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Database-backed applications 
require good performance


WhatsApp:

•  1M messages/sec


Facebook:

•  1/5 of all page views in the US


Twitter:

•  Millions of messages/sec 

from mobile devices




Databases are difficult to scale
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Database is stateful


Application servers are 
stateless; add more for 

more traffic




Scale up using multi-core databases
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Context!
•  Many cores

•  In-memory database

•  OLTP workload

•  Transactions are stored 

procedures


No stalls due to users, disk, 
or network




Goal
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Execute transactions in parallel
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Challenge

Conflicting data access
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Conflict: two 
transactions access 
the same data and 

one is a write




TXN1(k, j Key)  (Value, Value) { 
 a := GET(k) 
 b := GET(j) 
 return a, b 

} 

Database transactions should be 
serializable
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TXN2(k, j Key) { 
 ADD(k,1) 
 ADD(j,1) 

} 

TXN1 TXN2 

TXN2 TXN1 

time


or"

To the programmer:"

Valid return values 
for TX1: (0,0)"

k=0,j=0"

or (1,1)"



Transactions are incorrectly seeing 
intermediate values


GET(k)GET(j) 

Executing in parallel could produce 
incorrect interleavings
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ADD(k,1)    ADD(j,1) 

time


TX1 returns 
(1,0)"k=0,j=0 



Concurrency control enforces serial 
execution


ADD(x,1)


ADD(x,1)


ADD(x,1)
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time


Transactions on the same records 
execute one at a time




Concurrency control enforces serial 
execution


core 0


core 1


core 2


ADD(x,1)


ADD(x,1)


ADD(x,1)
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time


Serial execution results in a lack of 
scalability




Idea #1: Split representation for 
parallel execution


core 0


core 1


core 2


ADD(x,1)


ADD(x,1)
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time


•  Transactions on the same record can proceed in 
parallel on per-core values


•  Reconcile per-core values for a correct value


x0:1 

x1:1 

x2:1 

ADD(x,1)
per-core values 
for record x




x is split across 

cores


x0:0 

x1:0 

x2:0 

ADD(x,1)


ADD(x,1)


ADD(x,1)


ADD(x,1)


ADD(x,1)


x0:3 

x1:3 

x2:2 

x = 8




Other types of operations do not 
work with split data


core 0


core 1


core 2
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time


•  Executing with split data does not work for all types of 
operations


•  In a workload with many reads, better to not use per-
core values


x0:3 

x1:3 

x2:2 

ADD(x,1)


PUT(x,42)


GET(x)


x1:4 

x2:42 

x = ??




core 0


core 1


core 2


ADD(x,1)


ADD(x,1)


ADD(x,1)
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time


GET(x)


ADD(x,1)


GET(x)


ADD(x,1)
 GET(x)


ADD(x,1)


re
co
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!

Can execute in parallel
 Can execute in parallel


•  Key Insight: Reordering transactions reduces 

–  Cost of reconciling

–  Cost of conflict


•  Serializable execution


Idea #2: Reorder transactions




Idea #3: Phase reconciliation

core 0


core 1


core 2
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time

•  Database automatically detects contention to split 

a record between cores

•  Database cycles through phases: split and joined

•  Doppel:  An in-memory key/value database
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Split 

Phase


Joined 
Phase


Split 

Phase
sp

lit
!

Conventional 
concurrency 

control




Challenges


Combining split data with general database 
workloads:



1.  How to handle transactions with multiple keys and 

different operations?

2.  Which operations can use split data correctly?

3.  How to dynamically adjust to changing workloads?
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Contributions

•  Synchronized phases to support any 

transaction and reduce reconciliation 
overhead


•  Identifying a class of splittable operations

•  Detecting contention to dynamically split 

data
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Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion
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Split phase


•  The split phase executes operations on 
contended records on per-core slices (x0, x1, 
x2)
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core 0


core 1


core 2


ADD(x0,1)


ADD(x1,1)


ADD(x2,1)


split phase




Reordering by stashing transactions


•  Split records have selected operations for a given split 
phase


•  Cannot correctly process a read of x in the current state

•  Stash transaction to execute after reconciliation
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core 0


core 1


core 2


split phase


ADD(x1,1)


GET(x)
ADD(x0,1)


ADD(x1,1)


ADD(x2,1)
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core 0


core 1


core 2


split phase


•  All cores hear they should reconcile their per-core state

•  Stop processing per-core writes


ADD(x1,1)


ADD(x0,1)


ADD(x1,1)


ADD(x2,1)


GET(x)




•  Reconcile state to global store

•  Wait until all cores have finished reconciliation

•  Resume stashed read transactions in joined phase
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core 0


core 1


core 2


reconciliation


x = x + x0


x = x + x1


x = x + x2


GET(x)


joined phase
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core 0


core 1


core 2


x = x + x0


x = x + x1


x = x + x2


reconciliation


•  Reconcile state to global store

•  Wait until all cores have finished reconciliation

•  Resume stashed read transactions in joined phase


GET(x)


joined phase




Transitioning between phases
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core 0


core 1


core 2


•  Process stashed transactions in joined phase using 
conventional concurrency control


•  Joined phase is short; quickly move on to next split 
phase


GET(x)


split phase


GET(x)


joined phase


ADD(x1,1)


ADD(x2,1)




Challenge #1

How to handle transactions with multiple keys 
and different operations?



•  Split and non-split data

•  Different operations on a split record

•  Multiple split records
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Transactions on split and non-split 
data


•  Transactions can operate on split and non-split records

•  Rest of the records (y) use concurrency control

•  Ensures serializability for the non-split parts of the 

transaction
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core 0


core 1


core 2


ADD(x0,1)


ADD(x1,1) PUT(y,2)


ADD(x3,1) PUT(y,2)


split phase




Transactions with different 
operations on a split record


•  A transaction which executes different 
operations on a split record is also stashed, 
even if one is a selected operation


26	
  

core 0


core 1


core 2


ADD(x0,1)


ADD(x1,1) PUT(y,2)


ADD(x3,1) PUT(y,2)


split phase


ADD(x,1)GET(x)




All records use concurrency control 
in joined phase
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core 0


core 1


core 2


ADD(x0,1)


ADD(x1,1) PUT(y,2)


ADD(x3,1) PUT(y,2)


split phase


•  In joined phase, no split data, no split operations

•  ADD also uses concurrency control


ADD(x,1)GET(x)


joined phase


ADD(x,1)GET(x)




Transactions with multiple split 
records
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core 0


core 1


core 2


split phase


•  x and y are split and operations on them use per-core 
slices (x0, x1, x2) and (y0, y1, y2)


•  Split records all use the same synchronized phases


ADD(x2,1)MULT(y2,2)


ADD(x0,1)


ADD(x1,1)


MULT(y2,1)




Reconciliation must be synchronized


•  Cores reconcile all of their split records: ADD for x and 
MULT for y


•  Parallelize reconciliation

•  Guaranteed to read values atomically in next joined phase
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core 0


core 1


core 2


reconciliation


x = x + x1


x = x + x2


y = y * y0


y = y * y1


y = y * y2


x = x + x0


joined phase


GET(x)GET(y)




Delay to reduce overhead of 
reconciliation
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core 0


core 1


core 2


ADD(x0,1)
 GET(x)


•  Wait to accumulate stashed transactions, many 
in joined phase


•  Reads would have conflicted; now they do not


ADD(x1,1)


ADD(x2,1) ADD(z,1)
GET(x)


GET(x)


GET(x)


GET(x)


split phase

joined 
phase


GET(x)


ADD(x2,1)


ADD(x1,1)


ADD(x0,1)




When does Doppel switch phases?
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(ns > 0 && ts > 10ms) || ns > 100,000


Split phase
 Joined 
phase


Completed stashed txns


ns = # stashed

ts = time in 
split phase




Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion
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Challenge #2

Define a class of operations that is correct 
and performs well with split data.
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Operations in Doppel
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Developers write transactions as stored 
procedures which are composed of 

operations on database keys and values

void ADD(k,n) 
void MAX(k,n) 
void MULT(k,n) 

Operations on numeric 
values which modify the 

existing value




Why can ADD(x,1) execute correctly 
on split data in parallel?


•  Does not return a value

•  Commutative
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ADD(k,n) { 
 v[k] = v[k] + n 

} 



Commutativity

Two operations commute if executed on the 
database s in either order, they produce the 
same state s’ and the same return values.
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Hypothetical design: commutativity 
is sufficient


core 0


core 1


core 2


T1
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•  Not-split operations in transactions execute

•  Split operations are logged

•  They have no return values and are on different data, 

so cannot affect transaction execution


o1
 T5
o5


T2
o2
  T4
o4


T3
   T6
o3
 o6


log:


log:


log:


o1
 o5


o3
 o6


o2
 o4




Hypothetical design: apply logged 
operations later


core 0


core 1


core 2


T1
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•  Logged operations are applied to database state 
in a different order than their containing 
transactions


T5


T2
  T4


T3
   T6


log:


log:


log:
 o3
 o6


o2
 o4


o1
 o5




Correct because split operations can 
be applied in any order
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o1
 o3
 o6
o5
 o2
 o4


o1
 o3
 o6
o5
o2
 o4


After applying the split operations 

in any order, 


same database state


s
 s’


T1 T2 T3 T4 T5 T6


="



Is commutativity enough?


For correctness, yes.



For performance, no.

Which operations can be summarized?
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Summarized operations

An set of operations can be summarized if for 
all sequences of operations in the set, there is 
a function f that produces the same result and 
runs in time order a single operation.
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o1
 o2
 o3


s
 s’
="
f 



core 1
 MAX(x,27) x1:27 MAX(x,10) x1:10 

core 0
 MAX(x,55) MAX(x,2) x0:55 

core 2
 MAX(x,21) x2:21 

MAX can be summarized
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•  Each core keeps one piece of state

•  55 is an abbreviation of a function to apply later

•  O(#cores) time to reconcile x


x = MAX(x,55) (55) 
x = MAX(x,27) (55) 
x = MAX(x,21) (55) 



SHA1 cannot be summarized


SHA1(k) { 
 v[k] = sha1(v[k]) 

} 
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SHA1(SHA1(x)) = SHA1(SHA1(x)) 

SHA1(x) 
commutes!




? core 0
 SHA1(x) SHA1(x) SHA1(x) 

SHA1 is commutative but we do not 
know how to summarize it
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•  Need to produce a function that produces the 
same value as SHA1 run n times on x, but has 
running time O(SHA1)


•  No such function




Operation summary

Properties of operations that Doppel can split:

– Always commute

– Can be summarized

– Single key

– Have no return value




Runtime restriction:

– Only one type of operation per record per split 

phase
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Ordered PUT and insert 
to an ordered list


Example commutative and 
summarizable operations
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void ADD(k,n) 
void MAX(k,n) 
void MULT(k,n) 
 
void OPUT(k,v,o) 
void TOPK_INSERT(k,v,o) 



Operations on numeric 
values which modify the 

existing value
 With timestamps, last 
writer wins


Short indexes, top 
friends or follower lists




Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion
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Challenge #3

Dynamically adjust to changes in the 
workload:

•  Which records are contended?

•  What operations are happening on different 

records?
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How to determine what to split?

•  Developer annotates records

– Difficult to determine

– Popular data changes over time


•  Automatically split data based on observed 
contention

– Count records and operations which cause 

conflict

– Split records actually causing serialization

– Sample for low cost
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Which records does Doppel split?
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x is not split

x is split 

during split 
phases


impact(x,op) < tj 


impact(x,op) > tc 


impact(x,op) =
 conflictsop(x)

other(x)




Implementation


•  Doppel implemented as a multithreaded Go 
server; one worker thread per core


•  Coordinator thread manages phase 
changes


•  Transactions are procedures written in Go

•  All data fits in memory; key/value interface 

with optionally typed values

•  Doppel uses optimistic concurrency control
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Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion
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Performance evaluation

•  Extreme contention

•  A range of contention

•  Changing workloads

•  Workloads with a mix of reads and writes

•  A complex application
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Experimental setup


•  All experiments run on an 80 core Intel 
server running 64 bit Linux 3.12 with 
256GB of RAM


•  All data fits in memory; don’t measure RPC 
or disk


•  All graphs measure throughput in 
transactions/sec
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How much does Doppel improve 
throughput on contentious write-

only workloads?
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Doppel executes conflicting 
workloads in parallel
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20 cores, 1M 16 byte keys, transaction: ADD(x,1) all on same key
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Contentious workloads scale well


1M 16 byte keys, transaction: ADD(x,1) all writing same key
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How much contention is required 
for Doppel’s techniques to help?
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Doppel outperforms 2PL and OCC 
even with low contention
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  20 cores, 1M 16 byte keys, transaction: ADD(x,1) on different keys


5% of writes to 
contended key




Can Doppel detect and respond 
to changing workloads over 

time?
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Doppel adapts to changing popular 
data
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61	
  20 cores, 1M 16 byte keys, transaction: ADD(x,1) 10% on same key




How much benefit can Doppel 
get with many stashed 

transactions?
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Read/Write benchmark

•  Users liking pages on a social network

•  2 tables: users, pages

•  Two transactions:

– ADD 1 to a page’s like count, PUT user like of page

– GET a page’s like count, GET user’s last like


•  1M users, 1M pages, Zipfian distribution of 
page popularity


Doppel splits the popular page counts

But those counts are also read most often
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Benefits even when there are reads 
and writes to the same popular keys
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Doppel outperforms OCC for a wide 
range of read/write mixes


20 cores, transactions: RW benchmark
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Doppel does not split 
any data and performs 

the same as OCC!More stashed read transactions




Does Doppel improve throughput 
for a realistic application: RUBiS?
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RUBiS

•  Auction benchmark modeled after eBay

–  Users bid on auctions, comment, list new items, search


•  1M users and 33K auctions

•  7 tables, 17 transactions

•  85% read only transactions (RUBiS bidding mix)


•  Two workloads:

–  Roughly uniform distribution of bids

–  Skewed distribution of bids; a few auctions are very 

popular
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RUBiS StoreBid transaction

StoreBidTxn(bidder, amount, item) { 

 ADD(NumBidsKey(item),1) 

 MAX(MaxBidKey(item), amount) 

  OPUT(MaxBidderKey(item), bidder, amount) 

 PUT(NewBidKey(), Bid{bidder, amount, item}) 

} 

The contended data is only operated on 
by splittable operations.




Inserting new bids is not likely to conflict
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Doppel improves throughput for the 
RUBiS benchmark
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Outline

•  Challenge 1: Phases

•  Challenge 2: Operations

•  Challenge 3: Detecting contention

•  Performance evaluation

•  Related work and discussion
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Related work

•  Shared memory DBs

– Silo, Hekaton, ShoreMT 


•  Partitioned DBs

– DORA, PLP, Hstore


•  Choosing partitions

– Schism, Estore, Horticulture


•  Transactional memory

– Scheduling [Kim 2010, Attiya 2012]
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Doppel runs 
conflicting 

transactions in parallel




Related work

•  Commutativity

– Abstract Datatypes [Weihl 1988]

– CRDTs [Shapiro 2011]

– RedBlue consistency [Li 2012]

– Walter [Sovran 2011]


•  Scalable operating systems

– Clustered objects in Tornado [Parsons 1995]

– OpLog [Boyd-Wickizier 2013]

– Scalable commutativity rule [Clements 2013]
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Doppel combines 
these ideas in a 

transactional database




Future Work

•  Generalizing to distributed transactions

•  More data representations

•  Larger class of operations which commute

•  Durability and recovery
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Conclusion

Multi-core phase reconciliation:

•  Achieves parallel performance when transactions 

conflict by combining split data and concurrency 
control


•  Performs well on uniform workloads while improving 
performance significantly on skewed workloads.
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Phase length and read latency


 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
g

e
 R

e
a

d
 L

a
te

n
cy

 (
µ

s)

phase length (ms)

Uniform
Skewed

Skewed Write Heavy

76	
  


