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Abstract
Multicore main-memory databases only obtain parallel performance when transactions do
not conflict. Conflicting transactions are executed one at a time in order to ensure that they
have serializable effects. Sequential execution on contended data leaves cores idle and re-
duces throughput. In other parallel programming contexts—not serializable transactions—
techniques have been developed that can reduce contention on shared variables using per-
core state. This thesis asks the question, can these techniques apply to a general serializable
database?

This work introduces a new concurrency control technique, phase reconciliation, that
uses per-core state to greatly reduce contention on popular database records for many im-
portant workloads. Phase reconciliation uses the idea of synchronized phases to amortize
the cost of combining per-core data and to extract parallelism.

Doppel, our phase reconciliation database, repeatedly cycles through joined and split
phases. Joined phases use traditional concurrency control and allow any transaction to exe-
cute. When workload contention causes unnecessary sequential execution, Doppel switches
to a split phase. During a split phase, commutative operations on popular records act on
per-core state, and thus proceed in parallel on different cores. By explicitly using phases,
phase reconciliation realizes two important performance benefits: First, it amortizes the
potentially high costs of aggregating per-core state over many transactions. Second, it can
dynamically split data or not based on observed contention, handling challenging, vary-
ing workloads. Doppel achieves higher performance because it parallelizes transactions on
popular data that would be run sequentially by conventional concurrency control.

Phase reconciliation helps most when there are many updates to a few popular database
records. On an 80-core machine, its throughput is up to 38× higher than conventional
concurrency control protocols on microbenchmarks, and up to 3× on a larger application,
at the cost of increased latency for some transactions.
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ONE

Introduction

Databases provide serializable transactions: the effect of executing a set of transactions
concurrently should equal the effect of the same transactions executed in some serial order.
The guarantee of serializability lets developers write application programs as if their trans-
actions will run one at a time; this makes it easier to program database-backed applications
because the developer can write their application as if transactions never run concurrently.

Achieving serializability requires care when concurrent transactions conflict, which
happens when one writes a record that another either reads or writes. Without care, con-
flicts could cause one transaction to observe unserializable results—i.e., values that would
be impossible for any serial transaction order to create or observe. Database concurrency
control protocols enforce serializability on conflicting transactions by executing them one
at a time: one transaction will wait for the other, or fail and retry. But the key to good multi-
core performance and scalability is the elimination of this kind of serial execution. Cores
should make progress in parallel whenever possible.

Conflicts are common in some important real-world database workloads. For instance,
consider an auction web site with skewed item popularity. As a popular item’s auction time
approaches, and users strive to win the auction, many concurrent transactions might update
the item’s current highest bid. Modern multi-core databases will execute these transactions
sequentially, leaving cores idle. Since many online transaction processing workloads fit in
memory and transactions do not stall on the network or disk, sequential processing is the
biggest factor affecting performance.

This thesis presents phase reconciliation, a new concurrency control technique that can
execute some highly conflicting workloads efficiently in parallel, while still guaranteeing
serializability; and Doppel, a new in-memory database based on phase reconciliation.

The basic technique of phase reconciliation is to split logical values across cores, so
that cores can update local data, instead of running one at a time because of shared state.
The local data copies must be combined to read a value. But simple value splitting is too
restrictive for general database use; splitting every item in the database would explode
transaction overhead, and reconciling values on every read is costly. Doppel uses phase
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reconciliation to the obtain the parallel performance of split values while getting good
performance with arbitrary database transactions. The rest of this chapter goes into more
detail about the costs of conflict and describes the challenges in using split values and our
solutions.

1.1 System model

Our work concerns high-performance in-memory multi-core databases. Systems that fol-
low this model have several common features. We explain these features in more detail,
referring specifically to our Doppel implementation.

Doppel is an in-memory multi-core database that supports arbitrary transactions. We
use the model of one-shot transactions [6, 50]. Once begun, a transaction runs to completion
without network communication or disk I/O. Combined with an in-memory database, this
means cores will never block due to user or disk stalls. Some systems assume the set of
transactions is known ahead of time for static analysis; we do not.

Doppel is a key/value database built on a hash table, and uses a model of rich types
as values, like in the key/value store Redis [4]. For example, a single key’s value could
hold a blob of bytes, a number, or an ordered list of entries where each entry is a rank and
a blob of bytes. Transactions are composed of one or more operations, along with local
computation on the data returned by Doppel operations. Each operation takes a key and
optional other arguments. For example, the PUT(k,v) operation looks up a record with key
k, and overwrites its value with v. Some operations return values—GET(k), for example,
returns the value of key k—and others do not; some operations modify the database and
others do not. Each value type supports a limited number of operations, which are described
in chapter 4.

Application developers choose keys, and can embed any structure they choose in their
keys. Developers can simulate multiple tables using disjoint key ranges, or indexes using
specially designed keys and values, but Doppel does not provide a scan operation.

Figure 1-1 shows an example Doppel transaction for an auction website. This transac-
tion inserts a new bid on an item and if necessary, updates the maximum bid for the item.
If the keys and values do not exist, Doppel will create them when the transaction commits.

1.2 Conflict costs

Transactions conflict when one transaction reads or writes a record that another transaction
writes. To serialize the execution of transactions that conflict, most modern databases use
variants of two-phase locking [24] or optimistic concurrency control [32].

14



BidTransaction(bid Bid, item Key) {
PUT(NewBidKey(bid), bid)
max_bid = GET(MaxBidKey(item))
if max_bid == nil || bid.amount > max_bid {
PUT(MaxBidKey(item), bid.amount)

}
Commit() // applies writes or aborts

}

Figure 1-1: A simplified bid transaction in an auction application. NewBidKey() and
MaxBidKey() construct keys. The application developer writes these functions to gener-
ate keys based on object identifiers. The key for the max bid on an item is unique for each
item, while the key for a new bid is unique for each bid.

Two-phase locking (2PL) ensures that two conflicting transactions have serializable ef-
fects by forcing one to wait until the other releases its locks. A transaction acquires read
and write locks as it reads and writes data, and releases its locks at the end of the transac-
tion. In contrast, optimistic concurrency control (OCC) ensures serializability by detecting
conflicting transactions when they try to commit, and aborting all but one of them. OCC
avoids locks during execution time by using a validation protocol to commit.

Both of these protocols force sequential execution when any transactions conflict. A
conflicting transaction must either wait until other transactions release locks (in 2PL) or
abort and retry until other transactions finish (in OCC); in both cases, parallelism is lost.
This can greatly reduce throughput in workloads with conflicts. For example, consider a
workload of transactions that concurrently increment a popular counter. These transactions
conflict, as they have read/write and write/write conflicts on the record. Using either 2PL or
OCC, the database would be forced to execute these transactions one at a time, effectively
limiting performance to that of a single-core system.

1.3 Splitting data

Concurrent increments are a problem developers have addressed in scalable operating sys-
tems using efficient multi-core counter designs, such as for packet counters [25]. An op-
erating system will frequently provide a counter of the number of packets received so far.
This counter is rarely read since it is mostly useful for debugging. But on a multi-core
machine, packets might arrive on every core. Updates to a shared counter might become
a bottleneck. Therefore, modern operating systems partition a logical packet counter value
into J counters, one per core. To increment the logical counter, a core updates its per-core
value c j ← c j + 1, and we say the counter is split between the cores. To read the counter,
a core reconciles these per-core values into one correct value by adding them together:
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counter← ∑c j. In order to read the correct counter value amidst other cores performing
concurrent increments (a linearizable read), the per-core counter values should have locks,
and a reader must acquire a lock for every per-core value, as shown in Figure 1-2. Though
the ordering of increment operations is lost, this is still correct because addition is commu-
tative. The increments, in any order, produce the same value.

Data: counter c, number of cores J
sum← 0;
for j← 1 to J do

lock(c j);
sum← sum+ c j;

for j← 1 to J do
unlock(c j);

return sum

Figure 1-2: Pseudocode to correctly reconcile and read a split counter.

The idea of per-core data structures is used many places in the Linux kernel, for example
for reference counters and in the virtual memory system [15].

1.4 Joined and split data execution plans

2PL, OCC, and the kinds of per-core counters described in §1.3 provide different mecha-
nisms for making access to objects serializable. We call these mechanisms execution plans.
At a high level, execution plans tell the database how to safely execute each operation
during transaction execution and commit.

For example, consider a database in which each key supports two operations, ADD(k,n)
and GET(k). ADD(k,n) adds n to the value of key k, and GET(k) returns the value of k. The
typical execution plan for these operations in a 2PL database will obtain a read lock on k
for GET(k), and obtain a write lock on k and set k← k+ n for ADD(k,n); in both cases,
the lock will be released at transaction commit time. We call this execution plan the joined
plan since all cores operate jointly on shared data. A record in this state is joined. In the
joined plan, GET(k)s do not conflict, but GET(k) conflicts with ADD(k,n), and ADD(k,n)s
conflict with each other. Figure 1-3 shows two conflicting ADD(x,n) operations and two
GET(x) transactions executing in parallel; the vertical striped bars show the period where
a core is blocking, waiting for another transaction to finish. The ADD(x,n) on the second
core blocks the ADD(x,n) on the first core. In a 2PL database, this might happen because
the second core is holding a lock on x.

The joined plan makes concurrent add operations slow. However, a database might also
support another plan—call it the split plan—that speeds up concurrent adds using per-
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core 0!

core 1!

core 2!

ADD(x,1)

GET(x)

ADD(x,1)

GET(x)

joined plan

Figure 1-3: The ADD(k,n) operations conflict, so the operation on core 0 must wait for
core 1. The GET(k) operation conflicts with ADD(k,n), so the GET(k) on core 2 must wait
for the ADD(k,n)s on the other cores to finish. GET(k) operations can proceed in parallel
on cores 1 and 2.

core data. The split plan uses a per-core slice for a record, with one entry per core. The
per-core slice for a record with key k and core j is v j[k]. We say the record for key k is
split. When core j sees an ADD(k,n) operation in a transaction, it updates its core’s value:
v j[k]← v j[k] + n. GET(k) reads all the per-core values and sums them: ∑v j[k]. This is
exactly like the counter in §1.3.

In the split plan, ADD(k,n) operations on the same record also do not conflict; they can
execute in parallel by updating different per-core slices. Figure 1-4 shows three transactions
running on different cores, the first and second cores executing ADD(k,n) operations on the
same record in parallel. A GET(k) on the same record conflicts with an ADD(k,n), since it
must read and sum all the per-core values. The third core in Figure 1-4 is waiting for the
ADD(k,n)s on cores one and two.

This technique does not work with all operations—it is critical here that ADD(k,n)
operations commute, meaning that they return the same results, and cause the same changes
to the database state, regardless of the order they are executed. This is true for ADD(k,n)
since addition commutes in the mathematical sense, and since ADD(k,n) does not return a
result. If ADD(k,n) were not commutative—for instance, if we were operating on floating-
point numbers (the result of floating-point addition can differ depending on the order of
addition), or if ADD(k,n) returned the new value of the counter—using per-core values
would not produce serializable results.

Since each plan incurs conflict between different operations, the two plans experience
sequential execution on different workloads. In the joined plan, GET(k)s can run in par-
allel, but ADD(k,n)s are run one at a time on the record being updated. In the split plan,
ADD(k,n)s run in parallel as well, but GET(k)s are more expensive. Neither plan is ideal
for all workloads. If there are mostly ADD(k,n)s, then the joined plan is slow because oper-
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core 0! ADD(x0,1)

core 1!

core 2!

ADD(x1,1)

GET(x)

x0

x1

x2

split plan

Figure 1-4: The ADD(k,n) operations can proceed in parallel. The GET(k) operation con-
flicts with ADD(k,n), and also needs to sum the per-core values.

ations on the same record must run one at a time, and if there are mostly GET(k)s, then the
split plan is slow because it requires reading all of the per-core values. This is unfortunate
because database workloads contain mixes of transactions, and only very rarely does a mix
allow the exclusive use of one plan or another. Furthermore, the best mix of plans for a
record often changes over time.

1.5 Solution

The overall goal of the thesis is to combine these two plans in a dynamic way, getting
the good parallel performance of the split plan when possible, and the general-purpose
flexibility of the joined plan otherwise.

Our key insight is that a database that changes records’ plans in response to contention
and operations can achieve much better parallelism than a database that uses a single plan
for each record. In a workload with a mix of ADD(k,n) and GET(k) operations, instead of
statically using one plan, it is more efficient to switch a record between plans as transactions
require it. Doppel executes ADD(k,n)s on per-core values for contended keys using the
split plan, and then sums the per-core values once, writes the sum to a shared location as a
reconciled value, and executes the GET(k)s on the shared value using the joined plan. The
ADD(k,n)s execute in parallel using per-core slices, and the GET(k)s execute in parallel
in the absence of writes. A critical piece of Doppel’s performance story is that the cost of
reconciling the record and switching plans is amortized over many transactions.

In Doppel, records use different plans over time, but stay in one plan over the course of
many transactions. Doppel switches phases every few tens of milliseconds, and re-evaluates
plans for records roughly every tenth of a second, in order to respond to quickly changing
workloads. Transactions can execute on records using different plans. Transactions that
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execute operations tuned to work well with records’ current plans can execute; a transaction
with an operation that doesn’t work with a record’s current plan is deemed incompatible
and delayed. Batching transactions so that a record uses either the split or joined plan for
many transactions reduces the cost of supporting both plans on one record. For example, if a
record were using a split plan, transactions executing ADD(k,n) operations could proceed,
but transactions issuing GET(k) operations would be delayed until the record moved to a
joined plan. By reordering transactions, Doppel can reduce the cost of reconciling data for
reads, and a record can benefit from split data.

But how can Doppel support transactions that perform operations on multiple contended
records? Unless such a transaction happened to use the right operations on all data items, it
seems like the transaction could be delayed indefinitely.

Doppel handles this situation by imposing synchronized phases on transaction execu-
tion; all records change phase at the same time. The database cycles between two kinds of
phases, split phases and joined phases. During a split phase, records that might benefit use
split plans with per-core slices. During a joined phase, all records use joined plans so the
database can use conventional concurrency control. As a result, during joined phases any
transaction can execute correctly—if not necessarily efficiently—and there is no chance
that a transaction is delayed for unbounded time by incompatible operations.

When Doppel observes contention, it operates as much as possible in split phases, and
only switches to a joined phase when there are delayed transactions. In the applications
we investigated, only a few records were contended, so most records in the database al-
ways use the joined plan. Contended records usually suffered from a mix of one type of
update operation and reads in multi-key transactions. Using synchronized phases, many
transactions execute using a record’s split plan while reads are delayed. But the cost of
reconciling a record only happens at the phase boundary, instead of for every read. This
helps performance because at the beginning of a joined phase all records are reconciled,
and transactions with many reads can execute efficiently, and in parallel.

Not all records would benefit from using a split plan in the split phase. Doppel must
choose whether or not to use a split plan for a record during a given split phase. Dop-
pel decides when to do so based on observed conflicts and operations. For example, if
Doppel were using the joined plan for a record but many transactions executed conflicting
ADD(k,n) operations on it, Doppel might choose to use a split plan on the record during the
next split phase. Over time, records that were once popular and contended may become less
so, and using per-core data for a non-contended record just makes reads more expensive
without providing a benefit to parallelism. Similarly, new records may become contended,
and could benefit from per-core data. Doppel continually classifies records to make sure it
is using a good plan.

The workloads that work best with phase reconciliation are ones with frequently-up-
dated data items where contentious updates have certain properties. Doppel uses conven-
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BidTransaction(bid Bid, item Key) {
PUT(NewBidKey(bid), bid)
MAX(MaxBidKey(item), bid.amount)
Commit() // applies writes or aborts

}

Figure 1-5: The bid transaction from Figure 1-1 rewritten to use a commutative Doppel
operation.

tional concurrency control on joined records, which induces some set of sequential order-
ings on an execution of concurrent transactions. The results of executing operations on split
data in those transactions must match at least one of those orderings. To ensure this, Doppel
will only execute operations that always commute on a record when it is using a split plan.
This way, the result of many operations on per-core data for a record, coupled with recon-
ciliation, matches any ordering, including one imposed by the containing transactions.

Figure 1-5 shows the BidTransaction from Figure 1-1 rewritten to use a commutative
operation, MAX(k,n). This operation replaces the value of key k with the maximum of
its current value and n. The new BidTransaction has two operations—a commutative
operation on the current winning bid key, and a non-commutative operation on the new
bid’s key. By using the commutative MAX(k,n) operation instead of GET(k) and PUT(k,v),
which do not commute, the max bid key could benefit from being split in Doppel’s split
phase.

In order for Doppel to execute split operations efficiently, i.e., get a parallel speedup
on multi-core hardware, the operations should be able to be summarized per core, so the
work is done in parallel. Chapter 4 describes these types of operations in more detail. There
are many workloads that have these properties, for example those that update aggregated
or derived data. Examples include maintenance of the highest bids in the auction example,
counts of votes on popular items, and maintenance of “top-k” lists for news aggregators
such as Reddit [2].

In summary, Doppel moves records dynamically between joined and split plans so
transactions can take advantage of per-core data for parallel writes and reconciled data
for fast reads. With these solutions, conflicting writes operate efficiently in the split phase,
reads of frequently-updated data operate efficiently in the joined phase, and the system can
achieve high overall performance even for challenging conflicting workloads that vary over
time.

1.6 Contributions

The contributions of this work are as follows:
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• A model of database execution based on split and joined execution plans. The split
plan efficiently uses per-core data to execute conflicting operations in parallel, while
the joined plan can correctly execute any operation.

• The idea of batching transactions with similar kinds of operations into phases to
efficiently amortize the cost of switching records between split and joined plans.

• Synchronized phases, which ensure that transactions that read multiple split records
can find a single time at which none are split, and that writes to multiple split records
in a single transaction are revealed atomically.

• A design for dynamically moving data between split and joined states based on ob-
served contention.

• An in-memory database, Doppel, which implements these ideas and improves the
overall throughput of various contentious workloads by up to 38× over OCC and
19× over 2PL.

We also demonstrate that on a workload modeled on real auction sites, the RUBiS web
auction software, Doppel improves bidding throughput with popular auctions by up to 3×
over OCC, and has comparable read throughput.

1.7 Outline

Chapter 2 relates this work to other ideas in executing transactions in phases, commutative
concurrency control, and techniques for parallelizing multi-core transactions. Doppel’s de-
sign is described in more detail in chapter 3. Chapter 4 describes the class of operations
that can be efficiently parallelized using phase reconciliation. Chapters 5 and 6 describe the
system we implemented and our application experience. Chapter 7 evaluates performance
hypotheses about the workloads where phase reconciliation provides a benefit. The last
chapter looks at future directions of this work and concludes.
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TWO

Related work

The idea of phase reconciliation is related to ideas in executing fast transactions on multi-
core databases, using commutativity in concurrency control and to reconcile divergent val-
ues in distributed systems, and using scalable data structures in multi-core operating sys-
tems.

2.1 Database transactions on multi-core

Several databases achieve multi-core speedup by partitioning the data and running one
partition per core. In this domain conventional wisdom is that when requests in the work-
load conflict, they must serialize for correctness [29]. Given that, work has focused on
improving parallelism in the database engine for workloads without much conflict. Sys-
tems like H-store/VoltDB [50, 51], HyPer [31], and Dora [40] all employ this technique.
It is reasonable when the data is perfectly partitionable, but the overhead of cross-partition
transactions in these systems is significant, and finding a good partitioning can be difficult.
Horticulture [41] and Schism [22] are two systems developed to aid in choosing a par-
titioning to maximize single-partition transactions, using workload traces. This approach
is brittle to changing workloads and does not help with non-partitionable workloads, two
situations Doppel handles. Also, in our problem space (data contention) partitioning will
not necessarily help; a single popular record with many writes would not be able to utilize
multiple cores.

Other systems operate on copies of the database on different cores, but still contend
for writes. Hyder [12] uses a technique called meld [13], which lets individual servers or
cores operate on a snapshot of the database and submit requests for commits to a central
log. Each server processes the log and determines commit or abort decisions determinis-
tically. Doppel also processes on local data copies but by restricting transaction execution
to phases, can commit without global communication. Multimed [44] replicates data per
core, but does so for read availability instead of write performance as in Doppel. The cen-
tral write manager in Multimed is a bottleneck. Doppel partitions local copies of records
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among cores for writes and provides a way to re-merge the data for access by other cores.
Bernstein and Newcomer describe a design for dividing a popular record into partitions,

so transactions update different copies to reduce hotspots in a workload with many conflict-
ing writes [11]. They also discuss batching updates on hot records across many transactions
to reduce the number of writes to the contended data. They note that reading a partitioned
record is more expensive, and might cause performance problems. Doppel addresses this
situation and makes these ideas practical by combining them with the idea of synchronized
phases, in order to efficiently read and write keys.

Doppel uses optimistic concurrency control, of which there have been many variants [5,
10, 13, 32, 34, 52]. We use the algorithm in Silo [52], which is very effective at reducing
contention in the commit protocol, but does not reduce contention caused by conflicting
reads and data writes. Shore-MT [30] removes scalability bottlenecks from Shore [16]
found in the the buffer pool manager, lock manager, and log manager. Larson et al. [34]
explore optimistic and pessimistic multiversion concurrency control algorithms for main-
memory databases, and this work is implemented in Microsoft’s Hekaton [23]. Both of
these pieces of work present ideas to eliminate contention in the database engine due to
locking and latches; we go further to address the problem of contention caused by conflict-
ing writes to data.

Other database research has investigated how to achieve intra-query parallelism using
multi-core systems, for example on queries that read and aggregate large amounts of data.
This research uses adaptive aggregation algorithms [8, 9, 17, 18, 48, 57]. In these algo-
rithms, the database uses per-core data structures for queries that require large scans and
have group by aggregations. Most of this work focuses on large read queries; Doppel targets
executing conflicting update workloads in parallel.

2.2 Commutativity

Commutative concurrency control. Doppel’s split phase techniques are related to ideas
that take advantage of commutativity and abstract data types in concurrency control. Gaw-
lick and Reuter first developed concurrency control algorithms that allowed concurrent
access to the same data by overlapping transactions [26, 27, 42]. These techniques were
limited to aggregate quantities. Escrow transactions extend this idea; an escrow system
carefully keeps track of potential values for a data item given the concurrent set of transac-
tions and data criteria [39]. In these systems, data is not partitioned per-core, so writes still
happen on a shared data item. Doppel also takes advantage of commutativity, but performs
commutative operations on per-core data to avoid contention. All of these techniques use
the values of the contended data to aid in determining whether a transaction could commit
or abort; this would also be useful in Doppel.
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Weihl et al. created a concurrency control algorithm that determined conflict in con-
currency control by examining the specification of atomic abstract data types [53–56], im-
plemented in Argus [36] and based on other work in abstract data types [37]. Doppel does
not use the return values of an operation to determine commutativity, sacrificing some con-
currency. Transactional boosting [28] uses data types and commutativity to reduce conflict
when using highly-concurrent linearizable objects in software transactional memory. Dur-
ing split phase, Doppel only performs certain operations on split data items, reminiscent of
following a specification on that datatype, and relies on these operations being commuta-
tive for correctness. However, in the joined phase transactions can execute arbitrary reads
and writes on any datatype. Synchronized phases provide a way for Doppel to transition
between different semantic descriptions for objects, in an efficient way.

Commutativity in distributed systems. Some work in distributed systems has explored
the idea of using commutativity to reduce coordination, usually forgoing serializability.
RedBlue consistency [35] uses the idea of blue, eventually consistent local operations,
which do not require coordination, and red, consistent operations, which do. Blue phase
operations are commutative, and are analagous to Doppel’s operations in the split phase.
Walter [49] uses the idea of counting sets to avoid conflicts. Doppel could use any Conflict-
Free Replicated Data Type (CRDT) [45] with its split operations in the split phase, but does
not limit data items to specific operations outside the split phase. None of these systems
provide multi-key transactions.

One way of thinking about phase reconciliation is that by restricting operations only
during phases but not between them, we support both scalable (per-core) implementations
of commutative operations and efficient implementations of non-commutative operations
on the same data items.

2.3 Scalability in multi-core operating systems

Linux developers have put a lot of effort into achieving parallel performance on multi-
processor systems. Doppel adopts ideas from the multi-core scalability community, includ-
ing the use of commutativity to remove scalability bottlenecks [20]. OpLog [14] uses the
idea of per-core data structures on contentious write workloads to increase parallelism,
and Refcache [19] uses per-core counters, deltas, and epochs. Tornado used the idea of
clustered objects, which involves partitioning a data item across processors [25]. Per-core
counters is a technique widely used in the Linux kernel [21]. This work tends to shift the
performance burden from writes onto reads, which reconcile the per-core data structures
whenever they execute. Doppel also shifts the burden onto reads, but phase reconciliation
aims to reduce this performance burden in absolute terms by amortizing the effect of rec-
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onciliation over many transactions. Our contribution is making these ideas work in a larger
transaction system.
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THREE

Phase reconciliation

This chapter explains how Doppel structures phases and transitions between them. Phases
are useful for the following reasons: First, in the split phase some operations that would
normally conflict execute quickly, since those operations can update per-core data rather
than shared data. Second, the cost of reconciling per-core data is amortized over many
transactions. Finally, using phases the system can still efficiently support transactions that
read multiple records in the joined phase, when all records are guaranteed to be reconciled.

The database cycles between phases, and each transaction executes on one core, entirely
within a single joined or split phase. The rest of this chapter describes each phase in detail,
how updates are reconciled, how records are classified, and how the system transitions
between phases. It concludes with a discussion about what kinds of transactions might not
work well with Doppel.

3.1 Split operations

To understand how Doppel executes transactions in phases, we must first know how Doppel
executes operations. As described in §1.1, each operation takes as an argument a key, and an
optional set of additional arguments. Doppel has a built-in set of operations which always
commute, and for which it has efficient split implementations. The implementation of each
split operation must provide three parts:

• OPinit( j,k) initializes core j’s per-core slice for k’s record.

• OPdelta( j,k, . . .) applies the operation to core j’s per-core slice.

• OPreconcile( j,k) merges core j’s per-core slice back into k’s global record.

During the split phase, whenever a transaction executes OP(k, . . .), Doppel will instead
execute OPdelta( j,k, . . .) with the same arguments passed to the original operation, where
j is the id of the core on which the transaction is running. At the end of the split phase, to
reconcile the per-core slices, Doppel will execute OPreconcile( j,k) for each per-core slice.
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core 0!

core 1!

core 2!

joined phase

ADD(x, 1) PUT(y, 1)

ADD(x, 10)

ADD(x, 1)

GET(x)

GET(x)

Figure 3-1: Several transactions executing in Doppel using OCC in the joined phase. The
ADD(k,n) operations conflict with each other, and with GET(k) operations on the same
record, x.

The combination of applying the delta function to a slice and the reconcile function to a
slice and record should have the same effect as the operation would if applied to the shared
record instead of a per-core slice.

For example, here are the functions for MAX(k,n):

• MAXinit( j,k) = c j[k]← v[k]

• MAXdelta( j,k,n) = c j[k]←max{c j[k],n}

• MAXreconcile( j,k) = v[k]←max{v[k],c j[k]}

To ensure good performance, per-core slices must be quick to initialize, and operations
on slices must be fast. Chapter 4 describes the properties of split operations in more detail.

3.2 Joined phase

A joined phase executes all transactions using conventional concurrency control. All records
are reconciled—there is no per-core data—so the protocol treats all records the same.
Joined-phase execution could use any concurrency control protocol. However, some de-
signs make more sense for overall performance than others. If all is working according
to plan, the joined phase will have few conflicts; transactions that conflict should execute
in the split phase. This is why Doppel’s joined phase uses optimistic concurrency control
(OCC), which performs better than locking when conflicts are rare.

Doppel’s joined phase concurrency control protocol is based on that of Silo [52]. Fig-
ure 3-2 shows the joined-phase commit protocol. Records have transaction IDs (TIDs);
these indicate the ID of the last transaction to write the non-split record, and help detect

28



Data: read set R, write set W
// Part 1
for Record, operation in sorted(W ) do

if (lock(Record) 6= true) then abort();
commit-tid← generate-tid(R,W )
// Part 2
for Record, read-tid in R do

if Record.tid 6= read-tid
or (Record.locked and Record 6∈W )

then abort();

// Part 3
for Record, operation in W do

Record.value← apply(operation, Record, commit-tid);
Record.tid← commit-tid;
unlock(Record);

Figure 3-2: Doppel’s joined phase commit protocol. Fences are elided.

conflicts. A read set and a write set are maintained for each executing transaction. During
execution, a transaction buffers its writes and records the TIDs for all values read or written
in its read set. If a transaction executes an operation like ADD(k,n) in the joined phase, it
puts the record for the key k in its read and write sets. At commit time, the transaction
locks the records in its write set (in a global order to prevent deadlock) and aborts if any
are locked; obtains a unique TID; validates its read set, aborting if any values in the read
set have changed since they were read, or are concurrently locked by other transactions;
and finally writes the new values and TIDs to the shared store. Using a shared counter to
assign TIDs would cause contention between cores. To avoid this, our implementation as-
signs TIDs locally, using a per-core counter, with the core id in the low bits. The resulting
commit protocol is serializable, but the actual execution may yield different results than if
the transactions were executed in TID order [52].

Figure 3-1 shows five transactions executing on three cores in a joined phase. Each
transaction runs on a single core and maintains a read and write set. Initially, all three trans-
actions are running ADD(k,n) on the same record x, and will conflict and run sequentially.
Similarly, ADD(k,n) conflicts with GET(k) on the same record, so the GET(k) operations
are delayed. The GET(x) operations can later execute in parallel.

Since each transaction executes completely within a single phase, Doppel cannot leave
a joined phase for the following split phase until all current transactions commit or abort.
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core 0!

core 1!

core 2!

ADDdelta (1, x, 10) GET(x)

split phase

ADDdelta (2, x, 1) GET(y)

GET(x)

ADDdelta (1, x,1)

ADDdelta(0, x, 1) PUT(y, 1)

joined phase initialize

ADDinit(0, x)

ADDinit(1, x)

ADDinit(2, x)

Figure 3-3: Cores initialize per-core slices at the beginning of a new split phase, to split x.
The transactions use ADDdelta(k,n) operations on per-core slices. Transactions with GET(k)
operations on x are stashed.

3.3 Split phase

A split phase can execute in parallel some transactions that conflict. Not all records are split
during a split phase; non-contended records remain joined. Accesses to joined data proceed
much as in a joined phase, using OCC.

At the beginning of each split phase, Doppel initializes per-core slices for each split
record. There is one slice per contended record per core. During the split phase, as a trans-
action executes, all operations on split records are buffered in a new split-data write set.
When the transaction commits, the updates are applied to their per-core slices. At the end
of the split phase, the per-core slices are merged back into the global store. For example, a
transaction that executed an ADD(k,10) operation on a split numeric record might add 10
to the local core’s slice for that record.

Figure 3-3 shows a split phase in Doppel where x is split. First, Doppel initializes per-
core slices for x. Then, three transactions, one on each core, execute in parallel. Each
includes an ADD(k,n) on the split record x. Doppel translates this to the ADDdelta(k,n)
function on x. Since the ADD(k,n) operations now use per-core slices, they can execute
in parallel, and the three transactions do not conflict. The transaction on the first core also
writes to y, which is not split. Doppel will execute the operation on y using OCC. This
forces it to serialize with the later transaction on the third core, which reads y.

Split phases cannot execute all transactions, however. Operations on the same split keys
in the split phase must commute. For simplicity, Doppel actually selects only one selected
operation per split record per split phase. Different records might have different selected
operations, and the same record might have different selected operations in different split
phases. A transaction that invokes an unselected operation on a split record will be aborted
and stashed for restart during the next joined phase, at which point Doppel can execute
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Data: joined read set R, joined write set W , split write set SW
// Part 1
for Record, operation in sorted(W ) do

if (lock(Record) 6= true) then abort();
commit-tid← generate-tid()
// Part 2
for Record, read-tid in R do

if Record.tid 6= read-tid
or (Record.locked and Record 6∈W )

then abort();

// Part 3
for Record, operation in W do

Record.value← apply(operation, Record, commit-tid);
Record.tid← commit-tid;
unlock(Record);

for slice, operation in SW do
slice← delta(operation, slice);

Figure 3-4: Doppel’s split phase commit protocol.

any combination of operations on the record using OCC. In Figure 3-3, ADD(k,n) is the
selected operation on x, so the two GET(k) operations are stashed. Doppel saves them to
execute in the next joined phase.

When a split phase transaction commits, Doppel uses the algorithm in Figure 3-4. It
is similar to the algorithm in Figure 3-2 with a few important differences. The read set R
and write set W contain only joined records, while SW buffers updates on split data. The
decision as to whether the transaction will abort is made before applying the SW writes;
operations on split data cannot cause an abort, and are not applied if the transaction aborts.
In the split phase the commit protocol applies the SW delta operations to per-core slices.
Since per-core slices are not shared data, they are not locked and the commit protocol does
not check version numbers.

Any transaction that commits in a split phase executes completely within that split
phase; Doppel does not enter the following joined phase until all of the split-phase transac-
tions commit or abort, and reconciliation completes.

3.4 Reconciliation

At the end of the split phase, each core stops processing transactions and begins reconcil-
iation; each merges its per-core slices with the global store using the OPreconcile function
for each record’s selected operation. Figure 3-5 shows the reconciliation algorithm Doppel

31



Data: per-core slices S for core j
for Record, operation, slice in S do

lock(Record);
Record.value← reconcile(operation, slice, Record);
unlock(Record);

S← /0

Figure 3-5: Doppel’s per-core reconciliation protocol.

core 0! ADDreconcile(0, x)

core 1!

core 2!

split phase reconciliation

ADDreconcile(1, x)

ADDreconcile(2, x)

joined phase

GET(x)

GET(x)

Figure 3-6: Each core j reconciling its per-core values for x, using ADDreconcile( j,x). Each
core must reconcile sequentially. When done, x’s value will be incremented by the sum of
all the per-core values.

uses to do so. For example, for a split record with selected operation MAX, each core locks
the global record, sets its value to the maximum of the previous value and its per-core slice,
unlocks the record, and clears its per-core slice. Figure 3-6 shows three cores reconciling
per-core values for record x. This involves sequential processing of the per-core slices, but
the expense is amortized over all the transactions that executed in the split phase.

It is safe for reconciliation to proceed in parallel with other cores’ split-phase trans-
actions since reconciliation modifies the global versions of split records, while split-phase
transactions access per-core slices. Once a core begins reconciliation, it will not process any
more split phase operations on per-core slices until the next split phase. However, a core
that has finished reconciliation cannot begin processing joined phase transactions again un-
til all cores have finished reconciliation. Once the last core has finished reconciliation, each
core can resume, now in the joined phase. At the end of reconciliation the database reflects
a correct, serializable execution of all split phase transactions.
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3.5 Phase transitions

When Doppel is initialized, there is no split data. Every tc milliseconds, Doppel checks
statistics it is maintaining to see if it should split any records. If so, then Doppel begins
a new split phase. Phase transitions apply globally, across the entire database. All cores
stop processing transactions and read the list of new split records. Once all cores have
synchronized with the list of split records and initialized their per-core slices, Doppel is in
split phase, and operations on split records execute on per-core slices.

Doppel only considers switching from a split phase to a joined phase when there are
stashed transactions. Since each core synchronizes and stops processing transactions during
a phase change, changing phases too often can be costly. However, transactions stashed
during a split phase have to wait until the next joined phase, and to ensure low latency
for these transactions, phase changing should be frequent. Chapter 7 evaluates this tradeoff
between throughput and latency. Doppel balances this issue by bounding the length of a
split phase to ts, if there are stashed transactions. When ts time has passed since the first
stashed transaction, Doppel will initiate a phase change from split to joined. Doppel might
transition to a joined phase earlier if there are many stashed transactions. This threshold
is set by a parameter, ns. In experiments in Chapter 7 ns is 100,000, ts is 20ms, and tc is
200ms; these parameters were determined through our experiments.

When Doppel transitions from a split phase to a joined phase, it re-evaluates its statistics
to determine if it should change the set of split records or selected operations. This algo-
rithm is described in §3.6. If at this point Doppel decides to split a new record, move a split
record back to a joined state, or change the selected operation for a record, then it synchro-
nizes all the cores, reconciling records that are changing from split mode to joined or are
changing operations and creating per-core slices for records that are moving from joined
to split. If there are no stashed records, then Doppel checks statistics every tc milliseconds
during the split phase to see if it should change the set of split records.

Doppel only stays in joined phase long enough to execute the previously stashed trans-
actions. Once it begins, all cores execute transactions in their stashed lists using OCC.
When a core finishes it blocks, and Doppel waits for the last core to finish until moving
to the next split phase. No core will start using per-core slices again until all cores have
synchronized to move to the next split phase.

3.6 Classification

Doppel classifies records to decide whether or not to split a record in the split phase by
estimating the cost of conflict. Doppel’s cost estimation algorithm tries to estimate how
often a record will cause an abort, and if that value is high, it will split the record. Doppel
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aborts one transaction when two transactions are executing conflicting operations on the
same record. The cost of an abort is running the aborted transaction again, which wastes
CPU cycles. Split records never cause aborts during a split phase, so if the record can be
split, the abort cost will be eliminated.

When a record is split for a selected operation, then in split phase, any transactions
issuing another operation on that record must be stashed. This has a latency cost for the
stashed transactions, and a CPU cost to save the transaction and run it later. Doppel’s algo-
rithm seeks to minimize the cost of stashing transactions while maximizing the cost saved
by splitting records that were causing aborts.

While executing, Doppel samples all transactions’ accesses, and in particular conflict-
ing record accesses. Doppel keeps two counts for each operation on the record: the number
of times that operation was used on that record, and the number of times that record caused
a transaction to abort because of a conflict using that operation. For operations with enough
conflicts, Doppel estimates how much of an impact splitting a record with that operation
could save in conflict costs; we call this estimate savings(op,record).

savings(op,record) has two components. First is the sampled count of conflicts on the
record for op, cop, and second is the sampled count of times op is issued on that record, nop.
When a record is split, it no longer causes the conflicts it might cause were it to be always
joined, so Doppel uses the number of times the operation is issued on the split record as
a proxy for conflict. This effectively assumes that all operations that did not conflict could
operate in parallel should the conflicts be removed. wc and wi are weights assigned to these
factors.

savings(op,record) = wc× cop +wi×nop

If an operation cannot execute correctly under the split plan, then its savings(op,record)
is defined to be zero. If a record is receiving many different operations it might not be
worth splitting, even if it causes some conflicts, because it will delay transactions until
the next joined phase. Doppel looks at a ratio of the benefit of savings(op,record) to the
other operations on the record to estimate the total impact factor. A record receives a total
number of operations n.

impact(op,record) =
savings(op,record)

n−nop

The denominator is the sampled count of every operation other than op on the record. This
approximates the benefit per delayed operation. Doppel then looks at the highest savings
(impacti,opi) for the record. This operation opi is the operation that, if split, could provide
the highest cost savings despite delayed transactions. If impacti is higher than some Tsplit

threshold, Doppel will split the record. Once a record is split, if impacti falls below a
different threshold, Tjoin, Doppel will put the record back into joined mode.
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Good values for the thresholds and weights will vary between systems. The weights
represent what ratio to use when considering the number of conflicts, reads, and writes
an operation on a record might cause. We found good values for wc and wi by running
different workloads with different weights; in our experiments wi = 1 and wc = 2. Once
Doppel splits the first record that occasionally experiences an incompatible operation, the
system will have to change phases. After this, the marginal cost of splitting the next record
is much lower, while the savings is the same, so Doppel uses a lower threshold after the
first record.

Generally, Doppel will only split records that cause a lot of conflict. Fortunately, in most
cases, only a few records cause problems, for example an aggregate count or a popular item
receiving bids. In order for a record to force many transactions to abort, many transactions
must be accessing that record at a high rate; this implies the transactions are not accessing
other records as much.

Doppel continously samples transactions. Every tc milliseconds Doppel evaluates the
formula for all split records and the most conflicted non-split records, to consider changing
their status or operation. Records might switch back and forth between being marked as
split or not across these evaluations. This is not a problem for performance because it
implies that neither scheme for executing transactions on the record (using per-core slices
or not) provides much better performance than the other. Doppel also supports manual
data labeling (“this record should be split for this operation”), but we only use automatic
detection in our experiments.

3.7 Discussion

This formula described above requires tuning to find good threshold numbers and good
weights for each of the factors. A better algorithm might derive weights from running a
workload trace and measuring performance. We leave this to future work. Also, the benefit
gained by splitting might not be linear in the factors; and this is only a rough approximation
of conflict. For example, though many transactions might include a splittable operation on
a record, perhaps they would not cause many aborts in joined phase. This could happen if
a record is written mostly by one core.

Conflict counts might not even be the best feature to minimize in all cases. For example,
consider the case where two different operations on a record force a lot of aborts, but one
is used in large, CPU-intensive transactions while the other is used in short, inexpensive
transactions. It might be more prudent to split the record for the operation used in the large
transaction to avoid wasted work, but Doppel could not detect this since it only counts the
number of conflicts. Also, our current algorithm does not take into account having multiple
contended records in a transaction. If two records in a transaction were heavily contended,
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then splitting one would only help a small amount; the conflicting transactions would still
run one at a time because of the second contended record.

Only certain types of transactions work well with phases. Doppel requires transactions
to run entirely within a single phase. This means that long-running transactions would not
work well with phases, as they would delay a phase change and leave the system mostly idle
while running. If transactions had a lot of variance in length, this could cause some cores
to be idle waiting for a phase change while other cores are finishing longer transactions.

In Doppel, phases are designed to work best with mostly small, fast transactions that
only access a few records. Transactions that use the disk or communicate with the client
over the network might benefit from phase reconciliation, but we have not investigated this.
Phases could potentially be useful for bigger, more expensive transactions, since the cost
for aborting and retrying expensive transactions is high.
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FOUR

Parallel operations

Doppel applies operations to per-core slices to achieve parallel speedup during a split phase.
However, not all operations can correctly be performed in parallel, and of those that can,
not all offer a performance benefit. Figure 4-1 illustrates which operations Doppel can run
correctly, and quickly, in its split phase. Operations that are always commutative, no matter
database state or operation arguments, can run correctly in Doppel’s split phase. Only some
of the commutative operations will get a parallel speedup. The rest of this chapter discusses
the class of operations that Doppel can split to take advantage of phase reconciliation, and
when it can achieve parallel speedup.

4.1 Properties for correctness

In order to achieve correctness when operations execute on per-core slices, the results of
the containing transactions should be as though they had executed in some sequential order.
These results include modifications to the database and return values from the operations.
The tricky part of that is making sure that transactions’ split operations (after reconciliation)
appear to have executed in a compatible sequential order.

In general, Doppel can correctly execute split operations that commute. To show this,
we now present a semi-formal development of operations, transactions, and commutativity.
The goal is to show that Doppel’s execution strategy produces serializable results when
operations that execute on per-core state in split phases are commutative.

4.1.1 States and operations

A database state s ∈ S is a mapping from keys to values. The notation s′ = s[k 7→ v] means
that s and s′ are identical except for key k, and key k has value v in s′ (k might not exist in
s). The notation v = s[k] means that v is the value of key k from s.

A Doppel operation o is modeled as comprising two parts, 〈os,ov〉. os : S → S is a
function on database state that returns a new database state, and ov : S→V is a function on
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All single-key operation pairs

Commutative
Efficient to 
run in parallel

Correct in 
Doppel’s
split phase

max(k, x)+max(k, y)sha1(k)+sha1(k)

add(k, 0)+mult(k, 1)

put(k, x)+put(k, y)

Figure 4-1: A categorization of sets of single-key operations. The box with the dashed lines
indicates what combinations of operations Doppel can execute correctly in the split phase.

database state that returns a value to the caller.

An operation might change the database state. For example, an operation 〈os,ov〉 which
sets a key x’s value to 5 would be expressed in the following way: os(s) ≡ s[x 7→ 5], and
since it does not return anything, ov(s)≡ nil. An operation 〈ps, pv〉which returned the value
of x, without changing any database state, would be defined as ps(s)≡ s and pv(s)≡ s[x].

An operation 〈os,ov〉 is independent of key k iff ∀s ∈ S,v ∈V ,

os(s[k 7→ v]) = (os(s))[k 7→ v] and ov(s[k 7→ v]) = ov(s).

In other words, o never modifies key k, nor does it read its value. If an operation is not
independent of a key k, it is dependent on k. Two operations 〈os,ov〉 and 〈ps, pv〉 are inde-
pendent if their sets of dependent keys do not intersect.

Two operations a and b commute if and only if for any database state s,

as(bs(s)) = bs(as(s)) and av(s) = av(bs(s)) and bv(s) = bv(as(s)).

That is, their execution on any database state, in either order, results in the same new
database state and the same return values.

It is also useful to reason about classes of operation that all commute. For example,
any two operations that only read the database commute, since the operations’ state func-
tions are the identity. We can also prove that operations which act on different keys always
commute, as follows:

Lemma. Two operations that are independent commute.
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Proof sketch. Two operations o and p that are independent operate on different, non-
intersecting sets of keys. p never reads any keys that o modifies, so pv must produce the
same result on os(s) as on s, and the same holds for ov on ps(s). Since o and p read and
write different sets of keys, os(ps(s)) = ps(os(s)). Thus, o and p commute.

4.1.2 Transactions and histories

Now we describe the transaction model we use to argue about correctness. A transaction is
a sequence of operations, each of which operates on the database. In execution, operations
from different transactions are interleaved. (Operations might also execute in parallel, but
we assume here that the effects of parallel operations are always the same as those oper-
ations in some serial order—that is, that operations implement proper local concurrency
control, such as fine-grained locks. This allows us to focus on the more difficult problem
of transaction serializability.)

A history h is a sequence of operations. For a history h = [o1, . . . ,on] we define two
functions: hs(s) = os

n(o
s
n−1(· · ·(os

1(s)) · · ·)) and hv(i,s) = ov
i (o

s
i−1(· · ·(os

1(s)) · · ·)).
Two histories h = [o1, . . . ,on] and h′ = [o′1, . . . ,o

′
n] are equivalent if and only if for any

database state s:

• They contain the same operations. That is, there exists a permutation π over {1, . . . ,n}
where for all i with 1≤ i≤ n, oi = o′

π(i).

• Corresponding operations have the same return values. That is, for all i with 1≤ i≤ n,
hv(i,s) = h′v(π(i),s).

• The final state of each history is the same. That is, hs(s) = h′s(s).

Clearly h is equivalent to itself. Furthermore, if h and h′ are equivalent, then for any
other history p, the concatenated histories p‖h and p‖h′ are equivalent, as are the histories
h‖ p and h′ ‖ p.

A history is a transaction history for some set of committed transactions T if and only
if the folowing properties hold:

• The history contains exactly the operations from the set of transactions T ; there is
a one-to-one mapping between operations in h and operations in T . Since aborted
transactions do not return values and operations in aborted transactions do not affect
database state, from here we will assume all transactions from T committted.

• If operations appear in some order in a single transaction t ∈ T , they are in the same
order in h. In other words, h restricted to the subhistory of transaction t, h|t, has the
operations of t in transaction order.
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A history h is a serial history of a set of transactions T if and only if h is a transaction
history for T , and no two transactions in h are interleaved.

Given this model, we can begin to reason about the ways in which commutativity affects
the equivalence of different transaction histories. For example, this lemma will be useful:

Lemma (commutative equivalence). Given a history h = [o1, . . . ,om, p, p′,q1, . . . ,qn]

where operations p and p′ commute, h and h′ = [o1, . . . ,om, p′, p,q1, . . . ,qn] are equivalent.

Proof sketch. Consider the two histories [p, p′] and [p′, p]. These two histories are equiv-
alent—a direct consequence of the definition of commutativity. The lemma follows from
the equivalence facts above.

4.1.3 Doppel execution

Doppel executes transactions in phases. Every transaction executes in exactly one phase—
split or joined—and never straddles phases. Doppel’s concurrency control algorithm for
joined phases is exactly optimistic concurrency control, which generates serializable re-
sults. Thus, when Doppel executes a set of transactions T in a joined phase, any history h
it generates for those transactions will be equivalent to a serial history of T .

Doppel’s concurrency control algorithm for split phases is a different story. We wish to
show that our algorithm for executing transactions in Doppel’s split phase is serializable:
that when Doppel executes a set of transactions T in a split phase, any history h it generates
for those transactions will be equivalent to a serial history of T .1 But split-phase execution
is not equivalent to OCC. In the rest of this section, we first model the histories actually
produced by Doppel in split phases, and then show that each such history is equivalent to a
serial history.

At the beginning of a split phase, for each core and split key, Doppel initializes the
key’s per-core slice to nil. During the split phase, operations on split keys are recorded as
deltas; these deltas modify the per-core slice (and read or write no other database state)
and return nil. At the end of the split phase, for each core and split key, Doppel executes
the corresponding reconciliation operation that merges the per-core slice into the database
state, then erases the per-core slice.

Doppel requires the following rules hold for split-phase execution:

1. During a split phase, there is a set of split records, ssplit ⊆ s.

2. All operations that depend on split records depend on at most one key.

1Note that by “Doppel” we mean “an ideal implementation of Doppel’s concurrency control algorithms
that doesn’t have any implementation bugs.”
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3. All operations that depend on split records commute. This is because for each split
record, Doppel will use an execution plan that is specialized for a single commutative
operation class. That is, every operation that executes during the split phase on the
record commutes with all other operations that might execute on the record; if any
other operation is attempted, the relevant transaction is aborted and delayed to the
next joined phase.

4. No operation that depends on a split record returns a value.

5. When a core receives an operation that depends on a split record, it does not apply
it to the database. Instead, it applies the delta for that split operation to its per-core
slice.

6. At the end of the split phase, Doppel reconciles the per-core slices with the database.
Each core’s reconciliation operations are its final operations in the phase; it executes
no other operations.

Example split phase history

We first use an example to demonstrate the effects of these rules, and then argue about
general properties of histories generated by Doppel’s execution in split phase.

Consider two transactions t1 = [a,b,c] and t2 = [d,e, f ], where a through f are opera-
tions. Executing t1 and t2 in a joined phase might produce a history like the following:

h = [a,d,b,c,e, f ]

The operations from different transactions are interleaved, but since Doppel’s joined phase
uses OCC and is serializable, h is equivalent to some serial history.

Now assume that b and e are compatible split operations on the same key, k. If Doppel
decided to split k for operations like b and e, executing t1 and t2 in a split phase might
produce a history like the following (assuming that t1 executes on core 1 and t2 on core 2):

hsplit = [i1, i2,a,d,bdelta,c,edelta,r1, f ,r2]

Here, the i operations initialize the per-core slices, and the r operations are reconcile op-
erations; there is one i and one r per core and per split key. The i and r operations do not
correspond to any transactions.

Properties of split-phase operations

Any operations in a split-phase history have the following properties. Assume that o is a
normal joined operation (e.g., a or d in our example), and σ jk is an operation on core j on
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split key k (e.g., i1, edelta, or r2).

• Any o operation in a split phase is independent of, and therefore commutes with, all
σ jk operations in that split phase. This is because all operations on a split key k in a
split phase are executed in split mode.

• Any σ jk and σ jk′ operations on different keys are independent, and therefore com-
mute.

• Any delta operations δ jk and δ j′k′ commute. If they are on different cores and/or
keys, this is because they are independent; if they are on the same core and key, this
is because the underlying operation class is commutative.

• Any reconciliation operations r jk and r j′k on different cores, but the same key, com-
mute. This is true even though the operations affect the same database state because
the underlying operation class is commutative.

• Let a1, . . . ,am be a sequence of split operations on core j and key k. Then the se-
quence of operations

h = [i jk,(a1)delta, . . . ,(am)delta,r jk]

is essentially equivalent to the sequence of operations

h′ = [a1, . . . ,am],

in the following sense: Given any initial database state s, the states hs(s) and h′s(s)
are equal; and the return value of each (ai)delta is the same as that of ai. (Essential
equivalence is the same as equivalence, except that it allows the system-generated op-
erations i jk and r jk to be dropped.) This is true by the definition of Doppel’s delta and
reconciliation operations: Doppel ensures that a set of deltas, plus the corresponding
reconciliation, has the same effect on database state as the original operations; and
both the original operations and the deltas return nil.

Split equivalence

These properties let us show that split-phase histories are essentially equivalent to simpler
histories, in which the original operations—not their deltas—execute out of transaction
order at the end of the history.

Lemma (split equivalence). Let T be a set of transactions executing in a Doppel split
phase, and let T ′ equal T with all split-mode operations omitted. (Thus, in our example,
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T = {[a,b,c], [d,e, f ]} and T ′ = {[a,c], [d, f ]}.) Then Doppel’s execution of T will produce
a history that is equivalent to a history h = [o1, . . . ,om, p1, . . . , pn], where the oi are the
operations of T ′ in an order compatible with an OCC execution of T ′, and the pi are the
split-mode operations in T in any order.

Proof sketch. We sketch a proof with reference to hsplit, our example history, but the
argument applies to any split-phase history. Recall that

hsplit = [i1, i2,a,d,bdelta,c,edelta,r1, f ,r2].

First, consider the restriction of hsplit to joined-mode operations, which is

hjoined = [a,d,c, f ].

Doppel executes transactions in split phases using OCC, just as it does in joined phases,
with the exception that split-mode operations do not participate in the validation protocol.
Put another way, Doppel in split phase acts like OCC on T ′. So we know that hjoined contains
the operations of T ′ in an order compatible with OCC execution.

Now, using repeated invocations of commutative equivalence and the properties of split-
phase operations, we can show that hsplit is equivalent to hreorder, which orders all split
operations at the end of execution, grouped by core and key:

hreorder = [a,d,c, f , i1,bdelta,r1, i2,edelta,r2]

The last property of split-phase operation then shows that the reordered execution is essen-
tially equivalent to the following execution without delta operations:

hsimple = [a,d,c, f ,b,e]

Although this execution has fewer operations than the original, it’s reasonable to consider
it equivalent to the original, since the omitted i and r operations were introduced by Doppel
and do not correspond to user-visible transactions. hsimple starts with hjoined, and ends with
the split-mode operations in some order, so the lemma is proved.

4.1.4 Serializability of split-phase execution

Now we can argue that Doppel’s execution strategy during a split phase produces serializ-
able results.
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Theorem. Doppel’s operation in split phases is serializable: any history produced by ex-
ecuting a set of transactions T in a split phase is essentially equivalent to a serial history of
those transactions.

Proof sketch. Consider a single Doppel split phase that executes a set of transactions T
starting from a database state s, generating some history h. Some of the keys are split.

By the split equivalence lemma above, h is essentially equivalent to a new history h1

that looks like the following:

h1 = [o1, . . . ,om, p1, . . . , pk]

Each oi operation is independent of all split keys and each p j is an operation from the
commutative class associated with its split key.

We show that h1 is equivalent to a serial history. T ′ is the set of transactions from T
with their split operations omitted. Doppel uses OCC for all operations when executing T ′,
which would produce a history equivalent to a serial history of the transactions in T ′. Oper-
ations on split keys do not affect Doppel’s OCC behavior. This means the joined operation
prefix of h1:

hjoined = [o1, . . . ,om]

is equivalent to a serial history of T ′:

hserial = [q1, . . . ,qm]

where the qi are the oi permuted into some serial transaction order.
This in turn means that [o1, . . . ,om, p1, . . . , pk] is equivalent to [q1, . . . ,qm, p1, . . . , pk].

Since the p j commute with each other and with the oi (qi), we can reorder them arbitrarily
without affecting equivalence. In particular, we can reorder them into an order consistent
with the order of operations in each t ∈ T .

Transactions in T that had no operations on joined keys can be reordered in between
other transactions. This produces a serial transaction history of T , which means h1 is equiv-
alent to a serial history of T and h is essentially equivalent to a serial history of T .

4.1.5 Serializability of alternating split and joined phases

Doppel’s joined phase is serializable because it uses OCC. We just showed that Doppel’s
split phase is serializable. Since no transactions ever execute over phase boundaries, all of
the transactions in the next split phase will start after all joined phase transactions complete,
and all transactions in a following joined phase will start and finish after all split phase
transactions complete. Let X be a serial history for a split phase, and Y a serial history
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for the following joined phase. A serializable order for multiple phases is a concatenation
of any of the serializable orders produced for each phase, so in this case a serial history
for the two phases is X ‖Y . This means the combination of the split and joined phases is
serializable.

4.2 Efficient operation implementations

Commutativity is a sufficient condition to run a split operation correctly in the split phase.
However, there is a distinction between operations Doppel can execute correctly in the split
phase, and operations for which Doppel gets parallel speedup. This section describes when
it is possible to achieve good performance.

Commutative operations can execute correctly on per-core slices, but for some opera-
tions, the process of reconciling the per-core slices can take time linear in the number of
operations. Running the operations one at a time when reconciling is not likely to yield
much parallel speedup.

An example of an operation that we do know how to execute with parallel speedup is
MAX(k,n), which replaces k’s value with the max of the value and n. MAX(k,n) acts on
integer values, assigns v[k]←max{v[k],n}, and returns nothing. In order to execute many of
these operations in parallel, each core initializes per-core slices c j[k] with the global value
v[k]. When a core j executes an operation MAX(k,n), it actually sets c j[k]←max{c j[k],n}.
To merge the per-core slices, a core applies v[k]← max j c j[k]. With MAX(k,n), merging
the per-core slices takes O( j) time, where j is the number of cores.

An example of an operation where Doppel does not get parallel speedup is SHA1(k),
which sets k’s value to the SHA1 of its current value. Doppel could execute SHA1(k) cor-
rectly in the split phase, like so: Each core initializes its own per-core slices c j[k] to 0.
When a core j executes an operation SHA1(k), it actually sets c j[k]← c j[k] + 1. When a
core wishes to read k, it must merge the per-core slices by executing v[k]← SHA1∑ j c j[k](k).
Though this scheme is correct, it is unlikely to achieve parallel speedup; reconciliation is
O(n) where n is the number of SHA1(k) operations. We do not know of a good way to
execute many instances of SHA1(k) on the same record in parallel. Because of this, Doppel
cannot get a parallel speedup with this operation, even though it commutes.

Definition. A summary a for a sequence of commutative operations [o1,o2, ...,on] is an
operation such that for all database states s ∈ S, as(s) = os

n(o
s
n−1...(o

s
1(s))). If for each pos-

sible sequence of operations in commutative class O there is a summary a that we can
compute in constant time and that runs in constant time with respect to the number of op-
erations in the sequence, we say O can be summarized.
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The key difference between MAX(k,n) and SHA1(k) is that MAX can be summarized.
When we can summarize a set of operations (such as all MAX operations), Doppel can
perform the computation of the operations in the delta function, instead of just recording
the operations to perform in the merge function. When reconciling MAX, Doppel runs max
on each c j[k],v[k], so it runs a total of j MAX operations. When reconciling SHA1, Doppel
must run SHA1 n times serially, where n is the total number of SHA1 operations issued.
If an operation can be summarized, then during a split-phase execution with n operations
on a split key, Doppel can record a summary function on each core for the sequence of
split operations that have executed on that core so far. During reconciliation, instead of
executing the n split operations, Doppel executes j summary functions, and thus the time
to reconcile the per-core values is O( j) instead of O(n).

In summary, Doppel requires operations on split data in the split phase to execute on
a single record, not return a value, and to be commutative. Commutativity is required so
that no matter in what order operations are applied to per-core slices, the order will match
a valid order of their containing transactions. If the operation can be summarized, Doppel
can get parallel performance.

4.3 Limitations

One situation where Doppel does not help is when a sequence of operations on a record
commute due to their arguments, though the operations with all possible arguments do not
commute. For example, during a split phase, MULT(k,1) operations multiply a record’s
value by one, while ADD(k,0) operations add zero to the value. Technically these com-
mute; all operations leave the value unchanged and none return a value, so they can be
performed in any order, with the same result. But Doppel will not execute such a sequence
of operations on per-core values during one split phase. Doppel does not detect commuta-
tivity; instead, Doppel knows that certain operations always commute, and if the developer
uses those operations in transactions, Doppel may execute them in the split phase.

Our demand that operations commute rules out some situations in which parallel speed-
up would be possible. For example, suppose in a set of transactions, each performs only
blind writes to a specific record. These blind writes do not commute, yet they could be
implemented in a way that achieves parallel speedup; statically analyzing the set of running
transactions would show that it is correct to execute those writes in parallel and then choose
a “winning” writer depending on how the transactions were ordered based on the other
operations in the transactions. Doppel does not allow this, because Doppel cannot execute
non-commutative operations on per-core slices.

Doppel does not parallelize within an operation; Doppel only gets parallel speedup with
many different instances of operations. For example, consider storing matrices in records.
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Though multiple matrix multiplication operations on the same record do not commute, a
single matrix multiplication operation can be performed in parallel on many cores; Doppel
will not do this.

Finally, a system like Doppel might be able to achieve a performance improvement for
even non-commutative operations, but without parallel execution. For example, split-phase
execution could log updates to per-core slices, with the merge step applying the logged
updates in time order; this would cause those updates to execute serially. In some cases
this is faster than executing the operations using locking in parallel on multiple cores, for
example by avoiding cache line transfers relating to the contended data.

4.4 Operations in Doppel

Doppel supports traditional GET and PUT operations, which are not splittable:

• GET(k) returns the value of k.

• PUT(k,v) overwrites k’s value with v.

Doppel’s current set of splittable operations is as follows.

• MAX(k,n) and MIN(k,n) replace k’s integer value with the maximum/minimum of
it and n.

• ADD(k,n) adds n to k’s integer value.

• OPUT(k,o,x) is a commutative form of PUT(k,x). It operates on ordered tuples.
An ordered tuple is a 3-tuple (o, j,x) where o, the order, is a number (or several
numbers in lexicographic order); j is the ID of the core that wrote the tuple; and x is
an arbitrary byte string. If k’s current value is (o, j,x) and OPUT(k,o′,x′) is executed
by core j′, then k’s value is replaced by (o′, j′,x′) if o′ > o, or if o′ = o and j′ > j.
Absent records are treated as having o = −∞. The order and core ID components
make OPUT commutative. Doppel also supports the usual PUT(k,x) operation for
any type, but this doesn’t commute and thus cannot be split.

• TOPKINSERT(k,o,x) is an operation on top-K sets. A top-K set is like a bounded set
of ordered tuples: it contains at most K items, where each item is a 3-tuple (o, j,x)
of order, core ID, and byte string. When core j′ executes TOPKINSERT(k,o′,x′),
Doppel inserts the tuple (o′, j′,x′) into the relevant top-K set. At most one tuple
per order value is allowed: in case of duplicate order, the record with the highest
core ID is chosen. If the top-K contains more than K tuples, the system then drops
the tuple with the smallest order. Again, the order and core ID components make
TOPKINSERT commutative.
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More operations could be added (for instance, multiply).
All operations in Doppel access only one record. This is not a functional restriction

since application developers can build multi-record operations from single-record ones us-
ing transactions. It is an open question whether or not Doppel could be extended to work
with multi-record operations on split records in split phase.
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FIVE

Doppel implementation

Doppel is implemented as a multithreaded server written in Go. Go made thread manage-
ment and RPC easy, but caused problems with scaling to many cores, particularity in the Go
runtime’s scheduling and memory management. In our experiments we carefully managed
memory allocation to avoid this contention at high core counts.

Doppel runs one worker thread per core, and one coordinator thread which is respon-
sible for changing phases and synchronizing workers when progressing to a new phase.
Workers read and write to a shared store, which is a key/value map, using per-key locks.
The map is implemented as a concurrent hash table. All workers have per-core slices for
the split phases.

Developers write transactions with no knowledge of reconciled data, split data, per-
core slices, or phases. They access data using a key/value get and set interface or using
the operations mentioned in chapter 4. Clients submit transactions written in Go to any
worker, indicating the transaction to execute along with arguments. Doppel supports RPC
from remote clients over TCP, but we do not measure this in chapter 7.

Our implementation does not currently provide durability, and is not fault tolerant. Ex-
isting work suggests that asynchronous batched logging could be incorporated with phase
reconciliation without becoming a bottleneck [34, 52, 58].

5.1 Measuring contention and stashed operations

Doppel samples the number of operations and the number of conflicts for each record in
a given phase. These are kept in per-worker storage, and during every 10th phase change,
are accumulated. At this time the formula in Chapter 3 is evaluated, and records are moved
from split to joined, or vice versa. If Doppel is not changing phases because no records are
split or no transactions are stashed, then it collects per-worker statistics and evaluates the
formula every ten phase lengths.

Doppel also samples the number of stashed transactions for a given split phase. Each
worker keeps a separate count. If a worker’s count rises past some threshold, it asks the
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coordinator to initiate a phase change. If enough workers have reached this level of stashed
transactions, the coordinator initiates an early phase change.

5.2 Changing phases

Doppel uses channels to synchronize phase changes and acknowledgments between the co-
ordinator and workers. To initiate a transition from a joined phase to the next split phase,
the coordinator begins by publishing the phase change in a global variable. Workers check
this variable between transactions; when they notice a change, they stop processing new
transactions, acknowledge the change over a channel, and wait for permission to proceed.
When all workers have acknowledged the change, the coordinator releases them over an-
other channel, and workers start executing transactions in split mode. A similar process
ends the split phase to begin reconciliation. When a split-phase worker notices a global
variable update, it stops processing transactions, merges its per-core slices with the global
store, and then acknowledges the merge on a channel and waits for permission to proceed.
Once all workers have acknowledged the change, the coordinator releases them to the next
joined phase; each worker restarts any transactions it stashed in the split phase and starts
accepting new transactions. Because of the coordination, Doppel briefly pauses transaction
processing while moving between phases; we found that this affected throughput at high
core counts. Another design could execute transactions that do not read or write past or
future split data while the system is transitioning phases.

5.3 Reconciling operations

Workers merge their per-core slice for a record by using the record’s selected operation’s
reconcile function. Each worker locks the joined record, applies its per-core slice, and then
unlocks the joined record. Workers reconcile concurrently with other workers which might
still be processing split-phase transactions; this interleaving is still correct because each
reconcile function is run atomically, the per-core slices can be reconciled in any order,
and a worker will not process any transactions in the split phase after it has reconciled.
Doppel provides initialization, split, and reconcile implementations for the built-in split-
table operations. Figure 5-1 shows two reconcile functions, one for MAX(k,n) and one for
OPUT(k,v).
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func max-reconcile(j int, k Key) {
val := local[j][k]
g-val := v[k]
v[k] = max(g-val, val))

}

func oput-reconcile(j int, k Key) {
order, val := local[j][k]
g-order, g-coreid, g-val := v[k]
if order > g-order ||

(order == g-order && j > g-coreid) {
v[k] = order, j, val

}
}

Figure 5-1: Doppel MAX and OPUT reconcile functions.
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SIX

Application experience

This chapter describes our experience implementing an auction site, RUBiS, to use Dop-
pel’s operations and transaction model. This experience shows that Doppel’s operations are
powerful enough to use for real applications, and that applications have many opportunities
to use operations that can be split on contentious records. An interesting takeaway is that
only a few records cause most of performance problems related to contention in RUBiS,
yet it only applies one or two different operations on these contended records.

6.1 RUBiS

We used RUBiS [7], an auction website modeled after eBay, to evaluate Doppel on a re-
alistic application. RUBiS users can register items for auction, place bids, make comments,
and browse listings. RUBiS has 7 tables (users, items, categories, regions, bids, buy_now,
and comments) and 26 interactions based on 17 database transactions. We ported a RUBiS
implementation to Go for use with Doppel.

There are two notable transactions in the RUBiS workload for which Doppel is par-
ticularly suited: StoreBid, which inserts a user’s bid and updates auction metadata for an
item, and StoreComment, which publishes a user’s comment on an item and updates the
rating for the auction owner. RUBiS materializes the maxBid, maxBidder, and numBids

per auction, and a userRating per user based on comments on an owning user’s auction
items. We show RUBiS’s StoreBid transaction in Figure 6-1.

If an auction is very popular, there is a greater chance two users are bidding or com-
menting on it at the same time, and that their transactions will issue conflicting writes. At
first glance it might not seem like Doppel could help with the StoreBid transaction; the
auction metadata is contended and could potentially be split. Unfortunately, each StoreBid

transaction requires reading the current bid to see if it should be updated, and reading the
current number of bids to add one. Recall that split data can only use one selected operation
in a split phase, so as written in Figure 6-1 the transaction would have to execute in a joined
phase, and would not benefit from local per-core operations.
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func StoreBid(bidder, item, amt) (*Bid, TID) {
bidkey := NewKey()
bid := Bid {
Item: item,
Bidder: bidder,
Price: amt,

}
PUT(bidkey, bid)
highest := GET(MaxBidKey(item))
if amt > highest {
PUT(MaxBidKey(item), amt)
PUT(MaxBidderKey(item), bidder)

}
numBids := GET(NumBidsKey(item))
PUT(NumBidsKey(item), numBids+1)
tid := Commit() // applies writes or aborts
return &bid, tid

}

Figure 6-1: Original RUBiS StoreBid transaction.

func StoreBid(bidder, item, amt) (&Bid, TID) {
bidkey := NewKey()
bid := Bid {
Item: item,
Bidder: bidder,
Price: amt,

}
Put(bidkey, bid)
Max(MaxBidKey(item), amt)
OPut(MaxBidderKey(item),

([amt, GetTimestamp()], MyCoreID(), bidder))
Add(NumBidsKey(item), 1)
TopKInsert(BidsPerItemIndexKey(item),

amt, bidkey)
tid := Commit() // applies writes or aborts
return &bid, tid

}

Figure 6-2: Doppel StoreBid transaction.
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But note that the StoreBid transaction does not return the current winner, value of the
highest bid, or number of bids to the caller, and the only reason it needs to read those values
is to perform commutative MAX and ADD operations. Figure 6-2 shows the Doppel version
of the transaction that exploits these observations. The new version uses the maximum bid
in OPUT to choose the correct core’s maxBidder value (the logic here says the highest bid
should determine the value of that key). This changes the semantics of StoreBid slightly.
In the original StoreBid if two concurrent transactions bid the same highest value for an
auction, the first to commit is the one that wins. In Figure 6-2, if two concurrent transactions
bid the same highest value for an auction at the same coarse-grained timestamp, the one
with the highest core ID will win. Doppel can execute Figure 6-2 in the split phase.

Using the top-K set record type, Doppel can support inserts to contended lists. The
original RUBiS benchmark does not specify indexes, but we use top-K sets to make brows-
ing queries faster. We modify StoreItem to insert new items into top-K set indexes on
category and region, and we modify StoreBid to insert new bids on an item into a top-
K set index per item, bidsPerItemIndex. SearchItemsByCategory, SearchItemsBy-
Region, and ViewBidHistory read from these records. Finally, we modify StoreComment

to use ADD(k,n) on the userRating.

6.2 Discussion

This example shows how Doppel’s commutative operations allow seemingly conflicting
transactions to be re-cast in a way that allows concurrent execution. This pattern appears
in many other Web applications. For example, Reddit [2] also materializes vote counts,
comment counts, and links per subreddit [3]. Twitter [1] materializes follower/following
counts and ordered lists of tweets for users’ timelines.
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SEVEN

Performance evaluation

This section presents measurements of Doppel’s performance, supporting the following
hypotheses:

• Doppel increases throughput for transactions with conflicting writes to split data
(§7.2).

• Doppel can cope with changes in which records are contended (§7.3).
• Doppel makes good decisions about which records to split when key popularity fol-

lows a smooth distribution (§7.4).
• Doppel can help workloads with a mix of read and write transactions on split data

(§7.5).
• Doppel transactions that read split data have high latency (§7.6).
• Doppel increases throughput for a realistic application (§7.8).

7.1 Setup

All experiments are executed on an 80-core Intel machine with 8 2.4GHz 10-core Intel
chips and 256 GB of RAM, running 64-bit Linux 3.12.9. In the scalability experiments,
after the first socket, we add cores an entire socket at a time. We run most fixed-core exper-
iments on 20 cores.

The worker thread on each core both generates transactions as if it were a client, and
executes those transactions. If a transaction aborts, the thread saves the transaction to try at
a later time, chosen with exponential backoff, and generates a new transaction. Throughput
is measured as the total number of transactions completed divided by total running time;
at some point we stop generating new transactions and then measure total running time as
the latest time that any existing transaction completes (ignoring saved transactions). Each
point is the mean of three consecutive 20-second runs, with error bars showing the min and
max.

The Doppel coordinator changes the phase according to the algorithm described in
§3.5. Doppel uses the technique described in §3.6 to determine which data to split. The
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benchmarks omit many costs associated with a real database; for example we do not incur
any costs related to network, RPC, or disk. There is evidence that contention could be
the bottleneck in a system that had network, RPC, and disk costs [38]; however, in a full
system, the relative cost of contention would be lower.

In most experiments we measure phase reconciliation (Doppel), optimistic concurrency
control (OCC), and two-phase locking (2PL). Doppel and OCC transactions abort and later
retry when they see a locked item; 2PL uses Go’s read-write mutexes. Both OCC and 2PL
are implemented in the same framework as Doppel.

7.2 Parallelism versus conflict

This section shows that Doppel improves performance on a workload with many conflicting
writes, using the following microbenchmark:

INCR1 microbenchmark. The database contains 1M 16-byte keys with integer values.
One of these keys is designated “hot.” A configurable fraction of the transactions increment
the hot key (that is, they increment the value stored under the hot key), while the remain-
ing transactions each increment a key chosen uniformly from the remaining keys. In all
transactions, the increment is done using an ADD(k,1) operation.

This experiment compares Doppel with OCC, 2PL, and a system called Atomic. To
execute an increment, OCC reads the key’s value, computes the new value, and then at
commit time, tries to lock the key and validate that it hasn’t changed since it was first read.
If the key is locked or its version has changed, OCC aborts the transaction and saves it to try
again later. Doppel also behaves this way in joined phases (and in split phases for non-split
keys). 2PL waits for a write lock on the key, reads it, and then writes the new value and
releases the lock. 2PL never aborts. Atomic uses an atomic increment instruction with no
other concurrency control. Atomic represents an upper bound for schemes that do not use
split data.

Figure 7-1 shows the throughputs of these schemes with INCR1 as a function of the
percentage of transactions that write the single hot key. At the extreme left of Figure 7-1,
when there is little conflict, Doppel does not split the hot key, causing it to behave and
perform similarly to OCC. With few conflicts, all of the schemes benefit from the 20 cores
available.

As one moves to the right in Figure 7-1, OCC, 2PL, and Atomic provide decreasing
total throughput. The high-level reason is that they must execute operations on the hot key
sequentially, on only one core at a time. Thus OCC and 2PL’s throughput ultimately drop by
roughly a factor of 20, as they move from exploiting 20 cores to doing useful work on only
one core. The differences in throughput among the three schemes stem from differences in
concurrency control efficiency: Atomic uses the hardware locking provided by the cache
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Figure 7-1: Total throughput for INCR1 as a function of the percentage of transactions
that increment the single hot key. 20 cores. The vertical line indicates when Doppel starts
splitting the hot key (x=2%).

coherence and interlocked instruction machinery; 2PL uses Go mutexes which yield the
CPU; while OCC saves and re-starts aborted transactions. The drop-off starts at an x value
of about 5%; this is roughly the point at which the probability of more than one of the 20
cores using the hot item starts to be significant.

Doppel has the highest throughput for most of Figure 7-1 because once it splits the
key, it continues to get parallel speedup from the 20 cores as more transactions use the hot
key. Towards the left in Figure 7-1, Doppel obtains parallel speedup from operations on
different keys; towards the right, from split operations on the one hot key. The vertical line
indicates where Doppel starts splitting the hot key. Doppel throughput gradually increases
as a smaller fraction of operations apply to non-popular keys, and thus a smaller fraction
incur the DRAM latency required to fetch such keys from memory. When 100% of trans-
actions increment the one hot key, Doppel performs 6.2× better than Atomic, 19× better
than 2PL, and 38× better than OCC.

We also ran the INCR1 benchmark on Silo to compare Doppel’s performance to an
existing system. Silo has lower performance than our OCC implementation at all points in
Figure 7-1, in part because it implements more features. When the transactions choose keys
uniformly, Silo finishes 11.8M transactions per second on 20 cores. Its performance drops
to 102K transactions per second when 100% of transactions write the hot key.

To illustrate the part of Doppel’s advantage that is due to parallel speedup, Figure 7-2
shows multi-core scaling when all transactions increment the same key. The y-axis shows
transactions/sec/core, so perfect scalability (perfect parallel speedup) would result in a hor-
izontal line. Doppel falls short of perfect speedup, but nevertheless yields significant ad-
ditional throughput for each core added. The lines for the other schemes are close to 1/x
(additional cores add nothing to the total throughput), consistent with essentially sequential
execution. The Doppel line decreases because phase changes take longer with more cores;
phase change must wait for all cores to finish their current transaction.

In summary, Figure 7-1 shows that when even a small fraction of transactions write the
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Figure 7-3: Throughput over time on INCR1 when 10% of transactions increment a hot
key, and that hot key changes every 5 seconds.

same key, Doppel can help performance. It does so by parallelizing update operations on
the popular key.

7.3 Changing workloads

Data popularity may change over time. Figure 7-3 shows the throughput over time for the
INCR1 benchmark with 10% of transactions writing the hot key, with the identity of the
one hot key changing every 5 seconds. Doppel throughput drops every time the popular key
changes and a new key starts gathering conflicts. Once Doppel has measured enough con-
flict on the new popular key, it marks it as split. The adverse effect on Doppel’s throughput
is small since it adjusts quickly to each change.
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Figure 7-4: Total throughput for INCRZ as a function of α (the Zipfian distribution pa-
rameter). The skewness of the popularity distribution increases to the right. 20 cores. The
vertical line indicates when Doppel starts splitting keys.

7.4 Classifying records as split

Doppel must decide whether to split each key. At the extremes, the decision is easy: split-
ting a key that causes few aborts is not worth the overhead, while splitting a key that causes
many aborts may greatly increase parallelism. Section 7.2 explored this spectrum for a sin-
gle popular key. This section explores a harder set of situations, ones in which there is a
smooth falloff in the distribution of key popularity. That is, there is no clear distinction be-
tween hot keys and non-hot keys. The main question is whether Doppel chooses a sensible
number (if any) of most-popular keys to split.

This experiment uses a Zipfian distribution of popularity, in which the kth most pop-
ular item is accessed in proportion to 1/kα. We vary α to explore different skews in the
popularity distribution, using INCRZ:

INCRZ microbenchmark. There are 1M 16-byte keys. Each transaction increments
the value of one key, chosen with a Zipfian distribution of popularity.

Figure 7-4 shows total throughput as a function of α. At the far left of the graph, key
access is uniform. Atomic performs better than Doppel and OCC, and both better than 2PL,
for the same reasons that govern the left-hand extreme of Figure 7-1.

As the skew in key popularity grows—for α values up to about 0.8—all schemes pro-
vide increasing throughput. The reason is that they all enjoy better cache locality as a set
of popular keys emerges. Doppel does not split any keys in this region, and hence provides
throughput similar to that of OCC.

Figure 7-4 shows that Doppel starts to display an advantage once α is greater than 0.8,
because it starts splitting. These larger α values cause a significant fraction of transactions
to involve the most popular few keys; Table 7.1 shows some example popularities. Table 7.2
shows how many keys Doppel splits for each α. As α increases to 2.0, Doppel splits the
2nd, 3rd, and 4th most popular keys as well, since a significant fraction of the transactions
modify them. Though the graph doesn’t show this region, with even larger α values Doppel
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α 1st 2nd 10th 100th
0.0 .0001% .0001% .0001% .0001%
0.2 .0013% .0011% .0008% .0005%
0.4 .0151% .0114% .0060% .0024%
0.6 .1597% .1054% .0401% .0101%
0.8 1.337% .7678% .2119% .0336%
1.0 6.953% 3.476% .6951% .0695%
1.2 18.95% 8.250% 1.196% .0755%
1.4 32.30% 12.24% 1.286% .0512%
1.6 43.76% 14.43% 1.099% .0276%
1.8 53.13% 15.26% .8420% .0133%
2.0 60.80% 15.20% .6079% .0061%

Table 7.1: The percentage of writes to the first, second, 10th, and 100th most popular keys
in Zipfian distributions for different values of α, 1M keys.

α # Moved % Reqs
< 1 0 0.0
1.0 2 10.5
1.2 4 35.9
1.4 4 56.1
1.6 4 70.5
1.8 4 80.1
2.0 3 82.7

Table 7.2: The number of keys Doppel moves for different values of α in the INCRZ bench-
mark.

would return to splitting just one key.
In summary, Doppel’s steady performance as α changes indicates that it is doing a

reasonable job of identifying good candidate keys to split.

7.5 Mixed workloads

This section shows how Doppel behaves when workloads both read and write popular keys.
The best situation for Doppel is when there are lots of update operations to the contended
key, and no other operations. If there are other operations on a split key, such as reads, Dop-
pel’s phases essentially batch writes into the split phases, and reads into the joined phases;
this segregation and batching increases parallelism, but incurs the expense of stashing the
read transactions during the split phase. In addition, the presence of the non-update op-
erations makes it less clear to Doppel’s algorithms whether it is a good idea to split the
hot key. To evaluate Doppel’s performance on a more challenging, but still understandable,
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func ReadLike(user, page int) (int, int) {
user_key := UserLastLikeKey(user)
v1 := GET(user_key)
page_count_key := PageCountKey(page)
v2 := GET(page_count_key)
Commit() // might abort
return v1, v2

}

func Like(user, page int) {
user_key := UserLastLikeKey(user)
Put(user_key, page)
page_count_key := PageCountKey(page)
Add(page_count_key, 1)
Commit() // applies writes or aborts

}

Figure 7-5: LIKE read and write transactions.

workload, we use the LIKE benchmark
LIKE. The LIKE benchmark simulates a set of users “liking” profile pages. Each up-

date transaction writes a record inserting the user’s like of a page, and then increments a
per-page sum of likes. Each read transaction reads the user’s last like and reads the total
number of likes for some page. Figure 7-5 shows examples of these transactions. With a
high level of skew, this application explores the case where there are many users but only
a few popular pages; thus the increments of page counts often conflict, but are also read
frequently.

The database contains a row for each user and a row for each page. The user is always
chosen uniformly at random. A write transaction chooses a page from a Zipfian distribution,
increments the page’s count of likes, and updates the user’s row; the user’s row is rarely
contended. A read transaction chooses a page using the same Zipfian distribution, and reads
the page’s count and the user’s row. There are 1M users and 1M pages, and unless specified
otherwise the transaction mix is 50% reads and 50% writes.

Figure 7-6 shows throughput for Doppel, OCC, and 2PL with LIKE on 20 cores as a
function of the fraction of transactions that write, with α = 1.4. This setup causes the most
popular page key to be used in 32% of transactions.

We would expect OCC to perform the best on a read-mostly workload, which it does.
Until 30% writes Doppel does not split, and as a result performs about the same as OCC.

Doppel starts splitting data when there are 30% write transactions. This situation, where
70% of transactions are reads, is tricky for Doppel because the split keys are read even more
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Figure 7-6: Throughput of the LIKE benchmark with 20 cores as a function of the fraction
of transactions that write, α = 1.4.

Uniform workload
Mean latency 99% latency Txn/s

Doppel 1µs R / 1µs W 1µs R / 2µs W 11.8M
OCC 1µs R / 1µs W 1µs R / 2µs W 11.9M
2PL 1µs R / 1µs W 2µs R / 2µs W 9.5M

Skewed workload
Mean latency 99% latency Txn/s

Doppel 1262µs R / 4µs W 20804µs R / 2µs W 10.3M
OCC 26µs R / 1069µs W 22µs R / 1229µs W 5.6M
2PL 1µs R / 8µs W 3µs R / 215µs W 3.7M

Table 7.3: Average and 99% read and write latencies for Doppel, OCC, and 2PL on two
LIKE workloads: a uniform workload and a skewed workload with α = 1.4. Times are in
microseconds. OCC never finishes 156 read transactions and 8871 write transactions in the
skewed workload. 20 cores.

than they are written, so many read transactions have to be stashed. Figure 7-6 shows that
Doppel nevertheless gets the highest throughput for all subsequent write percentages.

This example shows that Doppel’s batching of transactions into phases allows it to
extract parallel performance from contended writes even when there are many reads to the
contended data.

7.6 Latency

Doppel stashes transactions that read split data in the split phase. This increases latency,
because such transactions have to wait up to 20 milliseconds for the next joined phase.
We use the LIKE benchmark to explore latency on two workloads (uniform popularity
and skewed popularity with Zipf parameter α = 1.4), separating latencies for read-only
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transactions and transactions that write. To measure latency, we measure the difference
between the time each transaction is first submitted and when it commits. The workload is
half read and half write transactions.

Table 7.3 shows the results. Doppel and OCC perform similarly with the uniform work-
load because Doppel does not split any data. In the skewed workload Doppel’s write latency
is the lowest because it splits the four most popular page records, so that write transactions
that update those records do not need to wait for sequential access to the data. Doppel’s
read latencies are high because reads of hot data during split mode have to wait up to 20
milliseconds for the next joined phase. This delay is the price Doppel pays for achieving
almost twice the throughput of OCC.

7.7 Phase length

When a transaction tries to read split data during a split phase, its expected latency is de-
termined by the phase length; a shorter phase length results in less latency, but potentially
lowered throughput. Figure 7-7 shows how phase length affects read latency and through-
put on three LIKE workloads. “Uniform” uses uniform key popularity and has 50% read
transactions; nothing is split. “Skewed” has Zipfian popularity with α = 1.4 and 50% read
transactions; once the phase length is > 2ms, which is long enough to accumulate conflicts,
Doppel moves either 4 or 5 keys to split data. “Skewed Write Heavy” has Zipfian popularity
with α = 1.4 and 10% read transactions; Doppel moves 20 keys to split data.

The first graph in Figure 7-7 shows that the phase length directly determines the latency
of transactions that read hot data and have to be stashed. Shorter phases are better for
latency, but too short reduces throughput. The throughputs are low to the extreme left in the
second graph in Figure 7-7 because phase change takes about half a millisecond (waiting
for all cores to finish split phase), so phase change overhead dominates throughput at very
short phase lengths. For these workloads, the measurements suggest that the smallest phase
length consistent with good throughput is five milliseconds.

7.8 RUBiS

Do Doppel’s techniques help in a complete application? We measure RUBiS [7], an auction
Web site implementation, to answer this question.

Section 6 describes our RUBiS port to Doppel. We modify six transactions to use Dop-
pel operations; StoreBid, StoreComment, and StoreItem to use MAX, ADD, OPUT,
and TOPKINSERT, and SearchItemsByCategory, SearchItemsByRegion, and View-

BidHistory to read from top-K set records as indexes. This means Doppel can poten-
tially mark auction metadata as split data. The implementation includes only the database
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Figure 7-7: Latency and throughput in Doppel with the LIKE benchmark. Each includes
a uniform workload, a skewed workload with 50% reads and 50% writes, and a skewed
workload with 10% reads and 90% writes. 20 cores.

RUBiS-B RUBiS-C
Doppel 3.4 3.3
OCC 3.5 1.1
2PL 2.2 0.5

Table 7.4: The throughput of Doppel, OCC, and 2PL on RUBiS-B and on RUBiS-C with
Zipfian parameter α = 1.8, in millions of transactions per second. 20 cores.

transactions; there are no web servers or browsers.
We measured the throughput of two RUBiS workloads. One is the Bidding workload

specified in the RUBiS benchmark, which consists of 15% read-write transactions and 85%
read-only transactions; this ends up producing 7% total writes and 93% total reads. We call
this RUBiS-B. In RUBiS-B most users are browsing listings and viewing items without
placing a bid. There are 1M users bidding on 33K auctions, and access is uniform, so when
bidding, most users are doing so on different auctions. This workload has few conflicts and
is read-heavy.

We also created a higher-contention workload called RUBiS-C. 50% of its transactions
are bids on items chosen with a Zipfian distribution and varying α. This approximates
very popular auctions nearing their close. The workload executes non-bid transactions in
correspondingly reduced proportions.

Table 7.4 shows how Doppel’s throughput compares to OCC and 2PL. The RUBiS-C
column uses a somewhat arbitrary α = 1.8. As expected, Doppel provides no advantage on
uniform workloads, but is significantly faster than OCC and 2PL when updates are applied
with skewed record popularity.

Figure 7-8 explores the relationship between RUBiS-C record popularity skew and
Doppel’s ability to beat OCC and 2PL. Doppel gets close to the same throughput up to
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Figure 7-8: The RUBiS-C benchmark, varying α on the x-axis. The skewness of the popu-
larity distribution increases to the right. 20 cores.
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Figure 7-9: The RUBiS-B benchmark, varying α on the x-axis. The skewness of the popu-
larity distribution increases to the right. 80 cores.

α = 1. Afterwards, Doppel gets higher performance than OCC. When α = 1.8 Doppel gets
approximately 3× the performance of OCC and 6× the performance of 2PL.

Doppel’s techniques make the most difference for the StoreBid transaction, whose
code is shown in Figures 6-1 and 6-2. Doppel marks the number of bids, max bid, max
bidder, and the list of bids per item of popular products as split data. It’s important that the
programmer wrote the transaction in a way that Doppel can split all of these data items;
if the update for any one of the items had been programmed in a non-splittable way (e.g.,
with explicit read and write operations) Doppel would execute the transactions sequentially
and get far less parallel speedup.

In Figure 7-8 with α = 1.8, OCC spends roughly 67% of its time running StoreBid;
much of this time is consumed by retrying aborted transactions. Doppel eliminates almost
all of this 67% by running the transactions in parallel, which is why Doppel gets three times
as much throughput as OCC with α = 1.8.

These RUBiS measurements show that Doppel is able to parallelize substantial trans-
actions with updates to multiple records and, skew permitting, significantly out-perform
OCC.
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EIGHT

Future directions

The idea of using different execution plans for different records, and transitioning between
those plans using phases, could be helpful in the designs of other systems. We have just be-
gun to explore the set of plans that Doppel could execute, and the types of operations that
can execute in Doppel’s split phase. This chapter describes a few key areas of future work.
It includes a discussion of how phases might work in a distributed database, a summary
of static and dynamic analysis techniques that could work with Doppel to increase com-
mutativity, a discussion of what kinds of operations Doppel could execute given a source
of synchronized time, and how to extend the set of execution plans to include partitioning
data.

8.1 Distributed Doppel

Phase reconciliation and execution plans might improve the performance of distributed
transactions. What are the key differences between execution plans on multi-core and in
a distributed database? One important difference is that the synchronization for phase
changing is more expensive on multiple servers, due to network latencies for communi-
cation. Also, the phase change protocol currently requires hearing from all participants
before moving to the next phase. In a distributed system this would be infeasible because
it would need to be tolerant to faults. We would like to explore using consensus protocols
like Paxos [33] to coordinate phase changes in a fault-tolerant way.

Another point is that there are other plans that would be useful in a distributed database,
but did not make sense in a multi-core database. One example is replicating data for reads.
On a multi-core server the cache coherence protocol automatically replicates data among
processor caches and keeps cache lines up-to-date. In a distributed system, reading remote
records requires a network RPC, and it might make sense to replicate frequently read data
to avoid the RPC cost.
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8.2 Static and dynamic transaction analysis

Phase reconciliation could be combined with static analysis techniques, like transaction
chopping [46, 47], to release locks early and increase concurrency. We could also use static
analysis to find commutative parts of application code and turn them into operations. A
tool like commuter [20] could help developers identify and increase commutativity in their
transactions. Other work on parallelizing compilers does commutativity analysis to gener-
ate parallel code [43]. All of these techniques would expand the set of operations that could
be executed in parallel in Doppel’s split phase.

8.3 Synchronized time

Doppel requires operations to commute in order to execute them correctly on per-core
data in the split phase. This is required to obtain an ordering of the operations consistent
with their surrounding transactions. But there are other ways to achieve a correct ordering
without communication, such as using the synchronized timestamp counters provided by
some machines. Reading a synchronized counter would always producing increasing times-
tamps, even among different cores. If each core had access to always-increasing counters,
these could be used as ordered transaction IDs. Per-core operations could be logged with
transaction IDs, and later could be applied in transaction ID order to the database state,
during reconciliation. For example, Doppel could split PUT(k,v) operations by keeping a
per-core slice on each core that contained a transaction ID and value for the transaction
with the highest transaction ID to issue a write to that record. When reconciling, Doppel
would overwrite the record’s global value with the value from the core that had the highest
transaction ID.

8.4 Partitioning

Many databases partition data among cores, and run single-partition transactions without
concurrency control. This technique is useful for workloads which have a good partitioning,
meaning they do not incur many multi-partition transactions.

This thesis only explored two dynamic execution plans, split and joined. A concurrency
control scheme that partitions data among different cores and runs single-partition transac-
tions without validating or locking might perform better than using OCC or 2PL. Doppel
could implement a partition plan as well as split and joined plans, in which a record is
pinned to a core (only that core is allowed to access it) and transactions are directed ac-
cordingly. Single-partition transactions that executed entirely on partitioned data could run
without the costs of concurrency control.

70



The partition plan might work well on mixed workloads, where most of the workload is
partitionable, but there are a few distributed transactions. The distributed transactions could
run in the joined phase using concurrency control, while the single-partition transactions
run quickly in the partitioned phase.
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NINE

Conclusion

As the scale of transaction processing grows and the cost of in-memory storage drops,
databases must be able to take advantage of multiple cores for increased performance.
Though some workloads appear to fundamentally serialize because of conflicting opera-
tions on the same data, we have shown that many of them actually fit a model where using
per-core data can increase parallelism. Per-core data, however, is not a complete solution—
incorporating its use in database transactions is challenging due to the mix of workloads
databases must execute.

In this dissertation, we introduce phase reconciliation, which provides a framework for
using different execution plans on different data, depending upon how it is accessed. The
plans in Doppel combine data layout decisions and concurrency control algorithms that
shift over time based on workload properties. Our technique reduces conflict in transac-
tion workloads by executing commutative operations in parallel, on multiple cores. We
demonstrated Doppel’s performance benefits scaling a microbenchmark to 80 cores and
implementing RUBiS, an auction web application.
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