
Kronos: Verifying leak-free reset for a
system-on-chip with multiple clock domains

by
Noah Moroze

B.S., Massachusetts Institute of Technology (2020)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 15, 2021
Certified by. .

Anish Athalye
Doctoral Candidate

Thesis Supervisor
Certified by. .

M. Frans Kaashoek
Charles Piper Professor

Thesis Supervisor
Certified by. .

Nickolai Zeldovich
Professor

Thesis Supervisor
Accepted by .

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Kronos: Verifying leak-free reset for a system-on-chip with

multiple clock domains

by

Noah Moroze

Submitted to the Department of Electrical Engineering and Computer Science
on January 15, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Notary [3] uses formal verification to prove a hardware-level security property called
deterministic start for a simple system-on-chip (SoC). Deterministic start requires
that an SoC’s state is fully reset by boot code to ensure that secrets cannot leak
across reset boundaries. However, Notary’s approach has several limitations. Its
security property requires that all of the SoC’s microarchitectural state can be reset
to known values through software, and the property and proof technique apply only
to SoCs with a single clock domain. These limitations prevent Notary’s approach
from being applied to more complex systems.

This thesis addresses these limitations through Kronos, a system consisting of a
verified SoC that satisfies a new security property called output determinism. Output
determinism provides the same security guarantees as Notary without requiring that
all of an SoC’s state be reset by software. The SoC used in Kronos, called MicroTitan,
is based on the open-source OpenTitan [16] and includes multiple clock domains. This
thesis evaluates Kronos and demonstrates that existing open-source hardware can be
modified to satisfy output determinism with minimal changes, and that the process
of proving output determinism reveals hardware issues that violate desired security
guarantees.

Thesis Supervisor: Anish Athalye
Title: Doctoral Candidate

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor

Thesis Supervisor: Nickolai Zeldovich
Title: Professor

3

4

Acknowledgments

Thank you to Anish Athalye for his invaluable mentorship throughout this project.

His research laid the groundwork for this thesis, and his guidance over the course of the

project was fundamental to its success. Thank you to Professor Frans Kaashoek and

Professor Nickolai Zeldovich, who, along with Anish, frequently provided insightful

technical advice, feedback, and support.

Thank you to my friends, who were a source of learning, laughter, and support

throughout my time in school. They made the experience truly special, and I look

forward to these friendships continuing on beyond graduation. Finally, thank you to

my family for their unconditional love and support, and particularly my parents who

have always encouraged me to pursue my interests to the fullest extent.

5

6

Contents

1 Introduction 15

1.1 Background . 15

1.2 Goal and challenges . 17

1.3 Thesis contributions . 18

1.4 Thesis outline . 19

2 Background 21

2.1 Deterministic start . 21

2.2 Threat model . 23

2.3 Symbolic execution . 23

2.4 OpenTitan . 26

2.4.1 Verification subset . 27

3 Output determinism 29

3.1 Noninterference without state clearing 29

3.2 Formal reasoning about circuits . 32

3.2.1 Example circuit . 34

3.3 Formal definition of output determinism 36

4 Modular output determinism 39

4.1 Model of multiple clock domains . 40

4.1.1 Clock domain crossing . 41

4.1.2 Outputs . 41

7

4.2 Machine-verified subproperties . 43

4.2.1 Core output determinism . 44

4.2.2 Peripheral output determinism 45

4.3 Paper proof of top-level claim . 46

4.3.1 Notation . 46

4.3.2 Proof sketch . 46

5 Machine verification approach 49

5.1 Modeling individual clock domains 49

5.2 Core output determinism . 51

5.3 Peripheral output determinism . 54

6 SoC and toolchain implementation 57

6.1 MicroTitan . 57

6.1.1 Modifications for toolchain . 59

6.1.2 Modifications for output determinism 60

6.2 Toolchain . 63

7 Machine verification implementation 65

7.1 FIFO auxiliary proofs . 66

7.2 Core output determinism . 67

7.2.1 Boot code . 67

7.2.2 Performance hints . 71

7.2.3 Additional output equivalence proof 74

7.3 Peripheral output determinism . 75

7.3.1 SPI-in and SPI-out . 76

7.3.2 USB . 76

8 Evaluation 79

8.1 Performance . 79

8.2 OpenTitan hardware changes . 82

8.2.1 Boot code . 82

8

8.2.2 RTL changes . 82

8.3 Impact of violating output determinism 83

8.3.1 UART RX data leak . 84

8.3.2 SPI TX data leak . 84

8.3.3 SPI RX data leak . 85

8.3.4 Possible USB data leak . 86

9 Related Work 87

9.1 Verifying systems software . 87

9.2 Verifying hardware . 87

9.2.1 Self-equivalence with don’t-cares 87

9.2.2 CDC verification . 88

9.2.3 RISC-V formal . 89

9.2.4 Symbiyosys tool . 89

9.3 Hardware state clearing . 89

9.4 Taint tracking . 90

9.5 Hardware symbolic execution . 90

10 Conclusion 93

10.1 Future work . 93

10.1.1 Modular reasoning . 93

10.1.2 Scalable verification . 94

10.1.3 Persistent storage . 95

10.1.4 Design-for-verification . 95

10.1.5 Formalizing metatheory . 96

9

10

List of Figures

1-1 Overview of Kronos, the system presented by this thesis. 19

2-1 Deterministic start ensures noninterference between two agents (figure

adapted from Notary [3]). 22

2-2 Verilog code for symbolic execution example. 24

2-3 Block diagram of MicroTitan, Kronos’s verified OpenTitan subset.

Each of the four clock domains is highlighted. Note that each pe-

ripheral that uses a clock domain other than the core clock domain

includes hardware in both. In addition, note that the SPI peripheral

includes two independent clock domains, one for handling input and

the other for output. 28

3-1 Circuits may safely contain secrets as long as the circuit functions as a

“black box” where outputs are dependent solely on inputs, not secrets.

Contrast this with the diagram of deterministic start, Figure 2-1. . . 31

3-2 Verilog code for circuit with state that is uninitialized on reset, but

does satisfy ouptut determinism. 32

3-3 Example clock domain crossing circuit. 35

4-1 MicroTitan split into clock domain subcircuits. 40

4-2 Diagram illustrating the definition of a CDC register. 42

4-3 Core output determinism. 44

4-4 Peripheral output determinism. 45

11

5-1 Example of stepping a circuit in one clock domain while overapproxi-

mating the other. 51

5-2 Pseudocode for verifying deterministic start with output checking, which

implies output determinism for the core clock domain. 53

5-3 Pseudocode for verifying output determinism for a peripheral clock

domain. 55

5-4 Relation diagram showing output equivalence inductive step. Note

that in traditional forward simulation, the step functions applied to

the impl and spec states are different. However, since the impl and

step states are instances of the same system with no distinction besides

their initial state, they use the same step function. 56

6-1 Implementation of MicroTitan. Custom components are shaded in or-

ange with a dotted outline, parts which come directly from OpenTitan

are shaded in blue with a solid outline. 58

6-2 A toolchain for extracting Racket circuit model from SystemVerilog

source. 63

7-1 Boot code for MicroTitan. 68

7-2 The two phases of the USB clock domain proof. 77

8-1 Graphs of FIFO runtime vs. FIFO size parameters for synchronous

and asynchronous FIFOs. The black circles represent the parameters

of FIFOs verified in MicroTitan. 80

12

List of Tables

6.1 Amount of custom code in MicroTitan. 59

7.1 Number of lines of Racket code used to verify each property. These

counts do not include shared utility code or libraries such as the Racket

DSL for executing SMT-LIB circuits. 65

7.2 Which FIFOs are verified by Kronos, including their type (synchronous

vs asynchronous) and size parameters. 66

8.1 Runtime of each verification script. 80

8.2 Runtime of verifying output determinism for FIFOs, parameterized by

type (sync or async), width, and depth. 81

8.3 Lines of code required and FPGA resource use for each hardware

change necessary to ensure MicroTitan satisfies output determinism. . 82

13

14

Chapter 1

Introduction

Formal verification allows researchers and engineers to prove that a system’s im-

plementation maintains certain security properties. Formal verification of software

typicallly uses an ideal instruction set architecture (ISA) model, but verifying secu-

rity properties under an ISA model doesn’t rule out vulnerabilities in hardware below

the level of the ISA [19]. However, such vulnerabilities do exist. For example, the

widely-publicized exploits Spectre [11] and Meltdown [14] are based on vulnerabili-

ties at the microarchitectural level, the low-level implementation of a processor’s ISA.

Both attacks use side channels in microarchitectural state to leak confidential data.

In order to make claims about such attacks, formal verification needs to encompass

microarchitectural details too. Towards the goal of extending formal verification to

include hardware, this thesis presents Kronos, a system with a hardware-level security

property proven using formal verification. This chapter explains the security goals

Kronos aims to achieve, the challenges this thesis addresses, a list of this thesis’s

contributions, and an outline for the rest of the thesis.

1.1 Background

This thesis builds off Notary [3], prior work that developed a system with a security

property formally verified at the hardware level. Notary is a secure transaction ap-

proval device that supports running multiple software “agents” sequentially on the

15

same SoC (system-on-a-chip, a system that integrates a CPU, memory, I/O, and other

peripherals), while guaranteeing noninterference, meaning that the execution of one

agent on the SoC cannot influence the execution of agents that run subsequently on

the same SoC. Noninterference implies that confidential data from one agent cannot

leak to another: if an agent operates on secret data, and an agent running later can

access that data in some way, this would constitute the first agent influencing the

execution of the second.

In order to guarantee noninterference, Notary uses formal verification to prove

that the system satisfies a property called deterministic start. If a system (which

is comprised of an SoC and its boot code) satisfies deterministic start, all of its

microarchitectural state is cleared to known, deterministic values by that boot code

running after reset. Since microarchitectural state encompasses all channels through

which information could leak between agents, ensuring deterministic start before any

agent runs also ensures noninterference.

Notary proves deterministic start for a small SoC built around the PicoRV32 [25]

RISC-V processor core, a simple, unpipelined processor design with few peripherals

and a simple interconnect system for the processor to interface with those peripherals.

The PicoRV32 was adequate for running simple agents in the Notary prototype, but

using a faster, more complex SoC could enable a Notary-like design to support more

demanding applications, such as agents that require a higher performance CPU or

more complex peripherals.

An example of an SoC that is a step up from the PicoRV32 in terms of complexity

is OpenTitan [16], an open-source SoC being developed for use as a hardware root-

of-trust, a security critical application. OpenTitan features a two-stage pipelined

processor, yielding higher performance, and a large set of peripherals for I/O and en-

cryption. Proving that this SoC can be used in a system that satisfies noninterference

could enable a secure Notary-like architecture to be implemented on a more capable

hardware platform, expanding the range of possible applications, while maintaining

strong security guarantees.

16

1.2 Goal and challenges

The goal of this thesis is to prove a security property for MicroTitan, a custom

subset of OpenTitan hardware, so that it can be used in a Notary-like system that

guarantees noninterference. We assume a threat model similar to the one used in

Notary, described in more detail in Section 2.2. Although the aim of this thesis is

to prove a security property that achieves the same overall security goals as Notary,

proving such a property for more complex hardware introduces new challenges that

must be addressed.

While Notary relies on resetting all of the PicoRV32’s state to guarantee noninter-

ference, OpenTitan’s microarchitectural state cannot be fully reset to known values,

so an approach based solely on resetting all state will not suffice. Although resetting

all microarchitectural state is sufficient to ensure that an SoC can provide noninter-

ference, it is not necessary. For example, a hardware-implemented FIFO queue could

store data in memory that is not initialized on reset, and this would be safe as long

as the FIFO never outputs uninitialized data (e.g. if it outputs zero when empty).

This thesis addresses the challenge of formally defining a security property that is

strong enough such that an SoC that satisfies the property can be used in a system

that provides noninterference, while not requiring that the SoC’s state be entirely

resettable.

A second challenge is that Notary’s security property and its formal verification

approach apply only to circuits with a single clock source, while OpenTitan’s SPI and

USB peripherals use separate clocks from the main processor. Therefore, the security

property and the proof technique used in this thesis must be able to handle circuits

with multiple clock domains. It’s important to address this challenge since a Notary-

like system gives untrusted software direct access to peripherals without going through

a kernel, and therefore all peripherals must satisfy the security property required to

achieve noninterference.

These are not the only challenges in proving security properties for an SoC like

OpenTitan. However, this thesis focuses on addressing these ones in particular, which

17

we believe are associated with common design patterns that would be found in other

systems. For instance, it seems likely that other systems may implement I/O with

FIFO memories left uninitialized after reset and written by an external source rather

than software, requiring a relaxed property that allows for some uninitialized state.

Peripherals that implement communication protocols like USB, which by specification

requires a 48 MHz clock, most likely require their own separate clock domain.

In order to manage the scope of this thesis, Kronos uses a custom subset of the

OpenTitan hardware we call MicroTitan. MicroTitan integrates the OpenTitan’s

Ibex processor with a ROM, RAM, and a subset of OpenTitan communication pe-

ripherals which are representative of these challenges: the UART, SPI, and USB

peripherals.

1.3 Thesis contributions

This thesis makes several contributions:

1. A definition of a security property, output determinism, that provides the same

security guarantees as Notary’s deterministic start but does not require an SoC’s

state to be fully reset.

2. An approach, called modular output determinism, for proving output determin-

ism for a digital circuit with multiple clock domains, which consists of:

(a) A set of properties that are mechanically checked for a particular circuit

using formal verification.

(b) A sketch of a paper proof demonstrating that these mechanically checked

properties imply that the circuit satisfies output determinism.

3. An implementation of modular output determinism for a subset of the Open-

Titan hardware we call MicroTitan. This implementation comprises a system

called Kronos, the components of which are illustrated in Figure 1-1. This

implementation is open-source, and can be found on Github1.
1https://github.com/nmoroze/kronos

18

MicroTitan
SoC

Synthesis
toolchain

Verification
scripts

Proven
properties

Kronos

Figure 1-1: Overview of Kronos, the system presented by this thesis.

4. An evaluation of Kronos, which shows the following:

(a) The performance of the formal verification implementation demonstrates

that modular output determinism is computationally feasible.

(b) OpenTitan hardware requires changes to satisfy output determinism, but

the impact of these changes in terms of circuit size is minimal.

(c) Proving output determinism catches potential security bugs.

1.4 Thesis outline

The rest of this thesis is outlined as follows. Chapter 2 discusses relevant background.

Chapter 3 defines the output determinism security property. Chapters 4 and 5 discuss

an approach for proving output determinism for a circuit with multiple clock domains.

Chapters 6 and 7 describe how Kronos implements this approach for MicroTitan.

Chapter 8 evaluates Kronos based on the questions above. Chapter 9 discusses related

work. Finally, Chapter 10 concludes and presents ideas for future work.

19

20

Chapter 2

Background

2.1 Deterministic start

Notary’s deterministic start resets a hardware system’s complete microarchitectural

state to known, deterministic values. This enables Notary’s goal of allowing two

software agents to run sequentially on the same hardware with complete isolation,

guaranteeing noninterference.

The key idea behind noninterference, and the reason it is a desirable security prop-

erty, is that two agents running in a hardware system may be mutually distrusting

and have secrets that they want to remain confidential. For example, consider two

agents 𝐴 and 𝐵 where agent 𝐴 is meant to sign and approve cryptocurrency trans-

actions with a secret key. A user may execute agent 𝐴 to sign a transaction, then

execute agent 𝐵 to perform some other task. Agent 𝐴 will perform the necessary

cryptographic signature computations, which will likely leave the secret key in bits of

the hardware’s state such as RAM, or microarchitectural state such as a cache.

If this state is not cleared before agent 𝐵 runs, then a malicous agent 𝐵 might

be able extract the secret key and send it to an adversary. This could occur either

through obvious channels, such as reading it directly out of memory, or more subtle

side channels, such as cache timing data. The possibility of side channels in particular

motivates the use of formal verification to ensure that all microarchitectural state is

cleared between executions. If all of this state is cleared, there is no way for agent 𝐵

21

World 0 (secret = 0)

World 1 (secret = 1)

Agent A runs Deterministic start Agent B runs

Figure 2-1: Deterministic start ensures noninterference between two agents (figure
adapted from Notary [3]).

to extract any secrets that may be left over from agent 𝐴.

A strawman solution to this problem might be to reset the SoC between execut-

ing different agents using the hardware reset line. However, one of Notary’s insights

is that in real processor designs, simply asserting the hardware reset line does not

reset all microarchitectural state. This is because running reset lines to every register

is both expensive (in terms of silicon area), and unnecessary for functional correct-

ness. Embedded systems often have boot code that runs after reset that ensures that

“architectural state”, i.e. state specified by a processor’s ISA such as registers and

memories, do get overwritten with initial values on reset. However, this does not

ensure that microarchitectural state gets cleared.

In order to achieve a high degree of security, Notary extends this idea of initial-

ization boot code through a concept called “software-assisted deterministic start.”

Software-assisted deterministic start involves writing boot code which is guaranteed

to put the processor in a fully deterministic state, including architectural and mi-

croarchitectural state, when that code is executed after reset.

Proving deterministic start entails both writing this initialization code, and then

using formal verification to prove that all microarchitectural state becomes determin-

istic after the initialization code runs, regardless of the system’s starting state.

22

Although it’s not possible to reset all microarchitectural state in a processor such

as the OpenTitan, it’s clear why this approach prevents secrets from leaking across

reset boundaries, and the ideas behind deterministic start inform the approach used

for proving output determinism.

2.2 Threat model

Kronos’s goal is to prevent an attacker from exfiltrating any secret data that was

part of the SoC state prior to the most recent reset. Kronos assumes an attacker can

run arbitrary code on the SoC after reset, with full software access to all hardware

peripherals. It also assumes the attacker has full access to the SoC’s input and output

pins, allowing the attacker to snoop on output or send arbitrary inputs to the SoC.

Except for microarchitectural side channels, Kronos’s threat model does not in-

clude arbitrary side channels [29] such as electromagnetic radiation [2], power analy-

sis [18], and acoustic analysis [10], the same limitations as Notary. Also like Notary,

Kronos does not focus on physical attacks.

This threat model is strong enough for MicroTitan to be used in a transaction ap-

proval system as implemented in Notary, with the same security guarantees. Consider-

ing all I/O untrustworthy captures Notary’s assumption that an externally connected

device can be compromised or malicious, and allowing the attacker to run arbitrary

code with hardware access captures Notary’s assumption that software agents with

full hardware access may be compromised or malicious.

2.3 Symbolic execution

Notary’s formal verification technique, which this thesis adopts and extends for prov-

ing output determinism, is based on symbolic execution. Symbolic execution lets a

developer reason about a system’s execution efficiently while considering many pos-

sible states.

One key concept in symbolic execution is the symbolic value, which is a named

23

1 module example (
2 input clk ,
3 input rst_n ,
4
5 input [7:0] in ,
6 input in_valid ,
7
8 output [7:0] out
9);

10
11 reg [7:0] data;
12 reg data_valid ;
13
14 always @(posedge clk or negedge rst_n) begin
15 if (! rst_n) begin
16 // set data_valid to zero on reset , but don ’t reset data
17 data_valid <= 1’b0;
18 end else if (in_valid) begin
19 data_valid <= 1’b1;
20 data <= in;
21 end
22 end
23
24 assign out = data_valid ? data : 8’b0;
25
26 endmodule

Figure 2-2: Verilog code for symbolic execution example.

value that itself represents all possible values of an associated datatype. For example,

a symbolic 2-bit value called foo simultaneously represents the values 0, 1, 2, or 3.

Symbolic expressions are mathematical expressions based on symbolic values. For

example, the symbolic expression foo & 2, which incorporates the previous value

foo, could potentially be the value 0 or 2.

Kronos uses the Rosette [23] solver-aided programming library for symbolic exe-

cution in the Racket programming language. Rosette lifts many Racket constructs

for symbolic execution and supports rich symbolic expressions including bitvectors,

vectors of values, arithmetic, conditional operations (ite or “if-then-else”), bitvector

concatenation/slicing, and more.

To illustrate how symbolic execution applies to an example circuit, consider the

Verilog snippet in Figure 2-2. Suppose this circuit has just been reset, so the values

stored in its registers are:

• data_valid = 1’b0

• data = data$0

24

data$0 is an 8-bit symbolic value, which represents that data is uninitialized on

reset, and could contain any possible value from 0 to 255.

Consider what happens when this circuit undergoes a single clock step. To model

all possible inputs, we represent the current value of the inputs in and in_valid with

the symbolic values in$0 and in_valid$0 respectively. After the step, the registers

have the following values:

• data_valid = (ite in_valid$0 1’b1 1’b0) = in_valid$0

• data = (ite in_valid$0 in$0 data$0)

Both registers now contain symbolic expressions based on the conditional in the

Verilog always block. Note that data_valid’s value can be simplified from a condi-

tional down to just in_valid$0. Rosette is able to perform basic simplifications like

this using a feature called rewrite rules.

On the other hand, data must remain as a conditional symbolic expression. The

meaning of the expression is that if in_valid$0 is 1’b1, then data takes on the

symbolic value in$0, otherwise it takes on the symbolic value data$0.

The value of the output out can now be expressed as the symbolic expression

(ite in_valid$0 (ite in_valid$0 in$0 data$0) 8’b0). This symbolic expres-

sion contains two nested conditionals, with three leaf values: in$0, data$0, and the

constant 8’b0. However, close analysis of the expression reveals that it can evaluate

to only two possible values: in$0 or 8’b0. This is because for the second nested con-

ditional to evaluate to data$0, in_valid$0 would have to be equal to 1’b0. However,

if in_valid$0 is equal to 1’b0, then the whole expression would just evaluate to 8’b0

since the top-level conditional is based off in_valid$0 as well. Therefore, data$0 is

not a possible value of this expression.

Although it’s easy to determine the possible values of a simple expression like

this just by looking at it, the expressions dealt with in real circuits may be much

larger and more complex. Therefore, Rosette relies on SMT solvers like Z3 [7] to

prove statements about the expressions. In the above example, a developer could use

Rosette to verify a statement such as assert out != data$0. Rosette would call

25

into an SMT solver, which would analyze the expression to determine that out can

never be equal to data$0.

Notary uses this representation of circuit state as symbolic values and expressions

to prove deterministic start. Just like in this example, the state of all registers unini-

tialized by the hardware reset line are initialized as symbolic values. This models all

possible values that may have been left behind in the SoC. After executing boot code

using symbolic execution, an SMT solver query proves that no register values may

depend on these initial starting symbolic values. By considering all possible starting

states in one execution, symbolic execution eliminates the need to exhaustively check

each starting state one at a time, which would not be computationally feasible for

anything but the simplest circuits.

Symbolic execution is often used for verifying software, but Notary and Kronos

apply it to the execution of a cycle-accurate software model of the hardware circuit

that implements an SoC.

2.4 OpenTitan

The OpenTitan [16] system-on-chip is an open source hardware system that’s an

appealing target for our work for several reasons:

• It’s based on the Ibex [15] processor core, a design that’s a step up from Notary’s

PicoRV32 in complexity with a two-stage pipeline and support for machine and

user privilege modes. This enables better performance and the ability to use this

core in a system that requires multiple privilege levels, such as allowing agents

to take advantage of M/U mode separation or physical memory protection in a

Notary-like setting.

• OpenTitan has a large suite of modular peripherals (such as co-processors for

encryption and hardware support for multiple communication protocols) that

make it more practical to integrate in a larger real-world system.

26

• OpenTitan is designed for use as a secure silicon root-of-trust in data centers,

meaning that its intended use case inherently requires a high degree of security.

OpenTitan’s Ibex processor implements the RISC-V ISA, just like the PicoRV32.

Using RISC-V allows us to take advantage of its large ecosystem of tools and open-

source processor designs.

2.4.1 Verification subset

The entire OpenTitan SoC is large—it consists of about 20,000 flip-flops compared

to about 1,300 for the PicoRV32 SoC analyzed in Notary. Working with such a large

device poses performance challenges for formal verification, and various components

of the SoC introduce their own inherent challenges. This thesis focuses on proving

properties about a more manageable subset called MicroTitan, which consists of about

4,300 flip-flops (around three times the size of PicoRV32, and around one-fifth the

size of OpenTitan). Figure 2-3 shows a block diagram of this subset, with the clock

domains used in each peripheral highlighted.

MicroTitan includes the Ibex processor, ROM, and RAM, which are the bare

minimum required for executing code. Additionally, it includes three I/O peripherals:

UART, device-side SPI, and device-side USB. The UART is the simplest of the three,

and is clocked by the same clock as the processor. Verifying the UART acts as a simple

baseline example of a single clock domain communication peripheral. The SPI and

USB peripherals are both implemented in multiple clock domains, and serve as two

different examples of how to apply the multiple clock domain verification technique

developed by this thesis. OpenTitan is still under active development; this thesis uses

the implementation as of commit 97b60c1 in the OpenTitan Git repository.

Since this thesis considers a subset of the OpenTitan’s peripherals, we had to

implement our own top-level Verilog module to wire them up into one SoC. We

carefully constructed our top-level module implementation by copying the relevant

sections of OpenTitan’s top-level module to make MicroTitan as representative as

possible. We use the same crossbar implementation as OpenTitan for connecting the

27

Ibex ROM

xbar

UARTUSBSPI

In Out USB

Core

MicroTitan SoC

RAM

Figure 2-3: Block diagram of MicroTitan, Kronos’s verified OpenTitan subset. Each
of the four clock domains is highlighted. Note that each peripheral that uses a clock
domain other than the core clock domain includes hardware in both. In addition, note
that the SPI peripheral includes two independent clock domains, one for handling
input and the other for output.

processor and peripherals.

During the process of verification, we discovered that some of the OpenTitan

peripherals used in MicroTitan violate output determinism. In those cases, we imple-

mented minimal patches in order to fix them. These patches are discussed in detail

in Section 6.1.2, Section 8.2, and Section 8.3.

28

Chapter 3

Output determinism

This chapter formalizes the property output determinism, which can be used to prove

a system provides noninterference without requiring an SoC’s state be fully cleared.

Section 3.1 begins by discussing the intuition behind achieving noninterference with-

out resetting all state, and provides a prose definition of output determinism. Next,

Section 3.2 defines concepts and notation that allow us to reason formally about the

MicroTitan circuit. Finally, Section 3.3 uses these concepts to formally define output

determinism.

3.1 Noninterference without state clearing

Notary guarantees noninterference between software agents by proving the determin-

istic start property. In order for an SoC to satisfy deterministic start, it must be

possible to reset the entire state of the SoC to deterministic values by executing code

on its processor. However, guaranteeing noninterference solely by clearing state does

not work for OpenTitan, which has state that cannot be reset by code.

One example is OpenTitan’s SPI input FIFO buffer, which stores data in memory

that’s not initialized on reset. There is no way of writing to this buffer from software—

if an external SPI host does not write to it, then the buffer will contain the same

data it did prior to reset. A general security property doesn’t assume any particular

behavior on the part of an external host, so we can’t assume it must write data at

29

any point. Therefore, we cannot guarantee that the data in this buffer is reset after

executing any number of cycles.

However, just because this memory cannot be reset doesn’t mean that it can leak

uninitialized data. Considering this FIFO example, the hardware could be designed

such that when the FIFO is empty, the FIFO data output is hardwired to zero. That

way, no hardware modules that use this FIFO will ever be able to extract uninitialized

data out of the FIFO memory. If the FIFO ever becomes non-empty, it should have

had new data written to its memory that will become visible on the outputs. If

the hardware is designed not to leak uninitialized data, it could effectively provide

noninterference because a malicious agent will not be able to access any data left

behind from a previous execution in a meaningful way.

This example begs the question of what exactly it means for uninitialized data

to be “leaked”. For example, does it count as leakage if uninitialized data is able to

flow from one register to another? This thesis claims that in order to ensure security,

the only thing that must not happen is for uninitialized data to influence observable

outputs of the circuit. If uninitialized data cannot affect outputs, an attacker cannot

exfiltrate secrets.

Output determinism is based off this claim: a circuit’s state may safely contain

secret data as long as externally observable behavior is not dependent on the secret

data. If a circuit satisfies this property, it means that a circuit’s outputs must be fully

determined by its inputs. The definition of output determinism below formalizes this

intuition.

Definition 3.1.1 (Output determinism). If a circuit satisfies output determinism,

then the output of the circuit at any step during execution may only depend on the

inputs the circuit has received after reset up to that step. The outputs cannot depend

on the circuit’s state prior to reset.

A circuit that satisfies output determinism provides protection from directly leak-

ing secrets and against timing side-channels, since any observable timing difference

as a result of secret data would still mean that output values on any given cycle are

30

World 0 (secret = 0)

World 1 (secret = 1)

Input: X Output: F(X)

Figure 3-1: Circuits may safely contain secrets as long as the circuit functions as a
“black box” where outputs are dependent solely on inputs, not secrets. Contrast this
with the diagram of deterministic start, Figure 2-1.

not solely dependent on past inputs. This further means that a circuit that satisfies

output determinism can be used in a system that guarantees noninterference, because

state left over from the execution of a previous agent cannot influence the execution

of subsequent agents in any observable way.

Although output determinism does not require resetting circuit state like deter-

ministic start, it’s useful to note that a circuit with its state entirely reset to deter-

ministic values will satisfy output determinism.

This is the case since a circuit’s outputs can always be determined by its input

and its state. Therefore, the outputs of a circuit with deterministic state can be fully

determined solely by its inputs. In addition, a circuit’s new state after a clock step

can be fully determined by its previous state and its inputs. Therefore, once a circuit

has been put into a deterministic state, its state will be fully determined by its inputs

from then on, meaning it satisfies output determinism from that point on.

As discussed in the FIFO example above, a circuit’s state may not be fully reset-

table, and yet it may still satisfy output determinism. The Verilog code in Figure 3-2

shows a concrete example of a circuit where this is the case (this is the same code from

the symbolic execution example in Section 2.3). The register data is not initialized on

reset, and is written only when an external input in_valid is set to true. Therefore,

we can’t say for certain that data will be reset to a deterministic state after executing

for a known number of cycles. However, this circuit does satisfy output determinism,

31

1 module example (
2 input clk ,
3 input rst_n ,
4
5 input [7:0] in ,
6 input in_valid ,
7
8 output [7:0] out
9);

10
11 reg [7:0] data;
12 reg data_valid ;
13
14 always @(posedge clk or negedge rst_n) begin
15 if (! rst_n) begin
16 // set data_valid to zero on reset , but don ’t reset data
17 data_valid <= 1’b0;
18 end else if (in_valid) begin
19 data_valid <= 1’b1;
20 data <= in;
21 end
22 end
23
24 assign out = data_valid ? data : 8’b0;
25
26 endmodule

Figure 3-2: Verilog code for circuit with state that is uninitialized on reset, but does
satisfy ouptut determinism.

since its single top-level output out is fully determined by past inputs on every step.

To see that this is the case, consider the two possible values out may have depend-

ing on the value of data_valid. If data_valid is 1’b1, out will be equal to data.

Although data is uninitialized on reset, and thus starts out with an unknown value,

its value will be overwritten by the in input at the same time data_valid becomes

1’b1 (since they both change in the same block). If data_valid is 1’b0, then out is

set to 8’b0, which is a known value. Although data contains uninitialized data while

data_valid is 0, it does not matter since its value never reaches an output.

3.2 Formal reasoning about circuits

This section describes a mathematical model for reasoning about the digital circuit

that implements the MicroTitan. This model consists of the circuit’s state, top-level

inputs and outputs, and step function.

MicroTitan is an SoC implemented by a stateful digital circuit comprised of com-

32

binational logic and registers. This thesis uses the term “register” to refer to all

storage elements, including memories. Each register belongs to one or more clock

domains.

The circuit’s state is the set of all values stored in its registers. 𝑆 is the set of all

possible circuit states.

The circuit has some number of input and output wires, referred to as top-level

inputs and outputs. 𝐼 is the set of all possible top-level inputs, and 𝑂 is the set of all

possible top-level outputs.

A step function describes the behavior of the circuit. The step function takes in

an initial circuit state, the values of all top-level inputs, a single boolean reset input,

and a boolean clock input for each clock domain in the circuit. The function returns

the new circuit state reached by stepping the initial state on the given input.

𝐶 is the set of all possible clock and reset inputs. The step function is written as

step : 𝑆 → 𝐼 → 𝐶 → 𝑆. 𝐶 can also be decomposed into the set of all clock inputs 𝐶

and a separate reset input like so: 𝐶 = {rst=0, rst=1} × 𝐶.

The output function out : 𝑆 → 𝐼 → 𝑂 takes in a circuit state, the most recent

input, and returns a set of outputs.

A register is “in a clock domain” if that register’s value may change when the

step function is called with the clock input corresponding to that domain set to true.

Note that a register that’s updated on the positive edge of a clock signal is in a

different clock domain from a register that’s updated on the negative edge of the

same clock signal, since these two registers are not updated at the same timestep.

This overapproximates the behavior of the circuit, since it does not consider the fact

that these two clock domains are related. Also note that this model allows the circuit

to have registers in multiple clock domains, which supports reasoning about memories

with multiple write ports that are clocked in different domains.

The circuit has a single reset input that may reset any register in the circuit (as

opposed to one reset per clock domain). Therefore, when the reset input is true, the

step function will return a state where each register is set to its circuit-defined reset

value if it has one. Any register that does not have a defined reset value will be

33

stepped as usual based on the clock inputs. This reset is asynchronous, meaning that

stepping with reset asserted will reset registers in all clock domains regardless of the

clock inputs.

3.2.1 Example circuit

To show how this model maps to a concrete example of a simple circuit, Figure 3-3

provides an example circuit in Verilog that extends the circuit provided in Figure 3-2.

In this version of the circuit, the data and data_valid registers are driven by a clock

input in_clk, while out is intended to be read from a separate clock domain driven

by out_clk. Therefore, the data_valid signal is synchronized through two registers

in the output clock domain, data_valid_sync_0 and data_valid_sync_1.

The model categorizes each component of this circuit:

• The circuit’s state consists of the values of each of its registers: data, data_valid,

data_valid_sync_0, and data_valid_sync_1.

• in_clk and out_clk correspond to the “in” and “out” clock domain inputs,

respectively. rst_n is the global asynchronous reset.

• The top-level inputs to this circuit are in and in_valid.

• The sole top-level output of this circuit is out.

• data and data_valid are in the “in” clock domain, since their values are only

updated on the positive edge of in_clk.

• data_valid_sync_0 and data_valid_sync_1 are in the “out” clock domain.

34

1 module example_multiclk (
2 input in_clk ,
3 input out_clk ,
4 input rst_n ,
5
6 input [7:0] in ,
7 input in_valid ,
8
9 output [7:0] out

10);
11 reg [7:0] data;
12 reg data_valid ;
13 reg data_valid_sync_0 ;
14 reg data_valid_sync_1 ;
15
16 always @(posedge in_clk or negedge rst_n) begin
17 if (! rst_n) begin
18 // set data_valid to zero on reset , but don ’t reset data
19 data_valid <= 1’b0;
20 end else if (in_valid) begin
21 data_valid <= 1’b1;
22 data <= in;
23 end
24 end
25
26 always @(posedge out_clk or negedge rst_n) begin
27 if (! rst_n) begin
28 data_valid_sync_0 <= 1’b0;
29 data_valid_sync_1 <= 1’b0;
30 end else begin
31 data_valid_sync_0 <= data_valid ;
32 data_valid_sync_1 <= data_valid_sync_0 ;
33 end
34 end
35
36 assign out = data_valid_sync_1 ? data : 8’b0;
37
38 endmodule

(a) Verilog code

data_
valid

data_
valid_
sync_0

in_clk

0

11'b1

data

in_clk

0

1in

rst_n

data_
valid_
sync_1

out_clk

rst_n

0

1

8'b0
out

rst_n

in_valid

out_clk

"In" clock domain "Out" clock domain

(b) Circuit diagram

Figure 3-3: Example clock domain crossing circuit.

35

3.3 Formal definition of output determinism

We want to prove that MicroTitan satisfies output determinism. Output determinism

means that for any given sequence of inputs, the SoC output trace after executing an

arbitrary number of cycles should be a deterministic function of its input trace after

reset. Definition 3.3.1 below is a formal definition of this property.

First, we define the helper function run : ∀𝑛, 𝑆 → 𝐼𝑛 → 𝐶𝑛 → 𝑆 which describes

𝑛 cycles of execution with a sequence of inputs while reset is not held:

run
(︁
𝑠, [], []

)︁
= 𝑠

run
(︂

𝑠, 𝑖 :: �⃗�, 𝑐 :: �⃗�
)︂

= run (step(𝑠, 𝑖, (𝑐, rst=0)), �⃗�, �⃗�)

This function is then used to formally define output determinism as follows:

Definition 3.3.1 (Output determinism).

∀𝑖0 ∈ 𝐼, 𝑐0 ∈ 𝐶, ∃Ω ∈ 𝑂, ∀𝑠, 𝑠0 ∈ 𝑆, (Base case)

𝑠0 = step(𝑠, 𝑖0, (𝑐0, rst=1)) =⇒ out(𝑠0, 𝑖0) = Ω

∀𝑛 ∈ N, �⃗� ∈ 𝐼𝑛, �⃗� ∈ 𝐶𝑛, ∃Ω ∈ 𝑂, ∀𝑠, 𝑠0, 𝑠𝑛 ∈ 𝑆, (Inductive step)

𝑠0 = step(𝑠, �⃗� [0], (�⃗� [0], rst=1)) =⇒

𝑠𝑛 = run(𝑠0, �⃗� [1 :], �⃗� [1 :]) =⇒

out(𝑠𝑛, �⃗� [−1]) = Ω

This property is expressed recursively. The base case shows that on the initial

step where the hardware reset line is asserted, the circuit outputs must be equal to

a value Ω that only depends on the circuit’s input and clock signals on that step, 𝑖0

and 𝑐0. Importantly, Ω must not depend on the circuit’s starting state 𝑠, which is

denoted by the order of the quantifiers.

36

The recursive step shows that after executing the circuit for 𝑛 cycles starting from

its post-reset state 𝑠0, its most recent output out(𝑠𝑛, 𝑖) must be equal to a value Ω

that only depends on the input and clock signal trace for the past 𝑛 cycles. Just like

in the base case, the order of the quantifiers indicates that Ω may only be dependent

on these inputs, and may not depend on the starting state 𝑠. Since this property

holds for all 𝑛, and Ω may depend on 𝑛 as well, this step illustrates that our output

on every cycle after reset must be determined by the past input and clock signal trace.

37

38

Chapter 4

Modular output determinism

This chapter describes an approach for proving output determinism for a circuit with

multiple clock domains. One challenge in coming up with such an approach is that

the clocks do not step in a fixed, constant ratio (such as “clock domain A steps 2

times for every 1 step of clock domain B”). The OpenTitan SPI peripheral contains

logic driven by a clock that can be started and stopped arbitrarily by an external

host (i.e., it is not constant), and it is not required to run at a particular frequency

(i.e., the ratio is not fixed). This makes it impossible to reason precisely about an

execution of the entire circuit as a whole, since there are effectively infinite possible

traces of clock inputs.

The approach described in this chapter, called modular output determinism, ad-

dresses this challenge by dividing up MicroTitan’s circuit into multiple logical “sub-

circuits” comprising of the registers in each clock domain, and then using formal

verification to prove properties about each individual subcircuit separately. A proof

sketch shows that the properties proven about each subcircuit together imply a top-

level property about MicroTitan as a whole.

Figure 4-1 shows MicroTitan broken up into separate subcircuits for each clock

domain. Note that each subcircuit has its own top-level inputs and/or outputs that

communicate externally, labelled “top” in the figure. However, in addition, we can

consider the inputs and outputs of each subcircuit to also include the signals that

communicate between clock domains, which are labelled “CDC” (clock domain cross-

39

UARTUSBSPI

SPI-in SPI-out USB

CDC CDC CDC Top

Top Top Top

Ibex/ROM/RAM

Peripheral
clock

domains

Core
clock

domain

Figure 4-1: MicroTitan split into clock domain subcircuits.

ing) in the figure. The key idea behind modular output determinism is to prove that

each subcircuit in MicroTitan satisfies an output determinism-like property, consid-

ering both CDC and top-level inputs and outputs. That is, for each cycle after reset,

each clock domain’s CDC and top-level outputs must be fully determined by its CDC

and top-level inputs.

The intuition behind this technique is that if no secrets leak across clock domain

crossing boundaries, then it’s okay for top-level outputs to depend on data that’s in

clock domain crossing boundaries. Therefore, each subcircuit needs to have the data

that flows between clock domain crossing boundaries verified along with the data that

flows in and out of the circuit as a whole.

In order to express this idea more precisely, Section 4.1 defines concepts necessary

to discuss the input and output boundaries of clock domain subcircuits. Section 4.2

defines the machine-verified modular output determinism subproperties that must be

proven for each clock domain, and Section 4.3 provides a sketch of a proof that these

subproperties imply top-level output determinism.

4.1 Model of multiple clock domains

Modular output determinism takes advantage of the fact that MicroTitan’s circuit

has a particular clock domain topology in order to categorize each clock domain in

one of two categories. A single core clock domain communicates with three peripheral

clock domains, with the key restriction that the peripheral clock domains cannot

40

communicate with each other. The core clock domain is the SoC’s primary clock

domain, which includes the Ibex CPU, ROM, RAM, UART, and communication

hardware between all peripherals. The peripheral clock domains are part of the SPI

and USB peripherals. Figure 4-1 points out the two categories of clock domains.

4.1.1 Clock domain crossing

The concept of “clock domain crossing” (CDC) registers formalizes the input/output

boundaries between clock domains.

Definition (CDC register). Suppose we have a circuit with clock domains 𝐴 and 𝐵.

A CDC register from 𝐴 to 𝐵 is a register that:

• is in clock domain 𝐴 but not in clock domain 𝐵.

• has an output that drives a register in clock domain 𝐵 (directly or through

combinational logic with other registers in any clock domain).

Note that this definition does not consider registers in multiple clock domains

to be CDC registers. These cases use special logic that isn’t captured by general

reasoning about CDC registers. In the case of MicroTitan, the one instance of this is

the dual-port memory in the USB peripheral. Section 7.2.1 and Section 7.3.2 discuss

how this is handled in the implementation.

Also note that a register can drive registers in multiple clock domains and still

be considered a CDC register. For example, a register in clock domain 𝐴 that drives

a register in clock domain 𝐴 and clock domain 𝐵 is still considered a CDC register

from 𝐴 to 𝐵.

To see how this definition applies to a concrete example, Figure 4-2 shows a snippet

of the circuit diagram for Figure 3-3. In this circuit, data_valid is a CDC register

from the “in” to “out” clock domains.

4.1.2 Outputs

Modular output determinism requires associating each top-level output with a par-

41

data_
valid

data_
valid_
sync_0

in_clk out_clk

CDC register from
"in" to "out"

Figure 4-2: Diagram illustrating the definition of a CDC register.

ticular subcircuit. The most straightforward way to do this would be to associate a

top-level output with a certain clock domain if that output is entirely derived from

registers in that clock domain. For the most part, this is how MicroTitan’s top-level

outputs are categorized by Kronos.

However, this straightforward categorization does not always apply. Consider the

circuit in Figure 3-3. The output out is combinationally dependent on registers in

two different clock domains. This scenario also comes up in MicroTitan. The miso_o

output from the SPI peripheral directly depends on registers from the SPI-out and

core clock domains.

In order to handle these cases, modular output determinism does not consider the

categorization of top-level outputs as inherently defined by the circuit. Rather, it is

left to be chosen by a proof developer as a matter of proof strategy. In fact, subcircuit

top-level outputs don’t even have to correspond with the circuit’s top-level outputs.

Modular output determinism’s only requirement is that the top-level outputs of each

subcircuit (together with the circuit’s top-level inputs) fully determine the top-level

outputs of the circuit itself.

Suppose out𝐶𝐷 represents the top-level outputs from each subcircuit 𝐶𝐷 for 𝐶𝐷 ∈

{core, spi-in, spi-out, usb}, given the current circuit state and inputs. Another way to

describe this requirement is it must be possible to determine an output combination

function 𝜔 such that for any given state 𝑠 and set of inputs 𝑖:

out(𝑠, 𝑖) = 𝜔(outcore(𝑠, 𝑖), outspi-in(𝑠, 𝑖), outspi-out(𝑠, 𝑖), outusb(𝑠, 𝑖), 𝑖)

42

𝜔 may rely directly on 𝑖 since top-level outputs may be driven by combinational logic

of the top-level inputs directly.

The distinction between each set of outputs relates solely to the verification ap-

proach. Modular output determinism requires the outputs from each clock domain

subcircuit only depend on the CDC and top-level inputs to that clock domain. As long

as it is possible to verify this, and an 𝜔 function can be found, then a given catego-

rizaton of outputs is okay. If these requirements cannot be met, a new categorization

of outputs must be chosen. If no output categorization meets these requirements,

then modular output determinism cannot be applied to the circuit.

In Figure 3-3, since the output out is driven by two registers each in a different

clock domain, data_valid_sync_1 and data, each of those registers could be con-

sidered a top-level output of their respective clock domain (even though they don’t

correspond to circuit top-level outputs themselves). Then the value of out could be

captured by the function 𝜔 like so (assuming Ω represents outputs from the “in” clock

domain, and Θ represents outputs from the “out” clock domain):

𝜔(Ω, Θ, 𝑖) =

⎧⎪⎪⎨⎪⎪⎩
0, if Θdata_valid_sync_1 = 0

Ωdata, otherwise

The output categorization is the only concept described in this section that is

decided by the developer. The clock domain subcircuits, the categorization of clock

domains as core or peripheral, and which registers are CDC registers are inherently

described by the circuit.

4.2 Machine-verified subproperties

In order to prove top-level output determinism, modular output determinism requires

proving a subproperty called core output determinism for the circuit’s core clock do-

main, and a subproperty called peripheral output determinism for each peripheral

clock domain. These subproperties are similar to output determinism, but with the

43

Core Peripheral BPeripheral A

Must be
verified

May
depend on

Must be
verified

May
depend on

May
depend on

Must be
verified

SoC

Figure 4-3: Core output determinism.

key difference that they include CDC registers as part of the input and output bound-

aries. This section defines these two subproperties.

4.2.1 Core output determinism

The first property is called core output determinism. It is defined as follows.

Definition 4.2.1 (Core output determinism). If a circuit satisfies core output deter-

minism, then on every step the top-level outputs of the core clock domain subcircuit

and the CDC register values from the core clock domain to every peripheral clock

domain may depend only on the circuit’s top-level inputs and CDC register values

from any peripheral clock domain. However, immediately after the step on which

reset is asserted, the top-level outputs and CDC registers from the core clock domain

may depend on top-level inputs only, not CDC register values.

Figure 4-3 provides an example of what proving core output determinism entails.

All outputs of the core clock domain subcircuit, including top-level outputs and CDC

register values flowing out of the subcircuit, must be verified, and are allowed to de-

pend on top-level inputs and CDC regiser values flowing into the subcircuit. However,

just like regular output determinism the outputs may not depend on uninitialized data

left over in the core clock domain.

Note that Definition 4.2.1 specifies that outputs may not depend on CDC register

values on reset—this is important for the soundness of modular output determinism.

44

CorePeripheral A

Must be
verified

May
depend on

Must be
verified

May
depend on

SoC

...

Figure 4-4: Peripheral output determinism.

4.2.2 Peripheral output determinism

The second property is peripheral output determinism. This property is similar to

core output determinism. The main distinction is that this property refers to in-

dividual peripheral clock domains which communicate with the core clock domain,

whereas core output determinism refers to CDC communication between the core and

all peripheral clock domains.

Definition 4.2.2 (Peripheral output determinism for 𝑃). If a circuit satisfies periph-

eral output determinism for some clock domain 𝑃 , then on every step the top-level

outputs of 𝑃 ’s subcircuit and the CDC register values from 𝑃 to the core clock do-

main may depend only on the circuit’s top-level inputs and CDC register values from

the core clock domain to 𝑃 . However, immediately after the step on which reset is

asserted, the top-level outputs and CDC registers from 𝑃 may depend on top-level

inputs only, not CDC register values.

Modular output determinism requires that peripheral output determinism be

proven individually for each peripheral clock domain, hence the definition of the

property being parameterized by 𝑃 .

Figure 4-4 illustrates what proving peripheral output determinism entails. All

outputs of the peripheral clock domain subcircuit, including top-level outputs and

CDC register values must be verified, and are allowed to depend on top-level inputs

and CDC regiser values flowing into the subcircuit. However, just like regular output

45

determinism the outputs may not depend on uninitialized data left over in the core

clock domain. Since peripheral output determinism only deals with one particular

peripheral clock domain at a time, only one peripheral clock domain is depicted here.

4.3 Paper proof of top-level claim

Modular output determinism claims that proving core output determinism and prov-

ing peripheral output determinism for each peripheral clock domain implies output

determinism for the entire circuit. This section presents a high-level argument for

why this claim is true.

4.3.1 Notation

This subsection introduces additional notation to succinctly describe several concepts.

[𝐶 →
𝐶𝐷𝐶

𝑃]𝑛 represents the values of CDC registers from the core clock domain to

some peripheral clock domain 𝑃 on cycle 𝑛. Analagously, [𝑃 →
𝐶𝐷𝐶

𝐶]𝑛 represents

the values of CDC registers from some peripheral clock domain 𝑃 to the core clock

domain on cycle 𝑛. [𝐶 →
𝐶𝐷𝐶

𝑃*]𝑛 represents the values of CDC registers from the core

clock domain to all peripheral clock domains on cycle 𝑛. Analagously, [𝑃* →
𝐶𝐷𝐶

𝐶]𝑛
represents the values of CDC registers from all peripheral clock domains to the core

clock domain on cycle 𝑛.

All of the above values are indexed assuming 𝑛 = 0 represents the register values

corresponding to the state immediately after the circuit is stepped with reset asserted.

Let 𝑖𝑛 repesent the circuit’s top level inputs on cycle 𝑛. In this case, treat the

index such that 𝑛 = 0 is the input to the circuit when it is stepped with reset asserted.

4.3.2 Proof sketch

One subtle point that makes it difficult to see why the two subproperties imply

output determinism is that it may seem like there’s a circular dependency between

properties 4.2.1 and 4.2.2. Core output determinism assumes that CDC registers

46

from peripheral clock domains are “safe” and allows CDC registers from the core

clock domain to depend on them, while peripheral output determinism assumes that

CDC registers from the core clock domains are “safe” and allows CDC registers from

the peripheral clock domains to depend on them.

However, there is no circular dependency issue. On the very first cycle when the

circuit is reset, the resulting CDC register values are not allowed to depend on any

previous CDC register values, only top-level inputs. At any given cycle after that,

the allowed CDC register dependencies from other clock domains are the values from

the previous step, which have already been proven safe. This intuition is captured

in the proof of this following lemma, which is ultimately used to prove that the two

modular output determinism subproperties prove output determinism.

Lemma 1. If a circuit satisfies property 4.2.1, and satisfies property 4.2.2 for all

of its peripheral clock domains, then all of the circuit’s CDC register values at every

cycle 𝑛 only depend on the top-level inputs the circuit receives between reset and cycle

𝑛, i.e. 𝑖0 . . . 𝑖𝑛.

Proof. We prove this lemma by strong induction.

Base case. First, consider the cycle when the circuit is reset (cycle 0). By the

definition of property 4.2.1 we can see that [𝐶 →
𝐶𝐷𝐶

𝑃*]0 only depends on 𝑖0. By

the definition of property 4.2.2, we can see that for every peripheral clock domain

𝑃 , [𝑃 →
𝐶𝐷𝐶

𝐶]0 only depends on 𝑖0. Therefore, all CDC register values can be fully

determined by the top-level inputs on cycle 0.

Inductive step. Assume lemma 1 holds on every cycle 𝑘 such that 0 ≤ 𝑘 < 𝑛. We

must show that lemma 1 holds for cycle 𝑛.

By property 4.2.1 we know that [𝐶 →
𝐶𝐷𝐶

𝑃*]𝑛 only depends on 𝑖0 . . . 𝑖𝑛 and [𝑃* →
𝐶𝐷𝐶

𝐶]0 . . . [𝑃* →
𝐶𝐷𝐶

𝐶]𝑛−1. However, since we assume lemma 1 holds for all 𝑘 < 𝑛, we

know that [𝑃* →
𝐶𝐷𝐶

𝐶]0 . . . [𝑃* →
𝐶𝐷𝐶

𝐶]𝑛−1 must only depend on top level inputs.

Therefore, [𝐶 →
𝐶𝐷𝐶

𝑃*]𝑛 itself only depends on top-level inputs.

47

By property 4.2.2 we know that for each peripheral clock domain 𝑃 , [𝑃 →
𝐶𝐷𝐶

𝐶]𝑛
only depends on 𝑖0 . . . 𝑖𝑛 and [𝐶 →

𝐶𝐷𝐶
𝑃]0 . . . [𝐶 →

𝐶𝐷𝐶
𝑃]𝑛−1. We can use a symmetrical

argument to the one above: since we assume lemma 1 holds for all 𝑘 < 𝑛, we know

that for every peripheral clock domain 𝑃 that [𝑃 →
𝐶𝐷𝐶

𝐶]0 . . . [𝑃 →
𝐶𝐷𝐶

𝐶]𝑛−1 must

only depend on top-level inputs, and therefore [𝑃 →
𝐶𝐷𝐶

𝐶]𝑛 only depends on top-level

inputs.

Since both [𝐶 →
𝐶𝐷𝐶

𝑃*]𝑛 and [𝑃 →
𝐶𝐷𝐶

𝐶]𝑛 for every 𝑃 only depend on top-level

inputs, all CDC register values only depend on top-level inputs for cycle 𝑛, and

lemma 1 holds.

Now, we use the result in lemma 1 to prove the following theorem.

Theorem 1. If a circuit satisfies property 4.2.1, and satisfies property 4.2.2 for all of

its peripheral clock domains, then that circuit satisfies output determinism as specified

in definition 3.1.1.

Proof. By property 4.2.1, we know that the top-level outputs of the core clock domain

subcircuit may only depend on top-level inputs and CDC register values. By lemma 1,

we know that CDC register values themselves may only depend on top-level inputs.

Therefore, the top-level outputs of the core clock domain may only depend on top-

level inputs.

Applying the same logic as above, property 4.2.2 and lemma 1 also show the

top-level outputs of every peripheral clock domain only depend on top-level inputs.

Therefore, the top-level outputs of every subcircuit in our circuit only depend on

top-level inputs.

A final observation is that the top-level outputs of a circuit can be determined by

the top-level outputs of each subcircuit, as well as the top-level inputs to a circuit.

This is true by definition, since as discussed in Section 4.1.2 it must be possible to find

a function 𝜔 such that this is the case. This means that since the top-level outputs of

each subcircuit only depend on top-level inputs, the top-level outputs of the circuit

itself also only depend on top-level inputs. Therefore, the circuit itself must satisfy

output determinism.

48

Chapter 5

Machine verification approach

This chapter describes Kronos’s approach for verifying property 4.2.1 and verifying

property 4.2.2 for every peripheral clock domain in MicroTitan. Section 5.1 discusses

a high-level method for reasoning about individual clock domains in the presence of

other clock domains, and Section 5.2 and Section 5.3 go into detail about how core

output determinism and peripheral output determinism are verified, respectively.

5.1 Modeling individual clock domains

Modular output determinism requires proving properties about individual clock do-

mains. However, since clock domains interact through clock domain crossing, this

requires a way to correctly model the execution of a particular clock domain in the

presence of others.

Imagine reasoning about a particular clock domain, referred to as the “reference”

clock. One way to reason about arbitrary clock signals is to consider that for every

step of the reference clock, other clocks may step zero or more times. This captures

all possible behaviors of the circuit with respect to its clock inputs, since it allows for

any ratio of clock frequencies (including for either clock not to step at all), and it does

not require the ratio of clock steps to be fixed throughout the circuit’s execution.

Stepping a single reference clock domain on a given set of inputs can be thought

of as calling the circuit step function with those same inputs but with only the cor-

49

responding clock input set to true. For example, a step function for the core clock

domain, step𝐶 : 𝑆 → 𝐼 → {0, 1} → 𝑆 can be expressed as:

step𝐶(𝑠, 𝑖, 𝑟) = step(𝑠, 𝑖, {core = 1, spi-in = 0, spi-out = 0, usb = 0, rst=r})

Symbolic execution can’t directly model an unbounded number of clock steps in

between steps of our reference clock. However, it can overapproximate the set of

possible states after performing one reference clock step. Overapproximation entails

setting all registers in non-reference clock domains to completely unconstrained sym-

bolic values. This captures the full set of possible behaviors since other clock steps

may only modify the state in non-reference clock domains, and overapproximating

makes no attempt at constraining how these values are modified.

Therefore, the behavior of a single reference clock domain in the presence of mul-

tiple clock domains can be modelled by calling the corresponding step function, over-

approximating the result, stepping the result of the overapproximation, overapproxi-

mating the new result, and so on for any number of steps.

Figure 5-1 provides an example of how the state of the circuit in Figure 3-3 changes

when stepped from the perspective of the “in” clock domain. It begins with reset,

after which all initialized registers have concrete values, and the uninitialized register

data has some symbolic value (Figure 5-1 box A).

After reset, out_clk may step zero or more cycles before in_clk steps even once,

since it may be arbitrarily faster or slower than in_clk. Therefore, the state of both

data_valid_sync_* registers are unknown before in_clk steps. By analyzing the

circuit, we can see that their value cannot be anything other than 1’b0. However,

this would not always be clear—for example, consider what would happen if this clock

domain had a cycle counter register. This register could contain any possible value.

Therefore, instead of trying to consider exactly what possible states could be in other

clock domains, they are overapproximated entirely by setting the registers to fresh

symbolic values (Figure 5-1 box B).

Figure 5-1 box C then shows the outcome of stepping the circuit with a pair of

50

data: data$0
data_valid: 1'b0

data_valid_sync_0: 1'b0
data_valid_sync_1: 1'b0

Reset

data: data$0
data_valid: 1'b0

data_valid_sync_0: data_valid_sync_0$0
data_valid_sync_1: data_valid_sync_1$0

Overapproximate

data: 8'd42
data_valid: 1'b1

data_valid_sync_0: data_valid_sync_0$0
data_valid_sync_1: data_valid_sync_1$0

Step
in = 8'd42
in_valid = 1'b1

data: 8'd42
data_valid: 1'b1

data_valid_sync_0: data_valid_sync_0$1
data_valid_sync_1: data_valid_sync_1$1

Overapproximate

A

B

C

D

Figure 5-1: Example of stepping a circuit in one clock domain while overapproximat-
ing the other.

concrete inputs, in_valid = 1’b1, and in = 8’d42. Despite the “in” clock domain

now being full of concrete values, we still can’t say anything about the possible values

of the “out” clock domain, which may once again step for zero or more cycles. So,

it must be overapproximated again with fresh values, giving the final state shown in

Figure 5-1 box D.

By overapproximating in this manner, we end up considering a superset of possible

circuit states (hence the term “overapproximation”). However, this is fine for the

soundness of a proof: if a property holds for a superset of the possible circuit states,

then it must also hold for the subset of states that are actually possible.

5.2 Core output determinism

To prove core output determinism, Kronos takes advantage of the fact that it’s possi-

ble to reason about code executing in the core clock domain, since it includes the ac-

tual processor component of the SoC. This allows Kronos to use a “software-assisted”

approach similar to Notary, where it reasons about boot code execting on the proces-

sor after reset.

One key insight is that if a circuit ends up in a deterministic state, its outputs

will be determined solely by its inputs from that point on. A circuit’s new state after

51

a step is determined solely by its previous state and input. Therefore, after a circuit

reaches a deterministic state, all future states that circuit reaches can be determined

solely by its inputs. In addition, a circuit’s output on a given cycle is determined by

its state and input on that cycle. Putting this together, the circuit’s outputs can be

solely determined by its inputs on every cycle after the circuit reaches a deterministic

state.

Kronos borrows Notary’s software-assisted deterministic start approach to use

boot code to put MicroTitan’s core clock domain in a state where all registers only

depend on past inputs and conclude that its output will only depend on its inputs for

all future cycles. However, this is insufficient to fully imply core output determinism,

since the property requires that a circuit’s outputs be safe for all cycles after the

reset line is deasserted (including the cycles during which boot code executes). To

account for this, Kronos adds “output checking” to deterministic start, which entails

verifying that the output on every cycle of boot code execution depends only on past

input. This is a straightforward addition since deterministic start is implemented by

symbolically executing boot code on the SoC, allowing Kronos to reason about all

possible outputs during boot code execution.

With this extra output checking, deterministic start shows that outputs only de-

pend on inputs on every cycle during boot code execution, and implies this is the case

for every cycle after boot code execution, which together implies this property for all

cycles. Therefore, deterministic start with output checking is sufficient to imply core

output determinism.

Kronos primarily uses software assisted deterministic start with output checking

to prove core output determinism. However, it’s impossible to reset the entirety of

MicroTitan’s state in the core clock domain solely using boot code. Luckily, the

remaining uninitialized state does not affect outputs. This is demonstrated using a

separate proof, discussed further in Section 7.2.3. The rest of this section will focus

on the algorithm used to verify that the boot code resets as much state as it can.

Pseudocode for software assisted deterministic start with output checking is shown

in Figure 5-2. The algorithm symbolically executes the circuit model, initializing it

52

state = new_symbolic_state()

allowed dependencies initially empty set
allowed_dependencies = {}

step state once with hardware reset line asserted
state = step_core(state, reset=True)

while True:
new inputs include top-level and CDC registers from
peripherals to core
inputs = new_symbolic_inputs()
allowed_dependencies.add(inputs)

state = step_core(state, inputs)
state = overapprox_peripherals(state)

check outputs
outputs = out_core(state, inputs)
if not only_depends_on(outputs, allowed_dependencies):

fail()

check state
if only_depends_on(state, allowed_dependencies)

done!
success()

else
output example, helps determine what state needs to be reset
...
continue

Figure 5-2: Pseudocode for verifying deterministic start with output checking, which
implies output determinism for the core clock domain.

with an entirely symbolic state, and stepping it one clock cycle at a time. At each step,

a set of symbolic top-level inputs and symbolic CDC register values are applied, in

order to model the fact that the circuit may have arbitrary top-level or clock domain

crossing inputs. Although symbolic, these values are added to a set of “allowed

dependencies,” since outputs may depend on them.

On each cycle, the algorithm performs two checks. First, the core clock domain

state is checked to see if all elements of the state (not including the non-resettable

53

state mentioned above) only depend on allowed dependencies. If so, the circuit has

achieved deterministic start, and the algorithm returns success. If not, the script will

continue stepping.

Second, the script queries an SMT solver on each cycle to ensure that all outputs

(including core clock domain top-level and CDC output registers) are only dependent

on values in the list of “allowed dependencies”. If they’re not, the script will terminate

early, indicating a failure.

Although it does not cause the script to terminate, when the first check fails the

script will output an example of a part of the state that differs and give two of its

possible values. This allows a developer to go back and find a way to add or modify

initialization code to try and reset this piece of state as well. They can then re-run

the verification script and repeat this process to iteratively build up boot code until

it resets all uninitialized state.

5.3 Peripheral output determinism

Kronos’s approach for proving peripheral output determinism is distinct from its ap-

proach for proving core output determinism. Since software does not execute directly

within peripheral clock domains, peripheral output determinism must generally be

satisfied inherently by peripheral hardware. In general, Kronos proves this property

for each clock domain by proving a property we call output equivalence between the

subcircuit in question and a version of the subcircuit initialized with fully determinis-

tic state. If two circuits satisfy output equivalence, it means that starting from their

initial states, they will have the same output on every cycle given the same trace of

inputs. As discussed previously, the version of the circuit with deterministic starting

state is guaranteed to have outputs that can be fully determined by its inputs. There-

fore, proving output equivalence between these subcircuits is sufficent to prove that

the original circuit’s outputs are also solely dependent on its inputs. If the proven

set of outputs include both the subcircuit’s top-level outputs and its CDC register

outputs, then this proves peripheral output determinism.

54

impl = step_peripheral(new_symbolic_state(), rst=True)
spec = make_deterministic_copy(impl)

assert(related(impl, spec))
assert(outputs(impl) == outputs(spec))

(a) Pseudocode for base case.
impl = new_symbolic_state()
spec = new_symbolic_state()
assume(related(impl, spec))
assume(outputs(impl) == outputs(spec))

inputs = new_symbolic_inputs()

impl’ = step_peripheral(impl, inputs)
spec’ = step_peripheral(spec, inputs)
assert(related(impl’, spec’))
assert(outputs(impl) == outputs(spec))

(b) Pseudocode for inductive step.

Figure 5-3: Pseudocode for verifying output determinism for a peripheral clock do-
main.

Kronos uses an inductive technique called forward simulation to prove output

equivalence. The algorithm used is shown in pseudocode in Figure 5-3. The two

instances of the circuit to be compared are called the “impl” (implementation) and

“spec” (specification) instances. The impl instance is initialized as usual—an initially

fully symbolic state is stepped with the reset line asserted. The spec instance is copied

from the impl instance but with all registers that are uninitialized on reset set to zero.

Therefore, the spec state is entirely deterministic.

Proving output equivalence entails proving that given any two related impl and

spec states, their top-level outputs are equivalent. What it means for two states to

be “related” is up to the proof author, and is expressed using a refinement relation.

A refinement relation is a function that takes in two state instances and returns

a boolean stating whether the states are related or not. An example refinement

relation between the implementation of a FIFO and a deterministic specification is

the following: two FIFO states are related if all their register values are equal, and

55

Impl
State

Impl
State'

Spec
State

Spec
State'

Assume
Related

Verify
Related

Step

Step

Verify
outputs
equal

Figure 5-4: Relation diagram showing output equivalence inductive step. Note that
in traditional forward simulation, the step functions applied to the impl and spec
states are different. However, since the impl and step states are instances of the same
system with no distinction besides their initial state, they use the same step function.

the valid memory values are equal (i.e., only memory values between the read and

write pointer must be equal).

The machine-verified proof of output equivalence is based on the principle of

induction. First, a base case is proven that shows the initial impl and spec states

are related and that their outputs are equal. The inductive step initializes a fully

symbolic spec and impl state, steps each on symbolic inputs, then proves that the

post-step impl and spec states are related and have equivalent outputs, assuming that

the initial symbolic states were also related and had equivalent outputs. This step is

illustrated in Figure 5-4.

56

Chapter 6

SoC and toolchain implementation

This chapter describes the implementation of the MicroTitan SoC and the toolchain

used for synthesizing it into executable Racket code. The other part of Kronos’s

implementation, the machine verification code, is discussed in Chapter 7.

6.1 MicroTitan

MicroTitan is the custom subset of OpenTitan hardware that we verify. This subset

consists of the following components (refer back to Figure 2-3 for a block diagram):

• An Ibex CPU

• 8KB of ROM

• 8KB of RAM

• A UART peripheral

• A device-side SPI peripheral

• A device-side USB peripheral

In order to make MicroTitan representative of a realistic design, we carefully

implemented it to be as similar to OpenTitan as possible.

57

top_earlgrey

Ibex

xbar_main

xbar_peri

ROM RAM
UART SPI USB

Figure 6-1: Implementation of MicroTitan. Custom components are shaded in orange
with a dotted outline, parts which come directly from OpenTitan are shaded in blue
with a solid outline.

Each OpenTitan component is modular, making it easy to implement a subset

without modifying any of the individual components themselves. The only custom

RTL in MicroTitan are three modules that replace equivalents in OpenTitan. These

modules are called top_earlgrey, xbar_main, and xbar_peri, and consist of the

top-level logic for integrating and wiring up all the components. When implement-

ing these modules, we took care to make them representative of their OpenTitan

equivalents—they were written by copying directly from OpenTitan, and then delet-

ing and modifying lines as needed to wire up the subset of peripherals chosen.

OpenTitan and consequently MicroTitan are implemented in the SystemVerilog

hardware description language. The code is based off OpenTitan commit 97b60c1.

Figure 6-1 shows a block diagram of the MicroTitan implementation, with custom

components distinguished from components directly taken from OpenTitan. Each

custom component in this diagram corresponds to a single SystemVerilog modules,

while the OpenTitan components are each comprised of multiple SystemVerilog mod-

ules.

Although MicroTitan is based directly off OpenTitan code, it does include sev-

58

Component LoC

Custom modules
top_earlgrey 317
xbar_main 170
xbar_peri 56

Modifications

Sync FIFO +8
Async FIFO +13
SPI RX order +15
USB memory +30
USB reset sync +10

Table 6.1: Amount of custom code in MicroTitan.

eral small patches, which each fall into one of two categories. The first are changes

necessary to make the hardware work with our toolchain. These are described in

Section 6.1.1. The second set of changes are required to make MicroTitan satisfy

output determinism, as this property is not met by the OpenTitan peripherals as is.

These changes are described in Section 6.1.2.

Table 6.1 shows how many lines of SystemVerilog code are in each custom module,

and how many new lines of code are needed for each modification needed to satisfy

output determinism. The modifications for the toolchain are not shown—these were

all simple modifications with no more than 10 lines changed for each of them.

6.1.1 Modifications for toolchain

Clock gating

OpenTitan includes a “clock gating” module that enables or disables a given clock

based on a control signal. Clock gating is used in the Ibex CPU to turn off the core

clock to the majority of its components in order to implement a low-power sleep state.

Supporting clock gating would introduce additional complexity to Kronos’s toolchain

and reasoning about multiple clock domains, and it is not important for functional

correctness. Therefore, we choose to eliminate clock gating entirely in MicroTitan.

This modification is made within the clock gating module by ignoring the clock enable

input, and passing through the clock directly.

59

ROM hack

MicroTitan adds a hack to OpenTitan’s ROM module that does not affect function-

ality but causes Kronos’s toolchain to extract it in a way that’s easier to work with.

Synchronous FIFO memory declaration

MicroTitan switches the SystemVerilog memory declaration style used in synchronous

FIFOs from packed to unpacked. This change does not affect behavior but allows

Kronos’s synthesis toolchain to produce a more efficient representation of the circuit.

SPI latches

OpenTitan’s SPI peripheral includes a few latches, which are unsupported by Kronos’s

toolchain. This was unintentional in OpenTitan, so MicroTitan includes a cherry-

picked fix from a commit past its OpenTitan baseline.

6.1.2 Modifications for output determinism

MicroTitan includes several changes to OpenTitan hardware in order to ensure that

it satisfies output determinism. This section describes those changes. The impact of

these changes on hardware resource utilization is described in Section 8.2, and the

security implications of not including these changes is discussed in Section 8.3. These

modifications have been tested for correctness by incorporating them back into the

OpenTitan, running an existing OpenTitan simulation on example software that uses

the UART, SPI, and USB peripherals, and manually checking that the simulation

behaves as expected.

Synchronous FIFO

The synchronous FIFO primitive was modified to set its output to zero when the FIFO

is empty. Before making this change, the FIFO would output whatever element of

its storage was being pointed at by its read pointer, even if that element was invalid.

This meant, for example, that on reset a FIFO’s data output would be set to some

60

uninitialized value. Now, a FIFO will always output zero after reset until it receives

new data.

This change is unnecessary for MicroTitan to achieve output determinism. How-

ever, it’s included in MicroTitan for several reasons. First is that this change was

upstreamed into OpenTitan itself, so it’s now a canonical part of OpenTitan (although

in a commit ahead of our baseline, requiring us to cherry-pick it into MicroTitan).

The second reason is that this change simplifies reasoning in a few cases, since it

allows us to make simplifying assumptions about the behavior of the synchronous

FIFO (discussed in Section 7.1).

Asynchronous FIFO

The asynchronous FIFO was also modified to prevent uninitialized data from being

leaked by its data output on reset. This is necessary to prevent the SPI peripheral

from leaking uninitialized data and violating output determinism. However, this

type of FIFO cannot be modified the same way as the synchronous FIFO—that

would break the functionality of the SPI peripheral, which relies on being able to

read possibly invalid data from an empty FIFO.

Instead, the asynchronous FIFO modification entails splitting up the underlying

memory of a FIFO of depth 𝑁 into a register that stores the first element, and

a memory of size 𝑁 − 1 that stores the remaining elements. This first register is

initialized to zero on reset, which ensures that when the FIFO is reset its data output

will be zero instead of the value of some uninitialized memory.

SPI configuration

The SPI peripheral has a configuration register that controls the order that bits are

received via SPI (MSB or LSB first). If software toggles this register between every bit

that is received, it can prevent a register that is uninitialized on reset from being filled

before it becomes software-accessible. This is not intended behavior—a comment in

the OpenTitan code say that this configuration register should not be changed during

an SPI transaction. However, this is not enforced by hardware.

61

In order to fix this issue, MicroTitan’s SPI peripheral has a modification that

stores the value of the SPI RX order configuration register in a new register once

it starts receiving a byte via SPI. This new register’s value is not updated until the

full byte is received, preventing any changes to the configuration register from taking

effect mid-transaction.

USB memory read circuit

It’s difficult to prove that the USB memory does not leak uninitialized data on an

IN endpoint request, since the OpenTitan USB peripheral allows uninitialized data

to leak from the memory into several intermediate registers before it is output.

It’s possible that timing details of the USB protocol ensure that these intermedi-

ate registers are cleared before this data has a chance to reach outputs. However, this

is difficult to verify using Kronos’s verification approach. In order to ensure that Mi-

croTitan satisfies output determinism, we modify the USB peripheral to prevent these

intermediate registers from being updated with new values unless software explicitly

writes to one of the configuration registers that indicates there is data available for

response to an IN request.

USB reset synchronizer

OpenTitan’s top-level module contains hardware that synchronizes the deassertion of

the reset input into the USB clock domain, which is important for avoiding metasta-

bility issues. However, its design includes a 2-bit register that is uninitialized on reset,

and the number of clock cycles the USB peripheral remains in reset for varies based

on the initial value of this register. This varying reset behavior affects USB outputs,

causing this synchronizer design to violate output determinism.

To fix this problem, MicroTitan switches the USB reset synchronizer to a design

that does not include uninitialized registers. It’s based on the best practices rec-

ommended in [6], and this design appears to be used in more recent iterations of

OpenTitan as well.

62

sv2vMicroTitan
Source

yosysFlattened Verilog
file

RacketYosys SMT-LIB
Extraction Racket Model

Figure 6-2: A toolchain for extracting Racket circuit model from SystemVerilog
source.

6.2 Toolchain

In order to reason about the MicroTitan circuit using symbolic execution, it must be

converted into a form that can be executed by the Rosette solver-aided programming

language. This section describes the toolchain, shown in Figure 6-2, that’s used by

Kronos to convert MicroTitan into an executable form.

First, the MicroTitan source is fed into a program called sv2v [22], which translates

SystemVerilog code into Verilog. This step is necessary because the next tool in

the toolchain, Yosys, does not support SystemVerilog. Yosys [27] is responsible for

synthesizing the generated Verilog code, performing optimizations and ultimately

outputting it as an SMT-LIB model. SMT-LIB is an S-expression based language

with similar syntax and semantics to Racket, making it easy to convert it into valid

Racket code using an embedded domain specific language (originally developed for

Notary).

The Racket model output by the toolchain is a representation of the circuit in-

cluding a struct containing its full state combined with inputs, and a step function

that encodes how this state transitions on a clock cycle given its inputs.

Additionally, this toolchain can be used with the Yosys clk2fflogic pass enabled.

The clk2fflogic pass enables reasoning about stepping each of the circuit’s clock do-

mains individually, which Kronos uses for proving a property about the OpenTitan’s

asynchronous FIFO design. This proof is discussed further in Section 7.1.

One downside of clk2fflogic is that it transforms the circuit model and greatly

expands the size of its state, which makes formal verification slower. Without clk2fflogic,

the Racket model’s step function steps all clock domains at once. Although on its

own this doesn’t accurately model the behavior of the circuit, it is still adequate

for reasoning about a single reference clock domain since Kronos’s verification code

63

overapproximates all other clock domains on each step. Due to its simplicity and per-

formance advantages, the extraction without clk2fflogic is used by default, while

clk2fflogic extraction is used only for the async FIFO proof, where it’s needed.

An auxiliary outcome of this project has been contributions back to the open-

source tools this toolchain is comprised of. We’ve discovered and reported several

sv2v bugs [1] through the process of trying to apply it to the entire OpenTitan

codebase. We’ve also improved upon the library originally developed for Notary that’s

responsible for converting Yosy’s SMT-LIB model into Racket. These improvements

include fixing some performance issues related to scaling up the circuit size as well as

usability improvements.

64

Chapter 7

Machine verification

implementation

This chapter describes the implementation of Kronos’s code for machine verification.

Establishing modular output determinism for MicroTitan requires using machine ver-

ification to prove it satisfies four properties: core output determinism, and peripheral

output determinism for the SPI-in, SPI-out, and USB clock domains. In addition,

Kronos includes auxiliary proofs of output determinism specifically for the FIFO and

asynchronous FIFO modules (with the modifications discussed above). The results

of these auxiliary proofs are assumed when proving the four main properties in order

to simplify verification. Table 7.1 gives the number of lines of Racket code used to

implement verification of each property.

Property Lines of Racket code
Core output determinism 464
Asynchronous FIFO aux. proof 329
Peripheral output determinism (USB) 303
Peripheral output determinism (SPI-in) 130
Peripheral output determinism (SPI-out) 128
Synchronous FIFO aux. proof 108

Table 7.1: Number of lines of Racket code used to verify each property. These counts
do not include shared utility code or libraries such as the Racket DSL for executing
SMT-LIB circuits.

65

The following sections describe how the machine verification of each of these prop-

erties is implemented.

7.1 FIFO auxiliary proofs

Due to the modifications described in Section 6.1.2, both the OpenTitan’s syn-

chronous and asynchronous FIFO designs satisfy output determinism if considered

as a standalone circuit. Kronos proves this in separate auxilary proofs. These proofs

work by showing output equivalence between a normal instantiation of a FIFO and

an instance where its uninitialized memory is reset with all zeros.

By proving output equivalence between these two FIFO instances, Kronos is able

to soundly perform a transformation in the MicroTitan circuit where it zeroes the

storage of all verified FIFOs on reset. Since FIFOs are used frequently in MicroTitan

and proving output determinism generally requires reasoning about the uninitialized

data in a design, this transformation greatly simplifies reasoning about MicroTitan.

Since FIFOs are parameterized by their width and depth, this property is proven

for each size of FIFO where it’s assumed by other proofs. Table 7.2 lists each FIFO

verified in MicroTitan.

FIFO Type Depth Width
RAM response FIFO Sync 2 33
SPI firmware mode arbiter request FIFO Sync 4 2
Main to peripheral request crossbar FIFO Async 3 100
USB available buffer FIFO Async 4 5
USB received data FIFO Async 4 17
SPI RX & TX FIFOs Async 8 8

Table 7.2: Which FIFOs are verified by Kronos, including their type (synchronous vs
asynchronous) and size parameters.

The async FIFO proof requires the use of clk2fflogic as discussed in Section 6.2.

This allows Kronos to reason about stepping the FIFO’s read and write clock domains

individually or together. In order to reason about all possible executions, the inductive

step for the async FIFO is verified three times, once for each of the three possible

66

permutations where at least one clock steps.

7.2 Core output determinism

The core clock domain of MicroTitan consists of the Ibex processor, ROM/RAM,

UART, and a portion of the SPI and USB peripherals. Verifying core output deter-

minism entails implementing software-assisted deterministic start with output check-

ing, as described in Section 5.2. There are two main implementation challenges that

must be addressed based on the specific circuit being verified. The first is deter-

mining the boot code necessary to reset uninitialized state. Since this state includes

microarchitecture that’s not directly modifiable by software, the boot code incorpo-

rates some “tricks” to modify state indirectly through side effects. Second is dealing

with performance issues that result from unbounded growth of symbolic state. Large

symbolic expressions can make stepping the circuit and SMT solver queries very slow.

If they get too large, solver queries may even time out without finding a solution. To

address performance issues, Kronos uses a set of transformations that can be applied

to the circuit that help performance while preserving soundness. These transforma-

tions are called “hints”. The following two subsections describe how these challenges

are addressed in the Kronos implementation.

The final subsection describes an additional machine verification step necessary

to prove core output determinism, since the boot code is unable to reset all state in

MicroTitan’s core clock domain. This proof shows that the state remaining, which

may contain uninitialized data, cannot leak to outputs.

7.2.1 Boot code

The MicroTitan boot code is responsible for resetting as much of the core clock domain

state as possible. Note that the boot code is not part of our trusted computing base—

it is verified to be correct. The final boot code, annotated with comments, is shown

in Figure 7-1. Here, we discuss the tricks for each component to reset state.

67

1 ## (constant definitions omitted for space) ##
2
3 ## Reset SPI (1/2) ##
4 li x1 , SPI_BASE
5 li x2 , 0 x30000 # rst rxfifo and txfifo
6 sw x2 , SPI_CONTROL_OFFSET (x1)
7 li x2 , 0x100
8 sw x2 , SPI_CFG_OFFSET (x1)
9

10 ## Reset UART ##
11 li x1 , UART_BASE
12 # Set NCO for maximum possible baud rate
13 li x2 , UART_NCO
14 slli x2 , x2 , UART_NCO_OFFSET
15 # Enable system loopback
16 li x3 , 1
17 slli x3 , x3 , UART_CTRL_SLPBK_OFFSET
18 or x2 , x2 , x3
19 # Enable TX/RX
20 ori x2 , x2 , 0x3
21 # Write to control register
22 sw x2 , UART_CTRL_OFFSET (x1)
23 # Write 32 bytes to TX
24 li x4 , 32
25 li x2 , 0x42
26 _tx_loop :
27 sw x2 , UART_WDATA_OFFSET (x1)
28 addi x4 , x4 , -1
29 bnez x4 , _tx_loop
30
31 ## Reset SPI (2/2) & USB ##
32 li x1 , SPI_BASE
33 li x2 , SPI_BUFFER_OFFSET
34 add x1 , x1 , x2
35 li x11 , USB_BASE
36 li x12 , USB_BUFFER_OFFSET
37 add x11 , x11 , x12
38
39 # fill SPI and USB memory (with unique values for debugging)
40 li x2 , 511
41 li x3 , 0
42 _periph_mem_loop :
43 sw x3 , 0(x1)
44 sw x3 , 0(x11)
45 addi x1 , x1 , 4
46 addi x11 , x11 , 4
47 addi x2 , x2 , -1
48 addi x3 , x3 , 1
49 bge x2 , x0 , _periph_mem_loop
50 lw x0 , -4(x1) # dummy load from SPI memory
51 lw x0 , -4(x11) # dummy load from USB memory
52
53 ## Reset Ibex ##
54 li x1 , 0 x8000
55 lw x0 , 0(x1)
56
57 ## Reset RAM ##
58 li x1 , RAM_BASE
59 li x2 , RAM_END
60 _ram_loop :
61 sw x0 , 0(x1)
62 addi x1 , x1 , 4
63 bne x1 , x2 , _ram_loop
64 lw x0 , -4(x1) # dummy load from RAM

Figure 7-1: Boot code for MicroTitan.

68

Ibex

The majorify of the registers in the Ibex CPU are either initialized on reset or become

initialized after a small number of clock cycles spent executing any code. An exception

is the register stored_addr_q, which must be reset explicitly by the boot code. This

register stores the address currently being requested on the instruction memory bus,

assumming the memory doesn’t respond within the same cycle. It is uninitialized on

reset, and without intervention will remain uninitialized since the MicroTitan boot

ROM is hardwired to send a valid reply within a cycle.

To initialize this register, the boot code forces a delay by loading a word from the

ROM using the data memory interface (Figure 7-1 lines 54-55). The request arbiter

hardware in front of the ROM will then delay the instruction memory request to reply

to the data memory request, causing stored_addr_q to be written with the CPU’s

current instruction fetch address.

UART

The UART peripheral is solely implemented in the core clock domain, and most

of its registers are initialized on reset. However, it does contain two FIFOs with

uninitialized memory: the receive (“RX”) FIFO and the transmit (“TX”) FIFO, that

store data being received and transmitted by the UART, respectively.

The UART has a “loopback” control register, writable by software, that can be

enabled to internally connect the output of the UART to the input. Although likely

meant for testing, this inclusion makes it straightforward to reset the FIFO memories.

In order to reset the UART FIFO memories, the boot code enables loopback and

writes enough bytes to the transmit buffer to fill it up, and this data is then internally

routed back to the RX FIFO as inputs, filling up the receive buffer. The section of

boot code responsible for this can be found in Figure 7-1 on lines 11-29 .

One note is that we could use auxiliary FIFO proofs to allow us to assume that

this memory is cleared. However, the UART uses FIFOs of width 8 and depth 32,

which are relatively large compared to other FIFOs and slow to verify. In terms of

69

verification time, it’s actually faster to verify that this loop clears the memory fully. A

designer could choose, however, to trade off smaller and faster boot code in exchange

for more verification time to eliminate this portion of the boot code.

SPI

The SPI portions of the boot code reset just a few pieces of uninitialized state. The

main part is a 2 KB memory used for buffering data to be sent and received by the

SPI peripheral. The boot code loops over this memory and writes data to each entry

in order to reset it (Figure 7-1 lines 32-49). In addition, there are two other registers

left uninitialized until the core attempts a read from the SPI memory, so the boot

code performs a dummy read after resetting it (Figure 7-1 line 50).

The primary complexity in handling the core clock domain portion of the SPI

peripheral is the fact that symbolic CDC register values from the SPI-in clock do-

main leak into registers in the core clock domain. Left unchecked, these symbolic

inputs cause registers in the core clock domain to eventually contain large symbolic

expressions which negatively impact performance. Therefore, the first thing the boot

code does is enable two registers that hold the asynchronous FIFOs involved in CDC

communication in a reset state, which stops the flow of symbolic data (Figure 7-1

lines 4-8). However, since it takes several cycles for these configuration registers to

be set, a bit of symbolic data still leaks into the core clock domain component of the

SPI peripheral. A large part of the implementation complexity deals with handling

this symbolic data in a performant manner. This is done using performance hints,

which are discussed in Section 7.2.2.

The SPI peripheral has a few other registers that either cannot be initialized

by executing boot code or are otherwise inconvenient to reason about in this way.

However, it turns out that once the rest of the core clock domain is reset these registers

will never leak uninitialized data, which we prove separately after verifying that the

boot code resets all other core clock domain state (see Section 7.2.3).

70

USB

A minimal amount of the USB peripheral is implemented in the core clock domain,

making it fairly easy to handle. The only state must be explicitly initialized is a 2

KB data buffer, which is cleared in the same loop as the SPI memory (Figure 7-1

lines 32-49).

One key difference between the USB peripheral memory and the SPI peripheral

memory is that the USB memory may also be written directly from the USB clock

domain portion of the peripheral via a second write port. This poses a challenge for

reasoning from the perspective of the core clock domain: since we overapproximate the

USB clock domain, it can perform arbitrary writes and effectively undo any progress

made in initializing the USB memory.

To counter this, we add an additional check to the proof of peripheral output

determinism for the USB clock domain where we prove that any data the USB clock

domain may write to the USB memory is “safe”, i.e. only dependent on the USB sub-

circuit’s inputs. This means that once an entry of the memory is initialized by the core

clock domain, it will never depend on uninitialized data from that point forward, no

matter whether or not the USB clock domain writes to it as well. This overapproxima-

tion of the USB memory is implemented with the abstract-or-overapprox-vector

performance hint, discussed in Section 7.2.2. With this transformation in place, the

boot code is able to provably reset the core clock domain part of the USB peripheral

simply by looping over and resetting each entry of the USB memory.

RAM

Since RAM is uninitialized on reset, boot code loops over the memory and writes zero

to each entry (Figure 7-1, lines 58-64).

7.2.2 Performance hints

The following performance hints are general transformations that can be applied to

any component of the circuit state while verifying output determinism, because they

71

are guaranteed to be sound (i.e., they don’t affect correctness). Below are a list of the

performance hints used, along with a description of their behavior and what they’re

used for in the proof of core output determinism.

Overapproximate

The overapproximate hint overapproximates one or more specified registers with

fresh symbolic values. This is useful since some symbolic expressions in the state

may not encode any useful constraints but may continuously grow during execution,

worsening performance. Overapproximating these expressions away ensures that they

do not cause performance issues.

The SPI and USB memories are overapproximated in the implementation until the

loop that resets them starts. Since they’re being overwritten anyway, there’s no need

to keep track of the growing symbolic expressions that accumulate in these registers

due to symbolic input from the corresponding peripheral clock domains. In addition,

there’s a register in the SPI peripheral that latches the output from the SPI memory

on every cycle. Since we don’t reset this register with boot code (it’s handled by the

proof discussed in Section 7.2.3), we simply overapproximate it.

Abstract

The abstract hint performs a solver query to determine if a given register relies

only on allowed dependencies (i.e., the circuit’s past inputs). If so, that register is

set to a fresh symbolic value that is itself added to the set of allowed dependencies.

If not, the register value is left as-is. The solver query ensures that this is a sound

transformation.

Many registers in the SPI peripheral that interface closely with the SPI-in clock

domain are abstracted. Since the values in the SPI-in clock domain that cross to the

core clock domain are considered allowed dependencies, abstraction is able to replace

these register values with symbolic values that themselves are considered allowed

dependencies, making it quick for a solver query to determine that these registers do

not depend on uninitialized data.

72

In addition, a handful of registers that are responsible for receiving clock domain

crossing interrupts from the USB clock domain are abstracted.

Abstract-or-overapprox-vector

The abstract-or-overapprox-vector hint loops over every entry in a vector (the

Racket representation of a memory), and checks if each one depends only on allowed

dependencies. If so, it replaces that entry with a fresh symbolic value that itself is

added to the set of allowed dependencies (like the abstract hint). If not, it still

replaces the entry with a fresh symbolic value, but does not add that symbolic value

to the set of allowed dependencies (like the overapproximate hint).

This hint is used to implement the transformation of the multiport USB memory.

as described in Section 7.2.1. This hint captures the desired behavior since we know

that the USB clock domain can overwrite values in the memory (hence always over-

writing it with fresh symbolic value), but we know that if the old value was already

solely dependent on allowed dependencies, the new value must be as well (since it

could either be the same as the old value if no write is performed, or become a new,

allowed value from the USB clock domain).

Concretize and run-and-replace

The concretize hint performs a solver query to determine if a given register con-

taining a symbolic expression can have only a single concrete value, and, if so, then

that single concrete value is swapped in to replace the symbolic expression.

The run-and-replace hint executes the circuit starting from reset once again for

a certain number of cycles, but with a different set of hints. It then replaces the

values of specified registers in the state of the main execution with the values of those

registers in the state of the secondary execution.

The run-and-replace and concretize hints are used in combination to con-

cretize the value of a register that stores the current state of the state machine that

handles input from the SPI RX FIFO. In the main execution, almost all registers in-

volved in implementing this state machine are abstracted, since they otherwise grow

73

to large symbolic expressions that slow down the final state check solver query. After

the boot code executes for 150 cycles, this state machine hangs on an idle state, due

to the boot code disabling the RX FIFO at its start. However, by abstracting all

the registers that implement this state machine, it is difficult to prove that this is

the case. The run-and-replace hint is used to perform an auxiliary execution for

150 cycles, where none of this state is abstracted. The concretize hint is applied to

the auxiliary execution to prove that the state machine must be in an idle state after

those 150 cycles complete. The register that stores the state of the state machine

is then overwritten in the main execution with the value for “idle”, which prevents

future updates to the rest of the state machine.

7.2.3 Additional output equivalence proof

Boot code cannot be used to reset all registers in the core clock domain. There is a

register in the SPI peripheral, sram_wdata, that is initialized on reset but may end

up containing uninitialized data that leaks from the SPI memory before it is reset by

the boot code. Although boot code cannot reset sram_wdata, it turns out that any

uninitialized data that ends up in this register will never influence outputs. Kronos

proves this using an output equivalence proof between the circuit state after boot

code is finished running, and an instance of the circuit state where this register’s

value has been made to fully depend on allowed dependencies. This lets us say that

the register has effectively been initialized after boot code finishes running.

In order to show that this is the case, Kronos needs to prove an invariant relating

the value of sram_wdata with another register, byte_enable, which is abstracted to

a fresh symbolic value on each cycle. The invariant is that for any i between 0 and 3

(inclusive), if byte_enable[i] is 1, then sram_wdata[8(i+1):8i] is only dependent

on allowed dependencies. In order to represent this in our circuit state, on each

cycle sram_wdata is replaced with the expression shown below, before byte_enable

is abstracted on that cycle. This overapproximation is proven to be sound using a

solver query.

74

(concat

(ite (= byte_enable[3] 1) fresh_wdata*[31:24] fresh_wdata[31:24])

(ite (= byte_enable[2] 1) fresh_wdata*[23:16] fresh_wdata[23:16])

(ite (= byte_enable[1] 1) fresh_wdata*[15:8] fresh_wdata[15:8])

(ite (= byte_enable[0] 1) fresh_wdata*[7:0] fresh_wdata[7:0]))

Here, fresh_wdata... represent fresh symbolic values. The names with a star

suffix are added to the allowed dependencies set, and the ones without are not. After

boot code execution, this allows Kronos to easily construct a version of sram_wdata

that only depends on allowed dependencies, where every 8-bit slice corresponding to

a zero in byte_enable is replaced with zeros.

In addition, there are two other registers in the SPI peripheral that are not prov-

ably initialized by Kronos’s boot code, but likely could be by different boot code.

These two registers latch data that is in the SPI memory and is to be output over

SPI, so they could be reset by having the boot code use the proper configuration

registers to set up a transaction. However, since much of the state in the SPI pe-

ripheral ends up containing symbolic values during boot code execution, it is difficult

to reason about a specific concrete execution in a performant manner. In order to

avoid the pitfalls associated with this, the uninitialized data in these registers are also

shown not to influence outputs as part of the proof described above.

7.3 Peripheral output determinism

Kronos verifies peripheral output determinism for each peripheral clock domain. As

mentioned in Section 5.3, our general strategy for proving this property is by proving

output equivalence between an instance of the peripheral clock domain subcircuit

initialized normally and one with an entirely deterministic starting state. This section

discusses interesting aspects of the implementations of each peripheral clock domain’s

associated proof.

75

7.3.1 SPI-in and SPI-out

The SPI-in and SPI-out clock domains each have a single register that is left unini-

tialized on reset. In both cases, a straightforward output equivalence proof is enough

to show that the uninitialized data in these registers never leak to outputs.

Although both of these proofs end up being quite simple, this is in part due to

the FIFO auxiliary proofs. Without the FIFO proofs, the SPI proofs would have to

handle the uninitialized data left in the async FIFO storage themselves.

7.3.2 USB

The USB clock domain poses a unique implementation challenge. Since this clock

domain also contains the multiport USB memory, it includes a large piece of state that

is uninitialized on reset. With this uninitialized state and completely unconstrained

inputs, it turns out that the USB clock domain subcircuit on its own does not actually

satisfy peripheral output determinism, since values from this uninitialized memory

may leak to outputs.

Proving peripheral output determinism for USB requires more specialized rea-

soning, with a hybrid approach that fuses the software-assisted strategy for core

output determinism with the inductive strategy for proving hardware-inherent prop-

erties. Kronos divides up the USB proof into two separate proofs called “phase 1”

and “phase 2”. Figure 7-2 is a block diagram of the USB peripheral showing the

distinction between these two phases. The phase 1 proof corresponds to the USB

peripheral’s operation while boot code is running. During this time, all entries of the

USB memory are considered to potentially contain uninitialized data, since there is

no way to reason about when any given entry would be reset by the boot code in

terms of USB clock cycles. This phase, however, does allow for more specific reason-

ing about the values of CDC registers from the core clock domain. Since the boot

code that executes during this time is known, it’s possible to verify that these CDC

register values are not just safe, but that they also have specific, fixed values. It’s

also important to note that these fixed values must be the reset values of these CDC

76

CPU
(executing boot

code)

Config
Regs

Memory

Core clock domain USB clock domain

USB peripheral

Memory may
still contain

uninitialized data

Configuration is
proven to be

known, fixed values

Config prevents
uninitialized data

from leaking

Writes proven to be
safe, so they do not

interfere with boot code

(a) Phase 1

CPU
(executing arbitrary

code)

Config
Regs

Memory

Core clock domain USB clock domain

USB peripheral

Memory contains no
uninitialized data

Configuration
may have

arbitrary values

(b) Phase 2

Figure 7-2: The two phases of the USB clock domain proof.

registers, since otherwise additional reasoning would be required to determine what

happens in the time between reset and the CDC registers being set to their desired

values, which would defeat the purpose of using fixed inputs in the first place.

Luckily, the default values for the core to USB CDC registers ensure that no

77

uninitialized data can leak from the USB memory to outputs. Kronos verifies in

the core output determinism proof that these CDC registers maintain their reset

values throughout boot code execution, allowing the proof of phase 1 to make this

assumption.

In addition, the phase 1 proof includes logic to ensure that data from uninitialized

state is not written to the USB memory itself. This enables the assumption discussed

in the proof of core output determinism, that “safe” memory entries remain safe, even

though the memory may be written to in otherwise arbitrary ways by the USB clock

domain.

It’s not possible to make assumptions about specific CDC register values after

boot code execution concludes. At this point, however, it is possible to assume that

the USB memory is fully reset, since this is proven by core output determinism.

Therefore, phase 2 is able to use the output equivalence technique to show that the

USB peripheral satisfies output determinism.

78

Chapter 8

Evaluation

This chapter provides an evaluation of Kronos answering the following questions:

• How long does it take to verify MicroTitan? (Section 8.1)

• Does MicroTitan require hardware changes in order to satisfy output determin-

ism? If so, how substantial are those changes? (Section 8.2)

• Does proving output determinism help find potential security issues? (Sec-

tion 8.3)

8.1 Performance

Table 8.1 presents the runtime of the machine verification implementation for each

property we prove. These runtimes were benchmarked on a machine with a quad

CPU Intel Xeon E7-8870 with 40 total cores (or 80 hyperthreads) and a 2.40GHz

clock speed. The machine has 256 GB RAM.

All these properties can be proven in parallel, so on a machine with at least five

cores the overall verification time is dominated by the slowest property. That would

be core output determinism, with a runtime of 12,526 seconds or about 3 hours

and 29 minutes. Single core performance can be calculated as the sum of times

shown, dominated by core output determinism and the FIFO auxilary proofs, for a

total of about 3 hours and 42 minutes.

79

Property Runtime (seconds)
Core output determinism 12526.5
FIFO auxiliary proofs 727.0
Peripheral output determinism (USB) 41.1
Peripheral output determinism (SPI-in) 18.4
Peripheral output determinism (SPI-out) 17.8

Table 8.1: Runtime of each verification script.

These runtimes show that the implementation of modular output determinism for

MicroTitan is computationally feasible.

Scaling verification

Evaluating the runtime of verifying each property reveals that verification time is

heavily dependent on the size of the circuit being verified. This is evident with

regards to the synchronous and asynchronous FIFO verification, since Kronos verifies

multiple instantiations of the FIFO with various size parameters.

Figure 8-1 shows a graph of FIFO verification time versus FIFO width and depth.

The specific FIFO sizes verified for this project are distinguished on the graph, and

summarized in table 8.2. The sum of these times determines the FIFO auxilary proof

runtime presented in table 8.1.

2 3 4 5 6 7 80

50

100

150

Depth

Ru
nt

im
e

[s]

Runtime of synchronous FIFO verification

Width 2
Width 4
Width 8
Width 16
Width 32

3 4 5 6 7 80

500

1,000

Depth

Ru
nt

im
e

[s]

Runtime of asynchronous FIFO verification

Width 2
Width 4
Width 8
Width 16

Figure 8-1: Graphs of FIFO runtime vs. FIFO size parameters for synchronous and
asynchronous FIFOs. The black circles represent the parameters of FIFOs verified in
MicroTitan.

80

Type Depth Width Runtime (seconds)
Sync 2 33 0.6
Sync 4 2 0.7
Async 3 100 94.0
Async 4 5 24.9
Async 4 17 42.7
Async 8 8 564.2

Table 8.2: Runtime of verifying output determinism for FIFOs, parameterized by
type (sync or async), width, and depth.

Figure 8-1 shows that the FIFO verification runtime scales exponentially with

the depth of the FIFO, with the difference between FIFO width becoming more

apparent at larger depths. The FIFOs verified in Kronos were all in a reasonable

performance domain, but if they were deeper then verification of the FIFOs could

become infeasible. This could be problematic since FIFOs contain uninitialized data

on important boundaries, as they are often used to facilitate CDC communication and

external I/O. If a circuit contains FIFOs deep enough that it becomes intractable to

verify that they do not leak data, it could be infeasible to verify output determinism

for the circuit overall.

Figure 8-1 also shows that asynchronous FIFO verification is an order of magni-

tude slower than synchronous FIFO verification for the same size parameters. This

can likely be attributed to several factors. One is the increase in state size due to

clk2fflogic extraction, which also requires more complicated logic to handle. An-

other is that the asynchronous FIFO requires proving three inductive steps, one for

each permutation of clock steps, while the synchronous FIFO only requires proving a

single inductive step.

This behavior of verification time scaling with state size is common in SMT-based

proofs. Lee and Sakallah show this and present a method for verifying hardware

properties that scales with state size [12]. Adopting techniques from this work could

help if scaling were a major performance botttleneck.

81

8.2 OpenTitan hardware changes

In order to ensure that MicroTitan satisfies output determinism, Kronos includes

boot code to reset state, as well as hardware changes to fix OpenTitan peripherals

that make satisfying the property impossible or too difficult to verify. This section

evaluates the impact of both the boot code addition and RTL changes, which is shown

to be minor. This indicates that off-the-shelf hardware can be modified in order to

maintain security properties with minimal undesirable consequences.

8.2.1 Boot code

MicroTitan includes boot code that resets as much uninitialized state as possible.

This boot code consists of 44 RISC-V instructions and takes up 320 bytes, which is

about 4% of the MicroTitan ROM. It takes 24, 516 cycles to run, which translates to

0.49 additional milliseconds on boot when run on a Nexys Video FPGA using a 50

MHz clock speed. The time to execute boot code primarily comes from looping over

memory to reset entries. If MicroTitan were modified to include a larger RAM, for

example, the boot time would increase proportionally.

8.2.2 RTL changes

Several OpenTitan components had to be patched in MicroTitan in order to make

it possible to satisfy output determinism. The complexity of these changes in terms

of lines of code, as well as the impact of these changes on hardware utilization are

shown in table 8.3.

Change LoC LUTs used Registers used
Sync FIFO +8 +1.64% +0.00%
Async FIFO +13 +0.22% +0.09%
SPI RX order +15 +0.00% +0.00%
USB memory +30 +0.01% +0.00%
USB reset sync +10 −0.02% +0.00%

Table 8.3: Lines of code required and FPGA resource use for each hardware change
necessary to ensure MicroTitan satisfies output determinism.

82

These changes were benchmarked by synthesizing them for the Nexys Video FPGA

dev board (natively supported by build scripts provided in the OpenTitan repository),

using Vivado 2018.3. Note that these benchmarks are for the OpenTitan itself, not

MicroTitan. This is to measure the impact these changes would have if upstreamed

into OpenTitan. The measurement baseline includes the toolchain hacks described

in Section 6.1.1.

For the purposes of benchmarking, these changes were applied indvidually to

the baseline in order to clearly illustrate the individual impact of each one. All

measurements are reported relative to the baseline, and resource usage is reported in

terms of percentage of that resource available in the FPGA.

The FIFO patches are the highest-impact changes, likely because these structures

are used many times throughout the design. The impact is still minor, however, using

less than 2% of available hardware resources. Most other changes make a negligible

difference, with the USB reset synchronizer replacement using slightly fewer hardware

resources. None of these changes prevent OpenTitan from meeting timing constraints

for the FPGA target.

Overall, these changes had a minimal impact on utilization and timing, and didn’t

require much code to implement.

8.3 Impact of violating output determinism

While verifying MicroTitan, we found multiple parts of the design that make output

determinism impossible to satisfy. These issues were patched in the implementation

of MicroTitan (see Section 6.1.2).

The USB reset synchronizer violation likely doesn’t have a security impact in any

real-world scenario—the extent of what an attacker can observe is whether or not the

SoC’s reset line was high or low two cycles before reset was last deasserted, and this

information only leaks on the cycle immediately after reset is deasserted.

Otherwise, we believe each other output determinism violation may have some

security impact. This section discusses the implications of each one.

83

8.3.1 UART RX data leak

In the baseline OpenTitan implementation, we discovered that a byte of uninitialized

data can be read by software directly from the UART RX FIFO. This is because

after reset, the baseline synchronous FIFO implementation exposes the first entry of

its uninitialized memory directly to a software-accessible register. Although software

can determine that this entry is invalid (by checking a separate to register to determine

if the FIFO is empty), in the context of a Notary-like system that aims to guarantee

non-interference across reset boundaries, malicious software could skip this check and

extract a byte of data that was received over UART by a previously executing agent.

This issue was reported to the OpenTitan team. Although information sent over

I/O channels is not considered confidential according to their security model, they

accepted a patch1 to prevent the synchronous FIFO from outputting invalid data (in

all instances, not just the UART) in order to provide defense-in-depth.

Note that this issue does not actually lead to a violation of output determinism in

MicroTitan, since the boot code resets data in the UART RX FIFO before it can leak.

However, we discuss it here for two reasons. First, it would have been impossible to

reset this state without the somewhat lucky inclusion of the UART loopback register.

Second, discovering this issue led to a hardware change that hardened OpenTitan

upstream.

8.3.2 SPI TX data leak

The SPI peripheral is designed intentionally such that it will transmit data from its

TX FIFO even when it reads as empty. This means that if the device has been reset,

and no new data has been written to the SPI TX FIFO, a byte of uninitialized data

left in the FIFO memory may leak over SPI if a host begins a transaction. This

violates output determinism, which states that outputs may not be dependent on

data left uninitialized at reset.

Since the CPU cannot read this uninitialized data directly, this can only be ex-

1https://github.com/lowRISC/opentitan/pull/2420

84

ploited by a malicious SPI host. It would be problematic in a scenario where data

transmitted over SPI prior to the last reset should be confidential to the SPI host

currently communicating with the device.

This problem was fixed by patching all asynchronous FIFOs to initialize the first

entry of their storage to zero on reset. Only the SPI TX FIFO needed to be patched,

but patching all FIFOs simplified reasoning about the circuit as a whole and had

minimal impact.

8.3.3 SPI RX data leak

Another issue with the SPI peripheral is that data previously received over SPI prior

to reset can be read by the processor. The problem is that there’s a configuration

register that can be changed by software that determines the order of bits received

by the SPI (MSB or LSB first). This register can be changed during an SPI transac-

tion, so in theory with precise enough timing software could toggle it such that the

order is changed after each bit is received. The way the hardware is designed, this

could prevent the 8-bit shift register that gets filled by the RX hardware from being

initialized beyond a single bit. Therefore, 7 bits of uninitialized data can be read by

software.

This is tricky to exploit, due to how precisely this configuration register must

be toggled (in fact, it may be impossible to exploit if the memory interface is too

slow to toggle the register fast enough). In addition, writing to this register during

an SPI transaction can result in glitches due to metastability, which could result

in unspecified behavior. For this reason, the OpenTitan documentation states that

software must not change this register during SPI operation. Of course, that does

not prevent malicious software from attempting to use this interface to exploit a

vulnerability, since the hardware does not enforce this.

In order to resolve this issue, the SPI peripheral was patched to prevent the RX

order from being changed while a byte is being transmitted.

85

8.3.4 Possible USB data leak

The USB peripheral starts out with an unitialized SRAM buffer, and we believe

it may be possible for some of the data in this buffer to leak via USB. Since the

USB peripheral implements the USB device protocol, data is transmitted only in

response to an “IN” endpoint request from a USB host. Software is responsible

for setting a configuration register to indicate when there is data available for a

response. Regardless of whether this configuration register is set or not, data from

the USB memory flows through a chain of two registers before it reaches a point

where it may be transmitted as a response to an IN request. However, a problem

may arise when uninitialized data is latched in those two intermediate registers, and

software indicates that data is ready to be transmitted over USB while the peripheral

is currently processing an IN request. Although the valid data that software wishes

to transmit may not yet be latched in the two intermediate registers, the hardware

will note that there is valid data ready to be sent and the uninitialized values in these

registers will be leaked via USB.

It’s unclear if the exact issue described here is exploitable. It’s likely that these

intermediate registers may actually be cleared with the correct valid data before an

IN request is replied to. However, the complexity of the USB protocol has made it

difficult to verify this. In order to ensure that MicroTitan satisfies output determin-

ism, the USB peripheral is patched to not write to the intermediate registers unless

software has already indicated that it has written valid data to the USB memory that

it is ready to send.

86

Chapter 9

Related Work

9.1 Verifying systems software

The Serval verification framework [20] allows systems code to be verified against an

idealized model of the RISC-V ISA, but any security properties proven with these

verification methods could be violated due to microarchitectural bugs.

Murray et al. [19] use formal verification to prove information flow control prop-

erties, which provide integrity and confidentiality, on top of the C implementation

of the seL4 microkernel. This is another example of low-level systems software with

verified security properties, but this work assumes correct hardware, which doesn’t

capture vulnerabilities such as microarchitectural side channels.

9.2 Verifying hardware

9.2.1 Self-equivalence with don’t-cares

Lee and Sakallah [12] apply formal verification to prove that 41 bits of state can

be left uninitialized in a Cortex-M0+ ARM processor core without the uninitialized

data propagating to observable outputs. They call this property “self-equivalence

with don’t-cares” or “SEQX”.

The primary contribution of their work is a new formal verification technique, and

87

the SEQX property is mentioned very briefly in the context of a benchmark for this

technique—a formal definition of SEQX is not presented in the paper. However, this

property sounds intuitively equivalent to the output determinism property presented

in this thesis, and thus should be sufficient to provide noninterference. Despite the

similarities, there are several ways in which their work varies from this thesis:

• SEQX appears to be an inherent property of the circuit, and their work does

not discuss reasoning about boot code resetting state. Therefore, a circuit like

MicroTitan does not satisfy SEQX, because some uninitialized state can leak

to outputs unless it is initialized by boot code.

• Their target is only a CPU, as opposed to an entire SoC including peripherals,

which have specific design patterns associated with their own challenges (all

data leakage problems we found came from peripherals).

• Given that it’s only a CPU, their Cortex-M0+ target is quite small compared

to MicroTitan, with only 41 bits of uninitialized state. MicroTitan has 420

bits of uninitialized state in registers (not including memories, which comprise

thousands of bits of uninitialized state).

• Their work does not discuss hardware with multiple clock domains.

Despite these differences, Lee and Sakallah’s technique could be useful in conjunc-

tion with the techniques presented in this thesis, for example, their method could

replace Kronos’s method for proving remaining uninitialized state left over after boot

code execution does not propagate to outputs.

9.2.2 CDC verification

Existing academic work focusing on formal verification of circuits with multiple clock

domains seems to primarily focus on verifying clock domain crossing boundaries them-

selves [13], rather than properties of entire circuits. Clock domain crossing circuits

are hard to design in part due to issues with metastability, which relates to analog

88

behaviors of circuit components such as flip-flops breaking the digital abstraction.

Although important to get right, this is beyond the scope of our work—we assume

ideal digital circuits, and assume that the circuits we analyze do not have issues such

as metastability.

9.2.3 RISC-V formal

One popular hardware verification project, riscv-formal [26], provides a framework

for verifying that a particular processor correctly implements the RISC-V ISA. This

is distinct from our work since it focuses on correctness with respect to an ISA, which

makes no security guarantees.

9.2.4 Symbiyosys tool

Symbiyosys [8] is a tool for formally verifying digital circuits with support for formally

verifying circuits with multiple clocks. However, many examples we have found use

this tool to verify simple properties about small modules, not system-wide properties

such as output determinism for an entire SoC.

9.3 Hardware state clearing

Several other works have also explored the concept of microarchitectural state clearing

on context switches in order to enforce security guarantees.

Ge et al.[9] argue that hardware support for microarchitectural state flushing is

necessary to ensure operating systems are safe from timing channels. They describe

how flushing the L1 cache on an x86 machine requires a “brittle” sequence of instruc-

tions based on assumptions about undocumented hardware implementation details,

due to a lack of a dedicated instruction. A related project [24] modifies an existing

RISC-V processor to add a special “temporal fence” instruction that provides the

miroarchitectural state clearing necessary to enforce safety from timing channels.

MI6 [4] is another project that argues for hardware state-clearing support. MI6

89

implements a prototype of an out-of-order processor with a purge instruction added

to its ISA which clears microarchitectural state. In particular, it clears structures

that track in-flight instructions, branch predictor structures, and cache state. This

instruction is used for safe context-switching between security domains on a single

core.

All of this work makes a similar observation to ours that state clearing can be use-

ful for noninterference across context-switch boundaries, but they apply a hardware-

based approach as opposed to Kronos’s software-based approach, and do not em-

ploy formal verification to ensure that all state is reset. An advantage of Kronos’s

software-based approach is that it allows use of off-the-shelf hardware with minimal

modifications, whereas a hardware-based approach requires drastic changes to the

hardware.

9.4 Taint tracking

Taint tracking is a general approach for enforcing security policies around informa-

tion flow. It can be applied to high-level application software or low-level hardware

[21]. Taint tracking works by “tainting” data based on application-specific security

properties (for example, data can be tainted to mark that it comes from a high secu-

rity domain, and thus may not be leaked into a lower security domain). Calculations

incorporating tainted data carry forward the taint to the result, allowing the flow

of data throughout a system to be tracked. Similar to taint tracking, Kronos has

a notion of “safe” and “unsafe” data, depending on whether or not it comes from

outside inputs or uninitialized data respectively.

9.5 Hardware symbolic execution

Zhang and Sturton [28] present a strategy for applying symbolic execution to digital

hardware, similar to this thesis. However, instead of using it to prove that hardware

satisfies a specific security property, they use symbolic execution to search for the

90

presense of a variety of general vulnberability classes in given hardware. They use a

toolchain based on the Verilator simulation framework for converting SystemVerilog

to C++, and use the KLEE [5] engine for symbolic execution.

91

92

Chapter 10

Conclusion

This thesis presents Kronos, which consists of the MicroTitan SoC and a security

property called output determinism that has been formally verified at the hardware

level. This thesis develops a methodology for proving this property, provides an

argument that it is sound, and implements it for MicroTitan. This thesis further

shows that hardware more complex than the PicoRV32 can be used to implement

a system that guarantees noninterference as defined by Notary, and provides insight

into challenges around proving security properties for realistic embedded hardware

systems.

10.1 Future work

10.1.1 Modular reasoning

Reasoning about large systems as a whole is difficult, and reasoning about them

modularly helps. This thesis already uses modular reasoning in a few ways:

• The FIFO auxiliary proofs entail modular reasoning about individual Verilog

modules.

• Modular output determinism allows reasoning about each clock domain sepa-

rately.

93

An additional level of modular reasoning that would be helpful is modular rea-

soning at the level of peripherals. OpenTitan peripherals seem well suited for this:

they all use a standard interface designed to work with the same interconnects.

Having a formal way to reason about each peripheral individually and describe

how they compose would make it possible to reason about security properites on a

peripheral-by-peripheral basis, and then think about how they can be combined to

build new custom subsets and draw conclusions about the security guarantees those

subsets provide. Note that although our work lets us find potential security issues

that affect the OpenTitan, we can only firmly state that MicroTitan has been verified,

since that’s the circuit we actually verify. We can’t state any precise conclusions about

OpenTitan itself, or about its peripherals as individual units.

10.1.2 Scalable verification

One pitfall of our verification approach based on symbolic execution and SMT solvers

is that sizes of various structures can greatly affect verification runtime.

One example is the time it takes to reset memories. Our boot code loops over each

entry of peripheral memories as well as the SoC’s RAM in order to reset them, and the

time to verify boot code execution scales linearly with its size. If MicroTitan’s RAM

was the same size as Notary’s SoC, core output determinism would take hundreds of

hours to verify, since symbolically executing a cycle of MicroTitan’s more complex

circuit is much slower.

However, the effects of a memory-clearing loop are regular and predictable no

matter the size of the RAM. A way to reason about the effects of these loops that

operates at a higher level of abstraction would be helpful for performance, and prevent

artificial size constraints from having to be imposed on verified systems.

Another example is FIFO verification time scaling with size parameters. Although

FIFO verification time wasn’t a bottleneck, we wouldn’t able to rely on using those

proofs if we had any FIFOs that were prohibitively large. Lee and Sakallah [12]

present a scalable verification technique that operates on hardware at the word-level,

which could be interesting to apply here.

94

10.1.3 Persistent storage

One common component of SoCs used in real systems is persistent storage such as

flash. However, it’s not clear how persistent storage would fit into a system that aims

to provide noninteference. Coming up with a security spec that takes into account

persistent storage, as well as proof strategies to model it, would be an interesting

direction for future work. OpenTitan includes a flash peripheral, so this would be

necessary for verifying OpenTitan in its entirety.

10.1.4 Design-for-verification

This thesis focuses primarily on verifying hardware based on an existing open source

design with minimal modifications. However, an interesting direction for future work

could be to use insights gained from this work to either modify or design hardware

from scratch that is well-suited to verification.

One change in particular that could have made verification simpler in the context

of this project would be to add an extra control register to the SPI and USB periph-

erals that lets each of them be disabled by software (held in their reset state). This

register would be set such that they are in the disabled state on reset.

This would be helpful since a lot of effort was dedicated to compensating for

symbolic state that can leak while the boot code resets memories and sets up various

control registers. For example, this would allow us to eliminate the need for using

various performance hints to optimize the SPI RX state machine control logic, and it

would eliminate the need for the 2-phase USB proof (since the peripheral would not

be active during the first phase).

This change would likely not have a huge impact on hardware in terms of timing

or resource utilization, so it seems plausible that it would be a worthwhile tradeoff

for a multiclock design where a verified security property is desired. In fact, more

recent versions of OpenTitan incorporate a “reset manager” module, which supports

software controlled resets of the SPI and USB peripherals [17]. If incorporated into

MicroTitan, this module may give this desired behavior.

95

10.1.5 Formalizing metatheory

Kronos proves multiple different properties using Rosette, but it does not formalize the

way we use one proof to inform another (such as using the FIFO proofs in peripheral

output determinism proofs), nor does it formally prove that the core and peripheral

output determinism properties imply top-level output determinism. This constitutes

a formality gap that could be fixed by formalizing the metatheory. This would reduce

our TCB, and give us more confidence in our overall claim that MicroTitan satisfies

output determinism.

96

Bibliography

[1] Issues · zachjs/zv2v. https://github.com/zachjs/sv2v/issues?q=is:
issue+is:closed+author:nmoroze, 2020.

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The
EM side-channel(s). In Proceedings of the 2002 IACR Workshop on Cryptographic
Hardware and Embedded Systems (CHES), Redwood City, CA, August 2002.

[3] Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and Nickolai
Zeldovich. Notary: A device for secure transaction approval. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (SOSP), Huntsville,
Ontario, Canada, October 2019.

[4] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. Mi6: Secure enclaves in a speculative out-of-order processor.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’52, page 42–56, New York, NY, USA, 2019. Association
for Computing Machinery.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 209–224, San Diego, CA, December 2008.

[6] Clifford E Cummings, Don Mills, and Steve Golson. Asynchronous & syn-
chronous reset design techniques-part deux. SNUG Boston, 9, 2003.

[7] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Proceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pages 337–340, Budapest,
Hungary, March–April 2008.

[8] Symbiotic EDA. Symbiyosys (sby) documentation. https://symbiyosys.
readthedocs.io/en/latest/index.html, 2020.

[9] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: the
missing OS abstraction. In Proceedings of the 14th ACM EuroSys Conference,
pages 1–17, Dresden, Germany, March 2019.

97

https://github.com/zachjs/sv2v/issues?q=is:issue+is:closed+author:nmoroze
https://github.com/zachjs/sv2v/issues?q=is:issue+is:closed+author:nmoroze
https://symbiyosys.readthedocs.io/en/latest/index.html
https://symbiyosys.readthedocs.io/en/latest/index.html

[10] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Proceedings of the 34th Annual Interna-
tional Cryptology Conference (CRYPTO), pages 444–461, Santa Barbara, CA,
August 2014.

[11] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative execution.
In Proceedings of the 27th USENIX Security Symposium, pages 19–37, Baltimore,
MD, August 2018.

[12] Suho Lee and Karem Sakallah. Unbounded scalable verification based on approx-
imate property-directed reachability and datapath abstraction. In International
Conference on Computer Aided Verification, pages 849–865, July 2014.

[13] Bing Li and Chris Ka-Kei Kwok. Automatic formal verification of clock domain
crossing signals. In 2009 Asia and South Pacific Design Automation Conference,
pages 654–659. IEEE, 2009.

[14] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-
val Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user
space. In Proceedings of the 27th USENIX Security Symposium, pages 973–990,
Baltimore, MD, August 2018.

[15] lowRISC contributors. Ibex RISC-V core. https://github.com/lowRISC/ibex,
2019.

[16] lowRISC contributors. Open source silicon root of trust (RoT) | OpenTitan.
https://opentitan.org/, 2019.

[17] lowRISC contributors. Reset manager HWIP technical specification. https:
//docs.opentitan.org/hw/ip/rstmgr/doc/, 2021.

[18] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of simple
power analysis on smartcards. In Proceedings of the 2000 IACR Workshop on
Cryptographic Hardware and Embedded Systems (CHES), pages 78–92, Worces-
ter, MA, August 2000.

[19] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from
general purpose to a proof of information flow enforcement. In Proceedings of the
34th IEEE Symposium on Security and Privacy, pages 415–429, San Francisco,
CA, May 2013.

[20] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak,
and Xi Wang. Scaling symbolic evaluation for automated verification of systems
code with Serval. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Huntsville, Ontario, Canada, October 2019.

98

https://github.com/lowRISC/ibex
https://opentitan.org/
https://docs.opentitan.org/hw/ip/rstmgr/doc/
https://docs.opentitan.org/hw/ip/rstmgr/doc/

[21] Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. Ex-
plicit secrecy: A policy for taint tracking. In 2016 IEEE European Symposium
on Security and Privacy (EuroS P), pages 15–30, 2016.

[22] Zachary Snow. sv2v: SystemVerilog to Verilog. https://github.com/zachjs/
sv2v, 2020.

[23] Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for
solver-aided host languages. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), pages
530–541, Edinburgh, United Kingdom, June 2014.

[24] Nils Wistoff, Moritz Schneider, Frank Gürkaynak, Luca Benini, and Gernot
Heiser. Prevention of microarchitectural covert channels on an open-source 64-
bit RISC-V core. In Workshop on Computer Architecture Research with RISC-
V (CARRV). ACM, 2020.

[25] Claire Wolf. PicoRV32 – a size-optimized RISC-V CPU. https://github.com/
cliffordwolf/picorv32, 2020.

[26] Claire Wolf. RISC-V formal verification framework. https://github.com/
SymbioticEDA/riscv-formal, 2020.

[27] Claire Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/,
2020.

[28] Rui Zhang and Cynthia Sturton. A recursive strategy for symbolic execution to
find exploits in hardware designs. In Proceedings of the 2018 ACM SIGPLAN
International Workshop on Formal Methods and Security, FMS 2018, page 1–9,
New York, NY, USA, 2018. Association for Computing Machinery.

[29] Yongbin Zhou and Dengguo Feng. Side-channel attacks: Ten years after its pub-
lication and the impacts on cryptographic module security testing. Cryptology
ePrint Archive, Report 2005/388, October 2005.

99

https://github.com/zachjs/sv2v
https://github.com/zachjs/sv2v
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
http://www.clifford.at/yosys/

	Introduction
	Background
	Goal and challenges
	Thesis contributions
	Thesis outline

	Background
	Deterministic start
	Threat model
	Symbolic execution
	OpenTitan
	Verification subset

	Output determinism
	Noninterference without state clearing
	Formal reasoning about circuits
	Example circuit

	Formal definition of output determinism

	Modular output determinism
	Model of multiple clock domains
	Clock domain crossing
	Outputs

	Machine-verified subproperties
	Core output determinism
	Peripheral output determinism

	Paper proof of top-level claim
	Notation
	Proof sketch

	Machine verification approach
	Modeling individual clock domains
	Core output determinism
	Peripheral output determinism

	SoC and toolchain implementation
	MicroTitan
	Modifications for toolchain
	Modifications for output determinism

	Toolchain

	Machine verification implementation
	FIFO auxiliary proofs
	Core output determinism
	Boot code
	Performance hints
	Additional output equivalence proof

	Peripheral output determinism
	SPI-in and SPI-out
	USB

	Evaluation
	Performance
	OpenTitan hardware changes
	Boot code
	RTL changes

	Impact of violating output determinism
	UART RX data leak
	SPI TX data leak
	SPI RX data leak
	Possible USB data leak

	Related Work
	Verifying systems software
	Verifying hardware
	Self-equivalence with don't-cares
	CDC verification
	RISC-V formal
	Symbiyosys tool

	Hardware state clearing
	Taint tracking
	Hardware symbolic execution

	Conclusion
	Future work
	Modular reasoning
	Scalable verification
	Persistent storage
	Design-for-verification
	Formalizing metatheory

