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ABSTRACT

Machine learning inference in multi-tenant cloud environments leads to significant chal-
lenges when it comes to minimizing latency and resource contention, especially as models
grow in size and complexity. This thesis addresses the cold start overhead and scheduling in-
efficiencies of multi-tenant ML serving by integrating the RayServe distributed model-serving
framework into cOS, a cloud operating system that unifies container and serverless paradigms.
The thesis also proposes two model-aware schedulers within ¢OS that intelligently routes
inference requests to reduce the number of cold starts: Model Colocation, which prioritizes
placing requests on machines where the required model is already loaded, and Centralized
Model Registry, which tracks globally available models to inform scheduling decisions. These
policies proactively reduce model load times by reusing cached models. Experimental results
on language translation workloads in an 8-node cluster show that these schedulers achieve
a ~ 50% reduction in average inference latency and eliminates roughly 4-5 cold starts per
workload, compared to cdOS’s default scheduler. Through this model-aware approach to
scheduling, our work enables more efficient, scalable, and low-latency ML inference serving in
multi-tenant cloud settings.
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Chapter 1

Introduction

Machine learning, which is becoming an integral part of almost every industry, requires
scalable, efficient, and low-latency infrastructures to handle increasingly complex real-time
workloads. Serving ML models presents significant challenges, including managing large
model sizes and memory requirements, efficiently scheduling workloads across multiple nodes,
and handling resource contention in distributed systems.

RayServe [1] is a framework designed to address these challenges, providing a scalable
solution for deploying ML models in a distributed system. By abstracting away the complexi-
ties of infrastructure management, RayServe enables developers to focus on deploying models
without worrying about system orchestration or resource allocation |2]. However, while ML
serving is an important building block for cloud applications, RayServe does not orchestrate
multi-tenant microservice applications.

aOS (]3], [4]) is a multi-tenant cloud operating system implemented in Go [5] that combines
container orchestration and serverless under a unified platform. In doing so, it provides
fast startup times and support for long-running stateful microservices to all tasks, enabling
them to benefit from the best properties of both serverless and container platforms. cOS
uses a centralized scheduler and resource requests to schedule long-running tasks, and uses
real-time resource utilization to inform scheduling decisions. Effective scheduling is crucial
for efficiently allocating resources, prioritizing tasks, and preventing bottlenecks, especially in
multi-tenant environments, where fairness, isolation, and scalability must be maintained for
good performance.

Traditional schedulers do not account for the unique requirements of ML workloads such
as the size, initialization time, and computational time. This thesis presents the design,
implementation, and evaluation of two model-aware schedulers that intelligently orchestrate
inference requests to minimize average latency by reducing the number of cold starts, and
therefore the overhead of model loading and configuration.

1.1 Contributions

We first integrate GPU support and RayServe into cOS, enabling scalable, distributed infer-
ence serving on top of 0OS’s flexible programming model. This integration highlighted the
performance bottlenecks caused by model loading and cold starts, which informed the design
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of the model-aware scheduler.

We introduce two novel scheduling policies:

1. Model Colocation Scheduling: Prioritizes colocating inference requests with models
already available in memory on the same machine. It aims to minimize the number of
cold starts by routing requests to machines where the models are cached. When warm
proxies are unavailable, this policy either queues requests at the proxy (Colocation
With Queuing) or processes the request immediately on another machine (Colocation
Without Queuing).

2. Centralized Model Registry Scheduling: Maintains a global registry of available
models across the system, allowing for routing of requests to machines that have the
models available, even if they are not colocated with the request.

We evaluate these policies against the default cOS scheduling policy to demonstrate an
overall reduction in the number of cold starts and end-to-end workload latency. In particular,
we observe a 50% average reduction in latency and 4-5 fewer cold-starts on an 8-node cluster
for three sample workloads. Finally, we summarize these results with an analytical model to
determine the best policy for a given workload.

1.2 Roadmap

Chapter 2 provides an overview of RayServe, 0OS, and their relevant features. Chapter 3
describes the motivation behind the cold start problem that this thesis targets. Chapters 4
and 5 detail the design and implementation of the model-aware scheduler. Chapter 6 evaluates
the performance of various scheduling policies using a range of translation workloads and
Chapter 7 concludes by discussing future directions of research.
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Chapter 2

Background

2.1 Inference Servers
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Figure 2.1: Typical architecture of LLM inference and serving [6].

An ML inference server is a system designed to efficiently make predictions on unseen
data. Unlike training, which involves adjusting model parameters to improve model accu-
racy, inference involves using trained models to generate outputs, such as predictions or
classifications, based on the model’s learned patterns.

Inference servers expose API or service endpoints that allow external applications or users
to submit data for processing. Each server consists of an inference engine responsible for
running the model and generating predictions. Each server also manages the computational
resources (CPUs, GPUs, TPUs) needed to execute the model and ensures scalability by
dynamically adjusting the number of workers to handle concurrent requests.
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Common performance metrics include throughput, typically measured in the number of
requests processed per second, and latency, the time it takes from when an input request is
received by the server until when the output is returned, which is particularly important in
real-time streaming applications.

2.2 RayServe

[
[

Node A Controller ) Node B/C/...
(" HTTP [ Ray Serve ]  [Optionall
Proxy Autoscaler ‘HTTP Proxy!
(Uvicorn) + (Uvicorn) |
(1=
[Optional] Serve REST { [Optional] | ( Serve REST ]
gRPC Proxy APl Server | :gRPC Proxy: AP| Server
_(grpeio) | (grpeio)

Request
Queue

Request
Queue

Replica

Replica

Ray [8] is a distributed computing framework designed for parallel and distributed
execution. It utilizes tasks and actors for parallel execution: tasks are stateless, remote
function calls executed asynchronously, while actors are stateful objects that maintain internal
state across method calls. Remote functions are invoked with .remote() and return futures
that represent the result of asynchronous computations. Ray’s abstractions simplify the
development of scalable distributed systems by handling resource allocation and execution
within a cluster.

RayServe, which is built on top of Ray, is a framework-agnostic Python model serving
library for building online inference APIs. It allows for building a complex inference service
consisting of multiple models and application logic, and offers scheduling support, resource
sharing, and easy scaling within and across machines. Compared to Slurm’s |9] static resource
allocation and Triton’s [10] reliance on external systems like Kubernetes [11], RayServe
provides a simpler, more scalable solution for serving models at scale with low-latency needs.

A Serve instance consists of three types of actors: a global Controller, an HTTP proxy,
and replicas. The Controller manages all other actors, including an autoscaler, which will try
to increase worker nodes when resource demand grows and remove worker nodes when they
sit idle. The HTTP proxy, built on Uvicorn, handles incoming traffic and routes requests to
replicas. Each replica utilizes its own queue to process requests.

Figure 2.2: RayServe architecture [7].

16



When a request enters RayServe, it is handled asynchronously via the ASGI protocol,
which allows multiple requests to be processed concurrently. The HTTP server listens for
events in the event loop, and requests are sent to replicas based on a simple scheduling policy
that considers the length of the request queue. Each request triggers the __call__ method
(Section 5.1) in the user-defined class, which processes the request and returns the appropriate
response.

Meanwhile, each replica regularly reports autoscaling metrics to the Controller, which
monitors the system’s overall load and ensures an even distribution of requests across the
replicas.

2.3 o0S

2.3.1 Procs

Each execution in ¢OS is called a proc. 0OS’s cloud-centric API allows procs to interact
through a network addressing scheme — service discovery occurs through a per-tenant naming
service, named, which is used to register endpoints and store state. In this way, communication
is only allowed among procs of the same tenant. The lightweight ocontainers that procs are
spawned in limit their access to system calls and allow for fast start-up times.

2.3.2 Default Scheduler

Each proc is a task that is marked as either latency-critical (LC) or best effort (BE), which
reflects the key distinction between the two types of tasks that are unified under cOS. LC
procs are configured with reserved CPU time and RAM while BE procs are scheduled as CPU
and RAM become available. BE procs allow ¢OS to fill in the gaps in resource reservations,
especially when resources are overprovisioned and result in low average utilization.

o008 uses a centralized scheduler (LCSched, similar to the Kubernetes scheduler [12],
to manage latency-critical tasks. Each machine has a scheduler, MSched, identified by a
unique kernel ID, that coordinates with the global LCSched for scheduling LC procs and
several BEScheds for scheduling BE procs. LCSched and BESched both maintain a queue of
procs as they become ready to execute. An in-memory table tracks the available CPU and
memory on each machine running ¢OS, which is continuously updated as procs start and
stop. In LCSched, a background thread iterates over every realm (per-tenant namespace) in
a round-robin fashion, dequeuing procs to execute as they meet resource eligibility. MSched
interacts with the host OS to discover runnable processes, assign resources, and more. Once
a proc is scheduled to a machine, the associated MSched will spawn and execute the proc.

2.3.3 Proxies

In 0OS, a proxy is a long-running provider-managed service that projects an external resource
into the per-tenant global namespace. From the perspective of any other cOS proc, the proxy
appears as an ordinary ¢OS namespace, and its contents can be accessed using the standard
cOS APIs.
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Behind the scenes, the pathname is a string that represents the location or address
of a resource or service within the global namespace. When a client queries a proxy, the
pathname is translated into the remote protocol by whichever proxy received the request.
Each proxy registers itself under a well-known path within the namespace (e.g., /s3/s3srv_0,
/s3/s3srv_1). 0OS resolves the pathname to route the request to the correct proxy. For
example, a pathname with ~any allows 0OS to locate any available proxy, while ~local
instructs cOS to locate a proxy on the same machine. The latter can help to avoid network
transfers and enable local resource access without the proc needing to know what machine
they are physically run on. The following is an example of a directory structure within ¢OS,
where different services are organized under a global namespace.

— s3/
|- s3sTv_0/
b my-bucket/
b pictures/
+— IMG_001.png

— s3srv_1/

+— inferenced/
| inferenced_0/
b models/

ttS—small/
t5-base/
+— inferenced_1/

b models/
- t5-large/

— db/

Figure 2.3: Example cOS directory tree.

The s3/ directory contains multiple S3 server proxies (s3srv_0, s3srv_1), each exposing
a tenant’s Amazon S3 buckets and files. The db/ directory provides access to databases
like MongoDB. The inferenced/ directory holds inference server proxies (inferenced_0,
inferenced_1), each maintaining a directory of cached models. For example, t5-small and
th-base are cached on inferenced_0, while t5-large is cached on inferenced_1.
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Chapter 3

Motivation

3.1 RayServe Performance Observations

The initial performance experiments are conducted on a t3.xlarge AWS EC2 instance with
4 vCPUs, 16.0 GiB memory, and a 5 Gbps network bandwidth [13]. Consider a simple
translation request of “quick brown fox jumps over” from English to French using a t5-small
model. Upon making a POST request to the translate endpoint, the request spends 2.788
seconds initializing t5-small (Section 3.2) and 0.923 seconds performing inference for a total
wall clock time of 3.711 seconds. After completion of prediction, RayServe generates an
HTTP response to send to the client.

The overall request latency suggests that the most significant delay of a RayServe request
occurs during model loading, since model inference itself is relatively fast. As further
investigation, we run a workload for one hundred concurrent translation requests of the
same five word phrase, with a default RayServe autoscaling policy (minimum of 1 replica,
maximum of 4 replicas, and a target of 2 ongoing requests per replica):
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Figure 3.1: Latency of requests over time for a workload of 100 concurrent translate requests.

We make two observations:

1. It takes a long time for additional replicas to spin up — the same replica handes the
first 40 requests before the other 3 replicas start to. This is configurable with RayServe
parameters.

2. The initial request for each replica is by far the most expensive operation. Replica 0’s
first request requires nearly 4 seconds while subsequent requests hover around 1 second.
The first request for replicas 1-3 requires 2 seconds, after which latency also drops to
around 1 second.

3.2 Transformers Pipeline

We first examine the process of model initialization and explore potential strategies for
reducing cold start time. The RayServe application instantiates models using pipelines from
the HuggingFace transformers library [14], which wraps pre-processing components, the model
that generates predictions from the inputs, and post-processing components into one. We break
down the steps to set up a tb-small translation pipeline: pipeline(translation_en_to_fr,
model=model_name).
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The bulk of the total 3.35 second initialization time is loading the pretrained model and
tokenizer:

Step Time
Loading pretrained model 2.73s
Download config. json 0.1s
Download model .safetensors 2.27s
Download generation_config. json 0.07s
Get ToForConditionalGeneration model class  0.06s
Finalize model weight initialization 0.23s
Load pretrained tokenizer 0.49s
Download tokenizer_config. json 0.06s
Download cached vocab files 0.3s
spiece.model 0.08s
tokenizer. json 0.12s
added_tokens. json 0.04s
special_tokens_map.json 0.03s
chat_template. jinja 0.03s
Instantiate tokenizer 0.13s

Table 3.1: Model Loading and Tokenizer Setup Breakdown

Many initialization steps involve downloading the necessary files from the HuggingFace
Hub and caching them locally. The first time the pipeline is set up, the model files are fetched
and stored in the local cache. On subsequent pipeline initializations, the system first checks
the cache to see if the required model and files are already available. If so, the pipeline
directly loads the files from the cache, significantly reducing the setup time to just the final
step (approximately 0.4 seconds in this case).

3.3 Model Cold Start and Inference Times

The initial model loading process not only takes a significant amount of time, but also becomes
progressively more costly as the model grows in complexity. We isolate the initialization time
of each model by taking the average over five separate cold starts, each the result of sending
one translation request to RayServe, for each model type.
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Initialization Time and Inference Time (seconds) vs Model Size (GB) for TS Models
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Figure 3.2: Average initialization (3.2) and model inference time for four T5 models on a
c220g5 node (machine spec in Section 6.1). Each set of bars is labeled with the number of
parameters and size of model.safetensors [15], which contains the model weights.

The figure demonstrates that inference is significantly faster than initialization time, with
the difference becoming more pronounced as the model size increases. There is also a linear
relationship between the model size (or number of parameters) and the average initialization
time, meaning initialization time increases proportionally as the model size grows. In a
distributed system, where multiple machines may need to load and serve large models, these
initialization costs can accumulate, significantly impacting overall system performance. For
example, t5-3b, with 3 billion parameters, takes nearly a minute to initialize.

Note that the primary bottleneck in initialization occurs during the download of pretrained
models in the Transformers pipeline (Section 3.2), which accounts for 2.73 seconds (81.5%)
of the 3.35-second initialization time. Given this, we focus on strategies to avoid cold starts.
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Chapter 4

Design

The purpose of being model-aware is to minimize the end-to-end latency of RayServe workloads
by tracking and utilizing models cached on each machine to reduce the number of times
models need to be loaded from remote storage. This chapter discusses the design of two
schedulers towards this end.

4.1 Overview

We introduce two primary scheduling policies: Model Colocation and Centralized Model
Registry. Both aim to route inference requests to machines where models are already cached.

1. Model Colocation: Places inference tasks on the same machine where the required
model is cached to avoid remote access latency. This policy is divided into two
subpolicies:

i. With Queuing: If no warm proxy is available, the scheduler queues the incoming
requests and waits for the proxy to become available.

ii. Without Queuing: If no warm proxy is available, the scheduler spawns the proc on
a cold machine and sends the request to that proxy.

2. Centralized Model Registry: Spawns procs on machines that either queries local
proxies or sends requests to remote warm proxies over the network.

4.2 RayServe Application

We build a RayServe application in Python that provides three scalable services that are
representative of common Al workloads: translation, image classification, and text-to-image
generation.

Translation is a classic NLP task used across industries, image classification is a fun-
damental task in computer vision and widely applied in medical diagnostics, autonomous
vehicles, etc., and text-to-image generation has become popular in the art and design in-
dustries. These tasks each have different inference time characteristics. Image classification
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often involves large input sizes, and text-to-image generation models often require extensive
GPU computation. This variability in task type allows for flexible exploration of inference
characteristics such as autoscaling, load balancing, and resource utilization.

Each service is deployed as a Ray actor with autoscaling configurations, ensuring efficient
resource utilization based on demand. The services also leverage application-side caching to
reduce model loading times.

4.3 Extending ocOS Procs

To represent and schedule inference workloads, we make several additions to the cOS
ProcProto and ProcEnvProto (Section 5.2). The former is responsible for representing
and managing the basic structure of a proc in the system, while the latter represents the
environment in which a proc is running.

Table 4.1: Additions to 0OS ProcProto and ProcEnvProto

Field Proto Description

bool useMASched ProcEnv Determines whether the proc will uti-
lize the model-aware scheduler or the
default scheduler.

string remoteProxyID ProcEnvProto The ID of the remote machine that
the proc sends its inference request
to.

string model ProcProto The language model (e.g., t5-small,

facebook /bart-large-mnli) that the
proc utilizes to run.
repeated string ProcProto The ID(s) of the machine(s) that the
preferredKernelID proc prefers, if any.

Although inference procs are latency-critical — minimizing response time and making real-
time decisions in ML applications is crucial — we introduce a third type of proc: model-aware
(MA) procs. Inference tasks have distinct characteristics that distinguish them from general
LC and BE tasks, so MA procs allow cOS to consider not only CPU and memory availability,
but also additional factors like GPU usage, model size, and proxy request queue lengths.

4.4 Inference Proxy

The cOS inference client is responsible for handling different types of inference requests,
enabling the system to perform ML tasks such as translation and image classification.
The service, like most other cOS services, is defined using protocol buffers (proto3), and
exposes a single RPC method, Query, which accepts an InferenceRequest and returns an
InferenceResult (Section 5.3). Inference requests originate from a client that sends requests
using the 0OS RPC library (which uses gRPC).
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InferenceRequest contains a task_type field that specifies the kind of inference task
being performed. For example:

1. TranslationRequest: Contains the text to be translated along with the source and
target language codes.

2. ImageClassificationRequest: Contains the image data to be processed for classifica-
tion.

This design allows the system to extend easily to additional task types and provides
flexibility for handling different models and inference workloads in a structured manner.

Since the Ray/RayServe code base is fairly large, it is quite infeasible to port it entirely
to the 0OS API. As such, the 0OS inference server acts as a proxy to RayServe, which is
run with its own container image. The inference server is initialized with an endpoint URL
and utilizes an HTTP client to send requests to an external running RayServe instance. cOS
configures the inference server with the necessary client and server connections, initializing it
as a privileged kernel proc alongside others, such as dialyproxyd, binfs, ux, and db.

queryOptions InferenceRequest
request
model_name
o-A Proc i
InferenceClnt i R
named/inference/~local ag-A
rpec s R N » » RayServe
maschedClnt v § 2. Query RPC INFERENCED 3. Proxy Request
remoteProxyID Tl
\ n@rﬂe‘\_
RN
I)Fs"'@,, -
e T
SOV c-B
InferenceProxyPathname (remoteProxyID) b RayServe
1. Resolve RPC Pathname INFERENCED

Figure 4.1: Internals of an inference proc that constructs an InferenceClnt and sends a
local translation Query to the RayServe /translate endpoint.

A 00OS inference proc constructs an InferenceClnt, which consists of fields like RPCClnt,
MASchedClnt, and RemoteProxyID. Upon initialization, the inference client resolves the RPC
pathname (1). If the proc’s RemoteProxyID is set, the pathname resolves to named/inference/
<RemoteProxyID>. Otherwise, the client sends requests locally via named/inference/~1local.
When the proc makes a Query, InferenceClnt constructs the appropriate gRPC proto to
send based on input parameters, determines the correct RayServe endpoint (e.g. /translate
for translation tasks, /classify-image for image classification tasks), and sends the request
via RPC to the corresponding InferenceServer (2). The InferenceServer then proxies
the request to the hosted RayServe instance via HT'TP (3).
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4.5 Model Colocation Scheduling

The first policy aims to colocate models and procs, routing requests to RayServe proxies that
already have the necessary model cached. We make use of locality, spawning procs on the
same machine where the desired proxy is located.

When a machine enters the cluster, it registers itself with both LCSched and MASched.
Although only LCSched tracks each machine’s available resources, MASched maintains a ledger
of machines in the cluster to track other important metadata. The primary scheduling
decisions reside within MASched, but important modifications are also made to the logic of

enqueuing a request with LCSched.

MASched is responsible for efficiently managing model-related tasks and determining where
inference tasks should be sent by maintaining the following structures (full structure in

Section 5.4):

Field

Description

modelToProxies

numOngoingRequests

gs

lcschedclnt / mschedclnt

A map that associates each model name with a list
of kernel IDs that have the model cached.

A map that associates each kernel ID with the num-
ber of ongoing requests at that machine’s RayServe
instance.

A map that associates each realm with its queue,
allowing for proper management of procs based on
tenant isolation.

Clients that interact with LCSched / MSched, respec-
tively, to request resource allocations and scheduling
actions.

Table 4.2: Select MASched fields
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4.5.1 Lifecycle of a 0OS Inference Request

1. Spawn
Proc Z 6. Create Inference Client
N 4 N ( h
c0S Application InferenceClnt G-A
translate: en to fr -+ rpcc INFERENCED —————— RayServe
model: t5-small ) k(named/infer‘ence/-vlocal) Y
2. Enqueue 7.RPCto —
RayServe Proxy
L J ag-B
8. Proxy Request
———————
MASched N INFERENCED RayServe

A 9. Receive Response

3. Forward With
Machine 11. Update Ledger
Preference

LCSched
A

5. Spawn and Run Proc

4. Schedule to

Machine 10. Proc Exit

Figure 4.2: Model colocation policy: Lifecycle of a proc queued to MASched.

Inference requests in ¢OS begin with the parent proc calling SetModel on the inference proc.
This method sets the proc’s model field and classifies it as a T_MA proc, indicating that it
requires specialized scheduling considerations for model colocation and resource management.

After the tenant spawns the proc (1), it is enqueued to MASched via an Enqueue RPC,
remaining there until it is assigned a kernel ID via a channel (2). During this waiting
period, MASched continuously tries to dequeue procs in the background. Once a proc reaches
the front of the queue, the background scheduling goroutine dequeues it and forwards
the proc’s model requirements along with the kernel IDs of machines that the proc prefers
to LCSched (3). A machine preference is defined as one that already has model already cached.

The scheduling flow within LCSched follows these steps:

1. Preferred Machine Check: If the proc has a set of preferred machines, LCSched tries to
route the request to one of those first.

2. Resource Availability: In colocation without queueing, if there are either no preferred
machines or none of the preferred machines can accommodate the request due to
resource constraints (e.g. insufficient CPU, memory), LCSched attempts to schedule the
proc on other machines in the cluster. In colocation with queueing, LCSched repeatedly
attempts to schedule the proc on a preferred machine.

3. Routing: After determining the target machine, LCSched proceeds with sending the
proc to the corresponding MSched for execution (4).
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MASched spawns and runs the proc (5). As with Figure 4.1, the proc creates an inference
client (6), which RPCs an inference server (7). The server sends an HTTP request to the
corresponding RayServe instance (8). RayServe will either always access the model from its
cache (with queuing), or potentially download and cache the new model (without queuing).
The response makes its way back to the proc and original tenant (9), and system clean-up
after execution remains unchanged. The proc eventually exits and frees up the resources that
it was using (10), and MASched updates modelsToProxies with the kernel ID that the proc
was executed on (11).

4.6 Centralized Model Registry Scheduling

Many real-world AI workloads consist of CPU-bound pre-processing and post-processing
tasks (e.g. data pre-processing, feature extraction, output conversion). In these scenarios, it
may not always be optimal to wait to spawn a proc on a machine that has a model cached,
especially if the machine is bottlenecked by CPU pre/post-processing.

An alternative policy is to spawn a proc on any machine, locate a RayServe instance that
has the correct model cached, and send a request over the network to that instance.

Consider the following scenario (Figure 4.3) with a 3-machine cluster: Sigma-A, Sigma-B,
and Sigma-C. Each running RayServe instance has 1 replica, meaning it can process 1 request
at a time. Sigma-A is unutilized and does not have any models cached. Sigma-B and Sigma-C
are fully utilized by procs spawned on those machines and both have the t5-small model
cached. There is 1 queued request at Sigma-B and 3 queued requests at Sigma-C.

ProcZ -------"-""""" “7'7. Create Inference Client ‘\.\ o-A

~ - — models: []
c0S Application InferenceClnt S | Free CPU: # queue
» 5 length: 0
translate: en to fr - rpcc " INFERENCED |———— RayServe
model: t5-small ) \_( named/inference/sigma-b)
Iy models:
1LE 5. p.RemoteProxylD g-B [t5-small]
. e
hqueue - Slgma-B ' ™\ queue
| : length: 1
y s RPC 1 (L1l Free CPU: 0 9. Proxy Request 9
: o [————— > RayServe
| MASched | RayServe Proxy = INFERENCED [ ¥
2. Forward LI 4. LocateModelProxy 10. Receive Response
Without Machine RPC models:
¢-C [t5-small]
Preference 12. UpdateQueuelLength
) RPC ( ) queue
LCSched | 6. Spawn and Run Proc proc | Free CPU: 0 length: 3
NN
) INFERENCED RayServe
3. Select Machine 11. Proc Exit
Y
MSched

Figure 4.3: Centralized model registry policy: Lifecycle of a proc queued to MASched.

Proc Z is a t5-small translation query that performs 5 seconds of post-processing. When
the tenant tries to spawn Z, the following steps occur:
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e 7 gets enqueued in MASched (1), which forwards the request without a machine preference
to LCSched to allow a randomly available machine to be selected (2).

e LCSched selects the only available kernel, 0-A (3), and makes a LocateModelProxy
RPC call to MASched (4).

e MASched looks up t5-small in its model registry and finds that ¢-B and o-C both have
the model cached. It sets the proc’s RemoteProxyID to o-B (5) after seeing that o-C’s
queue has exceeded targetOngoingRequests (which defaults to 3); it also increments
o-B’s number of ongoing requests to account for the new incoming query from proc Z.

e 0-A’s MSched will now spawn and run the proc on o-4 (6), at which point Z creates an
inference client with an RPC client referring to o-B’s inference server (7).

e When the inference client makes the Query RPC call to the server, the RPC client will
resolve the correct pathname to the remote proxy located on o-B (8), which sends the
request to the RayServe instance (9).

o After Z waits its turn to get processed, RayServe sends the response back to the inference
client (10), at which point post-processing begins on o-A.

e After Z finishes, the proc exits (11) and makes an UpdateQueueLength RPC (12) to
MASched, decrementing numOngoingRequests' to reflect that o-B has one less request
in its queue.

In the case where MASched is unable to locate a remote proxy, if either the model has
never been seen or all proxies have too many ongoing requests, the client will query its local
RayServe proxy to download the model and process the request. The machine that the proc
is spawned to will then be added to modeltoProxies in the LocateModelProxy RPC.

!Drawing inspiration from RayServe’s built-in autoscaling policy, we track the number of ongoing requests
at each instance in order to distribute load as necessary.
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Chapter 5

Implementation

This chapter details several protos, structs, and RPCs that are most critical to the implemen-
tation of the ¢OS model-aware scheduler.

5.1 RayServe Application

The RayServe application is deployed in a Docker container, with a shell script handling the
deployment of the cluster. Models are also cached application-side so that newly spun up
replicas do not need to reinitialize each pipeline.

The Translator class is defined as a RayServe deployment and specifies autoscaling
parameters such as a minimum of 1 replica, a maximum of 4 replicas, and a target of 2
ongoing requests per replica.

@serve.deployment (
autoscaling_config={

"min_replicas": 1,
"max_replicas": 4,
"target _num_ongoing_requests_per_replica'": 2,

b

class Translator:

Each endpoint further defines an asynchronous user-defined method __call__, which
processes incoming HTTP requests and returns the response, that is invoked in RayServe to
handle specific tasks like translation.

async def __call__(self, http_request: Request) -> str:
text: str = await http_request.json()
result = self.translate(text)
return result

5.2 Proc

The ProcProto message defines the structure of a proc within the system, including vari-
ous parameters like the environment configuration (ProcEnvProto), command arguments,
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N

environment variables, resource requirements (CPU, GPU, memory), and model-specific

information.

message ProcEnvProto {
// omitted fields, unchanged from before
bool useMASched = 31;
string remoteProxyID = 32;

}

message ProcProto {
ProcEnvProto procEnvProto = 1;
repeated string args = 2;
map<string, string> env = 3;
uint32 typelnt = 4;
uint32 gpuTypelnt = 5
uint32 mcpulnt = 6;
uint32 memlInt = 7;
uint32 gpulnt = 8;
string model = 9;
repeated string preferredKernelID = 10;

“e

5.3 Inference Proxy

5.3.1 Proto

The InferenceRequest message defines the structure of a request sent to the inference proxy;,
specifying the task type, corresponding request data, and model name to identify which

model should be used for the task.
enum TaskType {

UNSPECIFIED = O;
TRANSLATION = 1; // Translation task
IMAGE_CLASSIFICATION = 2; // Image classification task

message InferenceRequest {
TaskType task_type = 1;
oneof request {

TranslationRequest translation_request = 2;
ImageClassificationRequest image_classification_request
}
string model_name = 4;
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5.3.2 RPC API

The inference proxy RPC method, Query, is essential for interacting with RayServe to perform
inference.

RPC Description

Query(InferenceRequest) returns (Infer- Sends an HTTP request to a RayServe
enceResult) endpoint determined by the type of input
task; returns the response.

Table 5.1: Inference Proxy RPC Methods and Definitions

5.4 MASched (Model-Aware Scheduler)

5.4.1 Struct

The MASched struct defines the state and resources to manage the scheduling logic and
coordination of inference tasks. It includes a mutex for synchronization, a condition variable,
mappings for model-to-proxy relationships, ongoing request counts, queues for task scheduling,
and clients for interfacing with the scheduling systems.

1 type MASched struct {

2 mu sync.Mutex
cond *sync.Cond
| modelToProxies map [string] []string
5 numOngoingRequests mapl[stringlint
6 gs map [sp.Trealm]*queue.Queue [string, chan stringl]
7 lcschedclnt *lcschedclnt.LCSchedClnt
8 mschedclnt *mschedclnt.MSchedClnt

5.4.2 RPC API

The MASched RPC methods handle various operations related to task scheduling, helping
manage resources and efficiently assign tasks across available machines.
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RPC

Description

Enqueue(EnqueueRequest) returns (EnqueueRe-
sponse)

RegisterMSched(RegisterMSchedRequest) returns
(RegisterMSchedResponse)

LocateModelProxy (LocateModelProxyRequest) re-
turns (LocateModelProxyResponse)

UpdateQueueLength(UpdateQueueLengthRequest)
returns (UpdateQueueLengthResponse)

Enqueues a proc to MASched; returns the
ID of the machine that the proc is spawned
on.

Registers a machine with MASched by
adding its ID to numOngoingRequests; re-
turns nothing.

Locates the first machine with the
given proc’s model cached that has less
than targetOngoingRequests ongoing re-
quests; returns ID of that machine.
Decrements the number of ongoing re-
quests of the given machine ID; returns
nothing.

Table 5.2: MASched RPC Methods and Definitions
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Chapter 6

Evaluation

This chapter evaluates the performance of three scheduling policies: Model Colocation Without
Queuing, Model Colocation With Queuing, and Centralized Model Registry across various
workloads. The primary objective is to identify the workload characteristics that determine
which policy minimizes end-to-end latency. Throughout this chapter, we refer to the average
initialization time and model inference time of each TH model size as outlined in Figure 3.2.

Note that we focus on T5, an encoder-decoder transformer model known for its versatility
in text-to-text NLP tasks such as translation, summarization, and question answering. T5
is also important in modern Al systems — it is used as a text encoder in state-of-the-art
multimodal models like Stable Diffusion 3 [16]. Importantly, T5’s wide range of model
sizes, from 60M to 11B parameters, allows us to explore tradeoffs between model size and
performance in diverse workloads.

Specifically, this chapter seeks to answer the following questions:

1. How does model colocation scheduling compare to 0OS’s default scheduling (Section
2.3.2) in terms of reducing end-to-end workload latency and minimizing cold starts?
(Section 6.2)

2. After how many requests does the effect of cold starts become amortized? (Section 6.3)

3. What is a workload for which each scheduling policy results in lower end-to-end latency
than the others? (Section 6.4)

4. Given factors such as model inference time, cold start time, network latency, and the
combined pre/post processing time, which scheduling policy is most appropriate for a
given workload? (Section 6.5)

6.1 Experimental Setup

In each of the following experiments, 0OS is deployed on a cluster of 8 ¢220g5 nodes running
Ubuntu 22.04.2 LTS. Each machine is equipped with two Intel Xeon Silver 4114 10-core
CPUs at 2.20 GHz, 192GB of memory, and 2 10Gb Intel X520-DA2 NICs [17]|. To induce
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contention for resources and force cOS to distribute microservices across multiple hosts, all
but 4 CPUs are disabled on each machine.

6.2 Simple Inference Workload

The simple benchmark workload consists of 10 English-to-French translation requests, each
translating the 5-word phrase “quick brown fox jumps over” using the same model. Each
request is spawned sequentially as a cOS proc. We allocate one core to each proc to match
RayServe’s default CPU allocation per replica. We run three versions of this workload, that
use thH-small, th-base, and tH-large, respectively.

We expect model colocation to yield a significant improvement in latency and number of
cold starts over the default cOS scheduler, since it is able to route each request after the first
to the RayServe instance that already has the model cached. Without being model-aware,
the 0OS default scheduler routes requests randomly and forces several machines to download
the same model, incurring the cold start cost.

End-to-end Workload Latency for Different Model Types (cOS Default and Model Colocation Policies)

o0S Default 178.41

1754 Model Colocation Without Queueing

150 A

1254

100 A

Latency (s)

751 68.62

58.58
50 A

29.43 31.87

25
16.64

t5-small t5-base t5-large
Workload

Figure 6.1: End-to-end latency of the 10 translation request workload for each of three model
types (t5-small, t5-base, t5-large), comparing the default 0OS scheduler to model colocation
without queuing.

Although the number of requests processed per second slows for larger models in both
policies, the difference between the end-to-end latencies of the two schedulers increases. Model
colocation for the t5-large workload becomes nearly two minutes faster than the cOS default
scheduler, which can be attributed to the impact of each cold start being larger felt. T5-large
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has a =~ 40 second difference between initialization and inference time compared to ~ 2
seconds for t5-small, as detailed in Section 3.3.

Request Latency for model=t5-small
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Figure 6.2: End-to-end latency of each oOS proc for model colocation (without queue) and
default 0OS schedulers. All procs use the t5-small model. *Any default cOS point that is
not visible indicates overlap between the two schedulers.

To visualize the number of cold starts, we plot the end-to-end latency of each cOS proc,
from when it is first enqueued to the cOS scheduler to when it finishes execution and exits,
using the t5-small workload as an example, in Figure 6.2. In both cases, there is a noticeable
spike in the first request to the t5-small model of ~ 6 seconds due to the initial cold start.
With model colocation without queuing, every subsequent proc benefits from warm start
latency (= 1 second) being routed to the RayServe proxy with an already cached t5-small
model. In contrast, procs scheduled in the default scheduling policy are routed randomly,
leading to spikes each time a new RayServe instance downloads the same model (requests 2,
3,5, and 6).

In total, 5 machines download t5-small, meaning the default scheduling policy leads to 5
cold starts (as well as 5 cold starts for tb-base and 7 cold starts for t5-large) compared to 1
cold start in each workload with colocation. Each cold start leads to a =~ 3 second increase in
latency for an overall increase of ~ 12 seconds, which accounts for the difference between the
end-to-end t5-small latencies (29.43 - 16.64 seconds) from Figure 6.1.
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Breakdown of Inference Request Latency
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Figure 6.3: Simple Inference Workload: Average latency across all 10 requests, broken down
by stage, for model colocation (without queue) and default 0OS schedulers. Plotted on a log
scale.

The above figure breaks down inference requests into the following stages:

1.

In MASched: time from initially being enqueued to MASched to when it receives the ID
of the machine the proc was spawned on, excluding the time spent in LCSched

In LCSched: time from initially being enqueued to LCSched to when the proc is
successfully scheduled

Proxy to RayServe RPC: time from when the inference client sends the HT'TP request
to RayServe to when RayServe first calls the user-defined method (Section 5.1) and
starts processing the request, which includes any time spent queuing at the RayServe
replica

Proc Runtime: time from when proc is first started to when it exits

RayServe to Proxy RPC: time from when RayServe sends the request back to the proxy
to when the proxy receives the response

Figure 6.3 illustrates that Proc Runtime, which encompasses total request processing
time, accounts for most of the performance difference. The default scheduler overall runtime
is higher because of additional cold starts, when the same model is downloaded by multiple
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RayServe instances. Importantly, the 0.002 second overhead incurred per request by MASched
is negligible compared to the resulting difference in proc runtime. Since model colocation
scheduling reduces both end-to-end workload latency and the number of cold starts, we
conclude that it is worthwhile to be model-aware.

6.3 Cold Start Amortization

Utilizing the same workload from Section 6.2, we can calculate the break-even/cold start
amortization point, where the average latency per request for our two policies become almost
identical. For a cluster of 8 machines, we experience 1 unavoidable cold start and at most 7
additional cold starts, in the worst case. Each t5-small initialization incurs an additional cost
of =~ 3 seconds — = 21 seconds in total. If we claim that the break-even point occurs when
the difference in average latency between the two policies is less than 0.01 seconds, then it
should occur around 21/0.01 = 2100 requests. We verify this by running the same workload
from before but with 2100 sequential requests for t5-small, which yield latencies of 2097.30
(Model Colocation Without Queuing) and 2115.19 seconds (Default Scheduler), or average
latencies of & 1 second.

For t5-base, each cold start incurs an additional cost of &~ 6 seconds — 42 seconds in total,
meaning the break-even point hovers around 4200 requests. For tb-large, each cold start
incurs an additional cost of ~ 17 seconds — 119 seconds in total, and a breakeven point of
11900 requests. This trend is expected, since larger models require longer initialization times
and make cold starts much more expensive to incur (Section 3.3).

6.4 Individual Policy Wins

6.4.1 Model Colocation Without Queuing Win

This workload consists of 2 English-to-French translation requests, each translating the 5-word
phrase “quick brown fox jumps over” using t5-small. After performing the translation, each
proc sleeps for 5 seconds to simulate how pre/post-processing tasks can block CPU resources
and prevent them from being allocated to other tasks, even after the main inference task
completes. The requests are spawned concurrently as cOS procs, each allocated the full 4
cores (to simulate full CPU reservation). To simulate high network latency, we also sleep for
5 seconds before querying any remote RayServe proxy.

We expect model colocation without queuing to perform the best. The centralized model
registry scheduler would be bottlenecked by the high network latency, and model colocation
with queuing would be bottlenecked by the pre/post-processing time, both of which are higher
than the cost of cold start. Model colocation without queuing would excel — it would spawn
the first proc on a random machine and immediately spawn the second proc to a second
machine since the first is fully reserved, and the procs would be executed in parallel.

39



Workload Model Colocation Model Colocation Centralized Model
(Without Queue) (With Queue) Registry

2 concurrent requests 12.38s 18.80s 14.41s
to t5-small

Table 6.1: Model Colocation Without Queuing Win: End-to-end Latencies

The results indicate that centralized model registry is ~ 2 seconds slower than model
colocation without queuing, which can be explained by the 5 second network latency and
~ 3 second th-small cold start time. Instead of waiting 5 seconds to send the request over
the network, the scheduler can save 2 seconds by immediately spawning the proc on a cold
machine and incurring the cold start time of 3 seconds. We also see that model colocation

with queuing is ~ 6 seconds slower than its counterpart without queuing, which can be
explained by Figure 6.4.

Breakdown of Inference Request Latency
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Figure 6.4: Model Colocation Without Queuing Win: Average latency across the two requests,
broken down by stage, for model colocation (without queue), model colocation (with queue),
and centralized model registry schedulers. Plotted on a log scale.

Since the second proc must wait for the first proc to finish executing entirely in colocation
without queuing, it spends an extra ~ 5 seconds (post-processing time) waiting in LCSched
to be scheduled. Model colocation with queuing does have a shorter average proc runtime,
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since its counterpart without queuing leads to an extra model download, and centralized
model registry’s expensive network data transfer is included within proc runtime.

Since model inference time remains constant for all three policies but CPU-bound pre/post-
processing is lengthy and network transfer is expensive, it becomes more beneficial to incur
the extra cold start time and spawn the proc without queuing.

6.4.2 Model Colocation With Queuing Win

This workload consists of 3 English-to-French translation requests, each translating the 5-word
phrase “quick brown fox jumps over” using t5-small, with no pre/post-processing. We utilize
the first request to pre-warm one RayServe proxy before processing the next two requests.
Since the first cold start time is unavoidable, this allows us to realistically simulate the best
way to utilize model-awareness in the middle of a stream of requests. The next two requests
are spawned concurrently as 0OS procs, each allocated the full 4 cores in order to simulate
full CPU reservation and ensure that a second proc cannot immediately be spawned on the
same machine. To simulate high network latency, we again sleep for 5 seconds right before
querying a remote RayServe proxy.

We expect model colocation with queuing to perform the best. The centralized model
registry scheduler would again be bottlenecked by the high network latency, and model
colocation without queuing would be bottlenecked by the extra cold start time. Model
colocation with queuing would spawn the first proc on the warm machine and try to spawn
the second proc on the same machine. Since the machine is fully utilized, the second proc
would wait the duration of the model inference time to be scheduled, which is faster than
both the cold start and network latency of the other two policies.

Workload Model Colocation Model Colocation Centralized Model
(Without Queue) (With Queue) Registry

1 warming request, 11.18s 9.65s 15.19s

2 concurrent requests

to tH-small

Table 6.2: Model Colocation With Queuing Win: End-to-end Latencies

The results indicate that model colocation without queuing is ~ 2 seconds slower, which
is approximately the difference between the t5-small cold start and model inference time.
Similarly, centralized model registry is = 5.5 seconds slower, which can be attributed to the
difference between network latency and model inference time.
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Breakdown of Inference Request Latency
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Figure 6.5: Model Colocation With Queuing Win: Average latency across the three requests,
broken down by stage, for model colocation (without queue), model colocation (with queue),
and centralized model registry schedulers. Plotted on a log scale.

Although colocation with queuing spends longer in LCSched due to needing to wait before
being spawned to the same machine, its proc runtime is shorter by far. Note that another
workload for which we would expect model colocation with queuing to win is one with no
pre/post-processing, but using a model with a cold start time much longer than inference
time (i.e. t5-large).

When model inference time is short compared to cold start and network transfer time, it
becomes more beneficial to incur the queuing time and wait to spawn the proc on a warm
machine.

6.4.3 Centralized Model Registry Win

This workload similarly consists of 3 English-to-French translation requests, each translating
the 5-word phrase “quick brown fox jumps over” using t5-small, with 5 seconds of pre/post-
processing. We again utilize the first request to pre-warm one RayServe proxy before
processing the next two requests. Since each request is only a few bytes, the network transfer
time is low.

We expect the centralized model registry to perform the best since it is both able to
take advantage of the low network latency and avoid waiting for pre/post-processing. Both
procs will be spawned on different machines and query the same RayServe that already has
t5-small cached, so that the only delay comes from the second request waiting for the replica
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to process the first. Model colocation without queuing would again be bottlenecked by the
extra cold start time, and model colocation with queuing would be bottlenecked by time
spent waiting for the first proc to complete its CPU-bound processing.

Workload Model Colocation Model Colocation Centralized Model
(Without Queue) (With Queue) Registry

1 warming request, 23.09s 25.27s 20.34s

2 concurrent requests

to tb-small

Table 6.3: Centralized Model Registry Win: End-to-end Latencies

Model colocation without queuing is =~ 3 seconds slower, which is approximately the
difference between cold start (3 seconds) and model inference (1 second) time. Model

colocation with queuing is &~ 5 seconds slower, which is approximately the pre/post-processing
time (5 seconds).

Breakdown of Inference Request Latency
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Figure 6.6: Centralized Model Registry Win: Average latency across the three requests,
broken down by stage, for model colocation (without queue), model colocation (with queue),
and the centralized model registry schedulers. Plotted on a log scale.

We again see that colocation with queuing spends more time in LCSched. Centralized
Model Registry spends more time in Proxy to RayServe RPC due to the RayServe replica
only being able to process one request at a time. Due to fast network transfer in comparison
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to cold start and pre/post-processing time, it is more beneficial to send requests over the
network to warm RayServe instances.

6.5 Analytical Model

Experiment 6.2 shows that model-aware schedulers grant procs an advantage in being able
to utilize already cached models and avoiding expensive cold starts that become even more
costly as models and workloads grow in complexity.

Experiments 6.4.1, 6.4.2, and 6.4.3 each demonstrate a workload in which a different
policy should be used above the others, and the importance of the following factors: cold
start time T¢g, model inference time 77, pre/post-processing time 7Tp, and network transfer
time Tly.

Assume that each RayServe instance consists of 1 replica, there exists an available machine
on which to spawn a proc that would incur a cold start cost, Tj,,, is the average model
inference time for an existing request to that model, Tp,,, is the average pre/post-processing
time for an existing request to that model, and n is the maximum number of ongoing requests
at any warm proxy.

Given a request, the end-to-end latency can be approximated as follows:

g T Tp,,,)) Where the first term represents
the total cost of processing the request on a cold machine and the second term represents
the total time it takes to process n existing requests at one proxy.

1. Teorocarion = max(Tes + 11+ Tp,n- (17

2. Teorocarion wrira queving = (n+1)-(1y,,, +Tp,,,) for n existing requests and the
newest request.

3. Trecistry = In+ T+ Tp) +n -1, . where the first term represents the total cost
of processing the newest request and the second term represents the total time it takes
to perform inference on the n existing requests at one proxy.

In conclusion, given that the optimal policy is highly dependent on workload and model
characteristics, dynamically selecting the scheduling policy based on cold start time, model
inference time, pre/post-processing time, and network transfer time is crucial.
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Chapter 7

Conclusion and Future Work

7.1 Limitations

While the model-aware scheduling policies reduce both latency and the number of cold starts
for many workloads, there are some limitations to the current implementation. Notably, cold
start time introduces an unavoidable overhead for the very first request to a new model,
though this overhead becomes amortized after a certain number of requests (Section 6.3).
For systems that consistently use the same models, a more effective approach might involve
simply caching all models in memory.

Additionally, the current scheduler implementations assume a static set of available
resources for model execution, without considering fluctuating resource demands or large-
scale dynamic workloads. This limiation could lead to performance degredation under high
load, particularly when there is contention between tenants with varying computational needs.
Furthermore, the current design only allows procs to use a single model. In cases where a
proc requires multiple models cached on different machines, the model-aware scheduler could
schedule the proc on the machine with the largest model.

7.2 Future Work

Future work could focus on enhancing the system’s scalability and performance through
more efficient memory management. Techniques such as dynamic memory reclamation
and garbage collection for models could help improve resource utilization. Additionally,
exploring alternative scheduling policies, such as priority-based or hybrid approaches, could
address resource contention and improve fairness in multi-tenant scenarios. GPU-specific
optimizations, including model eviction strategies and GPU-aware scheduling, would also
be valuable to explore, especially in mitigating CPU-GPU bottlenecks and improving the
efficiency of data transfers between devices.
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7.3 Conclusion

This work extends cOS by integrating GPU support and RayServe, introducing the first ML
workloads, and developing two novel model-aware scheduling policies to optimize end-to-end
latency and reduce the number of cold starts in multi-tenant environments.

An evaluation of cOS revealed a 50% average reduction in latency and 4-5 fewer cold
starts on an 8-machine cluster for several translation workloads. Model-awareness helps
reduce the number of cold starts by leveraging cached models and exploiting locality for
certain workloads. The schedulers also demonstrate flexibility in proxying requests remotely
especially when scheduling CPU-bound pre/post-processing tasks to be parallelized with
inference. Importantly, these experiments provide insight into the best policy to use based
on factors such as model inference time, cold start time, and network latency.

Through the design, implementation, and evaluation of two model-aware schedulers,
this thesis takes a step towards improving the efficiency and scalability of multi-tenant ML
inference systems.
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