
GoTxn: Verifying a Crash-Safe, Concurrent

Transaction System
by

Mark Theng
B.S. Electrical Engineering and Computer Science,

Massachusetts Institute of Technology (2021)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 4, 2022

Certified by. .
M. Frans Kaashoek

Professor
Thesis Supervisor

Certified by. .
Nickolai Zeldovich

Professor
Thesis Supervisor

Certified by. .
Tej Chajed

Doctoral Student
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

GoTxn: Verifying a Crash-Safe, Concurrent Transaction

System

by

Mark Theng

Submitted to the Department of Electrical Engineering and Computer Science
on January 4, 2022, in partial fulőllment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Bugs related to concurrency and crash safety are infamous for being subtle and hard
to reproduce. Formal veriőcation provides a way to combat such bugs through the
use of machine-checked proofs about program behavior. However, reasoning about
concurrency and crashes can be tricky, especially when scaling up to larger systems
that must also have good performance.

This thesis discusses the veriőcation of GoTxn, the concurrent, crash-safe trans-
action system underlying the veriőed Network File System (NFS) server DaisyNFS.
It focuses on the speciőcation and proof of the write-ahead log and the automatic
two-phase locking interface used to enforce crash and concurrent atomicity in trans-
actions, detailing how the veriőcation framework Perennial can be used to manage
assertions about crash behavior across multiple threads. By effectively harnessing
concurrency to hide disk access latency, GoTxn enables performance in DaisyNFS
similar to the unveriőed Linux NFS server.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor

Thesis Supervisor: Nickolai Zeldovich
Title: Professor

Thesis Supervisor: Tej Chajed
Title: Doctoral Student

3

4

Acknowledgments

I would like to thank Tej Chajed, Frans Kaashoek, Nickolai Zeldovich, Joe Tassarotti

and Ralf Jung for their contributions to this project. The development of GoTxn

was a collaborative effort, and would not have been possible without their efforts.

I would especially like to thank Tej for his foundational work on concurrent, crash-

safe systems veriőcation, on which this work is based; Joe and Ralf for their work

on program reasoning techniques central to this effort; and Frans and Nickolai for

their inspiration, direction, and invaluable guidance in developing this thesis. Special

thanks also to my friends, family, and everyone else at MIT who have supported me

throughout this work.

5

6

Contents

1 Introduction 11

1.1 System Overview . 12

1.2 Veriőcation . 13

1.3 Thesis Outline . 14

2 Related Work 15

2.1 Veriőed Write-Ahead Logs . 15

2.2 Veriőed Concurrency Isolation . 16

3 Background 19

3.1 Resource Logic . 19

3.2 Invariants . 21

3.3 Logical Atomicity . 24

3.4 Crashes . 29

4 The WAL Layer 31

4.1 The In-Memory Log . 35

4.2 Snapshots . 39

4.3 Durable State . 41

5 The Locking Layer 49

5.1 Locking Layer Interface . 50

5.2 Proof Outline . 53

7

6 Evaluation 59

6.1 Performance . 59

6.1.1 Overall Performance . 60

6.1.2 GoTxn’s Contribution . 61

6.2 Correctness . 64

7 Conclusion 67

8

List of Figures

1-1 Overview of GoTxn and its veriőcation workŕow. 13

3-1 Proof that atomically incrementing a counter keeps it non-negative. . 22

3-2 Control diagram for threads concurrently incrementing an atomic counter. 24

3-3 Outline of a proof for the HOCAP-style speciőcation of an atomic

counter. 26

3-4 Atomicity in the HOCAP-style speciőcation of an atomic counter. . . 28

4-1 The disk layout of the full system, including the physical log. 31

4-2 Overview of the WAL’s implementation. 32

4-3 The WAL interface speciőcation. 33

4-4 Example of Read interacting with concurrent calls to Write. 34

4-5 The logical log. 36

4-6 An example of multiwrite absorption. 37

4-7 Properties of the has relation. 37

4-8 Relationship between L and G. 38

4-9 Stripped-down installer code. 40

4-10 Control diagram for IL
memLock

. 40

4-11 Proof that IL,b is maintained throughout the execution of the WAL. . 42

4-12 Control diagram for IW . 44

4-13 P , L and G after a crash and recovery. 45

4-14 Motivation for the match relation. 47

5-1 Speciőcations for Read and Write. 51

9

5-2 Constructing and usingM in a transaction. 51

5-3 An example of a branching transaction. 53

5-4 Control diagram for the object, journal and locking layers. 54

5-5 Modiőcation tokens in the journal layer speciőcation. 55

5-6 Outline of a proof for Commit. 58

6-1 Performance comparison between DaisyNFS and the Linux NFS server. 60

6-2 Multi-client performance scaling of DaisyNFS. 61

6-3 Performance contribution of disk latency hiding in the WAL. 62

6-4 Performance contribution of the WAL exposing separate Flush and

Write calls. 63

6-5 Performance contribution of őne-grained two-phase locking. 63

6-6 Performance contribution of multiwrite absorption. 64

10

Chapter 1

Introduction

Atomicity is a powerful tool for building and reasoning about concurrent, crash safe

őle systems. Consider the creation of a őle f inside a directory d. This involves

creating an inode for f , reading d’s inode, and then writing d’s inode back to disk with

a new entry for f . To maintain consistency, a őle system requires that these operations

behave as a single atomic transaction. Otherwise, it might end up dereferencing an

invalid pointer or creating a dead inode.

Two key forms of atomicity that a őle system might require are:

• Crash atomicity. If the system crashes, writes in a transaction should either

be all discarded or all committed to disk.

• Concurrent atomicity. Concurrent transactions should be serializable in that

they should give the same results as if they were executed sequentially.

One way to provide atomicity is to build the őle system on top of a transac-

tion system. Bugs in these transaction systems can be subtle, costly, and hard to

reproduce, making them a good target for formal veriőcation. However, the subtle

reasoning required to verify a transaction system makes doing so a challenging task.

This thesis describes the veriőcation of GoTxn, a transaction system that aims

to be a step towards this goal. GoTxn supports the basic features of a practical

transaction system, including:

11

• Crash safety. Write-ahead logging provides crash recovery that maintains

transaction atomicity.

• Concurrent execution. Transactions are executed concurrently but safely to

maintain good performance without breaking atomicity.

• Disk performance. Disk operations are batched, absorbed and performed

concurrently when possible to achieve good performance.

• Object-based interface. Transactions operate on the level of objects, which

are variable-sized units of data potentially smaller than a disk block. Concurrent

transactions can safely access different objects in the same block.

• Compiled language. The Go language provides compiled language perfor-

mance unavailable to veriőed systems that rely on extraction to a functional

language.

On top of this, GoTxn offers a lock management interface that guarantees transac-

tion serializability, allowing developers to reason about concurrently-executed trans-

actions as sequential code. This provides access to the high degree of proof automation

available for sequential code, allowing for the faster iteration times necessary to reach

practical levels of complexity.

1.1 System Overview

GoTxn is built in layers (left side of Fig. 1-1), each exposing a small set of interface

methods to the layer above. The lowest layer interacts directly with the disk, itself

modeled as a layer that exposes atomic reads and writes to disk blocks. The layers

of GoTxn are:

• The write-ahead log (WAL) layer. The WAL layer provides crash atomicity

for groups of disk updates, called multiwrites, by recording them to an on-disk

log before installing them to their target locations.

12

Client

Locking layer

Journal layer

Object layer

WAL layer

Go code

Executable

Build

Translated code
Goose

Speciőcations

Proof

Perennial

Iris

Coq

OK?

Verify

Figure 1-1: Overview of GoTxn (left) and its veriőcation workŕow (right).

• The object layer. The object layer allows multiwrites to be expressed in terms

of object reads and writes instead of operations on entire disk blocks.

• The journal layer. The journal layer provides a local transaction buffer for

each transaction, allowing transactions to be built up over time before being

committed as a single multiwrite.

• The locking layer. The locking layer implements automatic two-phase locking

to guarantee transaction serializability and isolate concurrent reasoning from the

developer.

GoTxn records all disk writes to the on-disk log and guarantees that transactions

persist across crashes immediately after they are committed. This means that it does

not support log-bypass writes and deferred durability, among other features common

in unveriőed systems like the Linux kernel journaling layer jbd2.

1.2 Verification

To verify GoTxn, we start by writing specifications for each layer’s interface calls.

Each speciőcation is an intuitive but relatively complete description of client-visible

behavior, including concurrency and crash-safety guarantees. We then write mathe-

matical proofs showing that the implementation of each layer meets its speciőcations,

13

given the speciőcations of the layer below. Clients of GoTxn can similarly be veriőed

as layers on top of GoTxn, with its own speciőcations and proofs.

We machine-check these proofs in the interactive proof assistant Coq [28] with the

help of Perennial [5] (right side of Fig. 1-1), a framework that extends the concurrency

veriőcation system Iris [17] to support crash reasoning. As part of this process, we

use the Goose [6] translation tool to make GoTxn’s Go code accessible to reasoning

in Coq.

1.3 Thesis Outline

This thesis focuses on the veriőcation of the WAL and locking layers, with particular

attention to the techniques used to manage the complexity of reasoning about crash

safety and concurrency in GoTxn. For clarity, the proofs and speciőcations presented

here have been slightly simpliőed. The full Coq proofs and speciőcations can be

accessed online at the address https://github.com/mit-pdos/perennial

The rest of the thesis is organized in the following manner:

• Chapter 2 discusses related work.

• Chapter 3 provides background on the proof techniques used in this work.

• Chapter 4 discusses the veriőcation of the WAL layer.

• Chapter 5 discusses the veriőcation of the locking layer.

• Chapter 6 evaluates the usefulness of GoTxn and its WAL, both in terms of

performance and veriőcation guarantees.

• Chapter 7 provides a conclusion to the thesis.

14

https://github.com/mit-pdos/perennial

Chapter 2

Related Work

This thesis includes work directly contributing to and extending GoJournal [7], the

system making up the WAL, object and journal layers of GoTxn. GoTxn is in turn

used as a foundation for DaisyNFS [8], a concurrent Network File System (NFS) server

veriőed with the help of the sequential, veriőcation-aware programming language

Dafny [18]. DaisyNFS serves as an example of how the sequential interface of GoTxn’s

locking layer makes powerful sequential proof automation available to the veriőcation

of crash-safe, concurrent programs.

GoTxn relies on Perennial [5] to enable concurrent, crash-safe reasoning. An

earlier version of Perennial was used to prove concurrent crash safety speciőcations

for a mail server called Mailboat [5]. However, Mailboat is considerably simpler than

GoTxn since it operates on independent őle objects and so does not need a journaling

system.

2.1 Verified Write-Ahead Logs

FSCQ [10], Argosy [4] and Yxv6 [25] also feature veriőed WALs to provide crash

safety guarantees. However, they use simpler, sequential implementations that only

process one multiwrite at a time, limiting their performance. DFSCQ [9] includes

a more complex veriőed WAL that allows multiwrites to be committed in groups,

but does not support concurrent execution. GoTxn’s WAL accepts, logs and installs

15

multiwrites concurrently, requiring more advanced proof techniques.

Fault-Tolerant Concurrent Separation Logic (FTCSL) [23] is a framework devel-

oped to support proofs involving both concurrency and crash safety by extending the

concurrent separation logic framework Views [14]. It was used to prove part of the

WAL-based ARIES recovery algorithm [21]. However, FTCSL has only been used

in pen-and-paper proofs, leaving open the possibility of errors that could render the

proofs invalid and limiting its usefulness in proving large, practical programs. In fact,

the FTCSL proofs provided for the ARIES algorithm cover only crash-safety and do

not involve concurrent reasoning.

2.2 Verified Concurrency Isolation

Concurrent program veriőcation frameworks such as CSPEC [3], CIVL [16] and Ar-

mada [20] can, like GoTxn, be used to reduce the behavior of concurrent code to

serially executed sequential code. However, they require the developer to perform

concurrent reasoning to complete this reduction. GoTxn instead uses two-phase lock-

ing to guarantee atomicity in its speciőcation, completely isolating concurrent rea-

soning from the developer. This not only makes veriőcation more practical for large

programs, but also simpliőes reasoning about crash safety.

Client code in IronFleet [15] can be shown to be atomic if the code satisőes a

sequentially-checkable ordering constraint. GoTxn does not require a similar con-

straint on transaction code since it enforces two-phase locking as part of its transaction

interface. IronFleet also assumes a distributed system environment where concurrent

programs share resources by passing messages over the network, in contrast to GoTxn

where threads communicate by directly accessing shared disk and memory resources.

The serializability of two-phase locking itself has been proven with manual and

machine-checked proofs in works such as those by Chkliaev et al. [11], Attiya et al. [1]

and Pollak [24]. In a similar vein, Lesani et al. [19] developed a system to verify soft-

ware transactional memory algorithms, which they used to verify an implementation

of the NOrec algorithm [13]. However, these proofs were done outside the context of

16

a larger transaction system that also provides crash safety.

17

18

Chapter 3

Background

The proof of GoTxn relies on separation logic [2], a methodology for reasoning about

concurrent programs. It is based on the idea that threads can be analyzed indepen-

dently when they do not share any disk or memory resources. By tracking which

resources each thread uses and how, we can prove properties about concurrent pro-

grams with proof structures that parallel code. This chapter provides the background

necessary to understand proofs described in subsequent chapters.

3.1 Resource Logic

Separation logic tracks resource use by introducing the concept of ownership. A

thread’s ownership over a resource acts as a guarantee that no other thread will

access that resource. In the simplest case, a proof assigns different threads ownership

over non-overlapping sets of resources, and then steps through their code to show that

they only access those resources. By also tracking what happens to the values held

by those resources, we can prove assertions about how each thread affects program

state.

Concretely, ownership over a resource a holding value v is represented by the

predicate a 7→ v. These can be combined with the separation conjunction operator

∗. For example, the predicate a1 7→ v1 ∗ a2 7→ v2 represents ownership over both

a1 and a2. Similarly, constraints over values can be represented by ordinary logical

19

predicates. For example, ∃v, a 7→ v ∗ v ≥ 10 asserts ownership over a with value at

least 10. A separation logic proof associates each thread execution state with a proof

state predicate representing assertions about the resources owned by the thread at

that point in execution.

While the operator ∗may seem similar to the classical logical conjunction operator

∧, there is one important difference. When a thread forks, the resources of its proof

state P must be distributed to the proof states Pi of its children. In doing so, the

proof must show that it does not distribute the same resource to multiple Pi. To

make such constraints easy to reason about, we deőne P ∗ Q to represent not just

the logical assertions of both P and Q, but also the disjoint union of the ownership

claims of P and Q. This means that it is always valid to assign each child i the proof

state Pi when forking from a proof state P :=∗i Pi.

Weakening is an important concept when reasoning about and transforming proof

state. A predicate Q is said to be weaker than a predicate P if the assertions of P

together imply the assertions of Q. This is denoted P ⊢ Q, for example

a 7→ v ∗ v < 5 ⊢ a 7→ v ∗ v < 10

In keeping with the deőnition of ∗, we generally cannot say that P ⊢ P ∗ P unless

P does not contain any ownership claims.

A Hoare triple speciőes what resources a piece of code requires and its behavior

with respect to those resources. A piece of code C that transforms a pre-condition

Ppre to a post-condition Ppost can be given the Hoare triple {Ppre} C {Ppost}. For

example, the Hoare triple {∃v, x 7→ v} *x = 10 {x 7→ 10} speciőes that the memory

write *x = 10 requires ownership over x and changes its value to 10. If a proof state

just before C can be written P ∗ Ppre, then the proof can apply the Hoare triple

{Ppre} C {Ppost} to give the proof state P ∗ Ppost after C.

More generally, Hoare triples of the form {Ppre} M {RET r; Ppost(r)} can be

speciőed for a method M , where Ppost may depend on the return value r. For

example, a method that computes square roots might be given the Hoare triple

{∅} sqrt(x) {RET r; r =
√
x}, where ∅ is the empty assertion.

20

To show that a piece of code satisőes a Hoare triple, a proof starts with a proof

state containing exactly the resources in the Hoare triple’s pre-condition. Then, it

steps through the code’s execution, using Hoare triples for smaller code elements to

transform the proof state. Finally, it shows that the proof state at every exit point

satisőes the post-condition.

A natural extension to the concept of ownership is fractional ownership, which im-

plements the single-writer, multiple-reader model of concurrency control by allowing

threads to have less than full ownership over resources. Fractional ownership over a

resource a is represented by a predicate of the form a 7→q v, where 0 < q ≤ 1 denotes

the amount of ownership the thread has over a with q = 1 denoting full ownership.

At any time, a proof may split a predicate a 7→q v into multiple pieces a 7→qi v where
∑

i qi = q, or, similarly, combine multiple pieces a 7→qi v into a 7→q v. These rules

guarantee that the sum of q values across all threads for any resource will always be

at most one.

A thread may read from a resource if it has any partial ownership over it, but

may only write to resource if it has full ownership over it. This leads to the following

properties:

• Full ownership over a resource guarantees exclusive access. In other words, no

other thread may concurrently access a resource while a thread is writing to it.

• Partial ownership over a resource guarantees that no other thread may modify

its value.

• If a proof state contains multiple predicates a 7→qi vi for the same resource, then

all the vi must be equal.

3.2 Invariants

Systems often make use of atomic mechanisms to allow concurrent threads to safely

access the same resource. For example, GoTxn relies on the fact that disk operations

21

Proof progress Proof state

Initial state I

After opening I ∃v, c 7→ v ∗ v ≥ 0

After incrementing c ∃v, c 7→ v + 1 ∗ v ≥ 0

(Weakening) ∃v, c 7→ v + 1 ∗ v + 1 ≥ 0

After closing I I

Figure 3-1: Proof that atomically incrementing c maintains the invariant I := ∃v, c 7→
v ∗ v ≥ 0.

are atomic by speciőcation. We can reason about such mechanisms with the use of

invariants, which are predicates safely shared across multiple threads.

At any time, a proof may seal a predicate I into an invariant I . I is persistent,

meaning that it can be duplicated and shared across multiple threads. Later, the

proof may open I to gain access to I, but only for a single atomic step. After the

atomic step, the proof must close I by giving up I. In analogy to the classical notion

of invariants, this guarantees that I remains satisőed for the rest of the program’s

execution.

A similar mechanism is the lock invariant, which allows us to apply atomic reason-

ing to locked regions. A lock invariant IL
L

holds resources protected by its associated

lock L. Under IL
L
, a thread gains access to IL when it acquires L and must give up

IL when it releases L. This guarantees that IL remains satisőed whenever L is not

being held.

To illustrate how invariants work, consider a function Inc() that atomically in-

crements a signed counter c. If c starts at zero and is only ever modiőed during

calls to Inc, we can show that c remains non-negative throughout the execution of

the program by constructing the invariant I := ∃v, c 7→ v ∗ v ≥ 0 and proving (as

detailed in Fig. 3-1) the Hoare triple

{

I
}

Inc()
{

∅

}

(3.1)

Notably, there is no need to include I in the post-condition of Eq. 3.1. The

22

requirement that I must be closed every time it is open already guarantees that I

continues to hold after the call to Inc. This is encoded in the persistence of I , which

allows the proof to retain access to I by duplicating it before applying Eq. 3.1.

We can make stronger assertions about c by relating its value to thread resources.

For example, suppose a program performs concurrent reads from c but only ever

calls Inc from the same thread t. We can reason about the value of c by splitting

its ownership between an invariant and t. Speciőcally, we construct the invariant

I := ∃v, c 7→1/2 v and prove the Hoare triple

{

I ∗ c 7→1/2 v
}

Inc()
{

c 7→1/2 v + 1
}

In this conőguration, t may be said to control c Ð while t may open I to gain

write access to c, other threads may gain at most read access. After n calls to Inc,

the proof may use the predicate c 7→1/2 n from t to conclude that the őnal value of c

is n.

We would like to extend this approach to show that the őnal value of c is n even

if the calls to Inc are made concurrently, by different threads. However, we cannot

do so directly since multiple threads cannot be given simultaneous control over c.

Instead, we use ghost variables to redeőne the ways in which a thread may control c.

Ghost variables are virtual resources deőned solely for the sake of the proof. They

do not correspond to actual physical state or code constructs but may be owned

by threads and invariants just like ordinary resources. A proof may update a ghost

variable γ whenever it has full ownership over γ. If an invariant I relates γ to a

physical resource a, then whenever the proof opens I to perform a write to a, it may

also be forced to update γ in order to close I .

In our example, we give each thread ti control over an independent additive portion

vi of c through a ghost variable γi (Fig. 3-2). Speciőcally, we split ownership over

each γi between ti and the invariant

I := ∃v1∃v2 . . . ∃vn,
(

n∗
i=1

γi 7→1/2 vi

)

∗ c 7→
n
∑

i=1

vi

by specifying the Hoare triples

23

I

Thread 1

Thread 2

...

Thread n

c

γ1

γ2

γn

Figure 3-2: n threads share control over c through ghost variables γi.

∀i,
{

I ∗ γi 7→1/2 v
}

Inc()
{

γi 7→1/2 v + 1
}

(3.2)

After incrementing c, the proof of Inc for each ti must increment γi in order to

close I and prove the post-condition. Combining I with the őnal value of γi from

all threads allows us to deduce that the őnal value of c is n.

A monotonic counter is another example of a of virtual resource. Ownership over

a monotonic counter γ with value v is denoted γ 7→+ v. Similar to a ghost variable, a

proof may update v whenever it has full ownership over γ. However, γ 7→+ v comes

with the restriction that v can only ever be increased. This means that any partial

ownership γ 7→+
q v over γ guarantees that γ remains at least v even after the proof

rescinds all ownership over γ. We express this guarantee with a persistent lower bound

predicate γ 7→≥ v. If the proof later regains access to γ through a predicate of the

form γ 7→+
q′ v

′, it can use γ 7→≥ v to conclude that v′ ≥ v.

Similarly, a monotonic list is a virtual resource holding a list that can only ever be

appended to. Partial ownership γ 7→+
q v over a monotonic list γ guarantees that the őrst

len v entries of γ remain unchanged even after the proof rescinds all ownership over γ.

We express this guarantee with persistent predicates γ 7→[i] v[i] where 0 ≤ i < len v.

3.3 Logical Atomicity

While invariants can be used to prove powerful assertions about the effects of atomic

operations, it is often useful to write speciőcations that directly expose atomicity it-

self. For example, GoTxn allows the developer to write arbitrary transactions and call

24

them in any order. This means that its top-level speciőcations cannot be full-system

assertions like those discussed in the previous section. Rather, its speciőcations can

only guarantee that executing a transaction atomically induces a corresponding trans-

formation on some part of the full system state.

To make this concrete, let us specify the function Inc() from the previous section

as an atomic transformation v ← v + 1 of the value v of c. We start by constructing

the internal invariant

Iint := ∃v, c 7→ v ∗ Pconn(v)

where the connecting predicate Pconn(v) is a caller-deőned predicate provided as a

parameter to the proof. As the discussion in the previous section shows, our choice of

invariant depends on the properties we would like to prove about the larger system.

Keeping Pconn caller-deőned gives us the freedom to adapt the proof of Inc to different

system speciőcations. For example, we might choose Pconn(v) := v ≥ 0 to show that

v remains non-negative throughout the execution of the program.

Now, in order to close Iint after incrementing c, the proof of Inc must transform

Pconn(v) into Pconn(v + 1). Since Pconn is caller-deőned, the proof that this trans-

formation is valid must be left as a caller obligation. With this in mind, an initial

attempt at a speciőcation for Inc might look like

{

Iint ∗
(

∀v, Pconn(v) ⊢ Pconn(v + 1)
)

}

Inc()
{

∅

}

(3.3)

While this works for simple assertions like Pconn(v) := v ≥ 0, it is often necessary

to relate v to thread resources. For example, suppose we would like to show that n

concurrent calls to Inc increases v by n. Following Sec. 3.2, we give each thread ti

control over a ghost variable γi and set

Pconn(v) := ∃v1∃v2 . . . ∃vn,
(

n∗
i=1

γi 7→1/2 vi

)

∗ v =
n
∑

i=1

vi

Now, when transforming Pconn(v) to Pconn(v+1) during ti’s call to Inc, the proof

must also increment γi by combining the half-ownership predicates over γi from ti

and from Pconn(v). In a more complex system, updating Pconn(v) might even require

25

Iint Icaller T

c 7→ v Pconn(v) Icaller

Increment c

c 7→ v + 1 Pconn(v + 1) Icaller

Iint T ′Icaller

Caller obligation

Figure 3-3: Outline of a proof for Inc. The caller is responsible for showing that
Pconn(v) may be transformed into Pconn(v+1), possibly by opening and closing some
caller invariant Icaller and transforming some thread state predicate T into T ′. This
obligation, expressed by the pre-condition ∀v, Pconn(v) ≡∗ Pconn(v + 1) ∗ T ′, corre-
sponds to the section marked out by the dotted lines.

26

accessing ghost variables from a caller invariant.

To support speciőcations like these, we deőne the fancy update operator ≡∗. The

predicate Ppre ≡∗ Ppost can be thought of a black box holding an unknown predicate

P satisfying the constraint that Ppre ∗ P can be transformed into Ppost by updating

ghost variables or opening and closing invariants. In other words, it represents a

single-use łcallbackž that can be passed as a pre-condition to a Hoare speciőcation,

encoding a transformation to be applied in conjunction with an atomic update. We

can now construct the Hoare speciőcation

∀T∀T ′,
{

Iint ∗ T ∗
(

∀v, Pconn(v) ∗ T ≡∗ Pconn(v + 1) ∗ T ′
)

}

Inc()
{

T ′
}

or, more concisely,

∀T ′,
{

Iint ∗
(

∀v, Pconn(v) ≡∗ Pconn(v + 1) ∗ T ′
)

}

Inc()
{

T ′
}

(3.4)

where Pconn(v) ≡∗ Pconn(v + 1) ∗ T ′ can be thought of as the result of łpre-

applyingž Pconn(v) ∗ T ≡∗ Pconn(v + 1) ∗ T ′ to T (Fig. 3-3). Here, T is the caller-

deőned thread state to be transformed into T ′ during the update to Pconn. In the

example of n concurrent calls to Inc, the proof sets T := γi 7→1/2 0 and T ′ := γi 7→1/2 1

during each thread ti’s call to Inc to show that the őnal value of each γi is 1.

Eq. 3.4 is an example of a HOCAP-style speciőcation [26]. A HOCAP-style

speciőcation reduces the behavior of a piece of code to a single, instantaneous update

to caller-visible state applied at some point during the code’s runtime. The points at

which these updates are applied can be thought of as łcommit pointsž that give an

ordering for an equivalent serial execution (Fig. 3-4).

In general, if an atomic operation M, possibly non-deterministic, can be described

by a transition relation R(σ1, σ2) that speciőes whether M might induce the transition

σ1 → σ2 on some caller-visible state σ, we can describe its behavior with a Hoare

triple of the form

∀Q,

{

Iint ∗ ∀σ1∀σ2, R(σ1, σ2) =⇒
(

Pconn(σ1) ≡∗ Pconn(σ2) ∗ Q
)

}

M

{

Q

}

(3.5)

More broadly, a system interface may deőne multiple methods that atomically up-

27

Thread 1 Thread 2

Pconn(0)

∀v, Pconn(v) ≡∗
Pconn(v + 1) ∗ T ′

1

∀v, Pconn(v) ≡∗
Pconn(v + 1) ∗ T ′

2

Pconn(1)

Pconn(2)T ′
1 T ′

2

Figure 3-4: The HOCAP speciőcation of Inc reduces its behavior to a single atomic
update to the caller-visible state variable v. Here, two concurrent calls to Inc are
modeled as atomic updates each increasing v by one. The speciőcation of Inc guar-
antees that the updates are applied during their respective thread’s call to Inc, but
not that they are applied in any particular order.

28

date the same caller-visible state. We can model such an interface as an atomic tran-

sition system by providing HOCAP-style speciőcations for every interface method.

3.4 Crashes

To specify the crash behavior of a piece of code C, we extend its Hoare triple into a

Hoare quadruple {Ppre} C {Ppost}{Pcrash} by adding a crash condition Pcrash specify-

ing the resources and constraints that can be recovered if a crash occurs at any time

during the execution of C. For example, consider a function Inc() that atomically

increments an on-disk counter c. After a crash, c may hold different values depending

on whether the crash happened before or after the operation completes. This gives

the natural speciőcation

{c 7→ v} Inc() {c 7→ v + 1}{c 7→ v ∨ c 7→ v + 1}

Just like the proof of a Hoare triple, the proof of a Hoare quadruple for a piece

of code C may apply Hoare quadruples for smaller code elements to step through

C and transform the proof state. Each time the proof applies a Hoare quadruple

{P ′
pre} C ′ {P ′

post}{P ′
crash} to a proof state P1 ∗ P2 where P2 ⊢ P ′

pre, it must additionally

show that the crash condition Pcrash of C remains satisőed throughout the execution

of C ′ by showing that P1 ∗ P ′
crash ≡∗ Pcrash.

Proving Hoare quadruples in this manner can impose an unnecessarily high proof

burden. One observation that makes them less tedious to prove is that invariants play

a similar role to crash conditions. In particular, a proof may reduce a crash speciő-

cation into a crashless speciőcation by putting its crash condition into an invariant.

An extension of this idea is the crash borrow [27]. Whenever its proof state

contains a predicate P such that P ⊢ Pc, a proof may remove Pc from its crash

condition by sealing P in a crash borrow P | Pc . If the proof later needs access to

P , it must open the crash borrow by adding Pc back to its crash condition.

Unlike an invariant, P | Pc is not persistent. However, the proof can still share

P | Pc between threads by sealing it in an invariant. Another thread may then

29

interact with P within an atomic step as long as it maintains Pc in its crash condition

while doing so. Since Pc is always either satisőed by P or part of some thread’s crash

condition, it must remain satisőed throughout the execution of the program.

Crash safety for an atomic transition system can be speciőed by a transition

relation Rcrash(σ1, σ2) describing a crash followed by recovery. To prove such a spec-

iőcation, suppose a system has recovery procedure Recover() and system invariant

I with connecting predicate Pconn(σ) exposing caller-visible state σ. We start by

deőning a crash condition Pcrash such that I ⊢ Pcrash. Pcrash should generally contain

Pconn(σ) as well as assertions from I about on-disk resources and how they relate to

σ.

Since I ⊢ Pcrash, if the system crashes any time after I is constructed, Pcrash

holds and can be used as a pre-condition for Recover. The proof of Recover must

then use Pcrash to reconstruct I and, in a similar vein to Eq. 3.5, apply the atomic

update

Pcupd(Q) := ∀σ1∀σ2, Rcrash(σ1, σ2) =⇒
(

Pconn(σ1) ≡∗ Pconn(σ2) ∗ Q
)

This is summarized by the Hoare quadruple

∀Q,

{

Pcrash ∗ Pcupd(Q)

}

Recover()

{

I ∗ Q
}{

Pcrash

}

where Recover is additionally required to satisfy Pcrash on crash to ensure that

the system recovers safely even if it crashes in the middle of recovery before I is

established.

30

Chapter 4

The WAL Layer

The WAL layer provides crash atomicity for disk multiwrites by atomically recording

them to an on-disk log before installing them to disk. After a crash, the log can

be used to complete any incomplete multiwrites that were in the process of being

installed. Multiwrites recorded to the log are durable in the sense that they persist

across crashes. Multiwrites not yet recorded to the log are completely discarded on

crash.

The log itself, called the physical log, is a circular queue located in a dedicated

section of disk. It is implemented as a buffer of disk updates along with two header

blocks containing its start and end pointers (Fig. 4-1). After a crash, only the updates

between the start and end pointers are used for recovery.

This design allows the WAL to append multiwrites in a single atomic step. To do

so, the WAL writes the contents of the multiwrite beyond the end of the queue and

then advances the end pointer in a single atomic disk write. Since the new updates

End
pointer

Start
pointer

Update buffer Installed blocks

↑ 0 ↑ 513

Physical log

Figure 4-1: The disk layout of the full system, including the physical log.

31

Write

Logging

Installation

memLog

Installed disk

Physical log

Figure 4-2: Overview of the WAL’s implementation.

only become part of the log when the end pointer is updated, the multiwrite is either

completely persisted or completely discarded on crash depending on whether the crash

happens before or after the last write succeeds.

The WAL hides disk latency by performing logging and installation in background

threads synchronized by a locked in-memory work queue called the memLog (Fig. 4-

2). Threads interact with the WAL primarily through the memLog, using the interface

methods Write, Flush and Read. A thread performs a multiwrite m by calling

Write(m) to submit m to the memLog and then Flush() to wait for the background

threads to make m durable. The background threads then install m to disk before

removing it from the memLog altogether. A thread reads the contents of a disk block at

address a by calling Read(a), which checks the memLog for the latest pending update

to a and then reads directly from disk if no pending updates are found.

We model this interface as an atomic transition system (Sec. 3.3) involving the

initial disk state Dinit, a list of multiwrites G and monotonically increasing lower

bounds Bdur and Bms (Fig. 4-3). In the absences of crashes, G is the monotonic list

of all multiwrites submitted to the WAL. In the event of a crash, only some preőx of

G containing all multiwrites before Bdur persists after recovery. In other words, Bdur

32

Operation Behavior

Initial state Dinit ← initial disk state; G ← []; Bdur ← 0; Bms ← 0

ReadMem(a) One of:
• Return (apply(G,Dinit)

[a], True)
• Bms ← m for some m ∈ [Bms, lenG] such that
∀m′ ∈ [m, lenG],
∀D, apply(G [0:m′], D)[a] = apply(G, D)[a];

Return (b, False) for some b

ReadInst(a) Return apply(G [0:m],Dinit)
[a] for some m ∈ [Bms, lenG]

Write(m) Append m to G
Flush() Bdur ← lenG
Crash Bdur ← m for some m ∈ [Bdur, lenG]; G ← G [0:m]

Figure 4-3: The WAL interface speciőcation.

acts as a lower bound for multiwrite durability. Flush advances Bdur to the end of G,
guaranteeing that all prior multiwrites are durable when it returns.

Exposing separate Write and Flush calls allows threads to better exploit concur-

rency. This is true even for GoTxn, which ŕushes every multiwrite to ensure that

committed transactions are durable. To see why, consider two threads concurrently

updating different objects on the same disk block. Each thread calls Read to retrieve

the full contents of the disk block, Write to write the block back with the new object

contents, and then Flush. To prevent these updates from interfering, the threads

perform Read and Write under a lock. However, they may perform Flush in parallel

with other Read and Write calls, hiding its latency.

Specifying the behavior of Read is tricky. If the memLog contains updates to an

address a, Read(a) returns the most recent contents of a during the atomic step when

it accesses the memLog under lock. However, if the memLog does not contain any

updates to a, Read(a) must retrieve the installed contents of a by performing a read

from disk. When this happens, the block returned by Read is only guaranteed to

match the most recent contents of a at some point between the read from the memLog

and the read from disk (Fig. 4-4). An assertion of this form cannot be directly

expressed as a HOCAP-style speciőcation since it does not refer to a single atomic

33

0

memLog

Installed disk

ReadMem

1

0

WritememLog

Installed disk

1

2

1

WritememLog

Installed disk

2

1

memLog

Installed disk

ReadInst

(a)

(b)

(c)

(d)

Figure 4-4: Example of Read(a) interacting with concurrent calls to Write. Updates
to a and the installed disk contents at a are labeled with values representing block
contents. (a) ReadMem does not őnd any updates to a in the memLog. (b-c) Two
multiwrites are submitted, each containing an update to a. One of them is installed
to disk. (d) ReadInst returns the block written to a by the őrst Write. This only
reŕects the result of applying all of G to Dinit after the őrst Write but before the
second.

34

step.

Instead, we split the speciőcation of Read into ReadMem and ReadInst respectively

corresponding to the read from memLog and the read from disk. A failed ReadMem(a)

updates Bms to the front of the memLog and asserts that none of the multiwrites

beyond Bms affect a. In other words,

∀m ∈ [Bms, lenG], ∀D, apply(G [0:m], D)[a] = apply(G, D)[a] (4.1)

where apply(M,D) is the disk state after applying all of M to disk state D. Later,

ReadInst(a) returns apply(G ′[0:m],Dinit)
[a] for some m ∈ [B′

ms, lenG ′] where G ′ and

B′
ms are the values of G and Bms during the atomic step taken by ReadInst. While

concurrent calls to ReadInst and Write from other threads may cause (B′
ms,G ′) to

differ from (Bms,G), the monotonicity of Bms and G guarantee that B′
ms ≥ Bms and

that G is a preőx of G ′. If m > lenG, then apply(G ′[0:m],Dinit)
[a] reŕects the most

recent contents of a at some point between the atomic steps taken by ReadMem and

ReadInst, just after G ′[m] was submitted. Otherwise, the caller may conclude from

Eq. 4.1 that apply(G ′[0:m],Dinit)
[a] reŕects the most recent contents of a during the

atomic step taken by ReadMem.

4.1 The In-Memory Log

To show that the WAL implements its speciőcation, we start by describing the memLog.

The memLog is central to the WAL’s operation, acting as an intermediary between

client threads making interface method calls, the logger thread writing updates to

the log, and the installer thread installing updates to disk.

The memLog manages a list of disk updates memLog.upds 7→ Lm under the lock

memLock, divided into three regions Lun, Llo and Lio. These are

• The unstable region Lun, a buffer for recently submitted multiwrites;

• The logger-owned region Llo, a work queue for the logger;

• The installer-owned region Lio, a work queue for the installer.

35

Installed
(Lin)

Installer-owned
(Lio)

Logger-owned
(Llo)

Unstable
(Lun)

↑ 0 ↑ ums ↑ ude ↑ uus

memLog.upds (Lm)

Figure 4-5: The logical log.

Write őrst accumulates updates in Lun. Flush signals to the logger to move all

updates in Lun into Llo. The logger then writes updates in Llo to the physical log

and moves them into Lio, queueing them for installation. Finally, the installer installs

updates in Lio and truncates them from the memLog entirely.

The proof deőnes an abstract installed region Lin containing updates that have

been truncated from the memLog, and deőnes the logical log (Fig. 4-5)

L = Lin ++ Lio ++ Llo ++ Lun = Lin ++ Lm

where ++ is the list concatenation operator. Then, apart from Write, all updates to

the memLog correspond to the rightwards motion of a boundary between regions of L.

The memLog takes advantage of this by tracking region boundaries with monotonically

increasing indices into L. These are

• memLog.memStart 7→ ums, the start of the memLog;

• memLog.diskEnd 7→ ude, the boundary between Lio and Llo;

• memLog.unstStart 7→ uus, the boundary between Llo and Lun.

The WAL may then access the regions of Lm with the expressions

Lio = (Lm)
[0:ude−ums]

Llo = (Lm)
[ude−ums:uus−ums]

Lun = (Lm)
[uus−ums:lenLm]

Under this scheme, the WAL truncates the memLog by truncating upds and advanc-

ing memStart, leaving other indices untouched. This simpliőes concurrent reasoning

36

0 : 1 2 : 1 6 : 1

0 : 2 4 : 2

0 : 2 2 : 1 6 : 1 4 : 2

absorb
append

m1

m2

Absorbed

1 1 1

2 2

2 1 2 1

m1

m2

Disk

Effect on disk stateList of updates

Figure 4-6: An example of multiwrite absorption. absorb(m2,m1) has the same effect
on disk state as m1++m2, even though neither m1 nor m2 are slices of absorb(m2,m1).

Property Rule

a) Trivial [] has []

b) Absorption M has U

=⇒ (M ++ [m]) has absorb(m,U)

c) Concatenation (M1 has U1) ∧ (M2 has U2)

=⇒ (M1 ++M2) has (U1 ++ U2)

Figure 4-7: Properties of the has relation.

because a thread’s local indices into upds now remain valid evan after it releases

memLock.

While L resembles a ŕattened version of G, there is one important difference.

Whenever a multiwrite m is submitted to the WAL, it is absorbed into other updates

in Lun in order to reduce disk traffic. That is, if an update ū′ in m writes to the same

address as another update ū in Lun, ū is overwritten with ū′ (Fig. 4-6). This takes

advantage of the fact that applying just ū′ has the same effect as applying both ū

and ū′ in succession.

Absorption makes reasoning about the memLog challenging because we can no

longer treat multiwrites as slices of L (Fig. 4-6). Instead, we introduce the relation

37

G
↓ 0 ↓ mms ↓ mde ↓ mus ↓ lenG

L
↑ 0 ↑ ums ↑ ude ↑ uus ↑ lenL

Figure 4-8: Relationship between L and G.

M has U := ∀D, apply(M,D) = apply(U,D)

which asserts that performing the multiwrites M has the same effect as performing

the updates U . This is useful because U ++m has the same effect as absorb(m,U),

so if M has U , then M ++ [m] has absorb(m,U) (Fig. 4-7b).

Another important property about the has relation is that it persists under con-

catenation (Fig. 4-7c). However, has relations cannot be split up: if M1++M2 has U ,

there does not necessarily exist U1 and U2 such that U = U1 ++ U2, M1 has U1 and

M2 has U2.

We can now use the has relation to relate regions of L to slices of G (Fig. 4-8).

In particular, we track indices mms, mde and mus into G corresponding to ums, ude

and uus, and impose the invariant

HG,L

(

[

(0, 0), (mms, ums), (mde, ude), (mus, uus), (lenG, lenL)
]

)

(4.2)

where

HG,L

(

[

(m1, u1), (m2, u2), . . . , (mn, un)
]

)

:=

∀i, mi ≤ mi+1 ∧ ui ≤ ui+1 ∧ G [mi:mi+1] has L[ui:ui+1]

Since this invariant pertains to the memLog, which can only be safely accessed

under memLock, we maintain it as part of the memLock lock invariant IL
memLock

.

Under this invariant, it is not generally possible to move individual multiwrites

between regions since there is no guarantee that any given multiwrite can be teased

apart from other multiwrites in the same region. It is, however, safe to move an

38

entire region into an adjacent region in a single atomic step. For example, the WAL

may atomically complete the installation of all of Lio by increasing ums to ude and

mms to mde. This maintains Eq. 4.2 since G [mde:mde] has L[ude:ude] by Fig. 4-7a and

G [0:mde] has L[0:ude] by Fig. 4-7c.

In general, pairs of indices bi = (mi, ui) protected by an invariant like Eq. 4.2 are

multiwrite boundaries in the sense that no multiwrite has updates on both sides of

any ui. The proof may only move multiwrites from one region to another by moving

both indices of a multiwrite boundary in unison. What we have just shown is that it

is always safe to move a multiwrite boundary to an adjacent multiwrite boundary.

4.2 Snapshots

The logger and installer work in a similar fashion, processing updates batch by batch

per iteration of an inőnite loop. Each cycle, the logger takes a snapshot of Llo,

including unstStart. After logging the updates in its snapshot, it shifts diskEnd to

its snapshot’s unstStart. Similarly, each installer iteration installs a snapshot of Lio.

After installing the updates in it snapshot, the installer truncates both the memLog

and the physical log and then updates memStart to its snapshot’s diskEnd.

To hide disk latency effectively, the logger and installer do not hold any locks,

including memLock, while performing disk operations. In particular, the installer does

not hold any locks when installing blocks or truncating the physical log (Fig. 4-

9). This means that the logger may concurrently update diskEnd in the middle of

an active installer cycle, causing diskEnd to diverge from the installer snapshot’s

diskEnd. For the sake of ŕexibility, the proof also does not assert that unstStart

always matches the logger snapshot’s unstStart, even though nothing in the WAL’s

current implementation would cause them to diverge.

We track the installer snapshot’s diskEnd and the logger snapshot’s unstStart

by deőning new multiwrite boundaries bdes and buss. When their respective snapshots

are not in use, the proof keeps bdes and buss at bms and bde respectively. bms : bdes and

bde : buss can be thought of as installer- and logger-controlled windows providing access

39

1 func (l *Walog) installer() {

2 l.memLock.Lock()

3 for !l.shutdown {

4 // Take a snapshot, including the current diskEnd.

5 diskEndSnap := l.memLog.diskEnd

6 updsSnap := l.memLog.upds.takeTill(diskEndSnap)

7 if len(updsSnap) == 0 {

8 // Unlock memLock and wait for the logger to log

9 // new updates before re-acquiring the lock.

10 l.condInstall.Wait()

11 continue

12 }

13 l.memLock.Unlock()

14

15 // Install updsSnap to disk.

16 installBlocks(l.d, updsSnap)

17 // Advance the physical log start pointer to the snapshot’s diskEnd.

18 AdvanceLogStart(l.d, diskEndSnap)

19

20 l.memLock.Lock()

21 l.memLog.truncate(diskEndSnap)

22 }

23 l.memLock.Unlock()

24 }

Figure 4-9: Stripped-down installer code.

IL
Logger

Installer
memLog

G

γde, γuss

γms, γdes

Figure 4-10: Control diagram for IL
memLock

. Control over the memLog is split between
the logger, installer and client. The client indirectly controls the updates in the
memLog through a separate mechanism involving G (Fig. 4-12).

40

to non-overlapping ranges of G. We express this in proof by giving the installer and

logger control over (bms, bdes) and (bde, buss) respectively through the ghost variables

(γms, γdes) and (γde, γuss) (Fig. 4-10).

We maintain the assertion that bdes and buss are multiwrite boundaries by extend-

ing Eq. 4.2 to deőne the logical log boundaries component IL,b of IL
memLock

:

IL,b(G,L, bms, bdes, bde, buss, bus)

:= HG,L

(

[

(0, 0), bms, bdes, bde, buss, bus, (lenG, lenL)
]

) (4.3)

With the help of bdes and buss, we can show that IL,b is maintained throughout the

operation of the WAL by stepping through each thread’s execution. We summarize

the key steps here:

• Write absorbs its multiwrite into Lun (Fig. 4-11a). By the absorption property

of the has relation (Fig. 4-7c), this preserves G [mus:lenG] has L[uus:lenL].

• After a Flush, the logger advances unstStart to lenL. This preserves IL,b

because it corresponds to moving the multiwrite boundary bus to the adjacent

multiwrite boundary (lenG, lenL) (Fig. 4-11b).

• The logger takes a snapshot of Llo, moving buss to bus (Fig. 4-11c). After the

logger releases memLock, bus is allowed to diverge from buss (Fig. 4-11d). At

the end of its cycle, the logger advances diskEnd to its snapshot’s unstStart,

moving bde to buss (Fig. 4-11e).

• The installer takes a snapshot of Lio, moving bdes to bde (Fig. 4-11f). After the

installer releases memLock, completed logger cycles may cause bde to diverge from

bdes (Fig. 4-11g). At the end of its cycle, the installer truncates its snapshot

from the memLog, moving bms to bdes (Fig. 4-11h).

4.3 Durable State

After a crash, the WAL’s recovery procedure reconstructs the memLog by copying the

physical log’s contents into upds, its start pointer into memStart and its end pointer

41

Write

↑ bus ↑ bend

↑ bus ↑ bend

(a)

Flush

↑ bus ↑ bend
(b)

↑ bus, bend

Logger cycle

↑ bde, buss ↑ bus
(c)

↑ bde ↑ buss, bus
(d)

↑ bde ↑ buss
(e)

↑ bde, buss

Installer cycle

↑ bin, bdes ↑ bde
(f)

↑ bin ↑ bdes, bde
(g)

↑ bin ↑ bdes
(h)

↑ bin, bdes

Figure 4-11: Proof that IL,b is maintained throughout the execution of the WAL.
bend = (lenG, lenL) is the multiwrite boundary connecting the back ends of G and
L.

42

into diskEnd and unstStart. It then restarts the logger and installer threads, leav-

ing the installer to complete the installation of interrupted multiwrites as part of

its normal operation. In particular, the WAL does not wait until all interrupted

multiwrites from before the crash are completely installed before accepting new mul-

tiwrites. This simpliőes reasoning about crashes during the recovery process itself

since recovery does not involve mutating disk state.

The pre-conditions for recovery are the WAL’s crash conditions relating to the

durable disk state. Since IL
memLock

is only guaranteed to hold when no thread holds

memLock, the proof cannot safely persist assertions in IL
memLock

through to recovery.

Instead, it captures the WAL’s crash obligations in a separate interface invariant IW .

Following the discussion in Sec. 3.3, the proof deőnes

IW := ∃σ, IW,inner(σ) ∗ Pconn(σ)

where Pconn(σ) is the caller-deőned connecting predicate for the caller-visible state

σ = (Dinit,G,Bdur,Bms). The proof őxes Dinit when IW is sealed at program start,

uses a monotonic list γG 7→+ G to synchronize G between IW and IL
memLock

, and

maintains in IW that Bdur ≤ m∗
pe and Bms ≤ m∗

ps where m∗
ps and m∗

pe are the

multiwrite indices corresponding to the start and end of the physical log.

The proof models the physical log as an atomic transition system with state σp

containing its start index u∗
ps and a list of updates Pd. Appending updates to the

physical log appends to Pd, while truncating the physical log truncates Pd and ad-

vances u∗
ps. The proof relates σp to IW by splitting ownership over a ghost variable

γp 7→ σp between IW and the physical log connecting predicate.

Similar to L, the proof treats Pd as a suffix starting from u∗
ps of a larger P that

includes truncated updates. While the WAL’s current implementation guarantees

that P = L[0:u∗

pe], we avoid directly relating P to L in IW or IL
memLock

to give us

the freedom to adapt the proof to work with different logging schemes. Instead, we

relate P to G by imposing the physical log boundaries component IW,b of IW :

IW,b(G,P , b∗ps, b∗des, b∗de, b∗pe) := HG,P

(

[

b∗ps, b
∗
des, b

∗
de, b

∗
pe

]

)

(4.4)

43

IW

Client

Installer

Logger

Physical log

Installed disk

IL

Pconn

γ∗
ps, γ∗

des, γUai

γ∗
de, γ∗

pe, γde

γG

Figure 4-12: Control diagram for IW . Control over disk resources is split between
the logger, installer and client through the use of ghost variables and the connecting
predicate Pconn. G is in turn synchronized with IL

memLock

through the monotonic list
γG (Fig. 4-10).

where b∗ps and b∗pe are the boundaries corresponding to u∗
ps and u∗

pe, and b∗des and b∗de

are the boundaries corresponding to the installer snapshot’s and memLog’s diskEnd.

The installer and logger maintain control over (b∗ps, b
∗
des) and (b∗de, b

∗
pe) respectively

through the ghost variables (γ∗
ps, γ

∗
des) and (γ∗

de, γ
∗
pe) (Fig. 4-12). Most of the time,

(b∗ps, b
∗
des, b

∗
de, b

∗
pe) = (bms, bdes, bde, bde). However, after the logger advances the physi-

cal log end pointer but before it advances diskEnd, b∗pe = buss instead of bde. Simi-

larly, after the installer truncates the physical log but before it truncates the memlog,

b∗ps = bdes instead of bms. Like in Sec. 4.2, we show that IW,b holds throughout the

operation of the WAL by showing that updates to these boundaries correspond to

either concatenating to P [u∗

de
:u∗

pe] or moving a multiwrite boundary to an adjacent

multiwrite boundary.

One complication to this scheme pertains to the point when the installer takes its

snapshot. Since the installer snapshot’s diskEnd comes from the memLog, taking the

installer snapshot only corresponds to moving b∗des to b∗de if b∗de = bde. While we know

that b∗de = bde since the logger updates them in unison, we can only communicate this

fact to the installer by putting it in an invariant. However, we cannot do so directly

since b∗de and bde belong to different invariants. Instead, we split ownership over γde

between not just the logger and IL
memLock

but also IW , allowing the proof to assert

44

G

P

L

↓ 0 ↓ u∗

ps
↓ u∗

des ↓ u∗
de ↓ u∗

pe

↑ 0 ↑ ums ↑ udes ↑ ude ↑ uuss ↑ uus ↑ lenL

G

P

L

↓ 0 ↓ u∗

ps
, u∗

des ↓ u∗
de, u

∗

pe

↑ 0 ↑ ums, udes ↑ ude, uuss, uus, lenL

Crash and recovery

Figure 4-13: P , L and G after a crash and recovery.

that b∗de = bde in IW .

IW,b allows the proof of the recovery procedure to show that a crash and recovery

is consistent with the WAL’s crash speciőcation (Fig. 4-3). When reconstructing IW

and IL
memLock

, the proof sets L ← P and (bms, bde, bus) ← (b∗ps, b
∗
pe, b

∗
pe) to match the

post-recovery contents of the memLog (Fig. 4-13). In doing so, IL,b requires the proof

to update G to G [0:m∗

pe]. This is consistent with the crash speciőcation since G [0:m∗

pe] is

a durable preőx of G.

Finally, we describe the installed disk state. The installed disk state is the result of

applying some preőx L[0:u] to Dinit, where ums ≤ u ≤ udes depending on the progress

of the installer in installing its snapshot. Since IW does not have access to L, we

45

instead express this by maintaining

∀a, ∃b, da 7→ b ∗ b = apply(P [0:u∗

ps] ++ Uai,Dinit)
[a] (4.5)

where da 7→ b is the ownership predicate asserting that the disk block at address

a has contents b, and Uai is a list of updates controlled by the installer through the

ghost variable γUai
representing the updates that the installer has already installed

from its snapshot.

The speciőcation of ReadInst (Fig. 4-3) additionally requires us to maintain that

∃m ∈ [Bms, lenG], b = apply(G [0:m],Dinit)
[a]

for all a, since ReadInst(a) may be called for any a at any time. We do so by

augmenting Eq. 4.5 to also enforce

∃m ∈ [m∗
ps,m

∗
des], apply(P [0:u∗

ps] ++ Uai,Dinit)
[a] = apply(G [0:m],Dinit)

[a] (4.6)

The proof of the installer must now show that this remains satisőed whenever the

installer installs an update. This is only interesting when a is affected by the installer

snapshot Lisnap := L[ums:udes], because otherwise Uai has no effect on a and so

apply(P [0:u∗

ps] ++ Uai,Dinit)
[a] = apply(P [0:u∗

ps],Dinit)
[a] = apply(G [0:m∗

ps],Dinit)
[a]

If Lisnap affects a, then the proof must show that Eq. 4.6 holds for all preőxes Uai

of Lisnap. To do so, it őrst shows that Gisnap match Lisnap where

M match U := ∀(ūa : ūb) ∈ U, ∃m̄ ∈M, ∀D, apply(m̄,D)[ūa] = ūb

and Gisnap := G [mms:mdes]. In other words, for any a, each ū ∈ Lisnap affecting a

can be matched to an m̄ ∈ Gisnap such that ū has the same effect on a as m̄. Then,

by choosing ū to be the last update of Uai affecting a, the proof may recover an

m̄ ∈ Gisnap with the same effect as ū on a, so that

apply(P [0:u∗

ps] ++ Uai,Dinit)
[a] = apply(G [0:m+1],Dinit)

[a]

where m is the index of m̄ in G (Fig. 4-14).

46

3 : 1 3 : 3 8 : 2 12 : 2 1 : 3 10 : 4 12 : 4

3 3 2 4 2

{ 3: 1 } { 3: 2 , 8: 2 , 12: 2 } { 1: 3 , 3: 3 } { 10: 4 , 12: 4 }

Lisnap

Installed disk

Gisnap

Uai

G [mms:m+1]

Figure 4-14: Motivation for the match relation. If Uai affects a, then Uai has the
same effect on a as a preőx G [mms:m+1] of Gisnap if ū, the last update of Uai affecting
a, has the same effect on a as G [m]. This is illustrated here for a = 3, with the solid
arrows representing the effects of ū and G [m].

Unfortunately, the invariants so far only guarantee that Gisnap has Lisnap, not

Gisnap match Lisnap. In particular, M has U does not imply M match U since U

may contain multiple updates to the same address. For example, M = [{(0 : 2)}]
and U = [(0 : 1), (0 : 2)] satisfy M has U but not M match U since the effect of

(0 : 1) is not reŕected by the multiwrite {(0 : 2)}. This distinction is important: if

Gisnap = [{(0 : 2)}] and Lisnap = [(0 : 1), (0 : 2)], then ReadInst(0) may return 1,

which does not reŕect the complete application of any durable preőx of G.
The proof shows that Gisnap match Lisnap by asserting in IL

memLock

that the

match relation holds for every region of L:

G [0:mms] match L[0:ums] ∧ · · · ∧ G [mus:lenG] match L[uus:lenL] (4.7)

This is essentially the same as IL,b (Eq. 4.3), but with match instead of has. Since

match satisőes the same algebraic properties as has with respect to absorption and

concatenation (Fig. 4-7), the proof for IL,b can be directly reused to show that Eq.

4.7 remains satisőed throughout the execution of the WAL.

47

48

Chapter 5

The Locking Layer

The locking layer provides an interface for transactions, which are atomic operations

on durable objects. A transaction is treated as an atomic whole not just across crashes

but also with respect to other concurrent transactions. The role of the object, journal

and locking layers is to close the gap between transactions and the disk reads and

multiwrites offered by the WAL.

One key step is to allow object writes to be distributed across the body of a

transaction. The journal layer enables this by assigning each transaction a local

transaction buffer. A transaction accumulates object writes in its local transaction

buffer and commits on completion by submitting the accumulated writes as a single

atomic group.

The journal layer alone is not sufficient to guarantee atomicity for transactions

that include reads. For example, consider two concurrent instances of a transaction

that creates a őle in a directory d by creating a őle, reading d’s inode, appending

an entry for the őle to the inode and then writing the inode back to disk. If both

transactions perform the read before either one commits, the resulting state of d’s

inode will only contain an entry from one of the two transactions.

Locks can be used to prevent such conŕicts. However, verifying the correctness

of a locked implementation requires concurrent reasoning, which can be inhibitively

tedious for complex transactions. The locking layer mitigates this with an automatic

lock management scheme that guarantees transaction atomicity. Its speciőcations

49

reduce the behavior of transactions into atomic operations on the durable object

state, allowing for veriőcation free from concurrent reasoning.

5.1 Locking Layer Interface

The locking layer exposes wrappers around the journal layer interface calls Begin,

Read, Write and Commit. A client calls Begin to create a new local transaction buffer,

Read to perform object reads, Write to add an object write to its local transaction

buffer and Commit to submit the accumulated object writes. Commit also ŕushes the

WAL to ensure that the object writes are durable when it returns.

The locking layer associates every object with its own lock, allowing transactions

that operate on non-overlapping sets of objects to run in parallel. Whenever a Read

or Write őrst accesses an object, the locking layer acquires its associated per-object

lock. On Commit, the locking layer releases all the locks acquired for the transaction

throughout its execution. This design allows for a simple speciőcation that does not

require developers to explicitly specify lock sets for each transaction.

In fact, the speciőcation for the locking layer completely hides concurrent reason-

ing from the caller by reducing a transaction’s execution to a single atomic update

applied on Commit to the caller-visible committed object state C. We represent the

transition relation for this atomic update as a transaction mapMmapping all objects

accessed by the transaction to initial and modiőed values. Concretely, the transaction

mapM represents the transition relation

R(C, C ′) := ∀a, C[a] = C ′[a] ∨ (a : C[a], C ′[a]) ∈M (5.1)

where C[a] and C ′[a] are the contents of object a in the committed object state

before and after Commit, and (a : v, v′) denotes an entry of M mapping object a to

initial value v and modiőed value v′.

The proof builds M through the speciőcations for Read and Write (Fig. 5-1),

starting with an empty map on Begin. For example, a transaction that copies

the contents of an object ai into another object aj has the transaction map M :=

50

Operation Constraint Behavior

Read(a) a /∈M Deőne a new variable v;
M←M∪ (a : v, v);
Return v

Read(a) (a : v, v′) ∈M Return v′

Write(a, x) a /∈M Deőne a new variable v;
M←M∪ (a : v, x)

Write(a, x) (a : v, v′) ∈M M←M∪ (a : v, x)

Figure 5-1: Speciőcations for Read and Write. M ∪ (k : v) denotes the operation that
inserts the mapping k → v into map M , possibly overwriting an older mapping for k.

Modiőed

Initial

Modiőed

Initial

v2

v2

Modiőed

Initial

v2

v2

v2

v0

c0 c1 c2 c3

v0 v2

v2 v2

c2 c1 c2 c3

C before Commit

Initial

Modiőed

C after Commit

t = Begin()

x = t.Read(2)

t.Write(0, x)

t.Commit()

Figure 5-2: Constructing and using M in a transaction that copies the contents of
object 2 into object 0. The value ofM after each interface call is represented by two
rows showing the initial and modiőed values of its entries.

51

{(ai : vi, vi), (aj : vj, vi)} (Fig. 5-2). Importantly, the speciőcations for Read and

Write make no reference to C. Instead, they represent initial object values as alge-

braic variables to be reconciled with C on Commit. From the perspective of the proof,

this delays a transaction’s logical object reads until Commit, allowing the transaction

to be treated in its entirety as a single atomic update applied on Commit.

In the same vein as Sec. 3.3, the proof exposes C through caller-deőned per-

object connecting predicates a 7→C v. The caller could, for example, deőne a 7→C v :=

γa 7→1/2 v for some ghost variables γa, and then share γa with an invariant of their own

in order to prove assertions about how their transactions affect C. The Hoare triple

for Commit now takes the form

∀M∀Qsucc∀Qabort,
{

TL(M) ∗
(

Pupd(M, Qsucc) ∧Qabort

)

}

Commit()
{

RET r; if r = Success then Qsucc else Qabort

}

(5.2)

where TL(M) is a predicate encapsulating the local transaction resources managed

by the locking layer, and

Pupd(M,Q) :=

 ∗
(a:v,v′)∈M

a 7→C v

 ≡∗

 ∗
(a:v,v′)∈M

a 7→C v′

 ∗ Q (5.3)

The construction P1 ∧ P2 can be thought of as a black box holding an unknown

predicate that satisőes both P1 and P2 but not necessarily P1 ∗ P2. Here, it is used to

allow the caller-deőned thread state to transform differently depending on whether

the transaction aborts or succeeds.

To further illustrate how this speciőcation works, consider, as an example of a

branching transaction, a transaction that clamps the value of an object a to a value

t (Fig. 5-3). At Commit,M takes the form

52

1 func Clamp(jrnl *Jrnl, a Addr, t int) {

2 txn := jrnl.Begin()

3 v := txn.Read(a)

4 if v > t {

5 txn.Write(a, t)

6 }

7 txn.Commit()

8 }

Figure 5-3: An example of a branching transaction.

M =

{(a : v, t)} if v > t

{(a : v, v)} otherwise

In general, the expression for M when a transaction completes can look like a

sequential version of the transaction’s code. This equivalence is made explicit in

DaisyNFS where a logical reőnement relates GoTxn transactions, through M, to

sequential equivalents in Dafny, allowing developers to take advantage of Dafny’s

powerful proof automation for sequential code.

5.2 Proof Outline

The proof starts by reframing the WAL interface state in terms of per-object durable

predicates a 7→D v representing ownership over the durable value v of each object

a (Fig. 5-4). It does so in the object layer by creating per-object ghost variables

and relating them in an invariant to the WAL layer’s connecting predicate. Since

the object layer ŕushes after every write, its speciőcation does not expose anything

beyond the durable object state.

The journal layer associates each transaction with a transaction context T (A)
representing ownership over a local transaction buffer with jurisdiction over the set

of objects A. A starts empty on Beginjrnl and grows to include all objects accessed

over the course of its transaction. Since the journal layer does not implement any

concurrency control, clients may only safely use multiple local transaction buffers

53

Client
threads

WAL
layer

Local
transaction

buffers

Locking
layer

invariants

Object
layer

invariant

7→C

7→D

Figure 5-4: Control diagram for the object, journal and locking layers. Control over
the WAL is split into per-object ownership predicates 7→D and then distributed to
client threads as connecting predicates 7→C. There are no invariants associated with
the journal layer as it does not require concurrent reasoning. Rather, client threads are
given direct ownership over local transaction buffers through the predicates T (M).

concurrently if the local transaction buffers have jurisdiction over non-overlapping

object sets. The journal layer’s speciőcation enforces this by introducing a modifica-

tion token Θa for each object a. In order to execute Readjrnl or Writejrnl on a, the

proof must őrst lift Θa into T to add a to A. Doing so makes Θa inaccessible for the

rest of the lifetime of T , preventing a from being accessed by other transactions until

Commitjrnl is called (Fig. 5-5).

The journal layer exposes the latest value v of an object a in T through a local

predicate a 7→T v created when the proof lifts a into T . Readjrnl and Writejrnl only

interact with local predicates, leaving durable predicates untouched. At the end of a

transaction, Commitjrnl uses local predicates to update durable predicates in a Hoare

quadruple of the form

54

Θ0 Θ2

T

D

T

D

Write(1, x) Write(3, y)

Θ1 Θ3

(a)

Θ0 Θ2

T

D

x T

D

y

Write(1, z)

(b)

Θ0 Θ2

T

D

x T

D

y

Commit() Write(1, z)

Θ1

(c)

Thread 1 Thread 2

Figure 5-5: Modiőcation tokens in the journal layer speciőcation. (a) Threads may
concurrently access different objects since they require different modiőcation tokens.
(b) Lifting an object into a thread’s transaction context consumes the object’s mod-
iőcation token, preventing it from being accessed by other threads. (c) Committing
returns all modiőcation tokens for objects associated with the transaction, allowing
them to be accessed by other threads.

55

∀M,

{

T (domM) ∗ ∗
(a:v,v′)∈M

(

a 7→D v ∗ a 7→T v′
)

}

Commitjrnl()
{

RET r;

(∗
(a:v,v′)∈M

Θa

)

∗

if r = Success then ∗
(a:v,v′)∈M

a 7→D v′ else ∗
(a:v,v′)∈M

a 7→D v

}

{

(∗
(a:v,v′)∈M

a 7→D v

)

∨
(∗

(a:v,v′)∈M

a 7→D v′
)

}

(5.4)

where domM is the set of keys ofM.

Eq. 5.4 asserts that a transaction’s writes are either all applied or all discarded

on crash, satisfying crash atomicity. However, it does not assert that the writes are

applied in a single atomic step. In particular, Commitjrnl requires ownership over

a 7→D v for all a ∈ domM throughout its execution, preventing them from being

used in invariants. Instead, the locking layer relies on locks to make Commit appear

atomic to the caller.

The locking layer uses a lock map implementation that maps addresses to a őxed

set of physical locks. This gives the locking layer access to virtual per-object locks

La that can be assigned lock invariants just like ordinary locks. To construct these

lock invariants, the proof deőnes the crash borrows (Sec. 3.4)

B(a, v) := a 7→D v ∗ a 7→C v | ∃v′, a 7→D v′ ∗ a 7→C v′

These crash borrows, sealed at the start of the program, maintain that an object’s

connecting predicate always reŕects the object’s durable state on crash. This captures

the intuition that transactions directly transform durable state, allowing developers

to write crash speciőcations solely in terms of the connecting predicates.

Now, for each a, the proof deőnes the lock invariant

ILa
:= ∃v, Θa ∗ B(a, v)

Putting Θa in La

La

guarantees that a transaction may only access a while holding

56

La.

Whenever a transaction accesses an object a for the őrst time, the proof opens

ILa

La

and lifts Θa into T to get a 7→T v and B(a, v). It will need these resources on

Commit to update a 7→D v, recover Θa, and close ILa

La

(Fig. 5-6). In the meantime,

the proof stores these resources in TL alongside T , updating a 7→T v whenever it

receives a Write to a. In other words, the proof maintains

TL(M) := T (domM) ∗ ∗
(a:v,v′)∈M

(

a 7→T v′ ∗ B(a, v)
)

On Commit, the proof opens all the B(a, v) in TL(M) to access a 7→D v for all

a ∈ domM in exchange for adding

Pc(M) := ∗
a∈domM

(

∃v, a 7→D v ∗ a 7→C v
)

to its crash condition. Since the speciőcation of Commitjrnl does not take an atomic

update, the proof uses Pupd (Eq. 5.3) to synchronize the connecting predicates to the

durable object state only after executing Commitjrnl. This is valid because the proof

only guarantees that the connecting predicates match the durable object state on

crash. If the system crashes after Commitjrnl updates the durable object state but

before it returns, the proof applies Pupd after the crash to satisfy Pc.

57

T ({a}) a 7→T v′ B(a, v)

a 7→D v a 7→C v Crash obligation

∃v, a 7→D v ∗ a 7→C v

Commitjrnl

if r = Success:

a 7→D v′ a 7→C v Pupd

a 7→C v′ Qsucc

otherwise:
a 7→D v a 7→C v Qabort

Θa

a 7→D v a 7→C v

OR

a 7→D v′ a 7→C v

Pupd

a 7→C v′

Pupd ∧Qabort

∃v, B(a, v)

Release

ILa

La if r = Success

then Qsucc else Qabort

Figure 5-6: Outline of a proof of Commit for a transactionM := {(a : v, v′)} involving
a single object write.

58

Chapter 6

Evaluation

We evaluate GoTxn to address the following questions:

• Does GoTxn’s design give it good performance?

• Does GoTxn’s proof grant us conődence in its correctness?

6.1 Performance

We őrst show that GoTxn achieves performance comparable to unveriőed systems.

Doing so directly is difficult since GoTxn exports a non-standard interface for deőning

transactions. Instead, we evaluate the performance of DaisyNFS [8], a veriőed NFS

server that depends on GoTxn to achieve good performance. As a baseline, we use

a Linux NFS server exporting an ext4 őle system, mounted with data=journal to

guarantee that őlesystem operations are committed durably when they return. This

allows for a fair comparison since both systems expose the same interface and the

same durability guarantees.

We run all experiments on an Amazon EC2 i3.metal instance, which uses an Intel

Xeon E5-2686 v4 (Broadwell) processor with 72 logical cores, 512 GB of RAM, and

a local 15.2 TB NVMe SSD. To reduce variability, we limit experiments to a single

36-core socket, disable turbo boost, and disable processor sleep states.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

smallfile largefile app

1
0

8
0

 fi
le

/s

1
6

9
 M

B
/s

0
.4

1
3

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Linux
DaisyNFS

Figure 6-1: Performance comparison between DaisyNFS and the Linux NFS server.

6.1.1 Overall Performance

To evaluate single-client performance, we run benchmarks that interact with DaisyNFS

and the Linux NFS server by issuing őlesystem operations through the Linux NFS

client. We use a benchmark suite that evaluates performance across a range of work-

loads:

• smallfile repeatedly creates, syncs, then deletes a 100-byte őle, providing a

measure of GoTxn’s performance on small transactions.

• largefile appends 100 MB to a single őle, providing a measure of GoTxn’s

performance on large transactions.

• app downloads and builds the xv6 [12] operating system, providing a measure

of GoTxn’s performance on a typical, mixed workload.

DaisyNFS achieves a similar throughput to the Linux NFS server in all three

benchmarks (Fig. 6-1), demonstrating that GoTxn supports practical performance

across different kinds of workloads. Both systems achieve signiőcantly lower through-

put in the largefile benchmark than the maximum write bandwidth of the NVMe

drive (about 3 GB/s), suggesting that disk bandwidth is not a bottleneck in our ex-

periments. Rather, each system’s performance is largely determined by its ability to

hide disk access latency and manage memory efficiently.

Since DaisyNFS supports fewer features than the Linux NFS server, its sligntly

larger throughput on the smallfile and largefile benchmarks should not be taken

60

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

 0 4 8 12 16 20 24 28 32 36
fil

e
s
 /

 s
e
c

clients

DaisyNFS
Linux NFS

Figure 6-2: Performance of DaisyNFS on the smallfile benchmark with multiple
concurrent clients, in comparison to the Linux NFS server.

as a sign that it is a better system overall. This result is likely due to DaisyNFS’s

simpler implementation requiring fewer accesses to in-memory data structures.

We evaluate the multi-client performance of GoTxn with the help of the n-parallel

smallfile benchmark. n-parallel smallfile runs n smallfile clients in parallel,

each in a separate directory so that their transactions access non-overlapping object

sets. Under this benchmark, DaisyNFS achieves performance scaling similar to the

Linux NFS server (Fig. 6-2), demonstrating that GoTxn effectively exploits concur-

rent execution to deliver increased transaction throughput. Like in the single-client

experiment, DaisyNFS’s slightly better throughput is likely due to its simpler imple-

mentation.

6.1.2 GoTxn’s Contribution

We now show that GoTxn’s design plays an important role in enabling DaisyNFS’s

single- and multi-client performance. In particular, we focus on the following design

features:

• The WAL avoids performing disk operations under a lock, allowing multiwrite

submission, logging and installation to happen in parallel.

• The WAL exposes separate Write and Flush calls, allowing the object layer

to submit and ŕush object writes in parallel even if the writes target different

objects in the same disk block.

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

par-smallfile smallfile largefile app

6
5

4
0

 fi
le

/s

1
1

6
5

 fi
le

/s

1
5

6
 M

B
/s

0
.4

0
7

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Original
Modified

Figure 6-3: Change in the performance of DaisyNFS when the WAL is modifed to
perform all disk operations under memLock.

• The locking layer provides őne-grained two-phase locking instead of relying on

a global transaction lock, allowing it to process transactions that affect non-

overlapping object sets in parallel.

• Absorption in the WAL reduces disk traffic during logging and installation.

We evaluate the impact of each design feature by measuring the performance of

DaisyNFS on 30-parallel smallfile (labeled par-smallfile), smallfile, largefile

and app with the design feature disabled.

Concurrent logging and installation. The WAL does not hold a lock when

reading from or writing to disk, allowing it to accept new multiwrites in parallel with

logging and installation. In particular, it does not use a lock to maintain consistency

between the memLog and the physical log. Modifying the WAL to perform all disk

operations under the memLog lock memLock results in a measurable performance drop

across all benchmarks (Fig. 6-3), demonstrating that GoTxn’s ability to hide the disk

latency of logging and installation is important to DaisyNFS’s performance. This is

even despite the low latency of the NVMe drives used in our experiments, which is

about 25 µs for random writes.

Separate Write and Flush calls. The object layer uses a lock to prevent writes

to objects in the same disk block from interfering. Modifying the object layer to

ŕush the WAL under this lock leads to a considerable reduction in the performance

of DaisyNFS on 30-parallel smallfile (Fig. 6-4). This demonstrates that separat-

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

par-smallfile smallfile largefile app

6
5

4
0

 fi
le

/s

1
1

6
5

 fi
le

/s

1
5

6
 M

B
/s

0
.4

0
7

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Original
Modified

Figure 6-4: Change in the performance of DaisyNFS when the object layer is modiőed
to ŕush the WAL under the object lock.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

par-smallfile smallfile largefile app

6
5

4
0

 fi
le

/s

1
1

6
5

 fi
le

/s

1
5

6
 M

B
/s

0
.4

0
7

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Original
Modified

Figure 6-5: Change in the performance of DaisyNFS when the locking layer is modiőed
to use a global transaction lock.

ing Write and Flush in the WAL’s interface is beneőcial to GoTxn’s multi-client

performance even though the WAL is ŕushed after every transaction.

Fine-grained transaction locks. Modifying the locking layer to use a global

transaction lock instead of őne-grained two-phase locking results in a signiőcant drop

in the performance of DaisyNFS on 30-parallel smallfile (Fig. 6-5). This demon-

strates that GoTxn’s locking scheme successfully enables DaisyNFS to deliver good

multi-client performance by taking advantage of opportunities for concurrent execu-

tion.

On the other hand, the slight increase in largefile’s throughput under the same

modiőcation shows that őne-grained locking can sometimes lead to a small perfor-

mance loss (4%). This is likely due to the overhead of acquiring and releasing many

uncontended locks when processing large transactions from a single client. Neverthe-

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

par-smallfile smallfile largefile app

6
5

4
0

 fi
le

/s

1
1

6
5

 fi
le

/s

1
5

6
 M

B
/s

0
.4

0
7

 a
p

p
/s

R
e
la

ti
v
e
 t

h
ro

u
g
h
p
u
t

Original
Modified

Figure 6-6: Change in the performance of DaisyNFS when the WAL is modiőed to
always append new multiwrites to the memLog instead of absorbing them into existing
multiwrites in the unstable region.

less, we believe that the signiőcant gain in multi-client performance is well worth this

small cost.

Absorption. Disabling multiwrite absorption in the WAL results in a small but

measurable performance drop for 30-parallel smallfile, suggesting that absorption

plays only a small role in improving multi-client performance (Fig. 6-6). This result

is likely due to the high bandwidth and low latency of the NVMe drives used in the

experiment. A high disk bandwidth makes disk traffic less of a bottleneck for system

performance, while a low disk latency results in shorter logging cycles and thus fewer

opportunities for absorption. We hypothesize that a larger difference may be observed

if DaisyNFS is run on less performant storage disks or concurrently with other, more

disk-intensive workloads.

6.2 Correctness

While formal veriőcation gives us a high degree of conődence in GoTxn’s functional

correctness, it is important to remember that this does not eliminate all potential

for bugs. For one, the integrity of GoTxn’s proof depends on the correctness of its

veriőcation toolchain. This includes the Coq proof system and the Goose translation

tool, particularly the models provided by Goose for the disk interface and the Go

programming language.

64

The strength of GoTxn’s proof is also limited by the correctness of its speciő-

cations. This includes the primitives from the Perennial and Iris frameworks that

GoTxn depends on to express its speciőcations. As with any veriőed system, GoTxn

depends on other mechanisms, such as a manual audit, to check that its speciőcations

correctly express intended guarantees. In an extreme case, a Hoare speciőcation with

contradictory pre-conditions does not formally provide any guarantees about system

behavior.

The veriőcation of DaisyNFS demonstrates that the functional and crash safety

guarantees provided by GoTxn’s speciőcations are complete enough to be useful in

reasoning about complex transactions. However, failure modes outside the scope of

GoTxn’s speciőcations can be a source for bugs. Most signiőcantly, GoTxn’s speciő-

cations do not provide any liveness guarantees, which means that they do not exclude

the possibility of bugs like inőnite loops or deadlocks. They also do not make guar-

antees about GoTxn’s robustness to failure events besides system crashes such as

corruption due to disk errors. Guarding against these kinds of bugs is out of scope

for this work but is an interesting avenue for future research.

With these limitations in mind, we subject GoTxn to a series of tests to evaluate

the effectiveness of our veriőcation methodology. As with the performance evaluation,

we use DaisyNFS with the Linux NFS client to support an interface compatible with

existing őlesystem test suites. We start by validating the functional correctness of

DaisyNFS with the Linux regression test suites fsstress and fsx-linux. While

these tests help to conőrm correct behavior even under concurrent execution, they

do not test crash safety. We complement these tests with the black-box crash testing

framework CrashMonkey [22], which found no bugs in any supported two-operation

tests.

We also test GoTxn’s interface directly by fuzzing it with gofuzz. We use a

fuzz target that executes transactions generated from the fuzz string, checking that

the system does not crash and that reads always reŕect the latest write. While

our setup does not support testing for concurrency and crash safety, it serves as a

basic test for modes of operation that might not be accessible through DaisyNFS.

65

Despite generating complex inputs with multiple dependent transactions, fuzzing did

not reveal any bugs in GoTxn.

66

Chapter 7

Conclusion

This thesis presents GoTxn, a veriőed, crash-safe transaction system, and in particular

the details of the proof of the WAL and locking layers. The discussion of these proofs

demonstrates:

• How crash-aware separation logic with Perennial, including the use of crash

borrows, can help proof authors reason effectively about concurrent, crash-safe

systems;

• The incremental development of abstractions to manage the complexity intro-

duced by concurrency and performance optimizations;

• The speciőcation and veriőcation of a transaction system that isolates concur-

rency and crash reasoning from the developer, accelerating the development of

complex, veriőed systems.

Avenues for further work include extending GoTxn’s proof to provide liveness

guarantees and other aspects of system correctness, as well as reducing its dependence

on trusted components like the Goose translation tool. GoTxn itself can also be

extended to support performance optimizations common to unveriőed systems such

as deferred durability and log-bypass writes, which depend on weaker notions of crash

safety. Despite these limitations, we believe that GoTxn is an important step towards

the development of practical, veriőed systems with crash safety guarantees.

67

68

Bibliography

[1] H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential veriőcation of serializ-
ability. In Proceedings of the 37th ACM Symposium on Principles of Program-
ming Languages (POPL), page 31ś42, Madrid, Spain, January 2011.

[2] Stephen Brookes. A semantics for concurrent separation logic. Theoretical Com-
puter Science, 375(1ś3), May 2007. Festschrift for John C. Reynolds’s 70th
Birthday.

[3] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and Nickolai Zeldovich. Ver-
ifying concurrent software using movers in CSPEC. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 307ś322, Carlsbad, CA, October 2018.

[4] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Ar-
gosy: Verifying layered storage systems with recovery reőnement. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 1037ś1051, Phoenix, AZ, June 2019.

[5] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Ver-
ifying concurrent, crash-safe systems with perennial. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), Huntsville, Ontario,
Canada, October 2019.

[6] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Ver-
ifying concurrent Go code in Coq with Goose. In Proceedings of the 6th Inter-
national Workshop on Coq for Programming Languages (CoqPL), New Orleans,
LA, January 2020.

[7] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a concurrent, crash-safe journaling system
using JrnlCert. In Proceedings of the 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Virtual, July 2021.

[8] Tej Chajed, Joseph Tassarotti, Mark Theng, Frans Kaashoek, and Nickolai Zel-
dovich. Verifying the DaisyNFS concurrent and crash-safe őle system with se-
quential proofs. 2021.

69

[9] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri,
Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying a high-
performance crash-safe őle system using a tree speciőcation. In Proceedings of the
26th ACM Symposium on Operating Systems Principles (SOSP), pages 270ś286,
Shanghai, China, October 2017.

[10] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Using Crash Hoare Logic for certifying the FSCQ őle
system. In Proceedings of the 25th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 18ś37, Monterey, CA, October 2015.

[11] Dmitri Chkliaev, Jozef Hooman, and Peter van der Stok. Serializability pre-
serving extensions of concurrency control protocols. In Perspectives of System
Informatics, Third International Andrei Ershov Memorial Conference, PSI’99,
Akademgorodok, Novosibirsk, Russia, July 6-9, 1999, Proceedings, volume 1755
of Lecture Notes in Computer Science, pages 180ś193. Springer, 1999.

[12] Russ Cox, M. Frans Kaashoek, and Robert T. Morris. Xv6, a simple Unix-like
teaching operating system, 2016. http://pdos.csail.mit.edu/6.828/xv6.

[13] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. NOrec: Streamlining
STM by abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’10,
page 67ś78, New York, NY, USA, 2010. Association for Computing Machinery.

[14] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson,
and Hongseok Yang. Views: Compositional reasoning for concurrent programs.
In Proceedings of the 40th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 287ś300, Rome, Italy, January 2013.

[15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving practical
distributed systems correct. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP), pages 1ś17, Monterey, CA, October 2015.

[16] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated
and modular reőnement reasoning for concurrent programs. In Proceedings of
the 27th International Conference on Computer Aided Verification (CAV), pages
449ś465, San Francisco, CA, July 2015.

[17] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: a modular foundation for
higher-order concurrent separation logic. Journal of Functional Programming,
28:e20, 2018.

[18] K. Rustan M. Leino. Dafny: An automatic program veriőer for functional cor-
rectness. In Proceedings of the 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR), pages 348ś370, Dakar,
Senegal, AprilśMay 2010.

70

http://pdos.csail.mit.edu/6.828/xv6

[19] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally
verifying software transactional memory algorithms. In Proceedings of the 23rd
International Conference on Concurrency Theory, CONCUR’12, page 516ś530,
Berlin, Heidelberg, 2012. Springer-Verlag.

[20] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer,
Upamanyu Sharma, James R. Wilcox, and Xueyuan Zhao. Armada: Low-effort
veriőcation of high-performance concurrent program. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 197ś210, London, United Kingdom, June 2020.

[21] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: A transaction recovery method supporting őne-granularity locking and
partial rollbacks using write-ahead logging. ACM Transactions on Database
Systems, 17(1):94ś162, March 1992.

[22] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and
Vijay Chidambaram. Finding crash-consistency bugs with bounded black-box
crash testing. In Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Carlsbad, CA, October 2018.

[23] Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. Fault-tolerant re-
source reasoning. In Proceedings of the 13th Asian Symposium on Program-
ming Languages and Systems (APLAS), pages 169ś188, Pohang, South Korea,
NovemberśDecember 2015.

[24] David Harver Pollak. Reasoning about two-phase locking concurrency control.
Master’s thesis, Imperial College London, June 2017.

[25] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-
button veriőcation of őle systems via crash reőnement. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 1ś16, Savannah, GA, November 2016.

[26] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. Modular reason-
ing about separation of concurrent data structures. In Matthias Felleisen and
Philippa Gardner, editors, Proceedings of the 22nd European Symposium on Pro-
gramming (ESOP), pages 169ś188, Rome, Italy, March 2013. Springer.

[27] Joseph Tassarotti, Tej Chajed, Ralf Jung, Frans Kaashoek, and Nickolai Zel-
dovich. Separation logic for concurrent storage systems with Peony. 2021.

[28] The Coq Development Team. The Coq Proof Assistant, version 8.9.0, January
2019.

71

	Introduction
	System Overview
	Verification
	Thesis Outline

	Related Work
	Verified Write-Ahead Logs
	Verified Concurrency Isolation

	Background
	Resource Logic
	Invariants
	Logical Atomicity
	Crashes

	The WAL Layer
	The In-Memory Log
	Snapshots
	Durable State

	The Locking Layer
	Locking Layer Interface
	Proof Outline

	Evaluation
	Performance
	Overall Performance
	GoTxn's Contribution

	Correctness

	Conclusion

