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Abstract

This dissertation presents a scalable approach to protecting metadata (who is
communicating with whom) in a communication system. The emphasis in this
dissertation is on hiding metadata for voice calls, but the approach is applicable
to any two-way communication between users.

Our approach is embodied in a new system named Yodel, the first system
for voice calls that hides metadata from a powerful adversary that controls the
network and compromises servers. Voice calls require sub-second message latency,
but low latency has been difficult to achieve in prior work where processing each
message requires an expensive public key operation at each hop in the network.
Yodel avoids this expense with the idea of self-healing circuits, reusable paths
through a mix network that use only fast symmetric cryptography. Once created,
these circuits are resilient to passive and active attacks from global adversaries.
Creating and connecting to these circuits without leaking metadata is another
challenge that Yodel addresses with the idea of guarded circuit exchange, where
each user creates a backup circuit in case an attacker tampers with their traffic.
We evaluate Yodel across the internet and it achieves acceptable voice quality
with 990 ms of latency for 5 million simulated users.

Thesis Supervisor: Nickolai Zeldovich
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This chapter motivates the need for metadata privacy, introduces the tension
between strong privacy and high performance, and summarizes our key insights
and contributions. The next chapter gives a high-level overview of the challenges
in protecting metadata and our approach. The remaining chapters go into de-
tail about Yodel, the first system for voice calls that protects metadata from an
adversary that controls the network and several of Yodel's servers.

1.1 Metadata is highly sensitive

Telecom providers retain call records which include the participants and duration
of every call. This metadata is highly sensitive for most users [22] and is especially
problematic for journalists who need to keep their sources confidential [13]. As
a result, call records are targeted in large-scale attacks [25] and collected by
intelligence agencies; the NSA collected 434 million call records of Americans in
2018 [26]. Even if telecoms stop retaining call records, an attacker can monitor
the network to learn about voice calls happening in real-time.

11



1.2 Strong security versus low latency

Voice communication requires relatively low latency (a second or two at most) and

relatively high bandwidth (a few kilobits per second). However, achieving high

performance while protecting communication metadata is challenging against an

adversary that can compromise servers and tamper with network traffic. In order

to hide communication patterns, messages between all users must be processed

in a synchronous batch, so as to give the adversary the appearance that any pair

of users might be communicating. This processing either requires CPU-intensive

cryptographic primitives such as PIR [5], which are trustless, or the use of semi-

trusted servers whose job is to mix the messages without revealing the mixing

to the adversary. However, if an adversary can compromise some of the servers,

messages must be routed through enough servers to ensure the adversary does
not control every one of them, which increases latency.

Prior systems like Herd [21] and Tor [10] can support voice calls, but make

strong assumptions that certain servers are not compromised or that the adversary

is not monitoring the entire network. Systems that provide stronger guarantees

suffer from high latency [5, 17, 18, 30, 34]. For example, Karaoke [18] routes
messages through 14 servers to ensure messages are mixed despite many servers

being compromised. At each hop, each server performs a public-key operation
for every incoming message, which results in 8 seconds of latency for 4 million
users with 0.24kbit/s of throughput for each user. Karaoke is the fastest of these
systems, but its performance an order of magnitude away from the latency and

bandwidth requirements of voice calls.

1.3 Yodel protects voice call metadata

Yodel is the first metadata-hiding system for voice communication that defends

against an adversary that compromises the entire network and compromises
many servers. Yodel hides metadata by operating a set of servers that form a
mixnet to shuffle user messages, as shown in Figure 1.1. The servers, labeled 1
through N, are organized into layers, which are indicated by the vertical groups

12



Servers (mixnet)

Alice

Alice

Bob _ - N- -- N 4:

Layer 1 Layer 15 Bob

Adversary observes all network traffic

Figure 1.1: Yodel's overall architecture consists of users sending messages to
servers, which shuffle messages as part of a mixnet, and then send the results
back to users. The adversary controls the network and some of the servers
(e.g., server 2). Each message takes a random path that is 15 servers long through
the mixnet. Layers are an abstraction used to synchronize server-to-server com-
munication as messages traverse the mixnet.

in Figure 1.1. The system operates in rounds, and every round all users submit
messages to the first layer. Users randomly choose a server on each layer for their
messages and use onion-encryption to ensure their messages follow this path. At
each layer, a server receives onion-encrypted messages from all the servers in
the previous layer, removes a layer of encryption from each message, shuffles
the messages, and sends the messages to servers on the next layer. The last layer
delivers messages directly to users.

Even though all of the user's messages for a round are never processed together
on a single server, we show that if there are enough honest servers and enough
layers, this design gives the adversary the appearance that all user messages are
processed in a synchronous batch. This enables us to hide which pairs of users
are communicating in way that is scalable (i.e., the load is distributed among all
of Yodel's servers).

Karaoke's design [18] is similar to Figure 1.1, but messages are encrypted
with public-key cryptography, which results in significant overheads as messages

13
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traverse the network. Yodel amortizes the cost of public-key operations by using

symmetric-key circuits through the mixnet to relay many messages between

two users. Users set up circuits using public-key cryptography, but individual

messages sent over circuits benefit from low-cost symmetric-key cryptography,

enabling Yodel to achieve high performance.

1.4 Key insights

Although circuits offer high performance, using them securely required Yodel to

address two technical challenges. The first challenge lies in the fact that circuits

are used for multiple messages. Since servers maintain shared keys with each

user for the duration of a circuit, a server may be able to learn information about

a user over time. For example, if a user is briefly disconnected from the network,

a server might observe that no message arrived on a particular circuit, and infer

that the circuit belongs to that user. Yodel's key insight is the idea of self-healing

circuits, which rely on honest servers to ensure that circuit traffic is maintained

despite network interruptions, such as a user's network going offline, or an active

attack on any part of the network.
The second challenge lies in generating cover traffic, so that each user's traffic

pattern is always the same, regardless of whether they are in a conversation or

not. Suppose Alice wants to call Bob, so she sets up a circuit through the Yodel

mixnet. She tells Bob to connect to a specific Yodel server and request messages

for a specific circuit endpoint, and Bob does the same for Alice. This allows Bob to

receive Alice's messages (and vice-versa), while the mixnet hides who is sending

those messages. If Alice is not talking to anyone, she must still appear to perform

the same steps, so as to prevent the adversary from determining if she's in a

conversation or not. That means setting up a circuit, as if she is sending messages

to someone, and requesting messages from some circuit endpoint, as if she is

receiving messages from someone.

Yodel relies on an external metadata-private messaging system for users to

establish calls (by telling each other about their circuits). Suppose that Alice tries

to call Bob but doesn't hear back from him because the attacker tampered with the

14

M



external messaging system. In order to not reveal whether she is communicating
or not, Alice must request messages from some circuit endpoint as part of her
cover traffic. She doesn't know the ID of Bob's circuit endpoint (or whether
Bob is even online). But requesting messages from her own circuit endpoint is
problematic; because Bob might have actually received Alice's call, and is also
requesting messages from the same circuit endpoint on the same server. If that
were to happen, an adversary with access to that server would conclude that
Alice and Bob were trying to talk.

Yodel addresses this challenge using guarded circuit exchange, a simple protocol
that ensures users always have a circuit they can safely connect to. The insight is
to have each user establish two circuits: one as a fallback for cover traffic, and
another as a circuit for talking with a buddy. In case of any message loss during
dialing, each user can safely connect to either their cover traffic circuit or the
buddy's circuit, without leaking any metadata to the adversary.

1.5 Contributions

We implemented a prototype of Yodel in Go and ran it on 100 servers across
Europe and North America to evaluate its performance. Our experimental results
show that Yodel provides voice communication with 990 ms of latency from the
time a user sends a message to the time their buddy receives it, while supporting
5 million simulated users. The 990 ms latency is close to the underlying network
latency of sending the messages in synchronous batches across 15 hops, with
a one-way delay of 45ms between servers at each hop. Our security analysis
shows that the probability that an adversary learns any metadata from Yodel
is negligible when messages are sent over 15 hops, under the assumption that
servers are honest with 80% probability.

Yodel's latency is above the ITU G.114 recommendation for voice calls (at
most 400 ms) [14], and our prototype uses a low-bitrate vocoder [31], but we find
that it provides acceptable voice quality.

15



The contributions of this dissertation are the following:

• The design and implementation of Yodel, a low-latency metadata-private

communication system that can support voice calls.

• The self-healing circuits and guarded circuit exchange mechanisms, which

allow for efficient private communication through a mixnet.

• An analysis of Yodel's design and an experimental evaluation of its perfor-

mance.
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Chapter 2

Overview

In this chapter, we provide a high-level introduction to the challenges in pro-

tecting metadata and Yodel's approach to overcoming them. The chapter starts
by explaining what we mean by metadata privacy. Then we build up to Yodel's

design, starting with a messaging system that runs on a single trusted server,
and stepping through the challenges in achieving metadata privacy while also

providing good performance. Although Yodel is a system for voice calls, this

chapter describes the more general problem of protecting metadata in a messaging

system. In Yodel, voice calls are a specialized type of messaging: high-rate with
small message sizes.

2.1 Metadata privacy

Yodel's security goal is to hide metadata, or who is talking to whom. To clarify
this goal, we consider three users who are connected to Yodel: Alice, Bob, and

Carol - the remaining users in the system can be under the adversary's control.
Figure 2.1 shows the three possibilities for Alice in this case. Either she is talking

to Bob; or she is idle and talking to no one; or she is talking to Carol. Yodel's goal
is to make these three worlds indistinguishable, so the adversary can't tell which

world we are in.

We give the adversary substantial power in trying to figure out which world

we are in. We allow the adversary to control the network and, eventually, several

17



Alice Bob Carol Alice Bob Carol Alice Bob Carol

Yodel Yodel Yodel

Figure 2.1: Yodel's security goal is that an adversary must not be able to distin-
guish between various possible worlds. In the first world, Alice is communicating
through Yodel with Bob. In another, she is connected but not communicating
with other users. In a third, she is communicating with Carol.

servers that make up the system. For the remainder of this chapter, the reality
is that we are in world 1 where Alice is talking to Bob. To simplify our figures
and explanations, we will also assume that Carol is the only other connected user.
The goal is to make it equally probable to the adversary that Alice is talking to
Bob, to no one, or to Carol, given the adversary's observations and manipulations
of the system.

2.2 Synchronous cover traffic

Today's most widely used messaging systems are asynchronous, meaning users
can send messages and receive at any time, as shown in Figure 2.2a. At time t = 0,
Alice sends a message to the server, which forwards the message to Bob at time
t = 1. Bob responds to Alice's message a short time later. We assume that Alice
and Bob have established a shared key out-of-band, that is used to encrypt and
authenticate messages end-to-end. This means the adversary can't distinguish
between the messages (arrows) in Figure 2.2a, but it can observe the times at
which they are sent.

The adversary can use the timestamps of messages to uncover who Alice is
talking to, as part of a traffic analysis attack. By monitoring the users' network

18



connections to the server, the adversary sees that after Alice sends a message only
Bob receives one, and vice-versa. This leads the adversary to believe that Alice is
communicating with Bob. The adversary also concludes that Alice is not commu-
nicating with Carol, because Carol doesn't send or receive any messages during
this time period even though she is connected to the server. In the asynchronous
messaging system, a passive network adversary is trivially able to distinguish
between the three worlds from Figure 2.1.

Yodel's solution is to make communication synchronous by dividing commu-
nication into rounds. Each round, all clients send one message to the server and
receive one message back, as shown in Figure 2.2b. Carol is idle, but she sends
and receives dummy messages (e.g., to herself) to hide this fact. Similarly, Bob
might not have finished typing his message to Alice when the next round starts,
so his client will send a dummy message in the meantime. If Bob types a message
in the middle of a round, his client queues the message until the next round.

The dummy messages, known as cover traffic, are encrypted and indistin-
guishable from real messages. The synchronous design with cover traffic ensures
that network traffic patterns are the always the same, regardless of who users
are communicating with, which makes traffic analysis attacks ineffective. Thus,
Figure 2.2b meets our security goal against a global passive network adversary
because the adversary can't distinguish if Alice is talking to Bob or Carol.

Alice o Alice Alice oN'OAlice

OW t=2 rt=1 t t0 Sevrt=1
--- Server Server

Bob Bob Bob . . Bob

Carol Carol Carol Carol

(a) Asynchronous messaging (b) Synchronous messaging with cover traffic

Figure 2.2: An asynchronous messaging system with a single server is vulnerable
to traffic analysis attacks, even if the server is honest. Synchronous cover traffic
defends against this attack.
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2.3 Scaling to many users

Alice Alice
Server 1

Bob Bob

--& Server2 £
Carol Carol

Figure 2.3: A messaging system with two servers. The users are sharded among
the servers to improve performance, but an adversary can deduce that Alice is
not talking to Carol.

As more users join the system, we will need more servers to handle the load,

which presents additional challenges. One approach is to "shard" users among

multiple servers as shown in Figure 2.3. In this setup, each user connects to

one server (e.g., the server closest to them), and messages are routed between

servers to their recipients. However, since Carol is idle and sending cover traffic

to herself, her messages only pass through server 2. This is problematic because a

passive network adversary can deduce that Carol can't possibly be talking to Alice

because Carol's server never sends a message to Alice. So this basic approach to

distributing the user load fails to meet our security goal.

Ideally, the system should give the adversary the appearance that everyone is

communicating in one synchronous batch (as in Figure 2.2b), even though the

load is distributed among many servers. Yodel's approach is to route messages

through multiple servers, and to have each server shuffle incoming messages

before sending them to the next server, which results in multiple plausible routes

for each user's message. Figure 2.4 illustrates this approach with two servers

and two layers. Layers (represented by columns of servers) are an abstraction for

synchronizing all server-to-server communication, which protects against traffic

analysis attacks. At the start of a round, users pick a random server to process

20



their message at every layer. During the round, every server synchronously
collects messages from all the servers on the previous layer, shuffles the incoming

messages, and sends the results to servers on the next layer.

Alice Alice

Bob Bob

* 2 2

Carol Carol

t=0 t=1 t=2

Figure 2.4: A messaging system with two servers and two layers (vertical
columns). Users route their messages through the layers, picking a random
server at each layer, with the goal of mixing their messages together. In this case,
Alice is plausibly talking to Bob, Carol, or herself (idle).

If all clients choose their routes through the layers randomly and indepen-

dently, then the user load will be distributed evenly among the servers on each

layer, enabling Yodel to achieve scalability. For example, in Figure 2.4, Carol's

client chose server 2 to handle her message on the first layer, and server 1 on

the second layer. The result of this choice is that, even though Alice is actually

chatting to Bob, it is equally probable that Alice is talking to Carol based on the

network trace. Messages are indistinguishable from the adversary's perspective,
so it's possible that Alice sent a message with the path Alice -> 1 -- > 1 -> Carol

and Carol sent a message with the path Carol - 2 -- 1 -> Alice and Bob sent a

message to himself.
Alice and Carol got lucky that round. What if Carol's message had taken a

slightly different path, as in Figure 2.5a? In this scenario, the network adversary
can tell that Carol could not have possibly sent a message to Alice, so it is unlikely

that they are chatting. This failure to "cross paths" is amplified when there are

many servers in the system, as in Figure 2.5b.
Yodel addresses this problem in two ways, which are illustrated in Figure 2.6.

First, Yodel servers generate noise messages (represented by black arrows) that

21



qR
Alice Alice

Carol Carol

(a) 2 servers, 2 layers

q 1 1

Alice Alice
2

Bob 3 Bob

Ca ol

Carol

(b) 5 servers, 2 layers

Figure 2.5: Carol's randomly chosen paths do not allow for the possibility that
she is communicating with Alice.

Ot 1 1 1

Alice Alice

Bob 3 3 3 3 Bob

&4 4 4 4
Carol

5 5 5

Carol

Figure 2.6: Yodel uses several layers and random noise messages (black arrows) to
ensure that every user has a plausible path to any other user, with high probability.

are indistinguishable from user messages. When a user's message passes through
a server where it is shuffled together with another user's message or a noise
message, it results in multiple plausible output paths for the message (assuming
the adversary doesn't know the order in which messages were shuffled). Yodel's
second technique is to use several layers, to give user's messages many oppor-
tunities to mix with noise messages and each other. To appreciate why these

22



techniques are effective, imagine Figure 2.6 from the perspective of a passive
network adversary, where all messages are indistinguishable (i.e., the arrows have
no colors). From this perspective, it is impossible to trace an input message on
the first layer to an output message on the last layer.

2.4 Defending against server compromise

So far we have considered an adversary that can monitor the whole network. Now
we consider an adversary that can also compromise several of Yodel's servers.
By compromising a server, the adversary learns how the server's input messages
correspond to its outputs, so the server provides no security value on a user's
path. A compromised server might also try to mis-route users' messages to other
compromised servers, or skip generating required noise messages. In general,
dealing with malicious servers imposes a significant performance cost on systems
that aim to protect metadata. This section gives a high-level overview of Yodel's
techniques for dealing with compromised servers and §2.5 describes how we
reduce their costs to achieve low latency.

Yodel requires that some of the servers on a user's path are honest to guarantee
privacy. If many servers are assumed compromised (and users don't know which
ones), then Yodel uses more layers to ensure that paths include honest servers
with high probability. Specifically, our approach is to precisely compute the
probability that two users' paths become indistinguishable (i.e., get mixed) by the
last layer, given the number of layers in the system, the number of noise messages,
and the trust assumption. Then, we set the number of layers and noise messages
high enough so that any user can plausibly claim they were talking to any other
user. For example, we prove (in §5) that if any server is compromised with 20%
chance, then deploying Yodel with 15 layers ensures that Alice can claim she was
talking to any other honest user with overwhelming probability.

To prevent a server from routing messages maliciously, Yodel puts routing
decisions into the hands of users. Each server has a public key known by all users
ahead of time. When a user chooses a random path for their message through the
layers, they enforce the path by repeatedly encrypting their message using the

23



public key of each server on their path. The resulting onion encrypted message,
can only be decrypted if it follows the user's path, preventing an adversary from
bypassing potentially honest servers along the way. By forcing messages to
traverse servers which shuffle messages, Yodel forms a mixnet. As we have seen,
Yodel's mixnet is unique because it is synchronous to defeat traffic analysis and
distributed among many servers for scalability.

2.5 Achieving low latency

The Yodel mixnet described so far requires a public key decryption for every

message at each of 15 layers. This results in significant end-to-end latency for
messages, which makes the system unsuitable for voice calls. Yodel's approach
to reducing latency is to split each round into two phases. First, in the setup

phase users create paths through the layers using public key cryptography. Then
in the messaging phase users reuse their paths for many messages (e.g., voice
packets). Reusing a path requires only fast symmetric key cryptography, which
significantly reduces latency but carries risks.

During the setup phase, each server derives a symmetric key for each incoming
message that is used to remove a layer of onion encryption. The servers remember
the symmetric keys used for each incoming message and the order in which
messages are shuffled at each layer. During the messaging phase, servers reuse
the symmetric keys to decrypt messages that arrive on the same path, then servers
re-apply the saved shuffle so that messages stay on their established paths, and
finally servers send their messages to the next layer. Decrypting messages with
the symmetric keys is an order of magnitude faster than deriving the key in the
first place, which significantly reduces latency during the messaging phase. We
refer to these reusable paths as circuits.

In Figure 2.7, Alice and Bob have each created one circuit through Yodel's
mixnet. Alice and Bob are in a conversation, so they are both connected to each
other's circuits on the last layer, which enables them to receive each other's

messages. Carol is idle, so she connected to her own circuit to preserve cover
traffic. Messages are sent through the circuits synchronously but spend less time
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at each layer (relative to the public-key encrypted messages used to set up the
circuit), since circuits use only fast cryptography.

Figure 2.7 shows the best case scenario, where Alice's and Bob's circuits
cross paths at an honest server (server 4 in layer 3), and similar for Alice's and
Carol's circuits (server 3 on layer 4). The result is that all three circuits are
indistinguishable by the last layer, so the adversary can't tell who is receiving
messages from whom, satisfying our security goal from §2.1. In practice, randomly
chosen circuits paths are unlikely to intersect at an honest server on the same
layer. So Yodel servers generate noise circuits, which are not shown in Figure 2.7,
to create more plausible routes for circuits that cross paths at an honest server,
similar to Figure 2.6.

Alice Alice

Bob 3 3 Bo

4 4 4 4

Carol

Figure 2.7: Circuits are reusable paths through Yodel's mixnet. Alice is con-
nected to Bob's circuit and vice-versa so they can communicate. Two circuits are
indistinguishable after they cross an honest server. If servers 3 and 4 are honest,
then the adversary can't determine if Alice is talking to Bob, Carol, or herself.

A danger with reusing the same path for many messages is that a user might go
offline, which causes an observable gap in the system's network traffic. Suppose
that Bob is disconnected, either because he goes offline or because an attacker
is blocking his messages. An adversary with a wide view of the network can
observe that Alice suddenly stops receiving messages, and thus concludes that
Bob was sending messages to Alice.
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4 -4 4 4

Carol

Figure 2.8: Bob is disconnected, which creates an observable gap in the network

traffic up to the first honest server on circuit. Server 4 is honest, so it fills the gap

with an indistinguishable noise message, preventing the adversary from tracing

the gap all the way through to its receiver.

Yodel's solution to this attack is self-healing circuits. The idea is that an honest

server on Bob's path will fill the circuit with noise messages if he ever gets

disconnected. For example, in Figure 2.8, Bob was disconnected and server 4 is

the first honest server on his path. The server heals the circuit by generating

noise messages (black arrows), so the adversary cannot trace the gap in network

traffic through to the last layer. The noise messages generated during self-healing

are indistinguishable from user messages, so the adversary can't tell which user is

receiving noise. Better yet, Yodel guarantees that all circuit output messages from

an honest server are indistinguishable, which takes care of other active attacks,

including message tagging, duplication, and replay.

26



-4

This concludes our high-level overview of Yodel's challenges and approach.

The following chapters go into detail about Yodel's threat model and design, and

how we address additional challenges like:

• How do users learn about their chat partner's circuit?

• What happens when a server goes offline?

• How does Yodel's implementation achieve high throughput over the inter-

net?
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Chapter 3

Goals and threat model

Yodel has three goals: metadata privacy, high performance, and availability. Yodel
provides privacy in two important dimensions. First, regardless of how many
users are connected to the system, Yodel prevents an adversary from determining
whether any pair of users are communicating or not, even if every other user is
an adversarial Sybil. Second, by supporting a large number of users, Yodel makes
it less suspicious for users to connect to Yodel in the first place [10]; otherwise,
the mere use of Yodel may reveal critical metadata [11]. Yodel also tolerates some
servers going down, as well as network outages, so that an attacker cannot easily
take down the system with a denial-of-service attack.

3.1 Security goal

Yodel's security goal is that the probability of an adversary learning any metadata
about voice calls is negligible.' Specifically, Yodel operates in rounds during which
each user can start one voice call, and we aim for the probability of an adversary
learning anything to be 10-' per round. We consider this to be a good security
goal because we expect rounds to start every few minutes (so that a user need
not wait more than a few minutes until they can establish a voice call in the next
round). For example, starting a round every 5 minutes means it would take around

'The probability is exponentially decreasing in the number of mixnet layers.
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1000 years for the adversary to get lucky and learn a user's metadata for a single
round. The reason our privacy guarantee is not stated in typical cryptographic

strengths like "128 bits of security" is that it is primarily bounded by the number
of rounds that an adversary can attack, rather than the computational resources
available to the adversary.

Yodel does not hide which users are connected to the system. To limit the
information disclosed by the fact that Alice connects to Yodel, we recommend
that users run the Yodel client at all times. In principle, users are allowed to
connect at any time, but if this correlates with information they are trying to
hide, Yodel cannot help. For instance, if Alice and Bob always start their Yodel
clients before their daily chat, and then promptly shut down their clients after,
an adversary could infer that they are talking. On the other hand, if their Yodel
clients are running at all times, an adversary cannot learn when or with whom
they are talking. We also aim to support many users so that it isn't suspicious for
users to connect in the first place.

3.2 Performance goal

Yodel's performance goal is to support voice calls for many users. We aim to
provide under one second of one-way latency for voice packets. Yodel also needs
sufficient throughput to transmit audio between users, which is determined by
the audio codec. Yodel targets the LPCNet vocoder [31], which is specialized for
low-bandwidth speech transmission, and requires 1.6 kbit/s per user. We also
evaluate Yodel with the standard Opus audio codec at 8 kbit/s per user. Finally,
Yodel aims to support many users (e.g., millions running on 100 servers), and can
scale to support more users by adding more servers.

3.3 Availability

Yodel is resilient to some servers being down at the start of a round (up to 2%),
and to temporary large-scale server or network outages that occur during a round.
No matter how many servers are down, Yodel maintains its privacy guarantee.
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However, users who established circuits through a failing server will not be able
to communicate messages to their partners. The external messaging system that
Yodel uses to exchange circuit information should also be resilient to faults to
ensure the availability of communication end-to-end.

3.4 Threat model

We design Yodel to resist attacks by a global adversary who has full control over
the network and can tamper with messages traveling over any network link.
Furthermore, we assume that the adversary controls some number of servers. To
give an intuition for a possible parameter, studies on Tor suggest that less than 20%
of the servers are malicious [24, 28, 35]. For most of this dissertation, we assume
that each Yodel server has a 20% chance of being controlled by the adversary;
however, this is just a parameter for Yodel, which influences the number of hops
that messages must traverse.

We further assume that honest Yodel clients and servers faithfully implement
the Yodel protocol, and that there is no data leakage through side channels. Of
course, some clients and servers may be controlled by an adversary (in which case,
they need not follow the protocol), but honest clients and servers are assumed to
be running bug-free implementations. Yodel's design also assumes that standard
cryptographic constructs (e.g., private and public key cryptography and hash
functions) are secure.

3.5 Envisioned deployment

To prevent an adversary from compromising a significant fraction of the servers,
we envision that many organizations take part in running Yodel servers, across
different administrative domains and government jurisdictions. Yodel's latency is
dominated by the maximum latency between two servers in the system (because at
each hop, servers wait to receive messages from all other servers). Thus, servers
should be relatively close to minimize this latency. Our evaluation (§7) uses
servers on the east coast of the United States and distributed across countries in
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Europe, with a maximum one-way latency of 45 ms between servers. In this setup,

the lower bound on Yodel's one-way latency, assuming circuits are 15 hops long,

is 45 ms x 15 hops = 675 ms. Another possibility with more political diversity but

similar proximity is to deploy servers in Europe, Israel, and Russia.

We envision that the policy for adding servers to Yodel is stricter than Tor,

which allows any server to automatically join the network. In Yodel, all servers

participate in all layers of the mixnet, so adding a new server immediately impacts

the performance of all users in the system (for better or worse). One possible policy

for Yodel is to require new servers to be manually approved by an independent

organization.
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Chapter 4

Design

This chapter explains Yodel's design in detail. It starts with an overview of Yodel's

components, and then goes into detail using pseudocode for the Yodel client and

the Yodel server.

Figure 4.1 shows how users communicate through Yodel at a high level. Users

send messages directly to a Yodel server which participates in a mix network

with the other servers. The users choose a random sequence of servers to process

Circuit
Senders Servers (mixnet) endpoints Receivers

1 1

Alice
... .Alice

Bob N -- N

Bob

Figure 4.1: Overview of Yodel's components. Alice and Bob have created two
circuits each. The faded arrows are backup circuits, created as part of Yodel's
guarded circuit exchange. Alice and Bob are in a voice call, so they are connecting
to each other's circuits, but the adversary doesn't know who created which circuit.
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each of their messages and onion encrypt their messages to ensure that messages

follow their chosen paths. An established path through the network is called

a circuit, and messages (e.g., voice packets) flow from users through circuits to

their endpoints. Users receive messages by connecting to a circuit endpoint (i.e.,

connecting to a Yodel server and requesting messages for that endpoint ID). The

endpoint ID is pseudorandom and reveals nothing about the sender.

Yodel's servers, labeled 1 through N in Figure 4.1, shuffle messages to hide

which user is sending to which circuit endpoint. The servers shuffle messages

in layers, indicated by the vertical groups, similar to a parallel mixnet [15, 18].

All paths in Yodel have the same number of layers, which is a system security

parameter. At each layer, a server receives messages from all of the servers in the

previous layer, decrypts the messages (which are onion-encrypted), shuffles them,

and sends the messages to the servers on the next layer. To simplify Figure 4.1,

the server-to-server communication is only shown for the next-to-last layer.

Yodel assumes that users know the servers' long-term public keys and that

communicating users have established a shared secret out-of-band (e.g., using a

metadata-private dialing system such as Alpenhorn [20]). Users use the shared

secret to authenticate the circuit endpoint, which they communicate to their

buddy through an external messaging system, and to encrypt their voice packets

end-to-end. In Figure 4.1, Alice and Bob are in a voice call and have established

two circuits through Yodel, but each of them only connects to one circuit. Alice is

sending messages to the circuit endpoint that Bob is connected to, and vice-versa.

The adversary sees that Alice and Bob connect to the system, and knows to which

circuit endpoints they are connected to. However, the mixnet hides which users

are sending to which circuit endpoint, so the adversary cannot tell whether Bob

is connected to Alice's circuit.

Communication through Yodel is divided into synchronous rounds and sub-

rounds. In every round, each user establishes two new circuits, and each user

also connects to some circuit endpoint. The two circuits are used for guarded

circuit exchange: the user can send one to a conversation partner (if the user calls

a buddy), and use the other one as a fallback for cover traffic (if they don't hear

back from the buddy, or if they are not talking to anybody).
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Each round has a fixed number of subrounds, with each circuit sending exactly
one message per subround. Messages are encrypted with the keys of each hop
in a circuit, in order, so that the message can be decrypted only if it correctly
traverses the entire circuit. At every layer, each server collects all messages routed
through it from the servers at the previous layer, decrypts each message with
its corresponding circuit key, and sends them to their next hop, based on the
pre-established circuit paths. Messages are always sent in batches, and the order
of messages in a batch is determined at circuit setup time. This ensures message
order cannot reveal any additional metadata during a subround.

If a server does not receive an incoming message on a circuit, it fills in random
data in its place, and sends the random data to the next hop in the circuit. The
random message is indistinguishable from a real message on the circuit, since
messages are onion-encrypted at each hop. By filling in random messages in
place of any missing messages, honest servers implement Yodel's self-healing
circuits, ensuring that an adversary cannot trace the path of a circuit across an
honest server by dropping or modifying messages. Yodel chooses circuit paths to
be long enough to ensure an honest server is present on each path.

Although each user establishes two circuits, the user sends on just one of
these circuits (the non-backup circuit); messages on the backup circuit are filled
in with random bytes by honest servers, as if the messages were dropped. The
two circuits are indistinguishable to the adversary, so sending messages on just
one of them does not reveal any additional information. Similarly, only half of
the circuit endpoints are connected to; for circuit endpoints with no connections,
Yodel servers simply discard the messages.

4.1 Yodel round pseudocode

New rounds are kicked off by one of Yodel's servers that acts as a coordinator
and notifies the other servers about the new round. The coordinator is untrusted,
and if the coordinator goes down the servers can elect a new server to act as
coordinator (in practice, the online server with the smallest long-term public
key is the coordinator by fiat). Clients connect to one of the Yodel servers to
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receive notifications about new rounds; this server is known as the client's entry

server. Every time the servers announce a new round, the clientround function

in Figure 4.2 is called with the new round number, the public keys of the Yodel

servers, and the user's call buddy.

Round numbers must increase with every announcement so that the coordina-

tor cannot announce the same round multiple times, but this check is not shown

in Figure 4.2. The onion-keys parameter is an array with a unique public key for

each of Yodel's N servers, freshly generated for the round.' The buddy parameter

is an object that contains information about the user's call partner, including a

shared secret that they established out-of-band. If the user doesn't have a call

partner for some round, then the self object is used for the buddy parameter (so

idle users effectively chat with themselves).

Every round is divided into four phases, as indicated in Figure 4.2. Phases

1-3 enable clients to build and connect to circuits securely. Then clients spend

most of the round in phase 4, exchanging voice packets with their call buddy. In

the following sections, we explain each of these phases in detail, both from the

client's perspective and the server's perspective.

4.2 Circuit setup

During every circuit setup phase (phase 1 in Figure 4.2), clients create two circuits

through Yodel's mix network. The client uses one circuit for sending messages to

the user's call buddy, and the other as a fallback in case the circuit exchange step

fails (as we explain later).
Clients create circuits by sending onion-encrypted messages to the mixnet.

To set up a circuit, the client calls the rand-circuit function in Figure 4.3 which

selects a random 256-bit identifier for the circuit endpoint, and then selects one

of Yodel's servers at random for every layer through the mixnet. The client then

creates a circuit setup onion that consists of the endpoint ID, repeatedly encrypted

using the public key of each randomly selected hop in the circuit.

'The newly generated keys are signed by the servers' long-term signing keys, but we omit the
signing and verification steps from the pseudocode.
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def client-round(round, onion-keys, buddy):
### Phase 1: Circuit Setup
onion1, circuit1 = randcircuit(round, onion-keys)
onion2, circuit2 = rand-circuit(round, onion-keys)

receipts = sendsetup-onions([onionl, onion2])
hi = onion-decrypt-aes(circuitl.keys, receipts[0])
h2 = onion-decrypt-aes(circuit2.keys, receipts[1])
if hi != hash(circuitl.endpoint) or

h2 != hash(circuit2.endpoint):
raise Exception(" i a tn round)

counts, sigs = recvwnoise-signatures()
noise = 0
for i in range(servers):

if verify(sigs[il, servers[i].signing-key):
noise += counts[i]

if noise < required-noise:
raise Exception(" )

buddy-endpoint = exchange-circuit(buddy, circuit1.endpoint)
if buddy-endpoint is None:

buddy = self
buddy-endpoint = circuit2.endpoint

conn = connect-circuit(buddy-endpoint)

### Phase 4: Circuit Messaging
def read-loopo:

while data := conn.read(:
# Note: don't need to oniondecrypt-aes here.
msg = decrypt-aes(buddy.secret, data)
play-voice-packet(msg)

spawn-thread(read-loop)

while r := recv-subround-announcement(:
msg = encrypt-aes(buddy.secret, get-voice-packeto)
onion = onion-encrypt-aes(circuitl.keys, msg)
sendvoiceonion(r.subround, onion)

Figure 4.2: Pseudocode for the Yodel client. Several details (e.g., MACs, nonces,
and key rotation) are omitted for clarity.
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def rand-circuit(round, onionkeys):
endpoint = rand.bytes(32)
path = [rand.choice(onion-keys) for i in range(nlayers)]
onion, aes-keys = onion-encrypt(path, endpoint)
return onion, Circuit(aes-keys, endpoint)

def onion-encrypt(path-public-keys, msg):
keys = []
onion = msg
for srv in reversed(pathpublic-keys):

pub, priv = generate-key-pair()
shared-key = diffie-hellman(priv, srv.public-key)
ctxt = encrypt.aes(shared-key, srv.next-hop-idx + onion)
# Note: ciphertext expansion due to public key and MAC.
onion = pub + ctxt + MAC(shared-key, ctxt)
keys = [shared-key] + keys

return onion, keys

def onion-encrypt-aes(pathaes-keys, msg):
onion = msg
for key in reversed(path-aes-keys):
# Note: no ciphertext expansio
onion = encrypt-aes(key, onion)

Figure 4.3: Pseudocode for creating circuits and onions; used by clients and

servers. We use AES in the pseudocode for concreteness, but Yodel is not tied to

a particular cipher.

The onionencrypt function (Figure 4.3) creates the circuit setup onion by

adding layers of encryption in reverse order of the circuit's path, starting with

the endpoint ID. At each layer, the client generates an ephemeral key pair which

is used to derive a shared key using Diffie-Hellman. The onion is encrypted with

the shared key along with an index that identifies onion's next hop. Finally, the

ephemeral public key is appended to the onion so that the server can derive the

same shared key and decrypt one layer of the onion. The onion-encrypt function

also returns the shared keys used to encrypt the onion, as those will be used to

encrypt voice packets during the circuit messaging phase. The client then sends

the circuit setup onions through the mixnet (by the calling send-setup-onions in

Figure 4.2).
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def process-circuit-setup(round, layer, inputs):
inputs = dedup(inputs)
priv = srv.get-private-key(round)

for i in range(inputs):
keys[i] = diffie-hellman(priv, inputs[i].public-key)
msgs[i] = decrypt-aes(keys[i], inputs[i].msg)

if layer < nlayers-1:
shuffle = rand.permutation(len(msgs))
shuffle.apply(msgs)

hops = [msg.next-hop for msg in msgs]
srv.circuit-state[(round,layer)] = (keys, shuffle, hops)

replies = distribute.setup.onions(layer+1, msgs, hops)
shuffle.invert(replies)

else: # Last layer in the mixn
endpoints = msgs
srv.circuit.state[(round,layer)] = (keys, endpoints)
replies = [hash(endpoint) for endpoint in endpoints]

for i in range(replies):
replies[i] = encrypt-aes(keys[i], replies[i])

# Replies are sent to previous layer, or users
return replies

Figure 4.4: Server pseudocode for circuit setup. The noise generation and veri-
fication steps (§4.3) happen before and after this code runs, and are not shown
here.

Server-side processing Figure 4.4 shows the pseudocode for how a server

handles circuit setup onions at a particular layer. Each server receives as inputs

the messages routed through it from the servers on the previous layer (the servers

on the first layer collect messages from users). The servers discard duplicate

messages, which is essential for security. If an attacker manages to duplicate a

user s circuit setup onion, it will result in two circuits with the same endpoint-

a pattern that links the user to their circuit's endpoint. Since Yodel's onion

encryption scheme during circuit setup is non-malleable, removing duplicates is

just a matter of dropping identical messages.
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For each input message, the server peels one layer of onion encryption by

computing the shared key using Diffie-Hellman (with its private key and the

onion's public key) and using it to decrypt the message. If the server is processing

a non-final layer, it mixes the decrypted messages by generating a random permu-

tation and then shuffling the messages according to that permutation. This step

is what prevents the adversary from connecting senders to receivers, assuming

the permutation stays hidden.

The servers implement persistent circuits by storing the symmetric key

and next hop of each onion and the shuffle permutation for each layer in the

circuit-state map. When messages are sent through circuits (in subrounds), the

server decrypts each input using its corresponding symmetric key (i.e., inputs[i]

is decrypted with keys[iI), applies the saved permutation, and sends each mes-

sage to the next hop on its circuit. By using the same permutation, servers can

identify messages belonging to the same circuit across subrounds, and use the

corresponding symmetric keys to decrypt them.

Continuing with the code in Figure 4.4, the server relays messages to their next

hop on the next layer by calling distribute-setuponions. This call blocks until

the next layer returns a reply message for each onion. On the last layer, servers

decrypt the circuit setup onions to learn the random 256-bit circuit endpoints

corresponding to the circuits. The servers save the endpoints so that users can

later connect to the corresponding circuits and receive messages. The last layer

replies to each circuit setup onion with a cryptographic hash of its endpoint,

called a receipt, which enables users to verify that their circuits were created

correctly.
The replies flow through the mixnet in reverse, back towards the users. Each

server on the reverse path waits for the replies from the following layer, then

applies the inverse of the permutation it used for shuffling messages on the

forward path. To prevent an adversary from correlating messages on the reverse

path, the server encrypts the replies with the shared keys from the forward path.

Eventually, a symmetrically encrypted onion message carrying the hash of the

circuit endpoint reaches the client. The client decrypts the onion, and checks that

the circuit was set up correctly by comparing the hash of the endpoint ID it had

selected against the hash specified in the returned message (as shown at the end
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of phase 1 in Figure 4.2). If the hashes match, then the client is guaranteed that
the circuit setup onion traversed all of the servers on its chosen path. A client
that fails to establish two circuits will not proceed with the round. This completes
the circuit setup phase.

4.3 Noise generation

Yodel's privacy guarantee relies on unlinking the user who creates a circuit from
the circuit's endpoint. In §5 we show that by shuffling messages at honest mix
servers, Yodel prevents (with overwhelming probability) an attacker from learning
whether Alice is connecting to Bob's circuit or her own (i.e., whether Alice is
chatting with Bob or she is idle).

In Yodel's topology, users create circuits that take independent routes through
the mixnet. This approach distributes the load over all available servers, which
allows Yodel to reach its performance goal but also introduces risk. If two users,
Alice and Bob, set up non-intersecting circuits, then an attacker that discards
circuit setup messages from all other users could trace Alice's circuit to its endpoint
and detect whether Bob is connecting to it. The more servers Yodel has, the higher
the chance that Alice and Bob pick non-intersecting paths for their circuits. Yodel
addresses this issue by having its servers create noise circuits (similar to noise
messages in Karaoke [18]) during the circuit setup phase and ensuring that these
circuits are established before users begin connecting to each other's circuits.
The noise circuits ensure that every user's circuit intersects with some circuits
whose routes the attacker does not know. Much like regular clients, servers select
random paths through the mixnet for their noise circuits and verify that the
circuits were established by checking their receipts (as described in §4.2). Our
analysis computes the number of noise circuits that every server needs to create
to ensure Yodel's security goals (§5).
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4.4 Noise verification

One challenge in relying on noise circuits is that an attacker might drop the

circuit setup messages to eliminate the noise in the system. Yodel prevents this

attack by having servers announce if their noise circuits have been successfully

created, before users attempt to connect to any circuits. Concretely, after a server

creates and verifies the receipts of its noise circuits for a round, it broadcasts a

noise signature to all other servers indicating how much of its noise is present for

the round. Each user's entry server aggregates these signatures2 and forwards

them to the user's client.

The client verifies that servers generated enough noise before proceeding

with the round. First, it receives the noise signatures from its entry server and

the number of noise circuits that each server vouched for, as shown in phase 2 of

Figure 4.2. The number of noise messages that a server vouches for is dynamic to

handle faulty servers, as we describe next. The client determines how much total

noise is present in the round by adding together the per-server noise counts that

have valid signatures. If the total noise is over the threshold for privacy, which is

a system parameter (required-noise in the code), the client continues to the next

phase of the round, otherwise it aborts the round.

Handling faulty servers. When servers are down, there might not be enough

noise for clients to proceed with the round. Yodel deals with this by having online

servers generate extra noise when servers go down. One limitation of Yodel

(discussed further in §9) is that a high percentage of messages get lost once a few

servers go down, due to requiring messages to traverse many hops. For example,

if 2% of the servers go down, 20 hops results in up to 2% x 20 = 40% message loss.

However, if each server generates 1.7x more noise when 2% of the servers go

down, then noise verification can still succeed. In this case, verification succeeds

if each server receives 60% (budgeting for 40% loss) of the receipts for their noise

circuits (since 0.6 x 1.7 > 1).
2An aggregatable signature scheme like BLS [7] could save bandwidth.

42



4.5 Guarded circuit exchange

After clients establish circuits and verify that servers have generated sufficient
noise for the round, they need to choose a circuit endpoint to connect to for the
remainder of the round. To start a voice call, clients exchange circuit endpoints
through an external metadata-private messaging system by calling exchangecircuit
in phase 3 of Figure 4.2. In the case that Alice is calling Bob, she sends Bob the
endpoint ID of one of her circuits (circuiti) through the external messaging
system. If the exchange succeeds, then the function returns Bob's response (an
endpoint that he created). However, the adversary can block messages over the
external system.

Yodel's adversary model allows the attacker to discard any message sent on the
network. Therefore, the attacker can discard Alice's message and prevent her from
notifying Bob about her circuit's endpoint. If a client does not receive a circuit
endpoint from their buddy (i.e., buddy-endpoint is None in phase 3 of Figure 4.2),
then the client connects to the backup circuit it had established (circuit2). Users
never share the endpoint of their backup circuit with anyone, ensuring no other
user will connect to that circuit.

This backup circuit is crucial since Alice can never know whether Bob received
her circuit endpoint and vice-versa-this is the Two Generals problem [4, 12].
However, Alice needs to connect to some circuit to ensure her traffic patterns are
the same in every round. Since she can never be sure about the state of circuit1,
she connects to circuit2 if she does not receive a circuit endpoint from Bob. If
Alice is idle (i.e., not calling anyone), then her client still invokes the external
messaging service with a message to herself as a form of cover traffic.

After choosing which circuit to connect to, the client calls connect-circuit
to start receiving messages from that circuit. The circuit endpoints contain
information about which server on the last layer is hosting that circuit, so that
the client knows which server to connect to.

Yodel's end-to-end guarantees are only as strong as the guarantees offered
by the external system used to exchange circuits. The external system needs
to have strong security properties, but also needs good enough performance so
that users can establish calls quickly. For example, Pung [5] offer strong security,

43



def process-subround(round, layer, subround, inputs):
st = srv.circuit-state[(round,layer)]
for i in range(inputs):

if inputs[i] == None:
# Heal the missing input.

outputs[i] = rand.bytes(subround-msg-size)
else:

outputs[i] = decrypt-aes(st.keys[i], inputs[i])

if layer < nlayers-1:
st.shuffle.apply(outputs)
# No replies since circuits are unidirectional.
distribute-voice-onions(layer+1, outputs, st.hops)

else:
# Last layer delivers messages to users.
for i in range(st.endpoints):

if u := connected-user(st.endpoints[i]):
send-msg(u, outputs[i])

Figure 4.5: Server pseudocode for circuit messaging.

but it could take several minutes to establish a call. Alternatively, Karaoke [18]

provides a weaker guarantee, but its lower message latency (e.g., 8 seconds for 4

million users) would allow users to establish calls more quickly.

4.6 Circuit messaging and self-healing circuits

Once clients have set up circuits and exchanged their endpoints, users can start

exchanging messages. Yodel divides every round into a fixed number of subrounds

(e.g., 1,000), which the coordinator kicks off at fixed intervals and entry servers

announce to their clients.

The client pseudocode for circuit messaging is shown in phase 4 of Figure 4.2.

In every subround, the client sends a fixed-size message to their non-backup

circuit (circuit1), intended for the user's call buddy. The content of the message

(e.g., a voice packet) is encrypted end-to-end with a key known only to the

user and their call buddy. The encrypted content is then onion-encrypted using

the symmetric keys on the circuit's path, which the sender established during

44

M



circuit setup. The client sends the onion to the first hop on its circuit by calling

send-voice-onion.

In a separate thread, the client receives one message every subround from

their buddy's circuit endpoint. The message is decrypted with the buddy's shared

secret and the resulting audio data is sent to the user's speaker. The end-to-end

encryption between users can optionally include authentication. However, it is

crucial that the user not react to authentication failures (e.g., by going offline), as

this would undermine Yodel's self-healing, which we describe next.

Server-side processing. Figure 4.5 shows the pseudocode for processing a

subround on a particular layer. On every layer, the server receives as input the

messages from the previous layer in batches. The input message to each circuit is

determined by the position of the message in the batch. If the input to a circuit

is present, the server removes a layer of encryption from the message using the

circuit's key, which was established during the circuit setup phase. If some circuit

is missing a message, the server heals the circuit by generating a random message

in its place, which defeats active attacks.

A critical challenge that Yodel handles is that the adversary might drop mes-

sages in an attempt to correlate traffic between subrounds. For example, if when-

ever the attacker drops Alice's message, Bob does not receive a message from

the endpoint he is connected to, then they must be talking. Yodel addresses this

challenge with the idea of self-healing circuits, illustrated in Figure 4.6.

To ensure that missing messages do not create an observable pattern, the server

that detects the loss creates another message in its place. The server replaces

the missing message with random bytes, as shown in Figure 4.5. Importantly,

during subrounds, messages are onion-encrypted with the symmetric circuit keys,

but the messages are not authenticated (see the onion-encrypt-aes function in

Figure 4.3), so that a random string is indistinguishable from the original message

to everyone except for the sender and their buddy.

After decrypting the input messages and healing any missing inputs, the

server applies the shuffle that was generated during circuit setup and sends the

results to the next layer. Using the same shuffle ensures the next layer will be able

to map input messages to the correct circuits, so that servers apply the right circuit
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Figure 4.6: Self-healing. The dashed line denotes a message that the attacker
drops on the blue circuit. The honest server on the third layer fills a message in its
place, which ensures that the attacker cannot distinguish red and blue messages
after the third layer.

keys. A malicious server could shuffle messages under a different permutation so
that the next server applies the wrong keys, but this would only cause the user's
call buddy to fail in decrypting those messages (and thus discard them). It does
not benefit the attacker since Yodel messages are not authenticated between hops,
and any message looks equally plausible.

The last layer hosts the circuit endpoints, and users connect directly to a
server to request messages for an endpoint. If a circuit endpoint has no connected
user, the server discards messages that arrive on that endpoint.
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Chapter 5

Security Analysis

This chapter formally argues for why Yodel achieves its security goal. Our privacy

analysis follows the structure of the client pseudocode from Figure 4.2, where

privacy means hiding the user's buddy. The first two phases, circuit setup and noise

verification, are independent of the user's buddy, and thus leak no information

about who the user is communicating with. If any errors arise at this point,

the client will stop participating in this round, and leak no further information

about buddy. The third phase involves the external messaging system for circuit

exchange, whose privacy is outside of the scope of our analysis; we assume it

provides sufficient guarantees. The third phase also involves the client connecting

to a specific circuit endpoint. §5.1 argues that this leaks no information about

buddy, because the adversary cannot determine which user established a given

circuit endpoint.

Once users set up their circuits, the fourth phase involves sending messages

over these circuits. The attacker observes the same communication pattern in

every subround: users send messages to the same servers, every inter-server link

carries the same number of messages, and users receive one message from the

same endpoint. (Yodel's self-healing circuits ensures that the attacker observes

the same pattern even if the attacker discards messages.) Therefore, exchanging

many messages does not allow the attacker to learn any more information about

the conversation's metadata than just a single exchange, as in the circuit setup

phase.
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Figure 5.1: Yodel's privacy guarantee: an adversary cannot determine whether
Alice's message goes to circuit endpoint X and Bob's message to Y or vice-versa
(i.e., scenarios 1 and 2 are equally likely given the adversary's observations). Lines
represent links with malicious intermediary servers that an adversary can track.
Servers Sa, Sb, sx, and sy are honest; no and ni are noise messages.

We omit many of the details in this section; a companion analysis [19] provides

a more detailed treatment of Yodel's privacy guarantees.

5.1 Circuit indistinguishability

Yodel's privacy stems from the adversary's inability to correlate the start and end

points of a user's circuit. To make this more precise, we introduce the notion

of peering circuits, as illustrated in Figure 5.1. Two circuits peer if both circuits

route through at least two honest servers, and the leftmost honest server on each

circuit's path (sa or Sb in Figure 5.1) is to the left of the rightmost honest server

on the other circuit's path (either sy or s, in Figure 5.1, respectively). Server s is

"left" of s' if s appears on the route in an earlier layer than s'. With sufficiently

long routes, we can ensure that circuits peer with high probability, as we analyze

in §5.2.
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Theorem 1. Conversation privacy. For any two peering circuits created by
honest clients, Alice and Bob, with endpoints x and y, the following holds:

| Pr[Alice -> x A Bob -> y | 0]

- Pr[Alice -> y A Bob -> x | ] 5 r

where user -> x means that user created the circuit with endpoint x, and (9 denotes
the attacker's observations from all network links and compromised servers. The
probability is taken over the coin tosses in the selections of the circuits'paths and the
cryptographic primitives that Yodel uses. q is a negligible function in the number of
noise circuits and the security parameters of Yodel's cryptographic primitives.

Proof Observe Figure 5.1. In this figure two users, Alice and Bob, are sending
messages through the mixnet. The messages no and ni are noise messages and
happen to coincide with the messages from Alice and Bob at the honest servers

sa and sb respectively. For simplicity, assume that the attacker has discarded all
other messages, so the attacker sees precisely one message on every link. Server

sa shuffles Alice's message with no; after the server peels its layer of the onion
encryption and uncovers the next layer of the onions, the two messages appear
indistinguishable (by the cryptographic merits of the encryption scheme). It is
therefore equally likely (given the attacker's observations) that Alice's message
travels to sx and no travels to s, or vice-versa. Similarly, Bob's message is equally
likely to be at s, and ni at sy or vice-versa.

Since no user connects to No or N1, the attacker can infer that these endpoints
belong to noise circuits, so Alice and Bob must route their messages to endpoints
X and Y. The attacker cannot distinguish whether no arrives at endpoint No and

ni arrives at N or vice versa, so there are two equally likely cases, corresponding
to the two scenarios in Figure 5.1. Scenario 1: Alice's message travels to sx and
then to endpoint X, and Bob's message to sy and then to endpoint Y (and no
reaches endpoint N1 and ni reaches endpoint N). Scenario 2: Alice's message
travels to Y, Bob's message travels to X, and no/ni travel to No/N1 .

To complete the argument, we need to show that a noise circuit that routes
from sa to s, and another circuit routing from sb to s, (or alternatively, routes
from sa to s, and sb to sx) exist with overwhelming probability. The probability
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that a noise circuit routes through two particular servers is g, where N is the

number of servers in Yodel. Thus, the probability that all m noise circuits do not

route through these servers is (1 - a)"m. Using the union bound we find that the

probability that there is not a pair of circuits where each circuit route through

the servers above is less than 2(1 - ")m, which (for a fixed N) approaches to 0 as

m increases. El

Informally, Theorem 1 means that the attacker cannot distinguish which of

the two peering circuits was created by Alice and which by Bob. This is important

since the attacker can see the endpoint that a user connects to (i.e., if last server

on the circuit's path is corrupt). If an adversary could determine that Alice is

connecting to Bob's circuit endpoint, the adversary would learn that they are

communicating.

The companion analysis [19] shows how Theorem 1 can be extended to any

number of pairs of peering circuits to provide group privacy. The group privacy

guarantee allows any set of communicating users to claim they were idle and any

set of pairs of idle users to claim they were communicating, which is stronger than

the two-user guarantee of Theorem 1 and prior systems [18, 30, 34]. For example,

if an adversary wishes to learn whether any of an organization's employees

communicate with some journalists, then the two-user guarantee is insufficient.

In contrast, group privacy applies to any set of pairs of peering circuits so it can

protect any group of users.

5.2 Security parameters

To achieve meaningful protections with Theorem 1 (and the stronger group

privacy guarantee), circuits must peer and there must be sufficient noise in the

system. This section analyzes the parameters that enable Yodel to meet these

conditions with high probability.
The probability that two circuits peer increases with the number of hops in

the circuits. Our companion analysis [19] shows how to compute this probability,
and Figure 5.2 gives the results for various trust assumptions. The results show
that if servers are honest with 80% probability, then two circuits with 15 hops
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Figure 5.2: Probability for two circuits not peering as a function of the path
length for varying trust assumptions. Our experiments target a failure probability
of 10-8.
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Figure 5.3: Number of noise circuits per server needed to guarantee group privacy
with high probability (1 - 10-8), for circuits with up to 20 hops. The number of
noise circuits is dependent on the number of servers and the probability of each
server being a honest.

peer with probability 1 - 10-8. Our analysis also shows that Yodel's path length

is close to optimal for its parallel mixnet topology (which is also used by prior

systems [15, 18, 27]).

To guarantee group privacy, servers must also create sufficient noise circuits

during the circuit setup phase. Figure 5.3 presents the number of noise circuits

needed for different deployment sizes and trust assumptions. We find that the

amount of noise that each server should generate grows proportionally to the
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number of servers. This growth seems unavoidable with Yodel's topology, since

all servers (together) need to generate noise proportional to the number of inter-

server links (which is quadratic in the number of servers).
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Chapter 6

Implementation

To determine if Yodel's design can meet our performance goal (voice calls with
sub-second latency for millions of users), we implemented a prototype of Yodel.
This chapter describes our Yodel implementation, which is distributed as part of
Vuvuzela at https://github.com/vuvuzela.

Our implementation of Yodel is around 10,000 lines of Go code. It uses the
NaCl box primitive [6] to onion encrypt circuit setup messages and native AES
instructions to onion encrypt voice frames during circuit messaging. During
circuit setup, servers send each other batches of onions over TCP using the
gRPC library. The circuit messaging phase switches to UDP to send batches of
AES-encrypted onions between servers.

We opt for UDP in circuit messaging because with TCP a single packet drop
anywhere in the network stalls the entire subround,' increasing latency for all
users. This is problematic for voice calls, where a moment of silence is prefer-
able to hundreds of milliseconds of extra lag. Self-healing circuits ensure that
dropped message do not impact security, which enables us to use UDP to avoid
retransmission delays.

During circuit messaging, after a server decrypts all the onions in a layer, our
Go code writes out the entire batch of onions to the UDP socket at once using
the sendmmsg system call. This bursty behavior, combined with the synchronous

'A server must wait for the packet to be retransmitted before the kernel gives it the rest of the
messages in the batch so it can perform the shuffle.
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nature of subrounds, yields significant UDP packet loss without rate limiting. Our

implementation relies on the htb qdisc in Linux for rate limiting. At deployment

time, each Yodel server creates an htb qdisc for every other server in the network

and the server's total outgoing bandwidth is evenly allocated among the qdiscs.

For example, in a deployment with 100 servers, a server with a 10 Gbit/s link

creates 100 qdiscs, each with a max rate of 100 Mbit/s, and maps each server

connection to one of those qdiscs. This enables Yodel to achieve a loss rate of less

than 0.1% for all data points in our experiments (§7).

Our implementation supports two audio codecs: LPCNet [31] and Opus [32,

33]. The choice of codec impacts Yodel's message size and subround frequency,

which are fixed at deployment time. In LPCNet, an audio frame is 40 ms and

compresses to 8 bytes, so Yodel uses 64 bytes to encode 7 frames every subround

(the remaining 8 bytes are used for a keyed checksum to detect loss in the presence

of self-healing). With this encoding, Yodel runs a subround every 280 ms to

achieve continuous playback, resulting in 1.6 kbit/s of throughput per user. In

Opus, each audio frame is 60 ms and compresses to 60 bytes, so we fit 4 audio

frames into a 256-byte message every subround. In this mode, we run subrounds

every 240 ms, which results in 8 kbit/s of throughput per user.
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Chapter 7

Evaluation

This chapter experimentally evaluates the Yodel implementation. We answer the
following questions:

• Can Yodel achieve its latency and bandwidth targets to support voice calls
for a large number of users?

• Can Yodel scale to more users by adding more servers?

• How do trust assumptions impact Yodel's performance?

• What are the major costs of running a Yodel server?

• Does Yodel provide acceptable voice quality?

We simulated a realistic deployment of Yodel by running it over the internet
with servers in different countries. The Yodel servers ran on Amazon EC2, evenly
distributed among five data centers in different countries: Virginia (us-east-1),
Ireland (eu-west-1), London (eu-west-2), Paris (eu-west-3), and Frankfurt (eu-
central-1). We chose these regions to minimize the network latency between
servers while maximizing the number of independent "trust zones" that the servers
operate in. The links between Virginia and Frankfurt had the highest latency,
with a weekly average of 90 ms (round-trip); the latencies between servers in
Europe ranged from 15 ms to 40 ms [3].
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Each Yodel server ran on a c5. 9xlarge EC2 instance (Intel Xeon 3.0 GHz

CPUs with 36 cores, 72 GB of memory, and a 10 Gbit/s link). On each server, we
dedicated 30 cores to running circuit messaging subrounds for the current round,
and the remaining 6 cores to running circuit setup (including noise generation

and verification) for the next round.
We simulated millions of users by having servers create extra circuits during

circuit setup (2 per simulated user). Even though users don't connect to these

circuits, each circuit corresponds to the load of a real voice call. However, we ex-

clude the cost of generating the extra circuit setup onions (which would normally

be done by clients) in our results.

Two real users ran the voice call client at their homes in Boston, which were

used to measure end-to-end latency and throughput. The maximum round-trip

latency from both users to a Yodel server was 90 ms. The real users ran the

Alpenhorn [20] dialing protocol to agree on a shared secret out-of-band. Lastly,

the Karaoke [18] chat system was used for circuit exchange, but it ran on separate

servers.
All experiments, except for those in §7.3, simulated the assumption that

servers are honest with 80% probability, which required that users' messages pass

through 15 hops to achieve Yodel's security goal. The experiments also targeted

a failure probability of 10-8, which means that each server generated around 3700
noise circuits in every round when Yodel was deployed with 100 servers. Finally,
the relative standard deviation of each data point is s 6%.

7.1 Yodel achieves sub-second latency

Figure 7.1 shows the results of measuring the end-to-end latency of voice packets

through Yodel as we varied the number of users connecting to 100 servers. The
results show that 100 Yodel servers can support voice calls for 5 million users with

under 1 second of one-way latency. Beyond 5 million users, the latency grows
to 1.4 seconds, which we consider too high for voice calls-Yodel would need

more servers to support voice calls for that user load. Beyond 8 million users,
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Figure 7.1: One-way latency for voice packets with a varying number of users
and 100 Yodel servers.
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Figure 7.2: End-to-end latency of circuit setup with 100 Yodel servers and a
varying number of users.

packet loss between servers made it difficult to sustain the end-to-end throughput
needed for a voice call with LPCNet.

We also evaluated Yodel using the standard Opus audio codec that is used
in most VoIP applications. Opus with the lowest quality settings uses 5x more
bandwidth than LPCNet, hence Yodel is unable to support as many users in this
configuration, as shown in Figure 7.1. With Opus, 100 servers can support 1
million voice calls with 965 ms of latency.

Yodel provides a seamless audio transition between rounds by running circuit
setup for the next round in the background of the current round. To avoid
interfering with circuit messaging, we use only a few cores on each server to
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Figure 7.3: One-way latency for voice packets with a fixed number of users and
a varying number of servers. The right-most points correspond to 5M and 10M
users.

setup circuits. Figure 7.2 shows the time it took to run circuit setup on 6 of the

36 cores in our VMs, with a varying number of users. The results show that

Yodel is able to complete circuit setup in under 40 seconds with 8 million users.

Since rounds start every five minutes, circuit setup finishes with plenty of time to

spare, enabling Yodel to provide continuous audio playback to users over long

conversations.

7.2 Yodel scales by adding servers

Yodel is designed to support more users by adding a proportional number of

servers. To evaluate if this is the case, we measured the end-to-end latency of

Yodel with a varying number of servers and a proportional number of users. We

ran two experiments. In the first experiment, we added 25K users to the system

every time we added a server to the network. In the second, we added 50K users

per server.

Figure 7.3 shows the results, which indicate that Yodel's latency goes up

slightly as the system scales to more servers and users. The reason is that the

number of noise circuits required for security is dependent on the number of

servers in the system (as explained in §5). For example, with 200 servers each
server is required to create 4x as many noise circuits as in a configuration with
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Figure 7.4: One-way latency for voice packets with 100 servers, 2 million users,
and a varying path length. The top of the graph is annotated with the trust
assumptions about server honesty that translate into a given path length.

50 servers, resulting in increased latency. Nevertheless, 200 servers can support 5
million users with 848 ms of latency.

7.3 Stronger trust assumptions improve latency

Our baseline assumption is that servers are honest with a probability of 80%,
which requires paths to consist of 15 hops. Other trust assumptions translate
into different path lengths, as shown in Figure 5.2. Figure 7.4 shows the effect

of path length on Yodel's latency. Increasing the path length causes a linear

increase in latency, but enables Yodel to tolerate a higher chance of a server being
compromised. If the adversary is assumed to control the network but none of the
servers (100% honest servers), Yodel requires paths of length 2, which translates

into around 100 ms of latency.
Figure 5.2 also compares Yodel with Herd [21], the only other system that

specifically aims to protect metadata for voice calls. Herd assumes that the first
server on a user's path is honest. If we make a similar assumption, then Yodel's
mixnet needs 9 layers to meet our security goal, which results in around 450 ms
of latency for 2 million users and 100 servers. Herd with 10 million users and
1000 servers achieves 200 ms for users in North America, but its performance
comes with a weaker privacy guarantee, as we discuss in §8.
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Figure 7.5: Average transmit bandwidth per server, with 100 servers and a
varying number of users.

7.4 Server costs are dominated by bandwidth

The most significant cost in running a Yodel server is the bandwidth due to
millions of ongoing voice calls (2 for each user). Figure 7.5 shows the average
transmit bandwidth usage of a single server as we varied the number of users in
the system. The results show that with 5 million users using LPCNet, a single
Yodel server sends at a rate of 3 Gbit/s on average. Our implementation could not
sustain over 4.6 Gbit/s across the internet without significant packet loss, so 100
servers could only support 1.75 million users using Opus.

The dashed lines in Figure 7.5 show the computed bandwidth a Yodel server
would need to send just audio (two calls per user divided evenly among the
servers), without any processing or security guarantees. The results show that
Yodel's bandwidth usage is nearly optimal in this regard. The reason is that circuit
messaging has no bandwidth overhead due to onion-encryption and only a small
amount of overhead due to checksums between users.

Although Yodel's bandwidth costs are high, we believe it is possible to deploy
Yodel by charging users for bandwidth. In 2016, the cost of a 10 Gbit/s link from
the U.S. to Europe was around $4000/month [8], which suggests that Yodel could
charge users less than $1/year to cover bandwidth costs.
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7.5 Yodel provides acceptable voice quality

We had several productive conversations over Yodel using LPCNet and 5 million
simulated users. The latency made it clunky to interject in the middle of someone's
monologue, but otherwise the human-to-human information exchange was signif-
icantly higher than if we had been texting. We recorded a short conversation over
Yodel running in this configuration, available at vuvuzela.io/yodel/audio-samples.

We found that voice quality with LPCNet was just as good as with Opus,
with some caveats. The voices in LPCNet sounded robotic (or "metallic" as one
user described it), but LPCNet had less background "fuzz." Opus (at 8 kbit/s)
could handle music (whereas LPCNet could not), and sounded like a low quality
cellphone connection. Overall, given these two choices, we would deploy Yodel
with LPCNet, since Opus does not buy us much at these bitrates.
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Chapter 8

Related work

This chapter contrasts Yodel with prior work that aims to protect metadata. We

focus on the prior work that comes close to providing strong metadata privacy
for voice calls. As we explain in the following paragraphs, the prior work either

fails to achieve our security goal or our performance goal. We believe Yodel is
the first system to achieve both goals simultaneously.

Tor [10] supports existing VoIP software with acceptable latency but is vulner-
able to traffic analysis [23]. The circuits used in Tor resemble the circuits in Yodel,
with three crucial differences that enable Yodel to defend against traffic analysis.
First, Yodel targets a specific application (voice calls), so its circuits operate in
synchronous rounds to eliminate any useful information from traffic patterns
(e.g., timing and message sizes). In Tor, an adversary can infer the path of user

messages across relays by correlating the times of incoming and outgoing packets.

Second, the synchronous design allows Yodel's circuits to be self-healing, which

eliminates any leakage from active attacks. In Tor, an adversary that controls a
relay could drop a message going through that relay and then see which voice
call dropped a packet as a result, which would correlate the sender and receiver
of that message. Finally, our analysis shows that Yodel's circuits need to include
at least two honest servers to resist attacks from an adversary that fully controls
the network. Yodel's circuits traverse more servers (e.g., 15 hops vs. Tor's 3 hops)
to meet this requirement with high probability, even when the adversary has also

compromised a significant fraction of the servers.
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Herd [21] is a metadata-private VoIP system that defends against traffic anal-
ysis, but it assumes the user connects via an honest server. This assumption is
problematic for two reasons. First, it requires the user to make a tricky choice
about which server to trust when joining the system. Second, it gives an at-
tacker a single obvious target for compromising a user's metadata. In Yodel, users
don't have to choose which servers to trust, and the cost to compromise any
user in the system is much higher: the attacker must compromise a substantial
fraction (e.g., well over 20%) of all the servers. Another difference is that Herd
provides a weaker notion of privacy, called "zone anonymity", which limits a
user's anonymity set to the set of users that connect to Herd via the same server.
In Yodel, the adversary cannot learn which pairs of users are communicating,
regardless of which servers they connect to.

Loopix [27] hides metadata by relaying messages through several mix servers
and randomly delaying messages at each hop. Longer delays improve security by
giving messages more time to mix. However, even short delays of 0.5 seconds
on average per hop, across 3 hops, results in some messages that experience 3 or
more seconds of latency. The high variance latency makes Loopix a poor fit for
voice calls.

Riffle [16] and cMix [9] use a similar hybrid mixnet design, where a slow setup
phase is used to bootstrap a faster communication phase. While Yodel targets a
specific application (two-way voice communication), Riffle and cMix are more
general but require more complex cryptography as a result. Riffle uses a verifiable
shuffle (a CPU-intensive cryptographic primitive) to defend against active attacks
during the setup phase, and uses authenticated encryption and accusation to
identify active attacks during the communication phase. In contrast, Yodel's
self-healing circuits rely on honest servers to defend against active attacks, which
is far more efficient. For example, Riffle supports 10,000 users with sub-second
latency, but its approach does not scale as more users join: the latency grows to
10 seconds with 100,000 users. Neither Riffle nor cMix address the challenge of
scaling to many users by adding more servers.

Other systems that use CPU-intensive cryptographic primitives to protect
metadata, like Pung [5], XRD [17], and Dissent [36], also suffer from high latency.
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Karaoke [18] is a horizontally scalable messaging system that guarantees
differential privacy for metadata by routing messages through a mixnet and

adding noise. Karaoke and its predecessors [20, 30, 34] focus on scaling to many
users, but Karaoke's minimum end-to-end latency (running with no user load) is
6 seconds, which is too high for voice calls. Furthermore, Karaoke's differential
privacy guarantee is a poor fit for voice calls because the high rate of messaging
would quickly exhaust a user's privacy budget.

The noise circuits in Yodel serve a simpler purpose than the noise messages in

prior systems [18, 30, 34]. Prior systems sample a random number of noise mes-
sages to obscure the attacker's observations and statistically bound the metadata
leakage for a single conversation. Yodel uses noise circuits to ensure that users'
messages will mix with messages whose routes are unknown to the adversary;
no metadata leaks once messages are mixed.
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Chapter 9

Limitations

This chapter discusses the major limitations of Yodel's design and proposes new
directions for future work.

9.1 High latency

Perceptual studies [14] show that for conventional interactive telephone-call-like
service, 990 ms is likely too high, and would make it difficult to carry on fast
conversations with frequent interruptions. However, we believe that Yodel is
nonetheless useful for voice conversations with less frequent interruptions, and
in our experience, we were able to carry on long conversations over Yodel. We
believe that users who value strong call metadata privacy may also tolerate this
sort of coarse-grained interactive communication.

The time to start a new call is also high relative to voice systems which don't
hide metadata. In Yodel's experimental setup from §7, users might have to wait
up to 5 minutes to start a new call. Yodel's call setup latency could be reduced
by running rounds more frequently (e.g., every minute), but we leave it to future
work to evaluate how this would impact voice call latency.
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9.2 Mobile clients

The Yodel client uses bandwidth and CPU in the background to maintain cover

traffic, even when the user is not actively talking to anyone. This makes it difficult

to run the client on a phone where bandwidth and battery life are limited. Yodel's

constant cover traffic (equivalent to one voice call all the time), is ideal for security

but quickly drains a phone's battery. Future work should investigate whether

Yodel clients could get away with less-than-constant cover traffic without sacrific-

ing usability or security. Recent developments in low-power mobile networking

might also be applicable.

9.3 Very large deployments

The amount of noise that every Yodel server needs to generate grows linearly

with the number of servers, which becomes a bottleneck in deployments with

several thousands of servers (e.g., at the scale of Tor, which has 6000 servers).

We believe that Yodel is practical despite this limitation. The noise has relatively

low overhead in deployments with hundreds of servers (shown in Figure 5.3 and

evidenced in §7.2), which is comparable to the deployments considered in prior

work [15, 18].

9.4 Fault tolerance

The more hops that a Yodel circuit includes, the more likely it is that a message

routes through a server that's down. For example, in §7 we evaluated Yodel with

15 hops. Under this deployment, if 2% of the servers are down then about 30%

of the messages will be lost. Thus, Yodel is useful when only a few servers are

down, and most messages make it to their destination. Despite this limitation,

we believe that handling up to 2% faults can facilitate practical deployments with

hundreds of servers and a few servers that are simultaneously unavailable. In

terms of availability, Yodel is a step forward over earlier systems [15, 18, 30, 34]

where a single faulty server causes the entire system to halt.
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9.5 Distant users

In our experimental setup with servers located in the US and Europe, users in

Australia and South America would experience higher latency (e.g., an additional

100 ms of one-way latency) compared to what we observed from our clients in

Boston. A limitation of Yodel's design is that we can't add servers to a new

region to reduce the latency for users in that region, without impacting the rest

of the users in the system. For example, if we added a server in Australia to our

experiments in §7.1, the end-to-end latency would jump from 990 ms to -3 seconds

for all users in the system, since Yodel's latency is approximately the number of

hops times the maximum one-way latency between any two servers. We believe

this limitation is inevitable when the anonymity set includes all connected users

in the system.

9.6 Sybil attacks

An attacker may try to create many circuits in order to DoS the system. To mitigate

this risk, a deployment of Yodel could rely on existing mechanisms to prevent

Sybils (e.g., user subscriptions or proof-of-work). However, fully addressing this

problem requires further research.
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Chapter 10

Conclusion

Yodel is a new system for metadata-private voice calls. Yodel achieves the perfor-
mance required for voice calls by establishing circuits and relying on symmetric
cryptography for message processing. The system ensures user privacy in the
circuit-based messaging design through two insights, guarded circuit exchange
and self-healing circuits. We analyze Yodel's privacy guarantees, implement the
system, and evaluate its performance in deployment over the internet with servers
located in several countries. With 100 servers, our experiments demonstrate
990 ms one-way message latency for 5 million simulated users. More information
and future work will be available at https: //vuvuzela. io.
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