd’s namespace, mounts TCP port 80 on /okws/listen. For each worker
process i, makes a socket pair and connects one end to /okws/worker/i.

• In worker process i’s namespace, mounts the other end of the above socket pair to
/okws/listen. Mounts a connection to the logger on /okws/log. Mounts a
read-only capability to the root HTML directory on /www.

• In all namespaces, makes required shared libraries available under /lib.

The launcher then launches all processes as before.
Under Unix, the launcher had to carefully construct jails, physically copying over files

and invoking custom helper applications like the publisher and logger to limit file system
access. Unestos, by contrast, lets the launcher expose capabilities to child processes at
arbitrary points in their namespaces. Each child receives a synthetic file system (which
perhaps only exists in memory), perfectly suited to its task.

Moreover, all capabilities available to the Unestos OKWS processes are virtualizable.
Workers accept connections on /okws/listen regardless of whether they originate from
the kernel’s TCP stack or okd. Similarly, logging might be to a raw file or through a
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logging process that enforces append-only behavior; worker processes are oblivious to the
difference.

In this hypothetical operating system, the interface exposed to applications feels like
the familiar Unix namespace (with added flexibility for unprivileged, fine-grained jails).
In reality, an application’s system interactions are entirely defined by its capabilities, and
Unestos behaves like a capability system for the purposes of security analysis.

10.3 Fine-Grained POLP with MAC

Though we believe Unestos is an improvement over the status quo, it still falls short of
enabling the high-level, end-to-end security policies we seek. Applications in Unestos
can only express security policies in terms of processes, but processes often access many
different types of data on behalf of different users. A security policy based on processes
alone can therefore conflate data flows that ought to be handled separately. For example,
OKWS on Unestos achieves the policy that data from a /change-pw process cannot flow
to a corrupted /show-inbox process; but the policy says nothing about whether user U ’s
data within /show-inbox can flow to user V , meaning an attacker who compromises
/show-inbox might be able to read an arbitrary user’s private e-mail.

Of course, a much better policy for OKWS would be that “only user U can access user
U ’s private data”. We would like to separate users from one another, much as we separate
services in the current OKWS. Though a user session involves many different processes
(such as okd, databases and worker processes), a policy for separating users should be
achievable with a few stanzas of privileged code, as opposed to hidden authorization checks
scattered throughout the system. This section extends Unestos to a new system, Asbestos,
whose kernel uses flexible mandatory access control primitives to enforce richer end-to-
end security policies. We are currently designing and building Asbestos as a full operating
system for x86 machines [19].

The Asbestos operating system proposes a decentralized, fine-grained version of MAC
to solve the security problems inherent in an OKWS-like system. Similar to traditional
MAC, Asbestos assigns devices on the system to compartments, which form a partially-
orderable lattice. If device A sends device B a message, and they are in the same compart-
ment, they remain so after delivery. If A’s compartment is strictly higher than B’s, then
receiving a message from A pushes B into A’s compartment. If A and B’s compartments
are incomparable, or A’s compartment is strictly less than B’s, then message delivery fails.
With compartments, Asbestos tracks all devices that have accessed a given datum, whether
directly or via proxy.

We propose two important modifications to traditional MAC-based operating systems.
First, decentralization [40]: processes can create their own compartments on the fly, so
that a Web server can associate each remote user with her own compartment. Second,
compartments apply at the fine-grained level of individual memory pages, so that a single
process can act on behalf of mutually distrustful users without fear of leaking data among
them. Taken together, these two modifications allow application designers to dynamically
partition a process’s virtual address space into compartmentalized event-processes.

Under Asbestos, OKWS behaves as follows: okd peaks into user U ’s incoming TCP
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connection, authorizing U based on session state or login information in the HTTP head-
ers. If U is logging on for the first time, okd creates a compartment for U ; if U is returning,
then okd reassigns U to its previous compartment. It then forwards U ’s connection to
the appropriate event-process of the appropriate worker. When handling U ’s request, the
event-process can access virtual memory pages and devices available to U ’s compartment;
for instance, it might access session state cached on the worker process or a database pro-
cess trusted to store data for all users. If the event-process errantly accesses data in V ’s
compartment, the read or write will fail, since U and V occupy incomparable compart-
ments.

Once a worker has finished serving U , it can restore its memory and register state to a
saved checkpoint, and is then safe to enter a different event-process, and speak on behalf
of a different user. Finally, since okd created the user compartments, it can sanction trusted
declassifiers to traverse them. For example, it might authorize a trusted statistics collector
to comb all pages in a worker’s virtual address space, regardless of compartment.

OKWS implemented on Asbestos provides the end-to-end security properties that Web
site administrators care most about: that the system cannot leak data from one user to
another. Though site-specific service code is often in flux and touched by many developers,
a correct Asbestos kernel guarantees that however flawed the service code is, large-scale
data theft is very unlikely.
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Chapter 11

Conclusion

This thesis described in detail the design and implementation of the OKWS system. The
important results of this investigation are twofold. First, OKWS represents a significant
improvement over the status quo in terms of security and performance, and its commer-
cial uses shows that the system is no mere academic exercise. The key performance im-
provements in OKWS stem from its specialization for dynamic content. The key security
improvements result from a design focused on separation and isolation, as opposed to an
ex-post facto application of Unix security techniques to an otherwise monolithic and privi-
leged application. OKWS has pushed as much as possible on the Unix interface to achieve
useful security properties without sacrificing performance.

The second important result begins where OKWS falls short: a complex implementa-
tion and less-than-perfect security guarantees. If OKWS represents a concerted effort to
build a secure Unix application from scratch but still cannot provide needed end-to-end
security guarantees (such as keeping Alice from Bob’s data and vice-versa), perhaps it is
time to look beyond Unix to an operating system whose API is friendlier to secure ap-
plication developers. Using the lessons from OKWS, this thesis proposes a rough sketch
of what that operating system (dubbed “Asbestos”) might look like: a system in which
privileges are explicitly added, not assumed and then subtracted; in which all user-kernel
and user-user interactions involve capabilities, or explicit rights; in which systems calls are
virtualizable, so that user-user communication resembles user-kernel communication; in
which IPC is auditable; in which data can be tracked as it flows through the system.

Availability

Visit www.okws.org for documentation and source code, available under a GPL license.
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Appendix A

Speeding Up gzip Compression for
Dynamic Webservers

Most currently active Web clients such as Mozilla/Firefox and Microsoft Internet Explorer
support HTTP/1.1 gzip compression [18, 22]. A Web server can therefore transparently
send HTML output to a client compressed via gzip. Older clients are still supported, since
newer clients advertise their ability to accept gzip-encoded transfers in their initial request.
There are obvious advantages for both client and server; they both conserve bandwidth and
they both enjoy lower latency. Moreover, since network bandwidth is expensive relative
to computational power, a cost-effective Web server should compress its output whenever
possible.

Compression of static HTML content on the server side is easy to imagine: the server
simply maintains two copies of each document — one compressed, and one expanded—
and answers client requests appropriately. For dynamic HTML content, the state-of-the art
is for the Web server to naı̈vely compress each response on-the-fly. Compression is not
cheap in terms of computation, and in many cases, compressing each response on the fly
significantly curtails server throughput. However, given a simple observation—that even
dynamically generated HTML documents are often composed primarily of static HTML
components— there is an opportunity for a Web server to cache work spent on compres-
sion, and to stitch several cached components together for each request. We develop this
idea in more detail by first describing the generic gzip algorithm, and then by proposing a
cacheable implementation thereof.

A.1 The gzip Algorithm

gzip [18] is a 2-layer compression scheme. The top layer uses LZ77-compression [80],
that looks for repeated substrings within a document. When the compressor finds a second
instance of a string, it inserts a “backpointer” that points back to the original instance. If
it finds multiple earlier instances of the same string, it selects the instance that yields the
longest possible match — in general, this heuristic improves compression ratios. A require-
ment of the standard gzip decompressors built into most browsers is that these backpointers
can point no more than 32K characters into the past. This requirement helps clients decom-
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<html>
<head>
<title>Foo Page</title>
<head>

<body>
<? for ($i = 0; $i < 10; $i++)
print "bar $i ";

?>
</body>
</html>

Figure A.1: A simple fragment of PHP code.

press with only a 32K memory window. If the compressor finds no earlier instances of a
string, it simply outputs the character itself. At the bottom layer, gzip feeds all backpointers
and non-matches (i.e., single characters) through a Huffman encoder. It tacks on a 32-bit
CRC checksum, and the compression is complete.

A naı̈ve implementation of gzip checks every character position against a number of
character positions linear in the size of the scan window. The standard gzip tool uses this
method, in concert with 3-character Rabin fingerprinting.1 Though aggressively optimized,
the standard gzip implementation2 absorbs ASCII text at about 19MB/sec and outputs com-
pressed data at about 4MB/sec on a 2.4 GHz Pentium IV. A call graph profile shows that
only 10% of computational resources are dedicated to Huffman encoding, while LZ77
computation occupies a large majority of the remaining cycles.

A.2 Cacheable Compression

An improvement on the standard gzip algorithm is cacheable gzip compression. The goal of
this algorithm is to speed up the LZ77 phase of gzip compression, by performing potentially
expensive precomputations on the HTML fragments that are likely to recur. The first idea
is that a Web server splits each outgoing Web response into a series of texts:

R = (S1,M1, S2,M2, . . .Mn, Sn)

A text Mi is a mutable text, and might be unique to a given HTML response. A text Si
is a static text, and is likely to repeat in many HTML responses. Given enough access to
the internals of one’s Web server, one can readily tell which texts are static, and which are
mutable, without expensive techniques such as “shingling.” For instance, a typical PHP
script [44] might look something like Figure A.1. The “static” text in this example is all
of the HTML not within the special PHP tags (given by <?. . .?>). All of the other data
is mutable. Thus, with sufficient integration with PHP’s internals, a compression filter can

1The same is true for the zlib library [24] used by most popular Web servers.
2gzip-1.2.4, compiled with gcc-2.95.4
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Cacheable-LZ77 on input (R = (S1,M1, . . .Mn, Sn))
1 foreach X ∈ R do
2 If X is static, then append X toW .
3 TrimW so that its total length is less than 32K
4 o← 1
5 while o ≤ ||X|| do
6 〈j, o∗, l〉 ← LongestMatch(X, o,W)
7 p← o− o∗ + ||Sn||+ ||Mn||+ · · ·+ ||Mj+1||+ ||Sj||
8 Output backpointer 〈p, l〉
9 o← o+ l
10 done
11 done

Figure A.2: A simple, incomplete cacheable LZ77 algorithm. Several important corner
cases are elided for clarity. The notation ||Mn|| gives the length of string Mn.

receive input in the form given above — a series of demarcated static and mutable texts.
It is now possible to formulate a rough approximation of the proposed cacheable com-

pression algorithm. Given any text — mutable or static — called X . Assume the existence
of a routine LongestMatch, that takes as input the text X , a starting offset o into that text,
and window of textsW = (S1, . . . , Sm) to compare X against. The routine returns a triple
〈j, o∗, l〉, with the property that Sj[o∗, . . . , o∗ + l − 1] = X[o, . . . , o + l − 1]. That is, the
substring of text Sj, starting at offset o∗ of l characters long, exactly matches the given text
X , starting at offset o, for l characters. Moreover, this l is maximal for the given context
windowW .3 We assume for simplicity that LongestMatch(X, o, (X)) is handled properly
— that is, all offsets o∗ output are bounded below o. This is a natural constraint, since gzip
does not accommodate forward pointers.

A simple cacheable LZ77 algorithm is shown in Figure A.2, which makes use of the
abstract algorithm LongestMatch just defined. Note that only static blocks are considered
as part of the compression windowW . Assuming that static content composes a majority of
dynamic HTML pages, this omission has a minimal effect on compression ratios. Also note
that Figure A.2 elides certain corner cases for clarity — such as offsets without matches
and comparing a block X against itself.

By far, the most expensive part of the Cacheable-LZ77 algorithm are the repeated
calls to LongestMatch on line 6. Thus, the two important performance goals are to call
LongestMatch as infrequently as possible (through cache and reuse of earlier return values)
and to make LongestMatch as inexpensive as possible. In pursuit of the former goal, a real
implementation of Cacheable-LZ77 should cache the results of all calls to LongestMatch

for static content blocks Si. That is, when the first argument to LongestMatch is a static

3If two equally long matches are found, the string further right is preferred, since it reduces backpointer
length.
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block Si, all of the arguments are likely to be seen again: (1) the set of all possible static
blocks S is assumed to be small for a given Web site (on the order of 1,000) and that all
blocks are known to the Web server at boot time; (2) the context window W is a subset
of S, and only a small number of these subsets are used in practice; and (3) the offset o
follows a predictable pattern based on Si andW , since the LongestMatch computation is
deterministic. Furthermore, the output of LongestMatch does not depend on the ordering
of texts within the compression windowW . Thus, Web servers can reorder static blocks in
HTML responses, without diminishing their ability to cache compression.

The mutable texts Mi do not enjoy the same cacheability as the static texts Si, as they
recur infrequently, if at all. For compression of mutable texts, servers have no choice but to
compute LongestMatch as efficiently as possible. Efficient LongestMatch computation via
suffix trees is the ultimate goal for achieving fast, cacheable compression. The challenge
is to do so without hoarding memory, which is scarce on busy Web servers. We leave this
challenge to future work.

A.3 Related Work

There is a rich body of literature dedicated to suffix trees, and compressing their in-memory
representations. Gusfield’s book [27] provides an overview of the state-of-the-art as of
1997. Since then, Kurtz [34] has discovered an efficient implementation for single texts
that consumes 10m memory for ASCII texts on average. It is not readily apparent, how-
ever, how to map these techniques to trees for multiple texts. Other scheme such as suffix
arrays [36] and suffix binary search trees [29] trade-off lookup speed for memory savings.
Suffix arrays do not meet our requirements, as there is not an efficient way to phase out
the compression windowW while traversing the suffix array. If specialized for cacheable
gzip compression, suffix binary search trees would most likely incur the same overhead of
storing the table D.

Another approach is to compress suffix trees into directed acyclic word graphs, known
as DAWGs [6]. The idea is that if a node x has a suffix link to a node y, and the subtrees
of x and y are isomorphic, then there is no need to store both trees; rather, the suffix tree
can contain an edge from x to y, breaking the tree property of the graph. In the context of
multiple texts though, this compression technique is of little use — one will see very few
such subtree isomorphisms in practice.

Other work has addressed the gzip compression problem directly. Larsson discovered
a construction for sliding window suffix trees with direct application to LZ77 compres-
sion [35]. Later, Sadakane and Imai argued that this construct is not practical in terms of
speed, memory usage, or compression ratios. Instead, they suggest hashing and sorting
techniques based on suffix arrays [53].

Another approach to the problem is to modify the HTTP standard and client browsers,
to minimize the data sent over and active HTTP session [5, 17]. While most likely more
efficient in terms of compression and server resources than the gzip method discussed here,
these approaches face obvious deployment barriers; our proposed scheme, by contrast, is
transparent to clients.
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Appendix B

Jailing Python for OKWS

What follows is the actual code needed to make Python run inside of OKWS’s jail. Though
jailing Python is possible, it does not seem natural on the Unix platform.

"""PyOKWS Jail Utilities

Copy the system Python and all associated libraries into the
OKWS runtime jail.
""" 5

import sys
import os
import re
import os.path 10

import string

from okws.setup.config import ConfigParser

# for reading python configuration stuff, and also for copying 15

# files and stuff over from the global directories to inside the jail.
from distutils.dir util import mkpath, copy tree
from distutils.file util import copy file, write file
from distutils.sysconfig import get python lib

20

version = 0.1

def find files by ext (root, ext):
"""Find files with the given extensions, recursively, starting with
the given directory root""" 25

from os import listdir
from os.path import join, isdir, islink, splitext
ls = listdir (root)
files = [ ]

30

# add the leading ’.’ if not already there
if ext[0] != ".":

ext = "." + ext;

for f in ls: 35
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fullname = join (root, f)
if isdir (fullname):

files += find files by ext (fullname, ext)
elif (splitext (fullname))[1] == ext:

files.append (fullname) 40

pass
pass

return files

#find file by ext () 45

def ldd (file):
"""Given a dynamically linked executable, collect a list of all
.so files that it links to."""
from os import popen 50

p = popen ("ldd " + file, "r")
rxx = re.compile ("(\S+) => (\S+)")
sofiles = [ ]
line = p.readline ()
while line != "": 55

m = rxx.search (line)
if m:

sofiles.append (m.group (2))
pass

line = p.readline () 60

pass
return sofiles

#ldd ()
65

def my join (a,b):
import os.path
s = os.path.sep # ’/’ for mostly anything reasonable ;)
if a[−1] == s:

if b[0] != s: 70

ret = a + b
else:

ret = a + b[1:]
else:

if b[0] == s: 75

ret = a + b
else:

ret = a + s + b
return ret

80

#
# call lsof to figure out which dynamic libraries python loaded
# dynamically. oh bother, what a pain.
#
# XXX - this is probably platform specific. bummer. 85

#
def lsof me ():

import os
p = os.popen ("lsof", "r")
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90

# the first line tells us the name of the columns (i hope. . .)
line = p.readline ()
cols = line.split ()

# make an index of column names 95

col names = {}
for i in range (0, len (cols)):

col names[cols[i]] = i
pass

100

ret = [ ]
while line != "":

s = line.split ()
if s[col names["COMMAND"]] == "python" and \

s[col names["FD"]] == "txt": 105

ret.append (s[col names["NAME"]])
pass

line = p.readline ()
pass

return ret 110

class Jailer:
"""A class that takes care of moving Python’s world into a given
chroot jail. All specification of jails and options is given with 115

the initilization function."""

def init (self, jaildir=None, okws config=None, servicebin=None,
verbose=False, dry run=False):

120

self.jaildir = jaildir
self.okws config = okws config
self.servicebin= servicebin
self.verbose = verbose
self.dry run = dry run 125

self. config ()
return

# init ()
130

def config (self):

attrs = [ "jaildir", "servicebin"]

for a in attrs: 135

if getattr (self, a) is None:

# reads an okws config file, taking the standard
# one at /etc/okws config if given parameter
# ’None’ 140

p = ConfigParser (self.okws config)
( , self.cfg file nvtab) = p.parse ()
break
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pass
145

# fill in missing v
for a in attrs:

if getattr (self, a) is None:
setattr (self, a, self.cfg file nvtab[a])
pass 150

pass
return

# config ()

def get lib dirs (self): 155

return [ get python lib (standard lib=True) ]
# get lib dirs ()

def run (self):
"""Given an initialized OKWS/Python Jailer, run it and actually 160

do the require FS operations."""
dst = self.jaildir
srcs = self.get lib dirs ()
sos = [ ]
done = {} # keep track of those already done 165

# copy the trees and also find all .so files in the trees
for s in self.get lib dirs ():

if done.get (s):
continue 170

else:
done[s] = True

copy tree (src=s, dst=my join(dst, s),
verbose=self.verbose, 175

dry run=self.dry run)
sos += find files by ext (s, "so")
pass

# keep track of all .so files on the system the python 180

# .so files link to, and watch out for duplicates
solibs = {}

for s in sos:
for l in ldd (s): 185

solibs[l]= True
pass

# also, don’t forget about the python executable itself!
for l in ldd (sys.executable): 190

solibs[l] = True
pass

# also, don’t forget about those libraries python loaded
# dynamically that it didn’t tell the dynamic linker about! 195

for l in lsof me ():
solibs[l] = True
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pass

for s in solibs.keys (): 200

if not os.path.isfile (s):
print "Skipping non-file (did lsof misreport?): " + s

else:
(d,f) = (os.path.dirname (s), os.path.basename (s))
mkpath (name=my join (dst,d), verbose=self.verbose, 205

dry run=self.dry run)
copy file (src=s, dst=my join (dst, s),

verbose=self.verbose, dry run=self.dry run)

# copy over the python executable, too 210

d = os.path.dirname (sys.executable)
jail bin dir = my join (dst, d)
mkpath (name=jail bin dir, verbose=self.verbose)
copy file (src=sys.executable, dst=jail bin dir, verbose=self.verbose)

# run () 215

# Run the jailer with default arguments
j = Jailer ()
j.run ()
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