
www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 17

SYSTEMS

Noria
A New Take on Fast Web Application Backends

J O N G J E N G S E T , M A L T E S C H W A R Z K O P F , J O N A T H A N B E H R E N S , L A R A T I M B Ó A R A Ú J O ,
M A R T I N E K , E D D I E K O H L E R , M . F R A N S K A A S H O E K , A N D R O B E R T M O R R I S

Noria [2], first presented at OSDI ’18, is a new web application back-
end that delivers the same fast reads as an in-memory cache in front
of the database, but without the application having to manage the

cache. Even better, Noria still accepts SQL queries and allows changes to
the queries without extra effort, just like a database. Noria performs well: it
serves up to 14M requests per second on a single server, and supports a 5x
higher load than carefully hand-tuned queries issued to MySQL.

Writing web applications that tolerate high load is difficult. The reason is that the backend
storage system that the application relies on—typically a relational database, like MySQL—
can easily become a serious bottleneck with many clients. Each page view typically involves
10 or more database queries, which each take up CPU time on the database servers to evalu-
ate. To avoid such slow database interactions and to reduce load on the database, applications
often introduce caches (like memcached or Redis) that store already-computed query results
for fast common case access. These caches, however, impose significant application com-
plexity, because the application must query, invalidate, and maintain them [1]. Surely there
has to be a better way.

Data-Flow for High Performance
At first glance, Noria seems similar to a database because it processes SQL queries. How-
ever, instead of evaluating queries on-the-fly as a traditional database would, the application
registers long-term queries with Noria for repeated use. Queries contain free parameters
that the application specifies when it actually executes its reads, similar to the interface
provided by prepared SQL statements. From the pre-specified queries, Noria constructs a
data-flow graph that continuously and incrementally evaluates the queries when the underly-
ing data changes.

Data-flow processing was initially invented in the 1970s for circuit design but has recently
been adopted for large-scale parallel data-processing in systems like Dryad [4], Naiad [5],
and TensorFlow [6], for example. In data-flow, the system represents computations as a
graph whose vertices are data-flow operators and whose edges carry updates between the
operators. When an operator receives an update on an incoming edge, it processes the update
(possibly consulting internal state that it keeps) and emits zero or more updates of its own on
all its outgoing edges. This graph representation is appealing, as it makes the computation’s
dependencies explicit: update propagation across different edges and processing at differ-
ent vertices can happen in parallel. Therefore, data-flow processing is well-suited to scaling
across multiple CPU cores and servers.

In Noria, the data-flow graph connects classic database tables at its inputs to materialized
views at its leaves. The intervening operators proactively execute the application’s queries for
each change to the tables. Noria generates the data-flow from SQL queries using a process
similar to database query planning. Noria then serves all reads directly from the materialized
views in memory, which makes reads as fast as reading from a cache. When the records in a

Jon Gjengset is a Norwegian
PhD student in the Parallel
and Distributed Operating
Systems group at MIT CSAIL.
He received his bachelor’s

from Bond University, Australia, in 2011, and
his master’s from University College London
in 2013. His primary research focus is on
distributed data-flow systems, though he has
also worked on computer security and wireless
systems. Outside of academia, Jon develops
teaching resources for the Rust programming
language and is a frequent open-source
contributor. jon@thesquareplanet.com

Malte Schwarzkopf is a
postdoctoral associate in the
PDOS (Parallel and Distributed
Operating Systems) group
at MIT CSAIL. His research

focuses on distributed systems, with current
and past work on data-flow systems, query
compilers, cluster scheduling, datacenter
networking, and parallel data processing.
He received both his BA and PhD from the
University of Cambridge, and his research has
won best paper awards from EuroSys (2013)
and NSDI (2015). malte@csail.mit.edu

Jonathan Behrens is a PhD
student in the PDOS group
at MIT. His research centers
around operating systems and
distributed systems, including

Noria and work on OS abstractions to improve
resource utilization. behrensj@mit.edu

18  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Lara Araújo is a Software
Engineer at Airbnb working on
large-scale distributed services
and streaming data pipelines.
Before joining Airbnb, Lara

earned a bachelor’s and a master’s degree in
EECS from MIT, focusing on developing secure
datastores for high-performance applications.
Her interests revolve around distributed
systems and different kinds of storage
systems. Lara was born and raised in Fortaleza
and enjoys dancing, bouldering, and reading
books by the ocean. lara.araujo@airbnb.com

Martin Ek studied computer
science at MIT and the
Norwegian University of Science
and Technology. He’s currently
a Software Engineer at Stripe,

where he helps build financial infrastructure for
online businesses. mail@ekmartin.com

Eddie Kohler is a Professor of
Computer Science at Harvard.
He maintains (more or less)
several widely used software
packages, including the Click

modular router and HotCRP, and he edited a
musical score of John Cage’s Indeterminacy.
Twitter: @xexd, kohler@seas.harvard.edu

Frans Kaashoek is the Charles
Piper Professor in MIT’s EECS
department and a member of
CSAIL, where he co-leads the
parallel and distributed operating

systems group (https://pdos.csail.mit.edu/).
Frans is a member of the National Academy
of Engineering and the American Academy of
Arts and Sciences, and is the recipient of the
ACM SIGOPS Mark Weiser award and the 2010
ACM Prize in Computing. He was a co-founder
of Sightpath, Inc. and Mazu Networks, Inc. His
current research focuses on multicore operating
systems and certification of system software.
kaashoek@mit.edu

Robert Morris is a Professor
of Computer Science at MIT.
rtm@csail.mit.edu

table change (e.g., in response to a client insert or update), Noria feeds updates through the
data-flow to modify the materialized views as necessary.

The idea of materialized views has been around for decades, and some commercial and
research databases support them. However, existing implementations lack the flexibility and
performance that web applications require.

Noria’s approach effectively flips the database query model on its head: instead of executing
queries in response to reads, Noria executes them in response to writes. Reads are simple
lookups into materialized state, which makes them (much) faster by moving work from reads
to writes. Modern web applications are generally read-heavy, so this tradeoff makes sense
for them. Furthermore, since Noria takes care of making reads fast even for complex SQL
 queries, the developer no longer needs to write error-prone, complex cache-maintenance
code, or tune their queries for fast execution. They can simply issue the SQL queries they
wish, inline aggregations and all, and Noria does the rest.

An Example: Votes for News Stories
Let’s take a look at how Noria executes a particular SQL query. Figure 1a shows the data-
flow that Noria constructs when given a query that counts the votes for each story in a news
aggregator like Hacker News or Lobste.rs. The query joins with the stories table to retrieve
the story’s details (title, author, etc.). When a client inserts a new vote (let’s say for the story
with the identifier A), an update enters the data-flow at the vertex that corresponds to the
votes table. From there, the data-flow propagates the update to the aggregation vertex below,
which looks up the current vote count for the new vote’s story in the internal state it main-
tains (say, 7). The count then updates the internal state to record that the vote count for that
story is now 8 and emits an update to its children saying that the count for A is now 8, not 7.
This update arrives at the join, which looks up A’s title in stories and produces a new update
that says A, whose title is “Space elevator nearly completed,” now has a vote count of 8, not
7. That update finds its way to the materialized view StoryWithVotes, which Noria updates
appropriately so that any subsequent read from it sees A’s vote count as 8. Here, we say that
StoryWithVotes is keyed by the story’s identifier. In general, the key for a view is dictated by a
set of free parameters in the corresponding SQL query issued by the application.

Figure 1a: Example Noria data-flow for a query that counts the votes for each story in a news aggregator
and incrementally updates the count as new votes arrive (solid). Reads hit materialized view (dashed).

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 19

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Making Data-Flow Work for Web Applications
Naively adding new queries and initializing their data-flow state
and materialized views may require Noria to compute a signifi-
cant amount of state for the new query and induce downtime
while it does so. More generally, if Noria always kept all state for
all stateful internal data-flow operators and all its materialized
views, its memory footprint would explode with many queries.
Noria solves this problem by introducing partially stateful data-
flow. This new model in turn enables Noria to support dynamic
materialized views, where the set of queries changes over time
without requiring a system restart.

Dynamic change. Figure 1b shows the data-flow from Figure
1a after the application adds a new Karma query (the shaded gray
region). Karma computes the total votes for all stories posted by
a given user. Notice that the data-flow path for Karma partially
overlaps with that of StoryWithVotes. Noria realizes that it does
not need to recount all the votes but can instead reuse the counts
it already has. When the application first issues the Karma query,
Noria extends the currently running data-flow to also include
the extra data-flow operators needed for the new query and a new
materialized view for Karma. It then initializes the state needed
by stateful data-flow operators and the materialized view before
making the latter available for application reads. Reads of old
views are unaffected by changes to the data-flow, as are writes to
unconnected parts of the data-flow. In combination with partial
state, Noria makes the change instantaneous for writes as well.

Data-flow systems prior to Noria were designed for stream, graph,
and parallel “big data” processing and cannot change the compu-
tation (i.e., queries) without restarting [6]. They must either keep
all computed state in internal operator state and materialized
views or apply windowing to reduce computed state by throwing
away old records. For web applications, neither is acceptable: the
backend cannot be down when queries change, and it must return
complete results rather than ones based only on recent changes.

This brings us back to Noria’s key idea: partially stateful data-
flow. Noria’s data-flow changes on-the-fly in response to query
changes, and it keeps only a subset of state in memory, fetching
missing data on-demand.

Partial state. Noria marks some keys in each data-flow state as
absent and recomputes them only when needed. To support such
recomputation—e.g., when a client reads an absent key from a
materialized view—Noria relies on upqueries through the data-
flow. Upqueries allow a vertex to ask its ancestors to recompute
the absent state the vertex needs in order to serve an application
read. The upstream ancestors respond to an upquery with the
records in their state that match the absent key or keys speci-
fied by the upquery, and the results percolate back down through
the data-flow. Since upqueries allow vertices to recover absent
state, Noria is free to evict infrequently accessed state to save
memory. More importantly, Noria also uses absent state to cre-
ate new materialized views and operators with initially empty
state, relying on upqueries to fill the state on demand. This
allows Noria to adapt to most query changes entirely without
downtime; all that is required is to bring up a set of empty data-
flow operators. Absent state also speeds up regular processing,
as updates for keys that are evicted, or that the application has
never requested, can be discarded early.

Partial state and upqueries are conceptually simple, but mak-
ing them always correct actually requires care. Intuitively, a
partially stateful data-flow is only correct if it always—whether
directly or via upqueries—produces the same result for a client
read that a classic data-flow with full state would have returned.
However, ensuring this in the face of concurrent processing
in the data-flow, and with upqueries that can race with “nor-
mal” updates traveling downstream that themselves may be
contained in the eventual upquery response, is difficult. Noria
ensures this property using a new data-flow model and extra
invariants. Some of the challenges are:

◆◆ How do data-flow operators handle updates that encounter
absent state? Consider the earlier count: if its state for story A
is absent, how can the count operator produce (A, 8) as the
emitted update?

◆◆ How does parallel processing of complex data-flows that fork
and join still ensure that upquery responses always contain all
the updates processed at the queried operator exactly once?

◆◆ How do operators that change the key column handle up-
queries? For example, the sum operator added in Figure 1 may
upquery the join on its incoming edge for a particular user, but
that join is keyed by the story identifier column.

◆◆ How do multi-ancestor operators handle upqueries if state
for the upquery key is available in one ancestor but not in
the other?

Figure 1b: If the application adds another query to compute the “Karma”
score for each user (the total votes received for the user’s stories), Noria
dynamically adds to the running data-flow (dash-dot) the extra operators
and materialized views needed.

20  S P R I N G 20 19 VO L . 4 4 , N O. 1 www.usenix.org

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Our paper [2] gives the invariants that Noria must maintain to
guarantee correct execution and points out what goes wrong if
these invariants are not properly maintained.

Evaluating the Noria Prototype
We implemented Noria in about 60,000 lines of Rust, along with
a MySQL adapter that implements the MySQL binary protocol
and makes Noria appear as a MySQL server to legacy applica-
tions. This way, Noria can support unmodified MySQL applica-
tions that use prepared statements (e.g., through PHP’s PDO
library). Noria supports sharding and partitioning the data-flow
across cores and servers, and stores all base tables durably in
RocksDB [7]. It handles failures in the distributed system by
recreating those parts of the data-flow that a failure affects.

To evaluate Noria’s performance and check that it actually
makes web applications faster and reduces their complexity, we
wrote a workload generator that emulates the real production
workload seen by the news aggregator website Lobste.rs (https://
lobste.rs). Lobste.rs is a Ruby-on-Rails application backed by a
MySQL database, and the Lobste.rs developers carefully hand-
optimized its queries for performance. Our benchmark issues the
same SQL queries as the real Lobste.rs website, with the same
frequency and popularity skew, using the MySQL binary protocol.

We then run that against both MySQL directly (we use MariaDB
v10.1.34, a GPLv2 community fork of MySQL) and against Noria,
on a 16-core Amazon EC2 VM. Figure 2 plots the offered load on
the x-axis (in page views per second; each page issues around ten
queries) and the achieved median and 95th percentile latency
on the y-axis (so lower is better). At the point where each setup
stops scaling—for example, because it saturates the server’s CPU
cores—the latency curve forms a “hockey stick” that shoots up
when the system cannot keep up with the load anymore. The
results indicate that Noria scales to a 2.5x–5x higher load than
the MySQL baseline. For the initial result (blue line with circles,
2.5x improvement), we use the exact same queries as the Lobste
.rs developers.

We then go a step further and remove all manual optimizations
from the queries (line with squares). For example, the original
application keeps upvotes and downvotes columns in the stories
table and updates them on every vote, so that read query evalua-
tion avoids doing a COUNT over votes. This is effectively a hand-
rolled “materialized view” of the vote count, but it requires the
developers to customize the application to update this column
whenever the vote count changes. In Noria, such hand-tuning
is unnecessary. Indeed, removing the hand-optimizations from
the queries, we see a 5x speed-up over MySQL. The difference
here comes from the fact that by not having to maintain these
auxiliary values in the base tables (but instead having Noria
maintain them in the data-flow), we avoid an extra UPDATE query
and parallelize the update processing.

To quantify how much Noria improves performance over exist-
ing approaches, we choose a single, common query (the join of
stories with vote counts) and issue that same query against
a number of common web backend setups. Here, 95% of the
requests are reads, and 5% are new votes, and we use a simi-
lar, skewed popularity distribution as the real Lobste.rs site
observes. We benchmark MariaDB; System Z, a commercial
database that supports materialized views; MariaDB with a
memcached look-aside cache; “memcached-only,” an unrealistic
deployment where the application stores vote counts directly in
memcached without any database interactions; and Noria with
four-way sharding for parallel processing.

All systems run entirely in-memory to avoid measuring the I/O
layer performance, and we set the databases to avoid transac-
tions and use the lowest isolation level. Figure 3 again shows
that Noria performs well: while the database-based systems do
not scale beyond 200,000 requests/sec, Noria scales all the way
to 14 million requests/sec. The unrealistic memcached-only
deployment, for comparison, scales to 8 million requests/sec but
then saturates the cores of the server.

Figure 2: Noria scales to a 5x higher load than MySQL for the Lobste.rs
website’s workload while using queries free of hand-tuning (2.5x with the
Lobste.rs’s developers’ original queries). Solid line shows median; dashed
is the 95th percentile.

Figure 3: Noria supports 14 million requests/sec for a read-heavy
(95% reads) workload, while other systems achieve only 200,000
 requests/sec—with the exception of an unrealistic memcached-only
setup that does strictly less work but still underperforms Noria.

www.usenix.org S P R I N G 20 19 VO L . 4 4 , N O. 1 21

SYSTEMS
Noria: A New Take on Fast Web Application Backends

Noria outperforms memcached because it uses a more efficient,
lock-free data structure to serve reads, but this is not fundamen-
tal (memcached could use the same data structure). Noria’s high
performance comes because reads directly hit the materialized
view, and because it processes writes efficiently through the
sharded, partially stateful, incremental data-flow.

When to Use Noria
Noria is designed for web applications that are read-heavy and
that can tolerate eventual consistency. The ubiquity of caches
in modern web application stacks suggest that eventual consis-
tency is often sufficient, although we are also working on ideas
for high-performance transactions on Noria. Noria also obviates
the need for transactions in some cases. The Lobste.rs develop-
ers, for example, only use transactions to ensure that a story’s
vote count is incremented atomically with the vote being stored.
Noria maintains the vote count internally in the data-flow, so
this transaction is no longer necessary.

Noria primarily targets applications whose working set fits in
memory when sharded and partitioned across many servers.
Old records in base tables are only on disk, but applications that
regularly need to access the full data set (e.g., full-text search)
would need additional support to work well in Noria.

How to Use Noria
Noria is open-source and available at https://pdos.csail.mit.edu
/noria. In many cases, you should only need to start up the Noria
MySQL adapter, point your application at it instead of MySQL,
and turn off all your caches. Noria will take care of the rest. The
Noria prototype is research code and still in development, but we
would like to hear how it works for other people!

References
[1]: J. Mertz and I. Nunes, “Understanding Application-Level
Caching in Web Applications: A Comprehensive Introduction
and Survey of State-of-the-Art Approaches,” in ACM Comput-
ing Surveys, vol. 50, no. 6 (November 2017), pp. 98:1–98:34.

[2]: J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo,
M. Ek, E. Kohler, M. F. Kaashoek, and R. Morris, “Noria:
Dynamic, Partially-Stateful Data-Flow for High-Performance
Web Applications,” in Proceedings of 13th USENIX Confer-
ence on Operating Systems Design and Implementation (OSDI
’18), pp. 213–231: https://www.usenix.org/conference/osdi18
/presentation/gjengset.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Staf-
ford, T. Tung, and V. Venkataramani, “Scaling Memcache at
Facebook,” in Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (NSDI ’13),
pp. 385–398: https://www.usenix.org/conference/nsdi13
/technical-sessions/presentation/nishtala.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Build-
ing Blocks,” SIGOPS Operating Systems Review, vol. 41, no. 3
(March 2007), pp. 59–72.

[5] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: A Timely Dataflow System,” in Pro-
ceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP ’13), pp. 439–455.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Leven-
berg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: A System for Large-Scale Machine Learning,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI ’16). pp. 265–283:
https://www.usenix.org/system/files/conference/osdi16
/osdi16-abadi.pdf.

[7] RocksDB: https://rocksdb.org/.

https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://rocksdb.org/

