
Parallel Execution for
Conflicting Transactions

Neha Narula

1	

Thesis Advisors:

Robert Morris and Eddie Kohler

Database-backed applications
require good performance

WhatsApp:

•  1M messages/sec

Facebook:

•  1/5 of all page views in the US

Twitter:

•  Millions of messages/sec

from mobile devices

Databases are difficult to scale

3	

Database is stateful

Application servers are
stateless; add more for

more traffic

Scale up using multi-core databases

4	

Context!
•  Many cores

•  In-memory database

•  OLTP workload

•  Transactions are stored

procedures

No stalls due to users, disk,
or network

Goal

5	

Execute transactions in parallel

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t

cores

Challenge

Conflicting data access

6	

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t

cores

Conflict: two
transactions access
the same data and

one is a write

TXN1(k, j Key) (Value, Value) {
 a := GET(k)
 b := GET(j)
 return a, b

}

Database transactions should be
serializable

7	

TXN2(k, j Key) {
 ADD(k,1)
 ADD(j,1)

}

TXN1 TXN2

TXN2 TXN1

time

or"

To the programmer:"

Valid return values
for TX1: (0,0)"

k=0,j=0"

or (1,1)"

Transactions are incorrectly seeing
intermediate values

GET(k)GET(j)

Executing in parallel could produce
incorrect interleavings

8	

ADD(k,1) ADD(j,1)

time

TX1 returns
(1,0)"k=0,j=0

Concurrency control enforces serial
execution

ADD(x,1)

ADD(x,1)

ADD(x,1)

9	

time

Transactions on the same records
execute one at a time

Concurrency control enforces serial
execution

core 0

core 1

core 2

ADD(x,1)

ADD(x,1)

ADD(x,1)

10	

time

Serial execution results in a lack of
scalability

Idea #1: Split representation for
parallel execution

core 0

core 1

core 2

ADD(x,1)

ADD(x,1)

11	

time

•  Transactions on the same record can proceed in
parallel on per-core values

•  Reconcile per-core values for a correct value

x0:1

x1:1

x2:1

ADD(x,1)
per-core values
for record x

x is split across

cores

x0:0

x1:0

x2:0

ADD(x,1)

ADD(x,1)

ADD(x,1)

ADD(x,1)

ADD(x,1)

x0:3

x1:3

x2:2

x = 8

Other types of operations do not
work with split data

core 0

core 1

core 2

12	

time

•  Executing with split data does not work for all types of
operations

•  In a workload with many reads, better to not use per-
core values

x0:3

x1:3

x2:2

ADD(x,1)

PUT(x,42)

GET(x)

x1:4

x2:42

x = ??

core 0

core 1

core 2

ADD(x,1)

ADD(x,1)

ADD(x,1)

13	

time

GET(x)

ADD(x,1)

GET(x)

ADD(x,1)
 GET(x)

ADD(x,1)

re
co

nc
ile
!

Can execute in parallel
 Can execute in parallel

•  Key Insight: Reordering transactions reduces

–  Cost of reconciling

–  Cost of conflict

•  Serializable execution

Idea #2: Reorder transactions

Idea #3: Phase reconciliation

core 0

core 1

core 2

14	

time

•  Database automatically detects contention to split

a record between cores

•  Database cycles through phases: split and joined

•  Doppel: An in-memory key/value database

re
co
nc
ile
!

Split

Phase

Joined
Phase

Split

Phase
sp

lit
!

Conventional
concurrency

control

Challenges

Combining split data with general database
workloads:

1.  How to handle transactions with multiple keys and

different operations?

2.  Which operations can use split data correctly?

3.  How to dynamically adjust to changing workloads?

15	

Contributions

•  Synchronized phases to support any

transaction and reduce reconciliation
overhead

•  Identifying a class of splittable operations

•  Detecting contention to dynamically split

data

16	

Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion

17	

Split phase

•  The split phase executes operations on
contended records on per-core slices (x0, x1,
x2)

18	

core 0

core 1

core 2

ADD(x0,1)

ADD(x1,1)

ADD(x2,1)

split phase

Reordering by stashing transactions

•  Split records have selected operations for a given split
phase

•  Cannot correctly process a read of x in the current state

•  Stash transaction to execute after reconciliation

19	

core 0

core 1

core 2

split phase

ADD(x1,1)

GET(x)
ADD(x0,1)

ADD(x1,1)

ADD(x2,1)

20	

core 0

core 1

core 2

split phase

•  All cores hear they should reconcile their per-core state

•  Stop processing per-core writes

ADD(x1,1)

ADD(x0,1)

ADD(x1,1)

ADD(x2,1)

GET(x)

•  Reconcile state to global store

•  Wait until all cores have finished reconciliation

•  Resume stashed read transactions in joined phase

21	

core 0

core 1

core 2

reconciliation

x = x + x0

x = x + x1

x = x + x2

GET(x)

joined phase

22	

core 0

core 1

core 2

x = x + x0

x = x + x1

x = x + x2

reconciliation

•  Reconcile state to global store

•  Wait until all cores have finished reconciliation

•  Resume stashed read transactions in joined phase

GET(x)

joined phase

Transitioning between phases

23	

core 0

core 1

core 2

•  Process stashed transactions in joined phase using
conventional concurrency control

•  Joined phase is short; quickly move on to next split
phase

GET(x)

split phase

GET(x)

joined phase

ADD(x1,1)

ADD(x2,1)

Challenge #1

How to handle transactions with multiple keys
and different operations?

•  Split and non-split data

•  Different operations on a split record

•  Multiple split records

24	

Transactions on split and non-split
data

•  Transactions can operate on split and non-split records

•  Rest of the records (y) use concurrency control

•  Ensures serializability for the non-split parts of the

transaction

25	

core 0

core 1

core 2

ADD(x0,1)

ADD(x1,1) PUT(y,2)

ADD(x3,1) PUT(y,2)

split phase

Transactions with different
operations on a split record

•  A transaction which executes different
operations on a split record is also stashed,
even if one is a selected operation

26	

core 0

core 1

core 2

ADD(x0,1)

ADD(x1,1) PUT(y,2)

ADD(x3,1) PUT(y,2)

split phase

ADD(x,1)GET(x)

All records use concurrency control
in joined phase

27	

core 0

core 1

core 2

ADD(x0,1)

ADD(x1,1) PUT(y,2)

ADD(x3,1) PUT(y,2)

split phase

•  In joined phase, no split data, no split operations

•  ADD also uses concurrency control

ADD(x,1)GET(x)

joined phase

ADD(x,1)GET(x)

Transactions with multiple split
records

28	

core 0

core 1

core 2

split phase

•  x and y are split and operations on them use per-core
slices (x0, x1, x2) and (y0, y1, y2)

•  Split records all use the same synchronized phases

ADD(x2,1)MULT(y2,2)

ADD(x0,1)

ADD(x1,1)

MULT(y2,1)

Reconciliation must be synchronized

•  Cores reconcile all of their split records: ADD for x and
MULT for y

•  Parallelize reconciliation

•  Guaranteed to read values atomically in next joined phase

29	

core 0

core 1

core 2

reconciliation

x = x + x1

x = x + x2

y = y * y0

y = y * y1

y = y * y2

x = x + x0

joined phase

GET(x)GET(y)

Delay to reduce overhead of
reconciliation

30	

core 0

core 1

core 2

ADD(x0,1)
 GET(x)

•  Wait to accumulate stashed transactions, many
in joined phase

•  Reads would have conflicted; now they do not

ADD(x1,1)

ADD(x2,1) ADD(z,1)
GET(x)

GET(x)

GET(x)

GET(x)

split phase

joined
phase

GET(x)

ADD(x2,1)

ADD(x1,1)

ADD(x0,1)

When does Doppel switch phases?

31	

(ns > 0 && ts > 10ms) || ns > 100,000

Split phase
 Joined
phase

Completed stashed txns

ns = # stashed

ts = time in
split phase

Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion

32	

Challenge #2

Define a class of operations that is correct
and performs well with split data.

33	

Operations in Doppel

34	

Developers write transactions as stored
procedures which are composed of

operations on database keys and values

void ADD(k,n)
void MAX(k,n)
void MULT(k,n)

Operations on numeric
values which modify the

existing value

Why can ADD(x,1) execute correctly
on split data in parallel?

•  Does not return a value

•  Commutative

35	

ADD(k,n) {
 v[k] = v[k] + n

}

Commutativity

Two operations commute if executed on the
database s in either order, they produce the
same state s’ and the same return values.

36	

o
 p

s
 s’
="
o
p

Hypothetical design: commutativity
is sufficient

core 0

core 1

core 2

T1

37	

•  Not-split operations in transactions execute

•  Split operations are logged

•  They have no return values and are on different data,

so cannot affect transaction execution

o1
 T5
o5

T2
o2
 T4
o4

T3
 T6
o3
 o6

log:

log:

log:

o1
 o5

o3
 o6

o2
 o4

Hypothetical design: apply logged
operations later

core 0

core 1

core 2

T1

38	

•  Logged operations are applied to database state
in a different order than their containing
transactions

T5

T2
 T4

T3
 T6

log:

log:

log:
 o3
 o6

o2
 o4

o1
 o5

Correct because split operations can
be applied in any order

39	

o1
 o3
 o6
o5
 o2
 o4

o1
 o3
 o6
o5
o2
 o4

After applying the split operations

in any order,

same database state

s
 s’

T1 T2 T3 T4 T5 T6

="

Is commutativity enough?

For correctness, yes.

For performance, no.

Which operations can be summarized?

40	

Summarized operations

An set of operations can be summarized if for
all sequences of operations in the set, there is
a function f that produces the same result and
runs in time order a single operation.

41	

o1
 o2
 o3

s
 s’
="
f

core 1
 MAX(x,27) x1:27 MAX(x,10) x1:10

core 0
 MAX(x,55) MAX(x,2) x0:55

core 2
 MAX(x,21) x2:21

MAX can be summarized

42	

•  Each core keeps one piece of state

•  55 is an abbreviation of a function to apply later

•  O(#cores) time to reconcile x

x = MAX(x,55) (55)
x = MAX(x,27) (55)
x = MAX(x,21) (55)

SHA1 cannot be summarized

SHA1(k) {
 v[k] = sha1(v[k])

}

43	

SHA1(SHA1(x)) = SHA1(SHA1(x))

SHA1(x)
commutes!

? core 0
 SHA1(x) SHA1(x) SHA1(x)

SHA1 is commutative but we do not
know how to summarize it

44	

•  Need to produce a function that produces the
same value as SHA1 run n times on x, but has
running time O(SHA1)

•  No such function

Operation summary

Properties of operations that Doppel can split:

– Always commute

– Can be summarized

– Single key

– Have no return value

Runtime restriction:

– Only one type of operation per record per split

phase

45	

Ordered PUT and insert
to an ordered list

Example commutative and
summarizable operations

46	

void ADD(k,n)
void MAX(k,n)
void MULT(k,n)

void OPUT(k,v,o)
void TOPK_INSERT(k,v,o)

Operations on numeric
values which modify the

existing value
 With timestamps, last
writer wins

Short indexes, top
friends or follower lists

Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion

47	

Challenge #3

Dynamically adjust to changes in the
workload:

•  Which records are contended?

•  What operations are happening on different

records?

48	

How to determine what to split?

•  Developer annotates records

– Difficult to determine

– Popular data changes over time

•  Automatically split data based on observed
contention

– Count records and operations which cause

conflict

– Split records actually causing serialization

– Sample for low cost

49	

Which records does Doppel split?

50	

x is not split

x is split

during split
phases

impact(x,op) < tj

impact(x,op) > tc

impact(x,op) =
 conflictsop(x)

other(x)

Implementation

•  Doppel implemented as a multithreaded Go
server; one worker thread per core

•  Coordinator thread manages phase
changes

•  Transactions are procedures written in Go

•  All data fits in memory; key/value interface

with optionally typed values

•  Doppel uses optimistic concurrency control

51	

Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion

52	

Performance evaluation

•  Extreme contention

•  A range of contention

•  Changing workloads

•  Workloads with a mix of reads and writes

•  A complex application

53	

Experimental setup

•  All experiments run on an 80 core Intel
server running 64 bit Linux 3.12 with
256GB of RAM

•  All data fits in memory; don’t measure RPC
or disk

•  All graphs measure throughput in
transactions/sec

54	

How much does Doppel improve
throughput on contentious write-

only workloads?

55	

Doppel executes conflicting
workloads in parallel

Th
ro

ug
hp

ut
 (m

illi
on

s
tx

ns
/s

ec
)

20 cores, 1M 16 byte keys, transaction: ADD(x,1) all on same key

0

5

10

15

20

25

30

35

Doppel
 OCC
 2PL

56	

Contentious workloads scale well

1M 16 byte keys, transaction: ADD(x,1) all writing same key
 57	

0M

10M

20M

30M

40M

50M

60M

70M

80M

90M

100M

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

number of cores

Doppel
OCC
2PL

Synchronization of
phase changing

How much contention is required
for Doppel’s techniques to help?

58	

Doppel outperforms 2PL and OCC
even with low contention

0M

5M

10M

15M

20M

25M

30M

35M

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(t

xn
s/

se
c)

% of transactions with hot key

Doppel
OCC
2PL

59	
 20 cores, 1M 16 byte keys, transaction: ADD(x,1) on different keys

5% of writes to
contended key

Can Doppel detect and respond
to changing workloads over

time?

60	

Doppel adapts to changing popular
data

0M

5M

10M

15M

20M

25M

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(t

xn
s/

se
c)

time (seconds)

Doppel
OCC

61	
 20 cores, 1M 16 byte keys, transaction: ADD(x,1) 10% on same key

How much benefit can Doppel
get with many stashed

transactions?

62	

Read/Write benchmark

•  Users liking pages on a social network

•  2 tables: users, pages

•  Two transactions:

– ADD 1 to a page’s like count, PUT user like of page

– GET a page’s like count, GET user’s last like

•  1M users, 1M pages, Zipfian distribution of
page popularity

Doppel splits the popular page counts

But those counts are also read most often

63	

Benefits even when there are reads
and writes to the same popular keys

64	

0

1

2

3

4

5

6

7

8

9

Doppel
 OCC

Th
ro

ug
hp

ut
 (m

illi
on

s
tx

ns
/s

ec
)

20 cores, transactions: 50% read, 50% write

Doppel outperforms OCC for a wide
range of read/write mixes

20 cores, transactions: RW benchmark
 65	

0M

2M

4M

6M

8M

10M

12M

14M

16M

18M

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(t

xn
s/

se
c)

% of transactions that read

Doppel
OCC

Doppel does not split
any data and performs

the same as OCC!More stashed read transactions

Does Doppel improve throughput
for a realistic application: RUBiS?

66	

RUBiS

•  Auction benchmark modeled after eBay

–  Users bid on auctions, comment, list new items, search

•  1M users and 33K auctions

•  7 tables, 17 transactions

•  85% read only transactions (RUBiS bidding mix)

•  Two workloads:

–  Roughly uniform distribution of bids

–  Skewed distribution of bids; a few auctions are very

popular

67	

RUBiS StoreBid transaction

StoreBidTxn(bidder, amount, item) {

 ADD(NumBidsKey(item),1)

 MAX(MaxBidKey(item), amount)

 OPUT(MaxBidderKey(item), bidder, amount)

 PUT(NewBidKey(), Bid{bidder, amount, item})

}

The contended data is only operated on
by splittable operations.

Inserting new bids is not likely to conflict

68	

0

2

4

6

8

10

12

Uniform
 Skewed

Doppel

OCC

Doppel improves throughput for the
RUBiS benchmark

69	

Th
ro

ug
hp

ut
 (m

illi
on

s
tx

ns
/s

ec
)

80 cores, 1M users 33K auctions, RUBiS bidding mix. 50% bids on top auction

Caused by StoreBid
transactions (8%)

3.2x

throughput

improvement

Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion

70	

Related work

•  Shared memory DBs

– Silo, Hekaton, ShoreMT

•  Partitioned DBs

– DORA, PLP, Hstore

•  Choosing partitions

– Schism, Estore, Horticulture

•  Transactional memory

– Scheduling [Kim 2010, Attiya 2012]

71	

Doppel runs
conflicting

transactions in parallel

Related work

•  Commutativity

– Abstract Datatypes [Weihl 1988]

– CRDTs [Shapiro 2011]

– RedBlue consistency [Li 2012]

– Walter [Sovran 2011]

•  Scalable operating systems

– Clustered objects in Tornado [Parsons 1995]

– OpLog [Boyd-Wickizier 2013]

– Scalable commutativity rule [Clements 2013]

72	

Doppel combines
these ideas in a

transactional database

Future Work

•  Generalizing to distributed transactions

•  More data representations

•  Larger class of operations which commute

•  Durability and recovery

73	

Conclusion

Multi-core phase reconciliation:

•  Achieves parallel performance when transactions

conflict by combining split data and concurrency
control

•  Performs well on uniform workloads while improving
performance significantly on skewed workloads.

74	

Thanks

Robert, Eddie, and Barbara

Co-authors and colleagues

PDOS and former PMG

Academic and industry communities

Family and friends

75	

Brian Allen, Neelam Narula, Arun Narula, Megan Narula, Adrienne Winans, Austin Clements, Yandong
Mao, Adam Marcus, Alex Pesterev, Alex Yip, Max Krohn, Cody Cutler, Frank Wang, Xi Wang, Ramesh
Chandra, Emily Stark, Priya Gupta, James Cowling, Dan Ports, Irene Zhang, Jean Yang, Grace Woo,
Szymon Jakubczak, Omar Khan, Sharon Perl, Brad Chen, Ben Swanson, Ted Benson, Eugene Wu,
Evan Jones, Vijay Pandurangan, Keith Winstein, Jonathan Perry, Stephen Tu, Vijay Boyapati, Ines
Sombra, Tom Santero, Chris Meiklejohn, John Wards, Gergely Hodicska, Zeeshan Lakhani, Bryan Kate,
Michael Kester, Aaron Elmore, Grant Schoenebeck, Matei Zaharia, Sam Madden, Mike Stonebraker,
Frans Kaashoek, Nickolai Zeldovich

Phase length and read latency

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g

e
 R

e
a

d
 L

a
te

n
cy

 (
µ

s)

phase length (ms)

Uniform
Skewed

Skewed Write Heavy

76	

