
Optimizations for Performant Multiverse Databases

by

Jacqueline M. Bredenberg

S.B., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 12, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Robert Morris

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



Optimizations for Performant Multiverse Databases

by

Jacqueline M. Bredenberg

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Modern web applications store data in backend databases, and access it through a
variety of frontend queries. User permissions are implemented by checks on those
queries, but a maliciously injected (or simply buggy) query can easily leak private
data. Multiverse databases attempt to prevent these data leaks by creating a separate
view of the database contents (or “universe”) for each user, and enforcing in the
backend that this universe contains only data that the user is allowed to query. These
views are precomputed and materialized using a streaming dataflow system so that
queries return promptly.

This design is difficult to make efficient. A simple approach makes copies of data
and operators for each universe, but state size that increases proportionally to the
number of users quickly becomes impractical. In this work, we developed optimiza-
tions for multiverse dataflow graphs, which aim to reuse the same computations (i.e.
dataflow subgraphs) in many different universes while maintaining security invariants.

We evaluate these optimizations in the context of the HotCRP and Piazza web
applications. The resulting graphs are about 2x more space-efficient and 3x more
computation-efficient than the naïve ones. Graph size and processing time still scale
linearly with the number of users, so our design may still not be efficient enough to be
practical, but our optimizations make progress toward making multiverse databases
a feasible solution to web application security.

Thesis Supervisor: Robert Morris
Title: Professor of Electrical Engineering and Computer Science

2



Acknowledgments

I am immensely grateful to Malte Schwarzkopf for all phases of my work. Without

Malte, it is unlikely that I would ever have written a Master’s thesis. He inspired my

interest in distributed systems and encouraged me to experiment with research in the

field. He suggested multiple project ideas, eventually including the work presented

here. Throughout my work, Malte has gotten me unstuck many times, and been

consistently patient and supportive. I have been incredibly lucky to have him as my

unofficial supervisor.

I am also thankful to Robert Morris for taking me under his supervision when

Malte moved to Brown; to Jon Gjengset for providing detailed code feedback and

Rust help; to Samyu Yagati for all her contributions to our policy language and

planning ideas; and to the rest of the PDOS team for their discussions and work on

Noria.

3



Contents

1 Introduction 7

2 Background and Related Work 9

2.1 Multiverse Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Streaming Dataflow Computing . . . . . . . . . . . . . . . . . . . . . 10

2.3 Previous Approaches to Database Security . . . . . . . . . . . . . . . 12

2.4 Dataflow for Multiverse Databases . . . . . . . . . . . . . . . . . . . 12

2.5 Performance Limitations of Past Multiverse Work . . . . . . . . . . . 13

2.6 Concurrent Research in Multiverse Databases . . . . . . . . . . . . . 13

3 Design 14

3.1 Expressing Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Initial Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 New Dataflow Operators . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Deny Alls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Deduplicating Unions . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.3 Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Dead Node Removal . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Identical Child Reuse . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Operator Simplification . . . . . . . . . . . . . . . . . . . . . . 25

3.4.4 Filter Pushdown . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.5 Summary of Optimization Pipeline . . . . . . . . . . . . . . . 28

4



3.5 Avoiding Deduplicating Unions . . . . . . . . . . . . . . . . . . . . . 29

3.6 Alternate Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Implementation 35

4.1 Codebase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 User and Testing Interfaces . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation 37

5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.2 Size: Node Count, Record Count, and Byte Count . . . . . . . 37

5.1.3 Record Processing Time and Read Time . . . . . . . . . . . . 38

5.2 The HotCRP Application . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 The Piazza Application . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Impact of Each Optimization . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 HotCRP Measurements . . . . . . . . . . . . . . . . . . . . . . 43

5.4.2 Piazza Measurements . . . . . . . . . . . . . . . . . . . . . . . 44

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Impact of Removing Deduplicating Unions . . . . . . . . . . . . . . . 45

5.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Conclusion 54

7 Future Work 55

A Policy Specifications 57

A.1 HotCRP Policy Specification . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Piazza Policy Specification . . . . . . . . . . . . . . . . . . . . . . . . 60

5



List of Figures

2-1 Multiverse databases as presented by Marzoev et al. [8]. . . . . . . . 10

2-2 A dataflow graph for a Lobsters query. . . . . . . . . . . . . . . . . . 11

3-1 A simplified version of reviewer-related policies in HotCRP. . . . . . . 16

3-2 User-specific table views. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3-3 Constructing the view for the PaperReview table. . . . . . . . . . . . 18

3-4 Dead Node Removal eliminates a Deny All node. . . . . . . . . . . . 22

3-5 Pseudocode for the Identical Child Reuse optimization. . . . . . . . . 24

3-6 Identical Child Reuse application. . . . . . . . . . . . . . . . . . . . . 25

3-7 Operator Simplification application. . . . . . . . . . . . . . . . . . . . 26

3-8 Filter Pushdown application. . . . . . . . . . . . . . . . . . . . . . . . 27

3-9 A simple condition with complement filtering. . . . . . . . . . . . . . 30

3-10 A single-IN condition with complement filtering. . . . . . . . . . . . . 31

3-11 A multiple-IN condition with complement filtering. . . . . . . . . . . 32

5-1 Graphs generated for HotCRP with two users. . . . . . . . . . . . . . 41

5-2 Graphs generated for Piazza with two users. . . . . . . . . . . . . . . 42

5-3 Planner size scaling with number of posts. . . . . . . . . . . . . . . . 48

5-4 Planner size scaling with number of users. . . . . . . . . . . . . . . . 49

5-5 DedupRemoval planner throughput scaling with number of posts. . . 49

5-6 Optimized planner throughput scaling with number of posts. . . . . . 50

5-7 DedupRemoval planner throughput scaling with number of users. . . 50

5-8 Optimized planner throughput scaling with number of users. . . . . . 51

5-9 Heatmaps of overall results. . . . . . . . . . . . . . . . . . . . . . . . 52

6



1 Introduction

From minor applications that we gave our emails to three years ago and then forgot

about, to major web services like Facebook, websites’ logic is often not bug-free. Data

is often stored in a backend database and accessed by frontend queries. Current web

services generally give these frontend queries full access to the data, meaning that a

single poorly written query can leak data unrelated to its intended function. Facebook

had one such leak in its photo sharing logic from 2013-2015 [2]: other applications

granted access to certain photos could also view photos private to Facebook because

a query checked only for the access token for photos and neglected to verify which

application made the request. This is merely one prominent example among many.

The goal of our work is to enable a secure and fast approach to web application

queries.

Queries are prone to programmer errors and may leak private data. A better ap-

proach might maintain privacy with simple backend policies, guarding against buggy

frontend queries. A system that automatically enforced privacy policies on all queries

would ensure that no query could retrieve information that the querying user should

not be able to see.

Multiverse databases are a new approach to improve security, developed in the con-

text of the Noria dataflow system by the Parallel and Distributed Operating Systems

(PDOS) group at MIT [8][5]. Each user has their own “universe” of data, containing

only records they are allowed to view. All queries they submit to the system are

evaluated against their universe. The initial multiverse database prototype copies

the same data and operations into many different private universes, making it not

performant enough to be practical.

7



In this work, we investigate a new approach to make multiverse databases more

efficient and reduce their space footprint, primarily by reusing dataflow nodes across

universes, while maintaining easy-to-reason-about correctness. We describe a simple

initial multiverse graph planner, which lays out the dataflow for policies and queries

over base tables, then present a series of optimizations. We evaluate our implementa-

tion of these optimizations, which reduces computation time by 67%-71% and state

stored by 41%-66% overall.

The multiverse model has the potential to change the way that web applications

approach security. However, no service will adopt a model that isn’t performant

enough to support their workloads. Our work demonstrates that the multiverse ap-

proach can continue to achieve its security goals while also becoming more practical

for real systems. Websites could build on these optimizations when developing their

own backends.

8



2 Background and Related Work

Over the years, there have been various approaches to support performant and secure

logic for web application queries. For the sake of brevity, we focus on the ones directly

relevant to our work.

2.1 Multiverse Databases

Traditionally, websites’ backend databases do not address the problem of security.

Frontend queries and application logic handle any privacy logic or restrictions, but

there are many of them across the system and they are prone to human error, so a

missing privilege check could result in sensitive data being leaked. Recently, the Noria

team at MIT proposed to rectify this through multiverse databases [8]. A multiverse

database presents a simple interface to define privacy policies all in one place. Policies

may depend on computations over the database tables. The multiverse database then

enforces the policies by anonymizing or removing data that a user should not be able

to see, creating a universe of data tailored to that user, against which they can

execute queries with no risk of accidentally revealing private records. The Multiverse

DB vision paper illustrates this idea with Figure 2-1.

A multiverse database must either evaluate policies at the time of query execution,

or precompute universe contents. The former repeats a lot of the same work and will

slow down every query. The latter naively requires storing a large amount of data

and recomputing every universe each time the underlying database receives an update.

Fortunately, systems already exist that can make the latter feasible.

9



Figure 2-1: Multiverse databases as presented by Marzoev et al. [8].

2.2 Streaming Dataflow Computing

The current Multiverse DB prototype builds on streaming dataflow infrastructure

from Noria [5], which it uses to precompute partial universe contents. Noria creates

a stateful dataflow graph, where intermediate computations are stored and updated

as new data is added to base tables.

Traditional databases repeatedly execute the same few queries every time users

make requests, redoing mostly the same work many times. Queries can be much

faster in Noria’s model: instead of iterating over an entire table each time we wish

to compute the sum of a column, we merely update the sum each time we add an

entry to the table, and can access the stored value instantaneously. In complex

queries with more nodes, updates to the data propagate through the operator nodes

in the graph until they reach nodes where the query results are read. This model is

especially powerful in web applications, where reads are usually much more common

than writes, because we only need to update our stored results upon writes instead

of executing a query for every read.

To clarify the idea of a dataflow graph, here is an example query from a bench-

mark based on the Lobste.rs website (https://lobste.rs), a news aggregator similar to

HackerNews [4]. Lobsters is one of the benchmarks used by Noria [5].

10



Stories

left join

Comments

count

materialized
view

Figure 2-2: A dataflow graph for the example Lobsters query, with base tables for
Stories and Comments.

Given the query:

SELECT stories.id, COUNT(comments.id) as comments

FROM stories

LEFT JOIN comments ON (stories.id = comments.story_id)

GROUP BY stories.id;

Noria generates a graph such as the one shown in Figure 2-2.

Whenever a user leaves a new comment on a story, the update propagates to the

join and then the count so that the read result is up-to-date. If another query also

requires joining the stories and comments tables, it can reuse the existing join node

and add any additional operations as a child of the join. Sharing the join computation

reduces the number of distinct nodes in the graph and the amount of work being done.

Noria itself builds on previous streaming dataflow systems, such as Naiad from

2013 [10]. Unlike previous work, Noria accepts online updates to the set of queries

it supports. As new tables and types of queries are added, it dynamically adapts

its dataflow graph, adding new computation nodes and reusing existing computation

where possible.

11



2.3 Previous Approaches to Database Security

Several previous systems have attempted to enforce security policies in databases at

runtime. For example, Qapla rewrites incoming queries to enforce policies before exe-

cuting them, but this approach increases query complexity and slows the query down

by 3-10x [9]. IBM’s DB2 enables column masks to be applied, effectively anonymizing

the data in the specified column [3]. The column mask approach does not support

restrictions on access for entire rows or tables, however.

PostgreSQL allows a table owner to define row-level security policies on the ta-

ble [6]. These policies are similar to the ones we attempt to enforce in multiverse

databases. Each query must evaluate a boolean expression for every row at runtime

before including that row in query execution, adding overhead to the query. This

additional overhead to queries is a common theme among other approaches, and the

multiverse approach attempts to avoid it by using streaming dataflow.

2.4 Dataflow for Multiverse Databases

When building a multiverse database, much computation is involved in constructing

separate universes. Rather than perform these operations on the fly each time a

universe is queried, the multiverse database design aims to keep query execution times

fast by building on a streaming dataflow system. Noria, for example, will efficiently

cache partial query results and universe computations. It will also propagate any

updates to the underlying data so that only the relevant parts of the universe need

to be recomputed.

Noria’s flexibility in accepting online updates also provides support for multiverse

databases. Each new user creates a new universe and therefore an update to the

dataflow graph. Noria can dynamically adapt to new user universes without system

downtime, whereas previous streaming dataflow systems would have needed to restart

with a new graph.

12



2.5 Performance Limitations of Past Multiverse Work

While it improves security, the multiverse model is not yet performant enough to

be a viable alternative to conventional database approaches. The current implemen-

tation creates a separate universe of data for each user and uses Noria to maintain

intermediate computations as stateful dataflow. As a result, it stores too much data:

separate copies of records and computations for each user. The multiverse approach

will not be able to perform effectively until we build a way to reuse intermediate com-

putations across different universes. At the same time, we must be careful to preserve

the user-level separation of data so that we do not compromise security while reusing

nodes.

2.6 Concurrent Research in Multiverse Databases

The PDOS team at MIT is researching ways to improve multiverse databases in vari-

ous directions. The current prototype only supports security policies for reads; Alana

Marzoev and Jonathan Guillotte-Blouin are developing a model for write policies [8].

Since Noria is only eventually consistent, special care needs to be taken with writes

to avoid race conditions.

Samyu Yagati is working to solve the aforementioned performance problems by

increasing sharing across universes with a new query planning approach [11]. In

particular, she plans to rethink the traditional order of operators: whereas placing

filters early in query execution is traditionally optimal to reduce the amount of data

being processed, in a multiverse database those filters often specialize data to partic-

ular user universes and make it harder to share state, so it may be better to place

them late. Our work draws on some of Samyu’s ideas, but whereas she is developing

a complex approach to graph planning, we use a simple planner and then develop

generally-applicable optimizations to improve the graph.

13



3 Design

In section 3.1, we describe the policy language used to specify security constraints.

Section 3.2 explains how we can construct a graph that correctly enforces these con-

straints. Section 3.3 describes the new dataflow operators designed for policy-related

nodes, and how they differ from the existing Noria operators. The majority of our

design work is in section 3.4, where we focus on optimizing the dataflow graph for

faster performance and smaller state while maintaining the same behavior. Section

3.5 discusses an alternate approach to graph construction.

Our design’s first priority is to be correct: a lightning-fast system that does not

enforce the desired security policies would not meet our goals. Accordingly, we begin

by constructing a dataflow graph that is slow but easy to reason about, and apply

our optimizations incrementally to an existing dataflow. By arguing that each opti-

mization preserves the output of the graph as a whole, we ensure that correctness is

maintained.

This design choice restricts the space of optimizations that we can perform: some

potential speed-ups may require constructing the graph differently1 to begin with (see

e.g. [11]). However, we believe that the focus on correctness is a reasonable trade-off.

In section 3.6 we present some other ideas we considered for graph construction and

cases where they break. These cases demonstrate the difficulty of building a correct

initial graph, informing our decision to start simple and incrementally optimize our

dataflow.

Throughout this section, we provide example images of how graph construction
1Although section 3.5 discusses an alternate graph construction, it has the same fundamental

approach and merely uses different node combinations to achieve it.

14



and optimizations apply to a simplified version of the HotCRP benchmark (described

in more detail in the Evaluation section).

3.1 Expressing Policies

Multiverse database managers express security constraints as a set of policies, each

ranked with a priority. Each policy applies to a subset of users, and changes their

permissions for entries in a given table matching a given SQL predicate. A policy

can be an Allow, Deny, or Rewrite, respectively granting access, denying access, or

anonymizing certain columns of the data. Policies are applied from lowest to highest

priority, so that a higher-priority policy will override lower-priority ones – for example,

if data is rewritten by a lower-priority policy and allowed by a higher-priority policy,

the allow takes priority and affected users will see the data plain, but if the priorities

are swapped they will see the rewritten version of the data.

The policy file also allows for defining global predicates and groups. A global

predicate selects some data from a table and makes a view out of it, allowing it to be

referenced within policy predicates. A group selects certain user IDs from the table

of users, and policies can choose to apply only to users whose ID is in that group.

Finally, the policy file allows specification of a default policy for all tables (either

allow or deny), with maximally low priority.

As an example, in Figure 3-1 we present the simplified policy file for reviewer-

related policies in HotCRP, a web application for conference review management [7].

Note that here “highest” priorities are ones with lower numbers, i.e. the 1st priority

is more important than the 2nd priority, and that $UID gets replaced with the user

ID value.

This policy language was largely developed for the Multiverse DB paper [8], but

we continue to refine it in order to be expressive while also making it easy to plan.

The combination of features described above allows a policy writer to encompass all

the policies of HotCRP, Piazza, and other applications.

15



PolicySpecification(
predicates: [

("REVIEWS_ASSIGNED", "SELECT ‘reviewId’, ‘paperId’, ‘contactId’ FROM PaperReview;"),
("MY_REVIEWS_ASSIGNED", "SELECT ‘paperId’ FROM PaperReview WHERE ‘contactId’ = $UID;"),

],

groups: {},

default: Some(
Deny((

priority: 999999,
domain: Row,
predicate: "ALL",

))
),

policies: {
"R0": Table((

description: "R0: Reviewers can see reviews on papers they are assigned to review",
table: "PaperReview",
policies: [

Allow((
priority: 2,
domain: Row,
predicate: "‘paperId’ IN $MY_REVIEWS_ASSIGNED",

)),
],

)),

"R1": Table((
description: "R1: Reviewers cannot see reviewer information for any reviewer except self",
table: "PaperReview",
policies: [

Rewrite((
priority: 1,
domain: Column,
columns: Columns(["contactId"]),
value: NULL,
predicate: "ALL",

)),

Allow((
priority: 0,
domain: Row,
predicate: "‘paperId’ IN $MY_REVIEWS_ASSIGNED AND ‘contactId’ = $UID;",

)),
]

))
}

)

Figure 3-1: A simplified version of reviewer-related policies in HotCRP. The policy
specification defines a predicate MY_REVIEWS_ASSIGNED containing the paper IDs that
each user will review, and allows the user to view paper reviews on papers with those
IDs, but not the identities of other reviewers.

16



3.2 Initial Graph Construction

To ensure correctness, we begin by constructing a user-specific view of every table,

and then make per-user copies of every query, reading only from the table views

tailored to that user (see Figure 3-2). As long as the user-specific table views have

correctly applied all security policies, the queries do not need to worry about leaking

any data that the user should not be able to see.

table A

policy nodes policy nodes

table B table C

Alice's
table A

Alice's
table B

Bob's
table A

Bob's
table B

query nodes query nodes

Alice's view Bob's view

Figure 3-2: A graph with per-user copies of tables A and B, which are consulted by
the query. Table C is used in evaluating policies but not queried. White nodes are
base tables, blue nodes are for the user Alice, green nodes are for the user Bob, and
the lighter nodes for each represent policy nodes whereas the darker ones are query
nodes.

To construct such a view for a given table and user, we iterate over the policies

that apply to that table, sorted from lowest to highest priority. We incrementally

construct a chain of policy nodes, adding to the bottom each time we consider the

next-lowest-priority policy, and keeping a pointer to the “latest” node (i.e. the last

node in the policy chain so far). We update the latest node for each policy as follows:

∙ Deny: filter the latest node for rows that do NOT match the deny predicate.

The latest node now points at this filter.

∙ Allow: filter the base table for rows that match the allow predicate, and union2

2Here we use a deduplicating union, which Section 3.3.2 will describe. In Section 3.5 we will see
another approach to adding in allow policies that does not require deduplicating unions.

17



PaperReview

duplicate columns

deny_all
(default policy)

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 2)

allow_union
(latest node so far)

REVIEWS_ASSIGNED

filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

(a) Intermediate construction.

PaperReview

duplicate columns

projection

deny_all
(default policy)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0)

REVIEWS_ASSIGNED

filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

rewrite (contactId)
(priority 1)

allow_union

filter (contactId = $UID)
(priority 0)

deduplicate columns

PaperReview (user view)

(b) Full construction.

Figure 3-3: Constructing the view for the PaperReview table using policies R0 and
R1 from Figure 3-1. The left figure shows the latest node after creating nodes for the
predicates and policy R0, and the right adds to it with the purple nodes to create the
complete graph. Note that the IN relation is implemented via a join.

these together with data already present in the chain’s latest node. The latest

node now points at this union.

∙ Rewrite: create two filters on the latest node, one for rows that do match the

predicate and one for rows that do not match the predicate. Use a rewrite oper-

ator to anonymize the desired columns in the rows that do match the predicate.

Union3 the results together with the rows that do not match the predicate. The

latest node now points at this union.

Thus at each step, the latest node incorporates all the policies with lower priority.

Higher priority policies can overwrite the results of lower ones, because an allow brings

in data directly from the base table bypassing any lower-priority denies and rewrites,

and denies and rewrites remove information from the latest node.

One problem is that our policies often filter on data that may have been rewritten

earlier in the chain of policy nodes. For example, suppose one policy anonymizes the
3Here our records are all disjoint, so we can use a regular union.

18



authors of papers, and another higher-priority policy denies anyone who is not an

author or reviewer on a paper from seeing it. When we create policy nodes for the

deny, we must filter on authorship, but all entries in the author column have already

been rewritten to anonymous! To get around this, we duplicate every column in each

table: one copy for determining whether the data matches filter conditions, and one

copy to be potentially rewritten. Right before making the user-specific table view, we

use a projection to keep only the potentially rewritten versions of the columns – see

the duplicate columns and deduplicate columns nodes in Figure 3-3. This design

could be made much more efficient by duplicating only columns that will actually be

rewritten and then filtered on, but doing so is outside of the scope of the optimization

work we discuss here.

The user-specific table view approach is not very efficient: it requires making

per-user copies of every table and every query. Fortunately, later optimizations will

mitigate this explosion in graph size as the system adds more users. In the meantime,

we stick with this simple model as it is easy to reason about, and it makes it easy

for multiple different queries by the same user against the same tables to reuse the

policy computations for those tables.

Query planning is necessary for constructing the policy filters, the queries, and

the predicates referenced by policies. For each of these cases, we call the same query

planner logic, which converts a SQL select statement into a directed acyclic graph

of dataflow nodes. Query planning has already been studied extensively, and our

approach is not particularly novel, so we omit discussion of its correctness.

3.3 New Dataflow Operators

We use many of the same dataflow operators as Noria: aggregation, base table, ex-

tremum, filter, join (including inner, left, outer, and anti joins), projection, rewrite,

and materialized view nodes. In addition, we present several new types of nodes that

are useful in creating graphs for policies.

19



3.3.1 Deny Alls

The lowest priority policy will often be a universal deny, e.g. when the default policy

is set to deny. In this situation, we need to create a latest node for the deny so that

other policy nodes can chain downward from it as we continue layering on additional

policies. (Note that this chain does not necessarily deny everything, since allow

policies read from the base table and union into the chain.) Therefore, we create

a Deny All node type, with the simple implementation of discarding all input rows.

Since the node itself doesn’t do anything, it can be optimized out later, but it is useful

for constructing policy chains.

3.3.2 Deduplicating Unions

When we union together the results of multiple policies, both policies may allow

viewing the same record, possibly with different rewrites. For example, the latest

node in a policy chain may allow viewing a record with its author anonymized, and

a new allow policy may allow for viewing the record in its entirety. It is incorrect to

simply emit two versions of this record – instead we need to be able to merge the two

into one record which contains all information that either side could see.

To solve this problem, we introduce the Deduplicating Union operator. It ac-

cepts any number of input sources, and outputs a single “deduplicated” version

of each record that unifies information about it from all inputs. To determine

when two records represent the same original record, we add an extra column called

dedup_index to every table that labels records with the natural numbers, and project

it back out when we are done constructing policy chains. Since this column does not

exist in the real table, it will never be rewritten, so the Deduplicating Union can rely

on it to determine whether two records are derived from the same table entry. Note

also that the records in the user-specific table view (and each latest node during con-

struction) are a possibly-rewritten subset of the records in the base table, without any

aggregation or grouping operators, so the dedup_index column is always preserved.

The Deduplicating Union needs to remember what it has already seen for each

20



index, so it is necessarily a stateful operator. This creates an unfortunately large

amount of state in policy construction, but combining it with Noria state-mitigation

techniques such as up-querying may be able to make it substantially more efficient.

3.3.3 Gates

In some cases, a policy specifies that it only applies under certain conditions. We

might have two different policy chains and need to switch between them depending

on those conditions. A Gate operator acts as this switch: it has two possible input

sources, and a third “control” input whose emptiness or non-emptiness determines

which of the two inputs to read from.

We considered many situations where this abstract operator might apply, but in

our current model it is only used for group policies. A group defines a view containing

all the user IDs in the group. Then, a filter for the ID of the current user creates a

control node which is nonempty if the user is in the group and empty otherwise. This

allows us to construct policy components that only apply to users in a certain group,

and use a gate to determine whether we should read from those components or from

the policy chain not including the group-specific policy.

Gates also require state, since they must remember the contents of the other side

of the gate in case their control input switches between empty and nonempty (e.g. a

user is added or removed from a group). Group membership might change relatively

infrequently in most practical applications, so up-querying in those situations would

likely be a marked improvement.

3.4 Optimizations

Each optimization takes as input a list of graph nodes (and the edges between them)

in topological order, and outputs another list in topological order. Our optimizations

have the invariant that the records that reach the reader nodes of the graph are the

same pre- and post-optimization. Thus it is safe to compose optimizations arbitrarily.

Furthermore, since applying the optimizations does not require that the graph was

21



constructed in any particular way, this design is general-purpose enough to be useful

even with a different approach to planning.

The graphs may contain nodes from many different user universes. Optimizations

can combine some of these nodes to allow sharing state and computation across

universes where possible.

Often, running optimizations in a certain relative order (or even running the same

optimizations multiple times) allows them to take advantage of changes in the graph

due to previous optimizations. Therefore, we will describe our optimizations in the

order that they are first performed, and show diagrams of the impact that they have.

3.4.1 Dead Node Removal

There are several situations in which a naïve graph planning approach generates nodes

that are never used and can safely be removed from the graph. In Figure 3-4, we show

the construction of the PaperReview view before and after Dead Node Removal, which

identifies that the Deny All node never emits any records and removes it.

PaperReview

duplicate columns

projection

deny_all
(default policy)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0)

REVIEWS_ASSIGNED

filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

rewrite (contactId)
(priority 1)

allow_union

filter (contactId = $UID)
(priority 0)

deduplicate columns

PaperReview (user view)

(a) The original graph generated.

PaperReview

duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0)

REVIEWS_ASSIGNED

filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

rewrite (contactId)
(priority 1)

allow_union

filter (contactId = $UID)
(priority 0)

deduplicate columns

PaperReview (user view)

(b) After Dead Node Removal.

Figure 3-4: Dead Node Removal eliminates a Deny All node.

22



In general, unused nodes include:

∙ Deny Alls. As described above, default deny policies will generate Deny All

nodes, which could be completely removed from the graph without impacting

its behavior. An optimization pass removes all edges to and from such nodes

and omits them from the optimized list of nodes.

∙ Orphaned Nodes. An orphaned node is one that never receives records from

upstream, e.g. because all of its parents are Deny All nodes. Children of these

nodes which have no other parents will also never receive records. We include

an optimization pass to remove orphaned nodes from the graph. By iterating

over nodes in topological order, we ensure that we remove any orphaned parents

before reaching their children, so that if those children are now left orphaned

they will be detected by the same pass.

∙ Childless Nodes. A childless node is one whose outputs are never read or

otherwise used by the graph. For example, if the planner generates a user-

specific version of a table that is never queried, it is a childless node. If a

node’s only children are Deny All nodes, which will be removed by the above

pass, it also becomes childless. To remove childless nodes, we iterate over nodes

in reverse topological order so that if the parents of childless nodes become

childless themselves, we will detect this in a single pass.

These optimizations remove dead nodes from the graph. In the case of childless

nodes, they may also remove state from the graph that was being computed and never

used. Deny Alls and orphaned nodes never perform computations or receive state in

the first place, so their removal does not reduce state.

Besides the reduction in nodes, these optimizations enable planner design to focus

more on correctness. There is no need to write more complicated code for edge cases

where no node is needed; the planner writer can simply include inefficient constructs

like the Deny All node or the user-specific version of an unused table, and trust that

they will be removed later.

23



Some care must be taken when deleting nodes whose children expect multiple

parents. For example, a Left Join whose parent is a Deny All may expect to still have

two parents after any optimizations. In an early formulation of our design, removing

one of its parents left it ambiguous whether the remaining parent was the right or

left parent, which influenced correctness.

3.4.2 Identical Child Reuse

Often, multiple code paths will share several nodes with the same functionality. For

example, two different policies (or queries) may begin by performing the same join. Of

greater relevance to multiverse design, two different user universes may have identical

components in their policy logic, neither of which makes reference to anything user-

specific. In these cases, we wish to avoid duplicating state and computation by

merging the two nodes into one.

Figure 3-5 shows the pseudocode for this optimization. We iterate over all pairs

of a node’s children and check whether any two are equivalent4. If so, we manipulate

pointers such that only the first is used in the graph, and remove the second from

the list of nodes. By traversing the nodes in topological order, we ensure that higher

nodes in an equivalent chain are merged before we consider lower nodes in that chain,

allowing us to merge entire chains of nodes in a single pass.

We see the effects of this optimization in Figure 3-6. Note that we are reusing
4Equivalent nodes have the same parents and perform identical operations. They may have

different child nodes from each other.

for node in topologically_ordered_nodes:
for c1 in node.children:

for c2 in node.children:
if c1 != c2 and equivalent(c1, c2):

remove ptrs from parents to c2
change ptrs from c2’s children to point at c1 instead
mark c2 as removable from the topological order

filter topologically_ordered_nodes for unmarked nodes

Figure 3-5: Pseudocode for the Identical Child Reuse optimization.

24



PaperReview

duplicate columns duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0)

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0)

REVIEWS_ASSIGNED

filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

rewrite (contactId)
(priority 1)

allow_union

filter (contactId = $UID)
(priority 0)

deduplicate columns

PaperReview (user view)

REVIEWS_ASSIGNED

filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

rewrite (contactId)
(priority 1)

allow_union

filter (contactId = $UID)
(priority 0)

deduplicate columns

PaperReview (user view)

(a) Before Identical Child Reuse.

PaperReview

duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

REVIEWS_ASSIGNED

filter (contactId = $UID) filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

filter (contactId = $UID)
(priority 0)

rewrite (contactId)
(priority 1)

allow_union

deduplicate columns

PaperReview (user view)

projection

MY_REVIEWS_ASSIGNED

allow_union filter (contactId = $UID)
(priority 0)

rewrite (contactId)
(priority 1)

allow_union

deduplicate columns

PaperReview (user view)

(b) After Identical Child Reuse.

Figure 3-6: PaperReview view construction for two different users, blue and green,
with Identical Child Reuse applied. Shared nodes are in white.

more than just the white nodes at the top: within each user universe, our optimization

also reuses the identical joins below MY_REVIEWS_ASSIGNED.

3.4.3 Operator Simplification

This optimization detects when an operator can be combined or simplified in the

context of the other nodes around it. It currently looks for the following cases:

∙ Adjacent Filters. Two filters are adjacent in the graph. They can be replaced

with a single filter that checks for both of their conditions.

∙ Adjacent Projections. Two projections are adjacent in the graph. They

can be replaced with a single projection that outputs the composition of the

projection functions.

∙ Trivial Unions. A union or deduplicating union’s parent is a dead node. If

it has more than one parent remaining, this doesn’t change anything. If it has

only one parent left, the node can be removed and its parent connected directly

to its children. An example is shown in Figure 3-7.

25



PaperReview

duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

REVIEWS_ASSIGNED

filter (contactId = $UID) filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

allow_union

filter (contactId = $UID)
(priority 0)

rewrite (contactId)
(priority 1)

allow_union

deduplicate columns

PaperReview (user view)

projection

MY_REVIEWS_ASSIGNED

allow_union filter (contactId = $UID)
(priority 0)

rewrite (contactId)
(priority 1)

allow_union

deduplicate columns

PaperReview (user view)

(a) Before Operator Simplification.

PaperReview

duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

REVIEWS_ASSIGNED

filter (contactId = $UID) filter (contactId = $UID)

projection

MY_REVIEWS_ASSIGNED

rewrite (contactId)
(priority 1)

filter (contactId = $UID)
(priority 0)

allow_union

deduplicate columns

PaperReview (user view)

projection

MY_REVIEWS_ASSIGNED

rewrite (contactId)
(priority 1)

filter (contactId = $UID)
(priority 0)

allow_union

deduplicate columns

PaperReview (user view)

(b) After Operator Simplification.

Figure 3-7: Operator Simplification removes the allow_union node that used to have
a Deny All parent.

∙ Trivial Joins. A join’s parent is a dead node. In an inner join, or on the left

side of a left join or antijoin, this makes the join dead too. In an outer join, or

on the right side of a left join or anitjoin, the join becomes a projection where

any columns coming from the dead node are always NULL. Since projections

are stateless and faster to compute, this simplification is a significant gain.

3.4.4 Filter Pushdown

In normal dataflow query plans, it is usually good to place filters near the beginning

of the graph, because they reduce the amount of data that must pass through the

rest of the graph. In multiverse query plans, dataflow often becomes user-specific

by passing through a filter that depends on the user ID, so having these filters early

in the graph necessitates having more user-specific nodes. More precisely, when our

reuse optimization merges together policy chains from different users, it will have to

stop merging when it hits a filter whose condition depends on the user ID because

that filter will not be equivalent with its versions in different universes. Therefore,

26



more reuse optimization can occur if this user-specific filter is later in the graph.

We introduce the Filter Pushdown optimization to locate user-specific filters and

reorder nodes so that these filters are later in the graph. We continue pushing the

user-specific filters down until we reach a node which it may not be correct to push

past – for example, a deduplicating union, since pushing the filter below it would

filter all inputs to the union instead of just the one input. Since the filter conditions

may refer to columns that are projected out later, we take special care to make sure

that such columns are preserved as far down as the filters are relocated, and project

them out only after the filter.

Notably, this optimization is not useful on its own. It moves nodes around but

does not remove them, and by keeping projected columns around longer and adding

a projection to remove them later, it increases the total amount of state and nodes in

the graph. Its value is that it allows the reuse optimization to progress much further

in merging equivalent operations.

PaperReview

duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

REVIEWS_ASSIGNED

projection projection

MY_REVIEWS_ASSIGNED

rewrite (contactId)
(priority 1)

filter (contactId = $UID)
(priority 0)

filter (contactId = $UID)

push_down_projection

allow_union

filter (contactId = $UID)

push_down_projection

deduplicate columns

PaperReview (user view)

MY_REVIEWS_ASSIGNED

rewrite (contactId)
(priority 1)

filter (contactId = $UID)
(priority 0)

filter (contactId = $UID)

push_down_projection

allow_union

filter (contactId = $UID)

push_down_projection

deduplicate columns

PaperReview (user view)

(a) After Filter Pushdown without Reuse.

PaperReview

duplicate columns

projection

join (paperId IN $MY_REVIEWS_ASSIGNED)
(priority 0 and 2)

REVIEWS_ASSIGNED

projection

MY_REVIEWS_ASSIGNED

rewrite (contactId)
(priority 1)

filter (contactId = $UID)
(priority 0)

filter (contactId = $UID)
(priority 0)

filter (contactId = $UID) filter (contactId = $UID)

push_down_projection

allow_union

filter (contactId = $UID)

push_down_projection

deduplicate columns

PaperReview (user view)

push_down_projection

allow_union

filter (contactId = $UID)

push_down_projection

deduplicate columns

PaperReview (user view)

(b) After Filter Pushdown and Reuse.

Figure 3-8: Filter Pushdown by itself creates more nodes than the previous graph
(Figure 3-7(b)), but it also enables more opportunities for reuse, including reusing
the stateful join.

27



In Figure 3-8, we see that Filter Pushdown moves the filter (contactId =

$UID) much lower in the graph, to just above the allow_union, and then follows it

with a push_down_projection node to correct for any columns that we needed to

keep around for the filter. Note that, confusingly, the filter (contactId = $UID)

(priority 0) is not actually filtering on the same thing as the filter now placed

below it, because they are referring to versions of the contactId column from different

sides of the join. This figure has increased the amount of work done by the graph, but

the second figure shows how we can gain significant savings by reapplying the reuse

optimization. Most importantly, the join (one of the most state-expensive operators)

now becomes shared.

It is important to keep in mind that here, pushdown entails the opposite of what

it does in traditional database planning. Rather than pushing filters earlier, we are

pushing them down later in the dataflow graph. In a non-multiverse model, this would

be counterproductive, because putting filters early allows the database to reduce the

amount of data it sends through other operators. In the multiverse model, that’s still

true, but we expect it to be outweighed by the savings of letting the database reuse

operators across users.

After Filter Pushdown, it is sometimes the case that the same filter and associated

projection have been pushed down multiple different paths to the same destination,

resulting in multiple copies of them. Accordingly, we develop another optimization

to push projections past filters, so that the copies of the filter are adjacent and the

copies of the projection are adjacent. This allows Operator Simplification to merge

these into a single filter and projection.

3.4.5 Summary of Optimization Pipeline

In total, our optimization pipeline currently makes 11 passes over the graph. Here is

the top-level function, written in Rust:

pub fn optimize_all(nodes: Vec<MirNodeRef>) -> Vec<MirNodeRef> {

let mut nodes = nodes; // mutable copy

28



nodes = remove_deny_alls(nodes); // 3.4.1

nodes = remove_childless_nodes(nodes); // 3.4.1

nodes = remove_orphaned_nodes(nodes); // 3.4.1

nodes = reuse(nodes); // 3.4.2

nodes = simplify_trivial_unions(nodes); // 3.4.3

nodes = simplify_trivial_joins(nodes); // 3.4.3

nodes = push_down_filters(nodes); // 3.4.4

nodes = reuse(nodes); // 3.4.2

nodes = push_projections_past_filters(nodes); // 3.4.4

nodes = combine_adjacent_projections(nodes); // 3.4.3

nodes = combine_adjacent_filters(nodes); // 3.4.3

nodes // return

}

3.5 Avoiding Deduplicating Unions

In section 3.2, we described how our implementation builds policy chains, adding new

nodes at the bottom of the chain for each successive policy. When the policy is an

allow, we union together the newly allowed records from the base table and the latest

node in the policy chain. Our stateless union operator, however, does not remember

whether it has already seen a record, and so if a record is visible on both sides of the

union, it will incorrectly emit duplicate copies. Furthermore, the two copies of the

record may have had different rewrites applied to them, and we need to decide what

version of the record should be visible.

Section 3.3.2 introduced deduplicating unions to solve the problem of multiple

versions of a record from different policies. Unlike normal unions, deduplicating

unions are stateful, so using them for every policy composition requires a lot of space.

In this section we discuss how we might be able to avoid duplicate records without

29



using these stateful nodes, by modifying the policy chains to ensure that the two sides

of a normal union are always disjoint.

An observant reader may notice that in practice, one version of the record (the

one from the new Allow policy) is always unrewritten and therefore the version we

want, and the other version could be discarded. If the Allow policy filters on a given

condition, we could filter the latest node in the policy chain for records that do not

meet that condition to discard those alternate versions. Then each record would

appear on at most one side of the deduplicating union, and it would be safe to use

a normal (stateless) union instead, as shown in Figure 3-9. We call this technique

“complement filtering.”

PaperReview

duplicate columns

...
(policy chain nodes) filter (contactId = $UID)

allow_union
(deduplicating)

...

(a) With Deduplicating Union.

PaperReview

duplicate columns

...
(policy chain nodes)

filter (contactId = $UID)filternot (contactId = $UID)

allow_union

...

(b) With FilterNot and regular Union.

Figure 3-9: A policy chain adding an allow policy. We use ellipses to denote parts of
the policy chain that come before and after, and show the filter condition of the new
allow policy in yellow. The left graph shows how we would add to the chain with a
deduplicating union. The right graph shows an alternative version that filters on the
complement of the condition (shown in orange) and then uses a normal union.

At first glance, complement filtering seems like a straightforward improvement

to graph construction: it replaces a deduplicating union (one large stateful node)

with a filter and a union (two stateless nodes). Unfortunately, conditions can be

30



complex, and it is not always easy to filter on their complements. The filter node

implementation computes the AND of its conditions, and taking the complement

would require it to compute the OR instead. For example:

NOT(x = 5 AND y > 6) ==> (x != 5 OR y <= 6).

We resolve this by adding a new type of node, FilterNot, which passes through

the complement of the records that a Filter node would pass through. This avoids

needing to compute ORs for basic conditions (which could be done, but would require

making our Filter implementation more complex).

We also have conditions that use the IN keyword, such as this one from policy R1

in Figure 3-1:

NOT(paperId IN $MY_REVIEWS_ASSIGNED AND contactId = $UID) ==>

(paperId NOT IN $MY_REVIEWS_ASSIGNED) OR (contactId != $UID).

We compute IN and NOT IN conditions with joins and antijoins, respectively,

concatenated to the filter for the other conditions. The concatenation accomplishes

AND, but computing the OR is trickier. We will need to union results together, and

once again we must make sure we don’t have duplicates of records. We can ensure

that the two sides are disjoint by filtering on opposite conditions.

PaperReview

duplicate columns

...
(policy chain nodes)

join (paperId IN $MY_REVIEWS_ASSIGNED)

allow_union
(deduplicating)

filter (contactId = $UID)

...

(a) With Deduplicating Union.

PaperReview

duplicate columns

...
(policy chain nodes) join (paperId IN $MY_REVIEWS_ASSIGNED)

antijoin (paperId NOT IN $MY_REVIEWS_ASSIGNED) filternot (contactId = $UID)

filter (contactId = $UID)

allow_union

...

filter (contactId = $UID)

union

(b) With complement filtering and regular Union.

Figure 3-10: A policy chain adding an allow policy that includes a single IN condition.

31



In Figure 3-10, we compute the antijoin, concatenate it with a filter for contactId

= $UID, and then union this together with the FilterNot for contactId = $UID to

make sure there are no duplicates.

Complement filtering with IN conditions is complex, and it’s uncertain whether

it’s worth it: we need to compute an additional antijoin in exchange for removing

the deduplicating union, so the total number of stateful nodes is the same. Which of

these two stateful nodes is more efficient may depend on the policy and data as well

as on the implementations of antijoins and deduplicating unions.

This is not the worst possible condition, however: in our applications we will see

some predicates with multiple IN clauses, and in that case our technique of making

sure the two sides of the union are distinct by filtering on opposite conditions can

cause quadratically many stateful joins/antijoins in the number of IN / NOT IN

clauses. Figure 3-11 shows how this can occur.

PaperReview

duplicate columns

...
(policy chain nodes)

join (paperId IN X)

allow_union
(deduplicating)

join (paperId IN Y)

join (paperId IN Z)

filter (contactId = $UID)

...

(a) With Deduplicating Union.

PaperReview

duplicate columns

...
(policy chain nodes) join (paperId IN X)

antijoin (paperId NOT IN X) antijoin (paperId NOT IN Y) antijoin (paperId NOT IN Z) filternot (contactId = $UID)

join (paperId IN Y)

join (paperId IN Z)

filter (contactId = $UID)

allow_union

...

join (paperId IN Y)

join (paperId IN Z)

filter (contactId = $UID)

union

join (paperId IN Z)

filter (contactId = $UID)

union

filter (contactId = $UID)

union

(b) With complement filtering and regular Union.

Figure 3-11: A policy chain adding an allow policy that includes multiple IN con-
ditions. Note the quadratic growth in the number of complement condition nodes
versus original condition nodes.

We consider three options:

1. Just stick with the original deduplicating unions.

32



2. Assume that we will rarely have many INs combined in the same predicate, and

proceed with complement filtering.

3. Stick with the original deduplicating unions whenever we have IN or NOT IN

conditions, but whenever we only have normal filters, use complement filtering

to eliminate the deduplicating union.

The right choice depends on the workload. We expect that in practice, the third

option is likely a good choice because it reaps the strict benefits of removing stateful

deduplicating unions in the simple case, but avoids introducing stateful joins.

3.6 Alternate Approaches

In our current planner, we construct user-specific views of each table, and then read

from those for all queries. In earlier approaches, we considered interspersing policy

and query logic so that all user-specific logic in either policies or queries would happen

at the end, and all non-user-specific logic from both would happen at the beginning.

Though tempting, constructing a graph in this way encounters several difficulties:

∙ Operators that include a group by (such as minimum, maximum, sum, count,

top k, or distinct) will aggregate over many records, and so must happen after

any filters on those records. Thus a large number of nodes will need to be placed

after user-specific filters. It may be possible to mitigate this by doing a partial

aggregation first, adding any columns to the aggregation’s group-by that will

be needed for filtering later, and then doing user-specific aggregations on the

smaller dataset after the filter. It’s unfortunately difficult to predict in each

case whether this will improve the graph by reducing state, or worsen the graph

by having an extra aggregation grouping by impractically many columns.

∙ Operators in the query may read columns that would have been rewritten by

user-specific policy logic. For example, if a user wishes to query all posts written

by a specific friend, but some of these posts would be anonymized by policy logic,

33



placing the non-user-specific query filter above the user-specific policy rewrite

is incorrect: it will return all posts by that friend, and although some will be

anonymized, the querier can infer their author from the fact that the posts

matched the query.

Ultimately, the difficulty of reasoning about these and many other edge cases

convinced us to prioritize a simple and correct core graph generator. We rely on our

pushdown optimization (which pushes through the table view and down into query

logic where possible) to enable much of the sharing gains that would be possible from

planning things in a different order.

34



4 Implementation

4.1 Codebase

We developed a multiverse planner and optimizer in 8,022 lines of Rust source code

plus 4,141 lines of test files. It turned out to be much easier to prototype our opti-

mizations from scratch instead of working within the more complex Noria framework.

We therefore implemented our own simple single-threaded dataflow system whose

operators have identical semantics to Noria operators. However, this simplified im-

plementation lacks support for partial materialization, multithreading, and sharding,

focusing instead on the graph optimizer.

The author of this thesis contributed about 71% of the code by lines added, in-

cluding all optimization work; Samyu Yagati contributed another 22% for her related

work in planning; and Malte Schwarzkopf contributed the remaining 7% of code for

policy specification parsing. We also relied on the nom-sql parser codebase that Malte

developed for Noria.

4.2 User and Testing Interfaces

In our implementation, the user provides policy, schema, and query files for the

database, and the planner constructs and optimizes a graph. Then, the user pro-

vides input data for each of the base tables. Each node propagates down positive and

negative updates to its children. (A negative update revokes previously sent infor-

mation that is no longer true; for example, a sum reports its new value as a positive

update and its old value as a negative update, or a base table reports a removed

35



record as a negative update.) Then the user can ask the materialized views at the

bottom for output values.

The unoptimized and optimized planners, as well as the planners with different

approaches to deduplicating unions, are all subclasses of a generic planner interface.

Tests are run against this planner interface, and report benchmark statistics (and

optionally print graph visualizations) for each planner. Future approaches to graph

planning could easily be added as additional subclasses of the interface.

4.3 Limitations

Our prototype does have several limitations. First, we are aware of a potential bug

in Gate nodes where the parent-child relation between nodes is not symmetric, but

empirically it has not yet caused any test failures, so we have prioritized developing

optimizations rather than patching it. Second, we do not support ?s in SQL queries,

so the user must read all results from a materialized view instead of only those that

match a certain key. We believe this does not have a significant impact on the amount

of space or computation time used by our system.

Finally, whereas Noria emphasizes the ability to dynamically add queries to its

dataflow graph, our prototype builds a graph once and then never adds to it. We

expect it would not be difficult to add new tables or queries to our graph: it should be

simple to construct the additional nodes and then re-run optimizations on the newly

expanded graph. Adding new security policies would be more difficult, but could also

probably be done without rebuilding the entire graph, by inserting the new policy

nodes into the correct location (sorted by priority) in each policy chain.

36



5 Evaluation

We use several metrics for evaluation of our graphs: the number of nodes, number of

records stored as state, number of total bytes of state, time to read output records, and

time to process input records. In this section, we describe the relative merits of each,

and how we expect optimizations to affect our measurements. We then introduce

benchmarks based on two real-world applications, HotCRP and Piazza, and assess

the impact of various optimizations on these benchmarks. We also investigate the

impact of complement filtering on the same benchmarks. Finally, we evaluate the

scalability of our approach, and conclude with some overall results.

5.1 Evaluation Setup

5.1.1 Hardware

We run all experiments on a 2016 MacBook Pro with 16 GB of memory and a 2.9

GHz processor.

5.1.2 Size: Node Count, Record Count, and Byte Count

We measure each of node count, record count, and byte count by having each node

report on the size of its state (or in the case of node count, report 1 node).

We’ve discussed optimizations that reduce the node count of a graph, either by

removing unused nodes or by merging multiple nodes together. It’s not immediately

obvious that this is a useful thing to measure: after all, removing these nodes often

does not reduce the total amount of computation performed by the graph. However,

37



there is often significant overhead to communication between nodes, and locality

allows us to process data more efficiently within a single node. For example, if we

merge two filters together, the resultant filter node must still consider both of their

filter conditions, but it is faster to process all the records by passing through them

once rather than passing through them twice and transmitting them between the

two nodes. In a larger system like Noria, we expect that sharding will increase the

overhead of communication, making it even more impactful to reduce node count.

It’s also important to measure the total space usage of the graph. There are two

ways we might view this: number of records stored, or number of bytes stored. Both

will be reduced when we reuse stateful nodes or when we simplify stateful nodes into

non-stateful nodes. Both generally increase when we push filters later in the graph,

since earlier filters remove much of the data before later nodes have to process it –

an effect not captured by merely counting the nodes.

The byte count gives a more accurate estimate of the space footprint. It also

reflects the negative impact of optimizations that make records larger, such as when

Filter Pushdown avoids projecting out columns until later that are needed for the

filter. Our byte measurement may be somewhat of an overestimate: strings stored as

part of records in multiple nodes may actually share an underlying buffer that each

node points to, but we count the full size of the string in each node.

The record count is more human-readable, allowing us to interpret the impact of

optimizations more easily. Data is transmitted in record-sized chunks rather than a

byte at a time, so if transmission time is dominated by the number of transmissions

rather than their size, record count may also be a more relevant measure. Finally,

some nodes (e.g. filters) perform operations that primarily interact with a single field

of a record, and in those cases the number of records matters more than their sizes.

5.1.3 Record Processing Time and Read Time

When new records are added to base tables, we want to propagate them through the

dataflow quickly. We expect that our optimizations will help us do so: for the same

reasons described previously, condensing or reusing nodes will speed up processing,

38



and filtering on user-specific conditions later may slow it down. We anticipate that

speedups in record processing will be similar to savings in our space measurements,

but it is important to verify this effect.

Read time is critically important to web applications, and one of the biggest

reasons why we use a stateful dataflow graph. However, we don’t expect that our

optimizations will have any impact on it: our materialized views should result in fast

reads regardless of what’s happening upstream. We therefore investigate this metric

only enough to confirm that it is unchanged.

We measure times using Rust’s std::time::Instant. The times measured for

both record processing and reading should only be considered relative to each other.

In order to make times large enough to be measurable, we process or read all records

at once and measure the aggregate time. Since our simple implementation is not par-

ticularly optimizing for operator speed and does not use multithreading, we expect

these times to be much slower than the corresponding times in Noria. It is nonethe-

less useful to measure record processing time as a proxy for the relative amounts of

computation being performed in the graph pre- and post-optimization.

5.2 The HotCRP Application

HotCRP is a website developed by Eddie Kohler for “managing the conference review

process” [7]. Authors submit their papers, and reviewers are assigned to review those

papers. Before a paper is accepted, it is not visible to the general public; its authors

and reviewers should be able to see it, and they should be anonymous to each other.

Committee members can also see papers with the authors anonymized, and Chairs

can see everything, except in the case of a conflict of interest.

These various factors in determining who can see what about a paper would

be complex to incorporate into every query, but are easily expressed in our policy

language. We construct a benchmark using these policies, the website’s schema, and

a query of the Paper and PaperReview tables.

Appendix A contains the policy specification for HotCRP. Figure 5-1 shows the

39



corresponding graphs with and without optimizations.

We use sample data scraped from the OpenReview.net website for our benchmark.

The scraped data does not include reviewer identities, so we randomly generate those.

We construct graphs with various levels of optimization and insert the sample data

into the base tables.

5.3 The Piazza Application

Many of our optimizations were developed while looking at a simplified HotCRP

graph and considering how we might make it more efficient. We consider another

application, Piazza, to see how well our optimizations generalize. We will see that

some are not applicable to the Piazza dataflow graph, but we achieve significant gains

nonetheless.

Piazza is an educational platform where various classes have a place to post ques-

tions and answers [1]. A user can create a post that’s visible to a specific class. By

default this is visible to everyone and the author is known, but users can option-

ally anonymize themselves and/or make their posts private (only visible to TAs and

themselves). There are also restrictions on viewing who is a student / TA in a class;

we put this data in a Roles table. Below we present a simplified version of Piazza,

encoding the security policies that would describe the Posts and Roles tables.

Appendix A contains the policy specification for Piazza. Figure 5-2 shows the

corresponding graphs with and without optimizations.

Since we do not have access to data from Piazza, we created a script to randomly

generate content. Posts are generated as strings of random length between 0 and 20,

and are authored by a random user in a random class.

40



(a) HotCRP graph pre-optimization.

PaperConflict

projection

MY_CONFLICTS

filter filterin_join in_join

push_down_filter_projection

not_in_antijoin not_in_antijoin

push_down_filter_projection

not_in_antijoin not_in_antijoin

ContactInfo

filter(on cols: 17)filter(on cols: 17)

projection

PC

filter_PC filter_PC

gate gate

projection

Chairs

filter_Chairs filter_Chairs

gate

gate

gate

gate

Paper

projection

projection
add_dedup_column AUTHOR_PAPERS

in_joinfilter(on cols: 15)

allow_union

filter(on cols: 15)

allow_union

rewrite (27, 29, 39)

allow_union

rewrite (27, 29, 39)

allow_union

combine_rewrite_branches

rewrite (24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)

filter

push_down_filter_projection

projection
remove_dedup_column

Paper

project_former_leftjoin

join

combine_rewrite_branches

rewrite (24, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48)

filter

push_down_filter_projection

projection
remove_dedup_column

Paper

project_former_leftjoin

join

Settings

filter(on cols: 0)

projection

CONF_PHASE

PaperReview

projection
add_dedup_column

filter(on cols: 12)projection

in_join

allow_union allow_union

rewrite (45)

filter filter

push_down_filter_projection

allow_union

push_down_filter_projection

allow_union

projection

REVIEWS_SUBMITTED

projection

MY_REVIEWS_SUBMITTED

in_join

REVIEWS_ASSIGNED

projection

MY_REVIEWS_ASSIGNED

filter filter

push_down_filter_projection

projection
remove_dedup_column

PaperReview

filter(on cols: 5)

projection

reader

push_down_filter_projection

projection
remove_dedup_column

PaperReview

filter(on cols: 5)

projection

reader

(b) HotCRP graph post-optimization.

Figure 5-1: Graphs generated for HotCRP with two users. These graphs are larger
than the example graphs, but the main takeaway is that the graph optimizations
reduce the size of the graph by roughly 2x.

41



Class

projection
add_dedup_column

projection
add_dedup_column

User

projection
add_dedup_column

projection
add_dedup_column

Post

projection
add_dedup_column

projection
add_dedup_column

Role

filter(on cols: 2)filter(on cols: 2; 0) filter(on cols: 0)

projection
add_dedup_column

filter(on cols: 2) filter(on cols: 2; 0) filter(on cols: 0)

projection
add_dedup_columnprojection

TAS

projection
add_dedup_column

projection

MY_TA_CLASSES

projection
add_dedup_columnin_join in_join

projection

MY_CLASSES

projection
add_dedup_columnin_join

deny_all

projection
remove_dedup_column

Class

deny_all

projection
remove_dedup_column

User

deny_all

projection
remove_dedup_column

TAS

deny_all

projection
remove_dedup_column

MY_TA_CLASSES

deny_all

projection
remove_dedup_column

MY_CLASSES

deny_all filter(on cols: 5) filter(on cols: 3) filter(on cols: 5; 6)

allow_union

rewrite

allow_union

allow_union

allow_union

projection
remove_dedup_column

Post

projection filter(on cols: 4) filter(on cols: 4)

deny_all filter(on cols: 1)

allow_union

allow_union

allow_union

filter(on cols: 3)

projection
remove_dedup_column

Role

filter(on cols: 2) projection projectionreader projection

reader

projection

reader projection

reader

reader reader

projection

TAS

projection
add_dedup_column

projection

MY_TA_CLASSES

projection
add_dedup_column in_join in_join

projection

MY_CLASSES

projection
add_dedup_columnin_join

deny_all

projection
remove_dedup_column

Class

deny_all

projection
remove_dedup_column

User

deny_all

projection
remove_dedup_column

TAS

deny_all

projection
remove_dedup_column

MY_TA_CLASSES

deny_all

projection
remove_dedup_column

MY_CLASSES

deny_all filter(on cols: 5)

filter(on cols: 3)

filter(on cols: 5; 6)

allow_union

rewrite

allow_union

allow_union

allow_union

projection
remove_dedup_column

Post

projection filter(on cols: 4) filter(on cols: 4)

deny_all filter(on cols: 1)

allow_union

allow_union

allow_union

filter(on cols: 3)

projection
remove_dedup_column

Role

filter(on cols: 2) projection projectionreader projection

reader

projection

reader projection

reader

reader reader

(a) Piazza graph pre-optimization.

Post

projection
add_dedup_column

filter(on cols: 3)

filter(on cols: 5; 6)

filter(on cols: 3)filter(on cols: 5)

in_join

allow_union

allow_union allow_union

allow_union

rewrite

allow_union allow_union

Role

projectionprojection

projection
add_dedup_column

filter(on cols: 2)

MY_CLASSES

in_join

MY_TA_CLASSES

in_join

filter filter

push_down_filter_projection

projection
remove_dedup_column

Post

filter(on cols: 4) filter(on cols: 4) projection

projection

reader

projection

reader

reader

push_down_filter_projection

projection
remove_dedup_column

Post

filter(on cols: 4) filter(on cols: 4) projection

projection

reader

projection

reader

reader

filter(on cols: 1) filter(on cols: 1)

allow_union

filter(on cols: 3)

filter filter

push_down_filter_projection

allow_union

push_down_filter_projection

allow_union

filter filter

push_down_filter_projection

projection
remove_dedup_column

Role

projection projection filter(on cols: 2)

reader reader projection

reader

push_down_filter_projection

allow_union

projection
remove_dedup_column

Role

projection projection filter(on cols: 2)

reader reader projection

reader

projection

TAS

(b) Piazza graph post-optimization.

Figure 5-2: Graphs generated for Piazza with two users. These graphs are larger than
the example graphs, but the main takeaway is that the graph optimizations reduce
the size of the graph by roughly 2x.

42



Graph Optimizations Nodes Records Bytes Read Time Processing Time
baseline values 2738 13318 1883519 0.26ms 927ms
+remove deny alls -17.5% 0.0% 0.0% 2.9% -0.9%
+remove childless -20.3% 0.0% 0.0% -3.8% 12.9%
+remove orphaned -48.9% 0.0% 0.0% -0.7% -14.9%
+reuse -6.2% -8.6% -5.7% 1.8% -46.6%
+trivial unions -2.4% -0.5% -0.3% -0.6% -4.2%
+trivial joins 0.0% -0.1% 0.0% -1.5% -1.2%
+filter pushdown 19.0% 82.6% 50.6% -0.5% 207.6%
+reuse -26.8% -59.3% -55.0% 1.0% -69.7%
+projection pushdown 0.0% 0.0% 0.0% -0.6% -2.3%
+combine projections -2.7% 0.0% 0.0% -0.4% -1.0%
+combine filters -2.8% 0.0% 0.0% 0.6% 4.8%
total pushdown -17.6% -25.7% -32.3% 0.1% -5.7%
total -74.7% -32.4% -36.3% -1.9% -54.6%

Table 5.1: Performance of optimizations in the HotCRP application.

5.4 Impact of Each Optimization

5.4.1 HotCRP Measurements

We measure the impacts of each optimization on HotCRP using test data with 20

users and 20 papers. We repeat timing experiments five times and take the median.

Empirically (over 24 different experiments) the median is within 7-15% of the min-

imum, but the max is sometimes more than 100% greater than the median, likely

because of system fluctuations. Therefore we prefer the median to the average. We

only run size benchmarks once; although sizes will change with different random data

generations, we care only about the relative sizes after different optimizations, and

these are not independent since they all use the same input data.

We now show the percentage improvements of each optimization over the previ-

ous set of optimizations (except the first row, which has baseline values instead of

percentages). We also display the total improvement of all optimizations versus none.

Finally, since the last five optimizations are all working together to make filter push-

down worthwhile, it is a bit unfair to show the numbers for filter pushdown alone; we

aggregate those five in the “total pushdown” row.

43



Graph Optimizations Nodes Records Bytes Read Time Processing Time
baseline values 1067 20007 545476 4.7ms 464ms
+remove deny alls -10.3% 0.0% 0.0% 9.2% -3.9%
+remove childless -4.6% 0.0% 0.0% -7.2% 0.0%
+remove orphaned -21.5% 0.0% 0.0% -5.9% 0.6%
+reuse -20.2% -28.1% -22.6% 7.1% -27.0%
+trivial unions -2.9% -2.4% -1.2% 7.4% 7.8%
+trivial joins 0.0% 0.0% 0.0% -6.7% -9.1%
+filter pushdown 11.3% 26.5% 14.9% -1.3% 139.2%
+reuse -19.2% -39.5% -39.8% -2.3% -57.7%
+projection pushdown 0.0% 0.0% 0.0% 6.8% 1.7%
+combine projections 0.0% 0.0% 0.0% -6.0% 4.9%
+combine filters 0.0% 0.0% 0.0% 7.2% -7.4%
total pushdown -10.1% -23.5% -30.9% -3.8% 0.0%
total -53.2% -46.3% -47.1% -6.2% -30.8%

Table 5.2: Performance of optimizations in the Piazza application.

5.4.2 Piazza Measurements

We measure the impacts of each optimization on Piazza using test data with 5 classes,

20 users, 2 TAs per class, 100 posts, and max post length 20 bytes. We again repeat

timing experiments 5 times and take the median.

We display the same measurements as for HotCRP in Table 5.2.

5.4.3 Discussion

We observe that the reuse optimization does almost all of the heavy lifting in reduc-

ing state size and processing time, between its first pass and its second (post-filter-

pushdown) pass. Several other optimizations (remove deny alls, remove childless,

remove orphaned) reduce the number of nodes but do not remove any stateful nodes

that were reached by any records, so they have no impact on state and no significant

change in processing time. It is worth noting that many of the nodes removed are

from tables that are never queried, particularly in HotCRP, which seems unlikely to

be true in the real world.

In the Piazza application, there are several optimizations (trivial joins, projection

pushdown, combine projections, combine filters) that do not apply anywhere in the

44



graph and therefore make no difference in the second chart. The trivial unions opti-

mization makes a small but positive impact by cutting out one deduplicating union

per user, plus one shared deduplicating union, that have Deny All nodes as parents.

In the HotCRP application, the removal of childless nodes appears to increase the

processing time by 13%. Further runs suggest that this is a fluke in the data and

processing time actually remains about the same. All optimizations apply somewhere

in the graph (the only one that does not directly affect size is projection pushdown,

which instead enables the combining of filters and projections after it).

Filter pushdown by itself increases the size of the graph (51% and 15%) and

processing time (208% and 140%). In both cases, the increase is due to processing

more records that would have been filtered out earlier – but why is the effect so much

stronger on time than space? To answer this, observe that pushdown always stops

before union or deduplicating union nodes, since it would not be correct to move a

filter below those nodes. Since deduplicating unions are a considerable fraction of

the stateful nodes in the graph, it follows that we are relatively more likely to push

past stateless nodes than stateful ones. Processing more records in a stateless node

will add to the time but not to the space. The reuse optimization following the filter

pushdown appears to break even on time and net a 30% improvement on space.

As expected, none of the optimizations have a significant effect on read time,

which remains roughly constant with some random noise.

5.5 Impact of Removing Deduplicating Unions

As discussed in section 3.5, there are three possible approaches:

1. Baseline: Always use deduplicating unions.

2. AllDedupRemoval: Always use complement filtering and regular unions.

3. SimpleDedupRemoval: Use deduplicating unions when there are IN / NOT

IN conditions, and complement filtering plus unions when there are only simple

conditions.

45



We show here how these approaches compare in the unoptimized graphs. Once

again, these are medians over five samples. We use 20 users and 100 posts for Piazza,

and 20 users and 20 papers for HotCRP.

HotCRP Node Count Byte Count Processing Time
Baseline 2,738 1,883,519 905ms
AllDedupRemoval 3,078 1,310,345 864ms
SimpleDedupRemoval 2,758 1,882,059 871ms

Piazza Node Count Byte Count Processing Time
Baseline 1,067 545,476 465ms
AllDedupRemoval 1,347 297,184 284ms
SimpleDedupRemoval 1,147 301,604 262ms

Table 5.3: Effects of different strategies for removing deduplicating unions on graph
size and processing time.

We see that getting rid of unneeded deduplicating unions reduces byte count by

up to 45% and processing time by up to 44% in Piazza. HotCRP does not benefit as

much from the optimizations because it has mostly conditions with one or two joins,

whereas Piazza has more simple filter conditions. AllDedupRemoval, the version

that does convert deduplicating unions into extra joins and antijoins when necessary,

nonetheless manages to reduce HotCRP byte count by 30%. This implies that the

extra joins use less space than the deduplicating unions they replace.

Node count increases because of the extra joins, antijoins, and FilterNots, but in

SimpleDedupRemoval (where we don’t have the extra joins / antijoins) this is only a

7.4% increase.

AllDedupRemoval has a clearly greater impact in the HotCRP test case. Sim-

pleDedupRemoval has better processing time in Piazza, so it may be preferable in

that case. Neither of these use cases encounters more than two IN / NOT IN clauses

in the same condition, so we do not run into the quadratically-growing nodes prob-

lem in AllDedupRemoval that SimpleDedupRemoval was designed to avoid; in other

applications, this difference may be more relevant.

More research is needed to determine which of AllDedupRemoval and SimpleD-

edupRemoval is best for various use cases. Both are potentially good approaches.

46



5.6 Scalability

Finally, we investigate how the impacts of our optimizations scale with different num-

bers of posts and users. For the sake of brevity, we only consider Piazza. We measure

how both space in bytes and processing time change as we scale up. The numbers

reported are medians over five runs.

In the SimpleDedupRemoval and AllDedupRemoval frameworks, we run the non-

pushdown optimizations twice over, because the first pass of operator simplification

turns some antijoins into dead nodes which can be removed on the second pass.

We consider all combinations of optimization level and deduplicating union strat-

egy. Optimizations levels can be any of (A) unoptimized, (B) using all optimizations

except pushdown and the ones that run after it, or (C) using all optimizations. Pre-

liminary results suggested that the pushdown optimizations may not scale well, which

is why we perform these tests with and without them. Deduplicating union strategy

can be any of (1) baseline, (2) AllDedupRemoval, (3) SimpleDedupRemoval. We ab-

breviate these options as 1A, ..., 3C in our tables for space’s sake; see Table 5.4 for a

key.

1A Baseline, unoptimized
1B Baseline, optimized (no pushdown)
1C Baseline, all optimizations
2A AllDedupRemoval, unoptimized
2B AllDedupRemoval, optimized (no pushdown)
2C AllDedupRemoval, all optimizations
3A SimpleDedupRemoval, unoptimized
3B SimpleDedupRemoval, optimized (no pushdown)
3C SimpleDedupRemoval, all optimizations

Table 5.4: A summary of planner name abbreviations.

In Figures 5-3 and 5-4 we see that all of our planners have state sizes that scale

linearly in the number of users and also linearly in the number of posts. The

non-pushdown optimizations on the SimpleDedupRemoval and AllDedupRemoval

graphs (3B and 2B) only remove stateless nodes, so the byte sizes are the same and we

omit them from the figures. The full optimization suite saves about 60% of the state,

47



1A 1B 1C 2A 2B 2C 3A 3B 3C
25 users, 100 posts 0.67 0.47 0.29 0.37 0.37 0.19 0.37 0.37 0.20
25 users, 200 posts 1.22 0.86 0.54 0.68 0.68 0.36 0.69 0.69 0.37
25 users, 400 posts 2.60 1.82 1.19 1.42 1.42 0.79 1.44 1.44 0.81
25 users, 800 posts 5.30 3.66 2.42 2.86 2.86 1.62 2.90 2.90 1.66
25 users, 100 posts 0.67 0.47 0.29 0.37 0.37 0.19 0.37 0.37 0.20
50 users, 100 posts 1.34 0.94 0.56 0.76 0.76 0.38 0.77 0.77 0.39
100 users, 100 posts 2.96 2.11 1.20 1.72 1.72 0.81 1.74 1.74 0.83
200 users, 100 posts 6.80 4.85 2.47 4.06 4.06 1.68 4.11 4.11 1.72

Table 5.5: Size scalability in Piazza: MB of stored state for various optimizations and
deduplicating union combinations. The smallest state in each row is bolded.

1A 1B 1C 2A 2B 2C 3A 3B 3C
25 users, 100 posts 157.7 243.0 205.9 267.9 443.7 347.4 291.6 458.4 376.2
25 users, 200 posts 176.8 241.4 219.0 274.6 442.2 347.8 289.5 503.8 379.3
25 users, 400 posts 152.5 229.9 185.8 293.9 479.3 387.4 298.9 459.5 382.9
25 users, 800 posts 116.8 171.7 161.1 272.0 423.8 336.0 291.6 416.0 358.5
25 users, 100 posts 157.7 243.0 205.9 267.9 443.7 347.4 291.6 458.4 376.2
50 users, 100 posts 67.6 106.7 78.6 105.8 199.0 106.8 126.9 222.3 128.2
100 users, 100 posts 35.3 55.8 28.9 58.9 98.1 37.0 59.6 105.9 37.8
200 users, 100 posts 15.2 24.3 7.6 22.8 39.9 8.8 24.5 42.6 8.7

Table 5.6: Processing throughput scalability in Piazza: posts processed per second
for various optimizations and deduplicating union combinations, with highest bolded.

Figure 5-3: Planner size scaling with number of posts. Planners 2B and 3B have the
same sizes as 2A and 3A respectively, so they are omitted.

48



Figure 5-4: Planner size scaling with number of users. Planners 2B and 3B have the
same sizes as 2A and 3A respectively, so they are omitted.

Figure 5-5: Planner throughput scaling with number of posts (log scale). We com-
pare baseline, SimpleDedupRemoval, and AllDedupRemoval planners when each has
non-pushdown optimizations applied, with the unoptimized baseline also present for
contrast. Both DedupRemoval planners perform much better than baseline.

49



Figure 5-6: Planner throughput scaling with number of posts (log scale). We com-
pare unoptimized, optimized without pushdown, and fully optimized planners within
the SimpleDedupRemoval approach, with the unoptimized baseline also present for
contrast. The non-pushdown optimizations perform best.

Figure 5-7: Planner throughput scaling with number of users (log scale). We com-
pare baseline, SimpleDedupRemoval, and AllDedupRemoval planners when each has
non-pushdown optimizations applied, with the unoptimized baseline also present for
contrast. Both DedupRemoval planners perform much better than baseline.

50



Figure 5-8: Planner throughput scaling with number of users (log scale). We compare
unoptimized, optimized without pushdown, and fully optimized planners within the
SimpleDedupRemoval approach, with the unoptimized baseline also present for con-
trast. The non-pushdown optimizations perform best; optimizations with pushdown
scale poorly.

the non-pushdown optimizations save about 30%, and the SimpleDedupRemoval and

AllDedupRemoval versions both save about 40% relative to the baseline planner. In

total, the AllDedupRemoval with full optimizations (2C) saves about 70-75% of state

size compared to the baseline (1A).

Next we measure the throughput of each graph in posts processed per second.

In Figures 5-5 and 5-6 we see that throughput remains approximately constant as

the number of posts scales. In Figures 5-7 and 5-8 we see that throughput drops

as users are added, understandably: our single-threaded dataflow system processes

fewer posts per second when performing the same computations in more universes.

SimpleDedupRemoval and AllDedupRemoval graphs have about 1.5-2x better

throughput than their counterparts that always use deduplicating unions, and seem

to scale about the same. The non-pushdown optimizations also consistently improve

throughput by about 1.5x. Interestingly, the full optimization suite including filter

pushdown does not scale well with the number of users: see the line for planner 3C in

Figure 5-8. It starts out with 1.3x better throughput than the unoptimized 3A and

51



ends up with only 0.36x as much throughput. In Table 5.6 we can see that 1C and

2C have similar trends relative to 1A and 2A, starting off slightly better and ending

with much worse throughput as the number of users grows.

Why might the filter pushdown optimization be scaling poorly in throughput but

not in size? We hypothesize that the nodes that the user-specific filter is pushed past

are now spending time processing data that corresponds to all the users instead of

just one, and this creates greater overhead when there are more users. As we argued

previously, most of these nodes are stateless, so this would increase processing time

disproportionately more than state. This hypothesis is supported by the fact that the

filter pushdown optimization results in a 140% increase in processing time in Piazza

(see Table 5.2), much more than the 15% increase in byte count.

5.7 Overall Results

Having considered the impacts of individual optimizations, the efficiency of comple-

ment filtering, and the scalability of each approach, we now summarize the results of

our approaches and discuss which is best in each scenario.

(a) Graph size in HotCRP. (b) Graph size in Piazza.

(c) Processing time in HotCRP. (d) Processing time in Piazza.

Figure 5-9: Heatmaps of the results for all combinations of optimizations and
DedupRemoval approaches. The smallest sizes and times are greenest, and the worst
ones are purplest.

Figure 5-9 shows heatmaps of sizes and times for the various combinations listed

in Table 5.4. Since we have seen that scalability may be an issue for the pushdown

52



optimizations in (C), we use relatively large tests of 100 users and 100 posts/papers for

both HotCRP and Piazza. (This results in much larger numbers for HotCRP than for

Piazza, perhaps because the papers are much larger in bytes than the up-to-20-byte

posts we generated for Piazza.)

We see that in HotCRP, pushdown optimizations seem to perform much better

than they did in Piazza, even with 100 users. AllDedupRemoval improves both state

size and time relative to the other two deduplication implementations. We therefore

recommend approach 2C for this application, which reduces graph size by 66% and

processing time by 71% relative to the baseline.

In Piazza, pushdown optimizations perform well in size but badly in time, as seen

in the scalability tests. If we cared only about space, we could use approach 2C to

improve graph size by 73% and processing time by 4% (with likely worse performance

at larger scales) relative to the baseline. When placing a greater importance on time,

approach 3B (SimpleDedupRemoval with non-pushdown optimizations) does best,

reducing graph size by 41% and processing time by 67%.

We have seen that the best approach may depend on the application, on whether

we prioritize time or size more, and on the amount of data we expect to handle.

All of our optimizations have situations in which they are beneficial, and developing

heuristics for when to apply them or not may allow us to do even better, which is out

of the scope of this work.

53



6 Conclusion

We have described a series of topological graph optimizations that allow multiverse

dataflow graphs to reuse and reduce nodes. We also explored approaches to avoiding

the use of deduplicating unions in graph construction. After investigating the pro-

cessing time, space usage, and scalability for each of these techniques, we conclude

that it is likely best to use AllDedupRemoval for HotCRP and SimpleDedupRemoval

for Piazza, and to use all optimizations except for the filter pushdown ones.

These optimizations improved the space usage of multiverse databases by an es-

timated 3x for HotCRP and 1.7x for Piazza, and reduced record processing time by

3.5x for HotCRP and 3x for Piazza. Since the optimizations were initially developed

while considering the HotCRP use case, their performance in Piazza is good evidence

that they may perform well in other applications as well. Our improvements make

multiverse databases a more practical solution to the problem of security in web ap-

plications, although a truly practical solution would seek to avoid the linear growth

in state size and drop in throughput that this approach experiences as the number of

users increases.

54



7 Future Work

Although the evaluation of our prototype suggests significant potential speedups from

optimizing multiverse dataflow graphs, it remains to be seen how much impact would

be made on a real system. In the future, integrating these optimizations into Noria

would allow us to test how they fare in a complex environment that includes sharding,

multi-threading, and up-querying. Up-querying in particular would give us the op-

portunity to make our new operators more space-efficient, a direction of optimization

that we have not focused on here.

It will also be enlightening to compare the results of our optimizations with other

planning approaches. Samyu Yagati proposed a late-specialization model of multi-

verse planning [11]; when complete, we can compare results on various benchmarks,

and determine whether optimizations are still useful when layered on top of her more

elaborate planner. It’s worthwhile to compare against the best manually constructed

graphs for these situations, too, since humans are often better at figuring out efficient

plans, and those plans may inform further optimizations.

Our optimizer currently only reuses nodes in cases where the state is the same

for every user. In many situations, large groups of users would see the same state,

but not all of them. (For example, all TAs for a class on Piazza can see the same

posts, but not all users can.) In the future, we would like to investigate combining

computations for everyone in such a group, and then using a gate at the end to decide

whether a particular user sees the query result for that group or not. We anticipate

that this will be complex but ultimately enable a significant amount of reuse.

The successes of both the AllDedupRemoval and SimpleDedupRemoval planners

suggest that an intermediate approach may also be worth considering. SimpleD-

55



edupRemoval replaces deduplicating unions only when there are no INs or NOT INs

to create joins or antijoins, but AllDedupRemoval sometimes does better by replac-

ing deduplicating unions in every situation. Since the worst-case situations require

quadratically many nodes to implement this replacement, it may be best to use an in-

termediate that replaces deduplicating unions only if there are at most some constant

number of joins or antijoins involved.

Finally, as discussed in section 3.2, duplicating columns so that we never attempt

to perform a policy filter on rewritten data is inefficient: it doubles the amount of

state in policy nodes. A more intelligent heuristic for when column duplication is

needed could therefore shave off up to half the state.

We developed many of our optimizations by looking at output graphs and envi-

sioning how they might be improved, so we expect that other future optimization

ideas may become apparent through application to more use cases.

56



A Policy Specifications

A.1 HotCRP Policy Specification
PolicySpecification(

predicates: [

("AUTHOR_PAPERS", "SELECT ‘paperId‘ FROM Paper WHERE ‘leadContactId‘ = $UID;"),

("CONF_PHASE", "SELECT ‘value‘ FROM Settings WHERE ‘name‘ = ’phase’;"),

("REVIEWS_ASSIGNED", "SELECT ‘reviewId‘, ‘paperId‘, ‘contactId‘ FROM PaperReview;"),

("REVIEWS_SUBMITTED", "SELECT ‘reviewId‘, ‘paperId‘, ‘contactId‘ FROM PaperReview WHERE

‘reviewSubmitted‘ = 1;"),

("MY_REVIEWS_ASSIGNED", "SELECT ‘paperId‘ FROM $REVIEWS_ASSIGNED WHERE ‘contactId‘ = $UID;"),

("MY_REVIEWS_SUBMITTED", "SELECT ‘paperId‘ FROM $REVIEWS_SUBMITTED WHERE ‘contactId‘ = $UID;"),

("MY_CONFLICTS", "SELECT ‘paperId‘ FROM PaperConflict WHERE ‘contactId‘ = $UID;"),

],

groups: {

"PC": "SELECT ‘contactId‘ FROM ContactInfo WHERE ‘roles‘ = 1;",

"Chairs": "SELECT ‘contactId‘ FROM ContactInfo WHERE ‘roles‘ = 2;",

},

default: Some(

Deny((

priority: 999999,

domain: Row,

predicate: "ALL",

))

),

policies: {

"A0": Table((

description: "A0: Authors can see their own papers",

table: "Paper",

policies: [

Allow((

priority: 0,

57



domain: Row,

predicate: "‘leadContactId‘ = $UID",

)),

],

)),

"A1": Table((

description: "A1: Authors can see their paper’s anonymous reviews",

table: "PaperReview",

policies: [

Rewrite((

priority: 1,

domain: Column,

columns: Columns(["contactId"]),

value: NULL,

predicate: "ALL",

)),

Allow((

priority: 2,

domain: Row,

predicate: "‘paperId‘ IN $AUTHOR_PAPERS",

)),

],

)),

"R0": Table((

description: "R0: PC members can see anonymized versions of all papers",

group: Some("PC"),

table: "Paper",

policies: [

Rewrite((

priority: 1,

domain: Column,

columns: Columns(["leadContactId", "authorInformation", "collaborators"]),

value: NULL,

predicate: "ALL",

)),

Allow((

priority: 2,

domain: Row,

predicate: "ALL",

)),

],

)),

58



"R1": Table((

description: "R1: Reviewers can see reviews on papers they are assigned to review once they submit",

table: "PaperReview",

policies: [

Allow((

priority: 0,

domain: Row,

predicate: "‘paperId‘ IN $MY_REVIEWS_ASSIGNED AND ‘paperId‘ IN $MY_REVIEWS_SUBMITTED",

)),

],

)),

"R2a": Table((

description: "R2: Reviewers can never info on conflicting papers, other than their existence",

table: "PaperReview",

policies: [

Deny((

priority: -100,

domain: Row,

predicate: "‘paperId‘ IN $MY_CONFLICTS",

)),

],

)),

"R2b": Table((

description: "R2: Reviewers can never info on conflicting papers, other than their existence",

table: "Paper",

policies: [

Rewrite((

priority: -101,

domain: Column,

columns: AllExcept(["paperId", "title", "abstract"]),

value: NULL_OR_DEFAULT,

predicate: "‘paperId‘ IN $MY_CONFLICTS",

)),

],

)),

"C1a": Table((

description: "C1: The PC chair can see everything, except for papers they’re conflicted with",

table: "PaperReview",

group: Some("Chairs"),

policies: [

Allow((

priority: -1,

59



domain: Row,

predicate: "ALL",

)),

],

)),

"C1b": Table((

description: "C1: The PC chair can see everything, except for papers they’re conflicted with",

table: "Paper",

group: Some("Chairs"),

policies: [

Allow((

priority: -1,

domain: Row,

predicate: "ALL",

)),

],

)),

}

)

A.2 Piazza Policy Specification
PolicySpecification(

predicates: [

("TAS", "SELECT r_uid FROM Role WHERE Role.r_role=1;"),

("MY_TA_CLASSES", "SELECT ‘r_cid‘ FROM Role WHERE ‘r_role‘=1 and ‘r_uid‘=$UID;"),

("MY_CLASSES", "SELECT ‘r_cid‘ FROM Role WHERE ‘r_uid‘=$UID;"),

],

groups: {},

default: Some(

Deny((

priority: 999999,

domain: Row,

predicate: "ALL",

))

),

policies: {

"P0": Table((

description: "users are allowed to see public posts",

table: "Post",

60



policies: [

Allow((

priority: 3,

domain: Row,

predicate: "‘p_private‘ = 0",

)),

],

)),

"P1": Table((

description: "author is rewritten unless the post is not anonymous",

table: "Post",

policies: [

Rewrite((

priority: 2,

domain: Column,

columns: Columns(["p_author"]),

value: NULL,

predicate: "ALL",

)),

Allow((

priority: 1,

domain: Row,

predicate: "‘p_private‘ = 0 AND ‘p_anonymous‘ = 0",

)),

],

)),

"P2": Table((

description: "users are allowed to see their private/anon posts they authored",

table: "Post",

policies: [

Allow((

priority: 1,

domain: Row,

predicate: "‘p_author‘ = $UID",

)),

],

)),

"P3": Table((

description: "users are allowed to see private/anon posts from classes they TA",

table: "Post",

policies: [

Allow((

61



priority: 0,

domain: Row,

predicate: "‘p_cid‘ in $MY_TA_CLASSES",

)),

],

)),

"R0": Table((

description: "users are allowed to see their enrollment information",

table: "Role",

policies: [

Allow((

priority: 1,

domain: Row,

predicate: "‘r_uid‘ = $UID",

)),

],

)),

"R1": Table((

description: "users are allowed to see enrollment information of classes they TA",

table: "Role",

policies: [

Allow((

priority: 1,

domain: Row,

predicate: "‘r_cid‘ in $MY_TA_CLASSES",

)),

],

)),

"R2": Table((

description: "users are allowed to see TAs of the classes they are enrolled in",

table: "Role",

policies: [

Allow((

priority: 1,

domain: Row,

predicate: "‘r_role‘ = 1 and ‘r_cid‘ in $MY_CLASSES",

)),

],

)),

}

)

62



Bibliography

[1] Piazza quick start guide. URL: https://piazza.com/pdfs/piazza_product_intro-
duction.pdf (visited on 2020-05-04).

[2] Warwick Ashford. Facebook photo leak flaw raises security con-
cerns. URL: https://www.computerweekly.com/news/2240242708/Facebook-
photo-leakflaw-raises-security-concerns (visited on 2019-12-05).

[3] IBM Knowledge Center. Securing db2: Creating column masks. URL:
https://www.ibm.com/support/knowledgecenter/en/SSEPEK_10.0.0/seca/src/
tpc/db2z_createcolumnmask.html (visited on 2020-05-02).

[4] Lobsters Developers. Lobsters database schema (schema.rb). https://github .com
/lobsters/lobsters/blob/93fe0fdd74028cf678134d6d112ae084d8fdd928/db/schema.rb.

[5] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Mar-
tin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. Noria: dynamic,
partially-stateful data-flow for high-performance web applications. USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’20), Oc-
tober 2018.

[6] Postgres Global Development Group. Postgresql 9.5.15 documentation: Row se-
curity policies. URL: https://www.postgresql.org/docs/9.5/ddl-rowsecurity.html
(visited on 2020-05-02).

[7] Eddie Kohler. HotCRP. URL: https://hotcrp.com (visited on 2020-05-04).

[8] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta Yagati, Ed-
die Kohler, Robert Morris, M. Frans Kaashoek, and Sam Madden. Towards
multiverse databases. Workshop on Hot Topics in Operating Systems (HotOS
’19), May 2019.

[9] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Dr-
uschel. Qapla: Policy compliance for database-backed systems. Proceedings of
the 26th USENIX Security Symposium (USENIX Security 17), page 1463–1479,
August 2017.

[10] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. Naiad: A timely dataflow system. Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP), November 2013.

63



[11] Samyukta Yagati. Efficient privacy policies in multiverse databases. ACM SOSP
Student Research Competition Entry, October 2019.

64


