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Abstract

Ksplice allows system administrators to apply security patches to their operating sys-
tem kernels without having to reboot. Based on a source code patch and the kernel
source code to be patched, Ksplice applies the patch to the corresponding running
kernel, without requiring work from a programmer. To be fully automatic, Ksplice’s
design is limited to patches that do not introduce semantic changes to data structures,
but a study of all significant x86-32 Linux security patches from May 2005 to Decem-
ber 2007 finds that only eight patches of 50 make semantic changes. An evaluation
with Debian and kernel.org Linux kernels shows that Ksplice can automatically apply
the remaining 42 patches, which means that 84% of the Linux kernel vulnerabilities
from this interval can be corrected by Ksplice without the need for rebooting.
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Chapter 1

Introduction

Several contemporary operating systems release kernel security patches many times

per year. Some of these kernel patches repair vulnerabilities which would otherwise

potentially allow an attacker to gain full administrator privileges on the operating

system. Applying these security patches typically requires rebooting the kernel, which

results in downtime and loss of state (e.g., all active network connections). Since

rebooting can cause disruption, system administrators often delay performing security

updates, despite the risk of compromises. This paper describes and evaluates Ksplice,

a system for performing hot updates, which change a running kernel without rebooting

it.

When software developers correct a security problem in the source code of a C

program (which is the language of many kernels), they create and distribute a patch,

which consists of a set of changes to the source code. In the case of a kernel change,

software vendors or system administrators apply the patch to their copy of the source

code, build a new kernel, and then distribute that new binary kernel to servers and

end-user machines, which must be rebooted in order to run the new kernel.

Safely performing a hot update, instead of a traditional update, on an unmodi-

fied C program currently requires significant programmer involvement. Existing hot

update practices, described in Chapter 5, rely on a programmer to write source code

files with certain properties (e.g., [7, 20]) or require manual inspection of the running

binary to achieve safety guarantees and resolve ambiguous symbols (e.g., [1]).
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Requiring significant programmer involvement in creating a hot update increases

both the cost and the risk of the update, which discourages the adoption of hot

updates. Ideally, we would like to be able to safely construct hot updates, with no

human involvement, from existing information, such as the patch used to correct the

security vulnerability.

Although performing an arbitrary source code change as a hot update is not

feasible without a programmer writing new code to perform the transition, some

patches can safely be performed as a hot update based solely on the source code

differences. Specifically, we have sufficient information for a hot update when a patch

does not make semantic changes to data structures—that is, changes that would

require existing instances of kernel data structures to be transformed (e.g., a patch

that adds a field to a global data structure would require the existing data structures

to change). Since kernel security patches tend to make as few software modifications

as possible, we can expect many of these patches to make no semantic changes to

data structures.

This paper focuses on developing techniques for safely performing hot updates

without programmer involvement, in the common case that the security patch does

not make semantic changes to data structures. This problem contains several chal-

lenges that have not been solved by previous hot update systems, and effectively

solving these problems helps many hot update systems (not just systems that focus

on patches without semantic changes to data structures). The techniques that we

describe are, compared to previous hot update systems, oriented much more towards

analysis at the object code level, which offers various advantages, as described in

Chapter 2 and Chapter 5.

Ksplice can, without restarting the kernel, apply any source code patch that only

needs to modify the kernel text (including patches to kernel modules and assembly

files). Unlike other hot update systems, Ksplice takes as input only a source code

patch and the original kernel source code, and it updates the running kernel correctly,

with no further human assistance required.

Ksplice does not require any preparation before the system is originally booted.
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The running kernel does not need to have been specially compiled, for example.

Other hot update systems require a special kernel design that is conducive to hot

updates [3, 4], require a customized compiler [1, 21], or require a virtual machine

monitor [7].

The performance impact of inserting a Ksplice update into a kernel is minimal. A

small amount of additional kernel memory, proportional to the size of the replacement

functions, will be expended, and function calls to the replaced functions will take a

few cycles longer because of inserted jump instructions. On modern systems, this

overhead should be negligible under most circumstances.

Although generating a Ksplice hot update from a compatible patch requires no

human effort, Ksplice requires a person to perform a single check before invoking

Ksplice: a person is expected to confirm that the target security patch does not make

any semantic changes to data structures. Performing this check requires only seconds

or a few minutes for most security patches. This check is much simpler than the

programmer work required by other hot update systems.

We implemented Ksplice for Linux, but the techniques that Ksplice employs apply

to other operating systems. To evaluate Ksplice’s approach, we applied Ksplice to 50

Linux patches for kernel security vulnerabilities from May 2005 to December 2007.

The 50 include all documented x86-32 Linux kernel vulnerabilities from this time

interval with greater consequences than denial of service. We applied the patches

to five different running Debian kernels and six different running kernel.org kernels.

Of the 50 patches, eight make semantic changes and cannot be applied by Ksplice.

The remaining 42 of the 50 patches can be applied using Ksplice without the need

for rebooting, which is a significant advance over the current state in which system

administrators always have to reboot their systems.

The contributions of this paper are a new binary-level approach for constructing

hot updates and an evaluation of this system against Linux security patches. This

Ksplice evaluation is, to our knowledge, the first evaluation of any kernel hot update

system against a comprehensive list of the significant security vulnerabilities within

a commodity operating system over a period of time. We believe that this evaluation
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clearly demonstrates that hot updates currently have the potential to eliminate most

kernel security reboots, while requiring little additional work from any programmer.

The rest of this paper is organized as follows: The next chapter presents Ksplice’s

design for performing hot kernel updates. Chapter 3 describes Linux-specific imple-

mentation considerations. Chapter 4 tests Ksplice against security patches from May

2005 to December 2007. Chapter 5 and Chapter 6 relate Ksplice to previous work

and kernel developer community discussions. Chapter 7 summarizes our conclusions

and directions for future work.

12



Chapter 2

Design

To apply a patch, Ksplice replaces all of the functions that the patch changes. If

any code within a function is patched, then Ksplice will replace the entire function.

Ksplice replaces a function by linking the patched version of the function into the

kernel’s address space and by causing all callers of the original function to invoke

the patched version. Ksplice replaces entire functions since they tend to have a

well-defined entry point, at the beginning of the function, which is convenient for

redirecting execution flow away from an obsolete function to a replacement function.

Although replacing entire functions is relatively convenient, this replacement must

be done with care. It involves generating the object code for the patched function,

resolving symbols in the object code of the patched function, stopping the kernel

temporarily, rewriting the initial instructions in the obsolete function to point callers

at the patched function, and starting the kernel again. The rest of the section discusses

how Ksplice performs these operations.

2.1 Overview

Ksplice accepts as input the original kernel source code and a source code patch.

Through a multi-stage process, Ksplice uses this input to create a kernel module that

contains the patched functions (see Figure 2-1). Most of the stages of this process

make few assumptions about the underlying operating system. The design assumes
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a reasonable binary format for object code and a basic facility for kernel modules.

In order to make our examples specific, we assume in our discussion that the object

code format is ELF, the Executable and Linkable Format [11], which is widely used

by Linux, BSD, and Solaris.

In order to generate a hot update, Ksplice must determine what code within the

kernel has been changed by the source code patch. Ksplice performs this analysis at

the ELF object code layer, rather than at the C source code layer, for four reasons.

First, operating at the object code layer allows the C compiler to perform the

work of parsing the C language. Other hot update systems parse C by modifying a

mainstream C compiler [1] or by relying upon a research C parser [21], such as the

C Intermediate Language tools [22]. Modifying a mainstream C compiler creates a

dependency upon that version of that compiler and can make a hot update system

more difficult to maintain over time. Using a research C parser creates a dependency

upon a software system that is not widely used and that does not necessarily support

all of the C extensions needed to compile the code in question. Operating at the

object code layer and relying upon the well-established GNU BFD library, which is

used extensively by the popular GNU binary utilities (including the GNU linker ld),

does not have these disadvantages.

Second, looking for object code differences rather than source code differences

naturally provides support for function signature changes, changes to functions with

static local variables, and changes to assembly files, features which are notably missing

from other hot update work [1].

Third, Ksplice’s binary comparison techniques avoid a subtle problem with inline

functions. This problem affects other hot update systems that, like Ksplice, are

designed to update programs that were compiled without foresight of the update

system. Compilers will sometimes inline a function in some places and not inline it

in others, which can lead to a hot update system thinking that it replaced the only

copy of a function, while other inline copies still exist and contain the outdated code.

As a result, other hot update systems could leave vulnerable or obsolete code in the

kernel, which could result in a security compromise or data corruption. This problem

14



Figure 2-1: Ksplice’s process for creating a hot update
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essentially cannot be avoided without doing some kind of binary code comparison

since any function can potentially be inlined by the compiler. In other words, a hot

update system for legacy binaries cannot avoid this problem by simply declaring inline

functions to be outside of its scope; ignoring this problem is always a safety risk.

Lastly, Ksplice’s focus on information available in the object code helps Ksplice

resolve symbols in difficult situations, as discussed in Section 2.6.

In order to understand the effect of a source code patch on the kernel, Ksplice

performs two kernel builds and looks at how the resulting ELF object files differ.

Ksplice builds the original unmodified kernel source in a directory tree that we will

refer to as the pre tree. Next, Ksplice copies this directory tree into a new location

and applies the source code patch. We refer to this patched directory tree as the post

tree. Ksplice then performs a build of the post tree, which recompiles any object files

whose constituent source files have been changed by the source code patch. Ksplice

compares the pre and post object file trees in order to determine which functions were

changed by the patch. It extracts the changed functions from the post tree and puts

them into an object file.

Ksplice then creates a kernel module by combining this object file with generic

code for performing hot updates. A system administrator can then insert the kernel

module into the kernel using the operating system’s standard kernel module facility.

After the kernel has loaded and initialized the hot update, the hot update will locate

entry point symbols in the running kernel’s memory and insert trampolines at those

locations. These trampolines will direct execution away from the vulnerable code to

new code, located elsewhere, that has been loaded into kernel memory as part of the

hot update.

The kernel module generated by Ksplice is not machine-specific and may be used

on any machine running a kernel compiled from the same original source code. The

patch can easily be reversed by running a user space program that communicates

with the module. Reversing the patch involves removing the trampolines so that the

original function text is once again executed.
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2.2 Challenges

The described design must address several challenges in order to be practical:

• Avoiding extraneous differences. The corresponding pre and post object files

will contain many differences that are only tangentially related to the source

code patch. As an example, the GNU C compiler [25] will, by default, lay out

an entire object file’s executable text within a single ELF section named .text,

and the C compiler will therefore generate much code within this section that

performs relative jumps to other addresses within this ELF section. If a single

function within an object file is changed in length as a result of the source code

patch, then many relative jump offsets throughout the entire object file will

potentially change as a result of what was originally a simple change to a single

function.

• Determining entry points. Most C functions have one entry point, but assembly-

enhanced parts of the kernel can have several.

• Resolving symbols to kernel addresses. We must use our own mechanism for

performing relocations, rather than the kernel’s provided mechanism, because

we need to allow the post code that is being relocated to reference local functions

and data structures. For example, we need to allow the replacement code to

reference the static local variables of existing functions. The kernel symbol table

contains entries for local symbols in addition to global symbols, but the kernel’s

provided relocation system only considers global symbols eligible for fulfilling

relocations.

• Handling ambiguous or missing symbols. Attempting to resolve symbols based

on the names in the kernel’s symbol table can commonly cause problems when

a symbol name appears more than once or does not appear at all. For example,

the replacement code might reference a function by the name translate_table,

and two or more local symbols with that name might appear in the kernel.
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In this situation, the hot update system needs a way of determining which

translate_table address should be used to fulfill this relocation.

• Handling compiler differences. The compiler used to generate the hot update

may not behave the same as the compiler used to compile the original kernel.

The pre code could therefore be different from the code in the running kernel,

which we will refer to as the run version of the machine code. These differ-

ences could cause various serious problems with the hot update process, such as

causing the hot update to neglect to update sections of vulnerable code. Con-

sider the situation in which a patched function (patched_func) is called from a

non-patched function (calling_func) that is within the same compilation unit.

Assume that, in the run code, the compiler decided to inline calling_func’s

call to patched_func. If, in the pre and post code, the compiler chooses to have

calling_func perform a call to patched_func rather than making the call be

inline, then the pre and post code for calling_func will be identical. As a

result, the system would not think that calling_func needs to be replaced in

the running kernel. One would not expect this kind of situation to arise often,

but silently failing to update sections of vulnerable code is unacceptable even

in rare circumstances.

• Finding a safe time to update. After the hot update module has been inserted

into the kernel, the system must find an appropriate time to insert the trampo-

lines and thereby switch over to using the replacement functions. In order for

Ksplice to be able to safely replace a function, that function should not be in

the middle of being executed by any thread on the system. Consider a situation

in which one patched function (calling_func) calls another patched function

(called_func). If the patch changes the interface between calling_func and

called_func in any way, then it could be important to ensure that the ob-

solete calling_func only calls the obsolete called_func. Unfortunately, if

calling_func is in the middle of being executed when called_func has its

trampoline inserted, then the obsolete calling_func could call the replace-
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ment called_func. This incorrect call could cause serious problems.

• Patching a previously-patched kernel. After one hot update has been applied to

a running system, safely applying additional hot updates to that system should

remain possible.

The rest of this chapter describes how Ksplice addresses these challenges.

2.3 Handling extraneous differences

In order to identify a more minimal set of changes caused by the source code patch,

Ksplice would like to be able to generate object code that makes no assumptions in

its executable text about where functions are positioned in memory. Avoiding these

function layout assumptions is also useful for generating the replacement code for the

hot update.

To reduce location assumptions, all of Ksplice’s kernel builds are performed with

certain compiler options enabled to ensure that every C function and data structure

within the kernel receives its own dedicated ELF section within the resulting ob-

ject files. These options, which are included in the standard GNU C compiler but are

disabled by default, are known as -ffunction-sections and -fdata-sections. En-

abling these options forces the compiler to generate relocations for functions and data

structures, which results in more general code that does not make assumptions about

where functions and data structures are located in memory. Instead, the resulting

object code contains more general assembly instructions along with ELF relocation

entries so that arbitrary addresses can be plugged-in for functions and data structures.

When compiling with these options, kernel functions that have not been directly

changed by the source code patch will often have identical ELF sections in the pre

and post kernel trees. For various reasons, such as nondeterministic compiler opti-

mizations, some of the resulting ELF sections could differ in places not caused by the

source code patch, but such differences are unusual, difficult to avoid, and harmless.

Although Ksplice would like to replace as few functions as possible, we can safely
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replace a function with a different binary representation of the same source code,

even if doing so is unnecessary.

2.4 Determining entry points

After determining what ELF sections differ between the pre and post trees, Ksplice

generates a list of all of the entry points to those ELF text sections. Every ELF

symbol pointing into a text section is considered a potential entry point to that

section. C functions typically have one entry point at the start of the function, but

assembly code can result in an ELF section having multiple entry points. Looking for

an arbitrary number of entry points per ELF section allows Ksplice to handle patches

to certain assembly-enhanced parts of the kernel that Ksplice would not otherwise be

able to handle.

2.5 Resolving symbols to kernel addresses

In order to implement its own symbol resolution mechanism, which looks at both local

and global symbols, Ksplice removes the original ELF relocation entries present in

the ELF object files so that the kernel’s loader will not recognize the ELF relocations

and try to fulfill them. Instead, Ksplice stores the needed relocation information

in special Ksplice-specific ELF sections that Ksplice uses to perform the relocations

during the module’s initialization procedure.

Ksplice must perform these relocations during the module initialization procedure,

rather than in user space, in order to properly support cryptographic verification [19]

of Ksplice kernel updates. Since kernel modules can be linked into and unlinked from

kernel memory after the kernel has booted, the addresses of some kernel functions and

data structures will vary across machines. This variation means that, if we want to

distribute a single cryptographically-signed hot update kernel module that will work

on all machines running a particular kernel version, then we must defer completing

the relocations for that hot update until after the update module has been inserted
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into the kernel and the kernel loader has had the opportunity to verify the module’s

cryptographic signature.

2.6 run-pre matching solution

Both the ambiguous symbol name problem and the compiler variation problem can

be solved using an approach that we call run-pre matching. The compiler variation

problem arises because of unexpected and undetected differences between the run

code and the pre code. Ksplice can avoid failing silently in this situation by adding a

step to the hot update process to check the run code against the pre code. Specifically,

we should be concerned if we can find a difference between the run code and the pre

code in the kernel compilation units that are being modified by the hot update.

During the process of comparing the run code against the pre code, the hot update

system can also gain information about symbols that Ksplice was previously having

difficulty mapping to addresses because of the ambiguous symbol name problem. The

run code contains all of the information needed to complete the relocations for the

pre code.

run-pre matching passes over every byte of the pre code, making sure that the pre

code corresponds to the run code. When this process comes to a pre word of memory

that is unknown because of a pre relocation entry with an ambiguous symbol name,

Ksplice can compute the correct final pre address based on the corresponding run

bytes in memory.

For example, consider a situation in which the pre code contains a function that

calls translate_table, but two local symbols with that name appear in the kernel.

The pre object code generated by the compiler will, as in all relocation situations,

not contain a final translate_table address at the to-be-relocated position. Instead,

the pre code’s metadata will know that a symbol name (translate_table) and an

“addend” ∗ value are associated with that to-be-relocated position in the pre code.

∗The “addend” is an offset chosen by the compiler to affect the final to-be-stored value. For x86
32-bit relative jumps, this value tends to be -4 to account for the fact that the x86 jump instructions
expect an offset that is relative to the starting address of the next instruction.
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The ELF specification says that the to-be-relocated position’s final value in memory

will be computed from the addend (A), the translate_table symbol value (S), and

the final address (P ) of the to-be-relocated position. Specifically, this position will

take on the value A + S − P .

When run-pre matching gets to the to-be-relocated location in the pre code, it

will note that this relocation has not yet been fulfilled, and it will examine the run

code in order to gain the information needed to fulfill it. The run code contains the

already-relocated value val , which is val = A + S − Prun . The run-pre matching

system also knows the run address of that position in memory (Prun). The pre

code metadata contains the addend A, and so the symbol value can be computed as

S = val + Prun − A.

Although Ksplice does not require that the hot update be prepared using exactly

the same compiler and assembler version that were used to prepare the original binary

kernel, doing so is advisable since the run-pre check will, in order to be safe, abort

the upgrade if it detects unexpected binary code differences.

In order to operate correctly, the code for the run-pre matching system needs two

architecture-specific pieces of information. First, the matching system must know the

list of valid jump instructions for the target architecture so that the matching system

does not conclude that the run code and the pre code differ because of two relative

jump instructions that point to the same location but that use differently-sized offsets

for the jump.

Second, the run-pre matching system must know what instruction sequences are

commonly used as no-op sequences by assemblers for that architecture. In order to

manipulate code alignment, assemblers will sometimes insert efficient sequences of

machine instructions that are equivalent to a no-op sequence. The run-pre matching

system needs to be able to recognize these sequences so that they can be skipped

during the run-pre matching process. The GNU assembler for x86-32 and x86-64 has

a preferred no-op-equivalent sequence for each possible desired length between one

byte and 15 bytes.
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2.7 Finding a safe time to update

A safe time to update a function is when no thread’s instruction pointer falls within

that function’s text in memory and when no thread’s kernel stack contains a return

address within that function’s text in memory.

Before inserting the trampolines, Ksplice captures all of the machine’s processors

and checks whether the above safety condition is met for all of the functions being

replaced. If this condition is not satisfied, then Ksplice tries again after a short

delay. If multiple such attempts are unsuccessful, then Ksplice abandons the upgrade

attempt and reports the failure.

Ksplice therefore cannot be used to upgrade non-quiescent kernel functions. A

function is considered non-quiescent if that function is always on the call stack of

some thread within the kernel. For example, the primary Linux scheduler function,

schedule, is generally non-quiescent since sleeping threads block in the scheduler.

This limitation does not prevent Ksplice from handling any of the 50 significant

Linux security vulnerabilities from May 2005 to December 2007.

2.8 Patching a previously-patched kernel

When a system administrator wants to apply a new patch to a previously-patched

running kernel, Ksplice needs to be provided with two inputs, which are similar to

the standard Ksplice inputs:

• the source for the currently-running kernel, including any patches that have

been hot-applied (this source is the “previously-patched source”)

• the new source patch (which should be a difference between the previously-

patched source and the desired new source)

The update process is almost exactly the same as before. The pre object code

is generated from the previously-patched source code, and the post object code is

generated from the previously-patched source code with the new patch applied. The
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run-pre matching system will compare pre object code against the latest Ksplice

replacement function code already in the kernel. When the hot update is applied, the

previous trampoline is overwritten with a new trampoline.

24



Chapter 3

Implementation

We implemented Ksplice’s design for Linux 2.6 on the x86-32 and x86-64 architectures.

Although small parts of Ksplice, such as the trampoline assembly code, need to

be implemented separately for each supported architecture, most of the system is

architecture-independent.

3.1 Overview

The update “module” produced by Ksplice is actually two Linux kernel modules, so

that part of the system can be unloaded after the update is complete, in order to save

memory. Ksplice’s implementation consists of three components:

• a generic “helper” Ksplice Linux kernel module, written in C, responsible for

loading the pre object code and performing run-pre matching

• a generic “primary” Ksplice Linux kernel module, written in C, responsible for

loading the post object code and inserting the trampolines

• user space software, written in C and Perl, that, using the kernel source and

unified diff [9] provided to Ksplice as input, generates processed “helper” and

“primary” object files (these object files are then linked with the generic Ksplice

kernel modules to produce the ready-to-insert modules)
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The primary module for a hot update must always be inserted before the helper

module. The primary module will be inactive until the helper module has been

loaded. Once the helper module has been loaded, the update process will begin,

and after the update process is complete, the helper module can be removed. Since

the helper module must contain the entire compilation unit corresponding to each

patched function, it can be significantly larger than the primary module.

The user space responsibilities of performing a Ksplice update are managed by

a Perl script, ksplice-create, that invokes C programs (written using the GNU

Binary File Descriptor library) in order to perform specific operations on object files.

For example, one such C program, objdiff, is responsible for detecting the differ-

ences between corresponding object files and reporting back what sections differ and

the entry points of those sections. Another C program, objmanip, is responsible for

removing the ELF relocations from an object file so that the relocation information

can instead be stored in a Ksplice-specific ELF section, which will be processed after

the module has been inserted. Essentially identical procedures are used for preparing

the pre and post groups of ELF sections. The processed pre ELF sections, which

potentially originate from several different kernel compilation units, are eventually

combined with the helper kernel module. The processed post ELF sections are com-

bined with the primary kernel module in a similar manner.

3.2 Capturing the CPUs to update safely

Ksplice uses Linux’s stop_machine_run facility in order to help achieve an ap-

propriate opportunity to insert the trampolines. The Linux kernel normally uses

stop_machine_run for CPU hotplugging and suspend/resume functionality. When

invoked, stop_machine_run creates one high priority kernel thread for each CPU on

the machine, and it configures these threads so that each thread will only be scheduled

on its own distinct CPU.

Once these high priority kernel threads have simultaneously captured all of the

CPUs on the system, stop_machine_run will run a desired function on a single
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CPU. Ksplice uses stop_machine_run to execute a function that checks for the safety

condition discussed in Chapter 2.7. If this condition is met, the function inserts the

trampolines for the hot update.
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Chapter 4

Evaluation

4.1 Linux security patches

We compiled a list of significant Linux 2.6.x kernel security problems from May 2005

to December 2007. We compiled this list of vulnerabilities and the corresponding

patches by matching entries in the Common Vulnerabilities and Exposures (CVE)

vulnerability list [8] against the Git source control logs of Linus Torvalds’ branch

of the Linux kernel source [17]. Only security problems that could result in greater

consequences than denial of service are included on this Linux kernel vulnerability

list; specifically, all of the vulnerabilities on the list involve the potential for some kind

of privilege escalation or unintended information disclosure. We excluded from this

list any architecture-specific vulnerabilities that do not affect the x86-32 architecture.

In this time interval, 50 significant x86-32 Linux kernel vulnerabilities were re-

ported, which are listed in detail in the Appendix and summarized in Table 4.1 and

Figure 4-1. Roughly one-third of the kernel vulnerabilities primarily involved informa-

tion disclosure, and the rest potentially allowed for some kind of privilege escalation.

The frequency of new vulnerabilities with the potential for privilege escalation—

about one vulnerability per month—is consistent with the conventional wisdom that

the Linux kernel must be updated frequently in order to be secure against attack from

users with local accounts on the system. Protecting against this kind of attack can

be important even on systems where all of the people with accounts are trustworthy,
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Table 4.1: Number of vulnerabilities by type

Type of Vulnerability Quantity
Privilege escalation 32
Read kernel memory 10
Failure to clear memory 5
Other information disclosure 3

Figure 4-1: Number of patches by patch length
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since a network attacker can commonly access a user account by compromising a

password or ordinary program. In these situations, having an up-to-date kernel can

mean the difference between whether an attacker gains limited access to a system or

full control over it.

Figure 4-1 shows that most Linux kernel security vulnerabilities can be corrected

by modifying relatively few lines of source code. Of the 50 patched vulnerabilities

discussed above, 40 vulnerabilities were corrected in 15 or fewer lines of source code

changes, and 30 vulnerabilities were corrected in 5 or fewer lines of changes.

Reviewing the text of these patches reveals that most Linux kernel vulnerabilities

can be fully corrected without making any semantic changes to the kernel’s global,

dynamically-allocated, or static local data structures. We collectively refer to these

data structures as the kernel’s “long-lived” data structures. Since these data structures

do not need to change in order to accommodate most patches, many security updates

can be applied to a running system by simply updating the text of the kernel.
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Table 4.2: Debian kernels used for implementation testing

Debian version number Release date
2.6.8-2-686-smp_2.6.8-15_i386 2005-03-24
2.6.12-1-686-smp_2.6.12-1_i386 2005-07-22
2.6.16-1-686-smp_2.6.16-1_i386 2006-03-22
2.6.22-1-686_2.6.22-1_i386 2007-07-17
2.6.23-1-686_2.6.23-1_i386 2007-12-05

4.2 Methodology

To evaluate Ksplice, we applied Ksplice to the 50 patches described in Section 4.1.

We are interested in how many security patches from this interval can be applied

successfully to running kernels. Success means that the patch was applied and the

kernel kept functioning without any observed problems while building a new kernel

and sending and receiving network traffic. We expect a few of the patches to be in-

compatible with Ksplice because some of the patches require changes to the semantics

of long-lived kernel data structures. For the vulnerabilities for which exploit code was

readily available, we also tested that the exploit code worked before the hot update

and did not work after the hot update.

Since no single Linux kernel version needs all of the 50 security patches (many

of the vulnerabilities were introduced during the 32-month period of ongoing devel-

opment), we tested Ksplice with these 50 patches using five different Linux kernels

released by the Debian GNU/Linux distribution and six different “vanilla” Linux ker-

nels released by kernel.org on behalf of Linus Torvalds. These kernels are shown in

Table 4.2 and Table 4.3. The details of which patches were tested on each kernel are

available in the Appendix.

The kernel.org kernels were only introduced into the evaluation process in order

to test security patches that are not applicable to any released Debian kernel. For

most of the patches in this category, the security problems corrected by the patch

were completely absent from any released Debian kernel. Some Linux kernel security

vulnerabilities are caught before they make it into many released kernels seen by users,
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Table 4.3: Vanilla kernels used for implementation testing

kernel.org version number Release date
2.6.11.9 2005-05-11
2.6.19 2006-11-29
2.6.20.4 2007-03-23
∼2.6.21.1∗ 2007-04-30
2.6.23-rc3 2007-08-13
2.6.24-rc2 2007-11-06

and other vulnerabilities affect portions of the kernel that are completely disabled by

some Linux distributions.

We obtained the original binary and source Debian kernel packages from a his-

torical archive of nearly all packages released by Debian since mid-2005 [26]. For

each kernel, we began by fetching the compiler and assembler versions originally used

by Debian in order to compile that binary kernel. We then used the Debian kernel

source for that kernel as input to Ksplice, along with an unmodified security patch

taken directly from Linus Torvalds’ Git tree. In order to perform the hot update on

a running machine, we installed the corresponding binary Debian kernel package on

a machine, and we booted the machine into that kernel.

4.3 Results

Ksplice has been used to correct 42 of the 50 significant x86-32 kernel vulnerabilities

during the time interval. Ksplice’s system for resolving symbol names in difficult

situations and its support for assembly code are important for achieving this per-

centage of supported patches. Nine of the 42 patches modify functions that contain

ambiguous or missing symbols, and much of the kernel makes use of assembly code

via common primitives that manage concurrency control and other operations.

For example, the patch for CVE-2005-1264 changes the function raw_ioctl in

the file drivers/char/raw.c, but both the kernel’s raw character device driver and

its ipv4 implementation contain a local function named raw_ioctl. Since both of
∗Git revision b7b5f487ab39bc10ed0694af35651a03d9cb97ff

32



Table 4.4: Kernel vulnerabilities that cannot be patched using the Ksplice design

CVE # Reason for failure
2007-4571 changes data initialization value
2007-1217 changes data initialization value
2006-5753 changes data initialization value
2006-3626 changes data initialization value
2006-1056 changes data initialization value
2005-3179 changes data initialization value
2005-2709 adds field to structure
2005-2500 adds field to structure

these drivers can be included with the kernel as an optional module, a naive hot

update system would find, when running on a kernel with only the ipv4 driver loaded,

the single raw_ioctl symbol and replace it with the raw character device driver

replacement function. Ksplice’s run-pre matching system ensures that symbols are

resolved correctly and that functions look as expected before they are patched.

As another example, the patch for CVE-2007-4573 modifies the x86-64 assembly

file ia32entry.S in order to zero-extend all registers in order to avoid an arbitrary

execution vulnerability in the 32-bit kernel entry path. Ksplice handles this patch

using the same techniques that handle patches to pure C functions.

Eight of the 50 patches were not supported by the Ksplice design. As shown in

Table 4.4, these patches change the semantics of long-lived kernel data structures,

either by changing the default value of a data structure or by adding a field to a data

structure. Some of the patches explicitly change the initial value of a data structure

via the C variable declaration, and some patches change a data structure initialization

function.

Working exploits for two recent x86 vulnerabilities are available on the web. We

have used exploit code for CVE-2006-2451 [15] and CVE-2007-4573 [10] in order

to confirm that these security vulnerabilities disappear when the corresponding hot

updates are applied.
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Chapter 5

Related Work

There are two streams of work related to Ksplice: academic papers with various

approaches to the hot update problem and black hat publications describing how

to perform malicious hot updates on commodity operating systems. We discuss the

relationship of Ksplice to these in turn.

5.1 Research literature overview

The existing research hot update systems that are designed to update “legacy bina-

ries” (mostly-unmodified binaries that are created with essentially no foresight of the

update system) perform their patch analysis and update construction at the source

code layer, rather than at the object code layer, which results in several disadvantages

for these systems.

First, because of the complexity of analyzing a patch and constructing the replace-

ment code at the source code level, DynAMOS [20] and LUCOS [7] leave essentially

all of this work to a human kernel programmer. In these systems, a kernel pro-

grammer needs to construct replacement source code files with certain properties,

which requires “tedious engineering effort” [7] and, as with any human involvement,

is error-prone.

The one system which does implement in software the construction of replacement

code, OPUS [1], suffers from several limitations related to its source-level approach
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to this problem. Unlike OPUS, Ksplice’s binary-level approach supports function

signature changes, changes to functions with static local variables, and changes to

assembly files. All of these features are natural consequences of approaching hot

updates from the object code level rather than the source code level.

Intuitively, looking for object code differences works well because it comes closer

than the source code changes to what we actually care about—how and where the

machine’s execution might be changed. Determining how to handle arbitrary source

code changes can require much information about the semantics of the C and assembly

languages. For example, because of implicit casting, simply changing a data type in

a function prototype in a C header file (e.g., from an int to a long long) can result

in changes to many different functions (which have not themselves had their source

code changed at all, even after C preprocessing). The Ksplice approach to hot updates

described in Chapter 2 does not require special cases in order to deal with language-

level nuances such as macros, function signatures, static local variables, and whether

code is written in C or raw assembly.

Second, and more importantly, essentially any hot update system which operates

at the source code layer exclusively is vulnerable to an inescapable inline function

problem described in detail in Section 2.1. Fundamentally, the binary version of

the running program contains information that is not available in its source code,

and looking at the binary code is necessary in order to guarantee the safety of the

update. Any hot update system for legacy binaries needs to use a mechanism similar

to Ksplice’s run-pre matching system to be safe, in order to detect where code has

been inlined by the compiler.

Third, Ksplice’s binary-level run-pre matching system helps Ksplice resolve am-

biguous symbol names, which other hot update systems either cannot handle or can

only tolerate with significant human intervention. Ksplice’s enhanced ability to re-

solve symbol names was needed for 9 of the 42 successful patches from the evaluation.

It is also worth noting that the Ksplice evaluation is structured differently from

the evaluations of previous legacy binary hot update systems. Ksplice’s evaluation

measures Ksplice against all 50 of the significant Linux x86-32 security vulnerabilities
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over a 32-month time interval. Previous evaluations of hot update systems for legacy

binaries have not tested those systems against a comprehensive list of the patches

over a time interval. The DynAMOS and LUCOS evaluations each describe testing

5 patches; the OPUS evaluation describes testing 26 patches from a corpus of 883

vulnerabilities.

5.2 Research literature individual systems

Since DynAMOS, LUCOS, and OPUS construct updates for legacy binaries at the

source code layer, these systems are affected by the limitations described in Sec-

tion 5.1.

DynAMOS is a recent hot update system that helps a programmer to manually

prepare hot updates for Linux. Since DynAMOS requires a kernel programmer to

write new code, its design can accomodate certain kinds of semantic changes to data

structures, as long as a kernel programmer writes the appropriate code and debugs

it. Ksplice’s design could incorporate this functionality, but we do not do so because

of the risks inherent in programmers writing code for each hot update. Ksplice im-

plements and evaluates updates without any human component in order to judge the

potential of hot updates at their safest.

LUCOS is a virtualization-based hot update system that enables a programmer

to manually prepare hot updates for a Linux machine running on top of a customized

version of the Xen [2] virtual machine monitor. LUCOS uses the virtual machine

monitor in order to gain a high degree of control over the kernel during the update

process. By controlling the kernel’s underlying hardware, LUCOS can, for example,

intervene when particular addresses in memory are accessed. Unlike LUCOS, Ksplice

does not require virtualization.

OPUS is a user space hot update utility for C programs that shares several design

choices with Ksplice. OPUS, like Ksplice, targets security updates and does not

require source code design changes to the to-be-updated software. OPUS requires the

least programmer work of any of the previous hot update systems, but OPUS requires
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a programmer to intervene for many patches that are naturally handled by Ksplice’s

binary-level approach, as described in Chapter 5.1. For example, OPUS would not

be able to resolve the ambiguous symbol names in 9 of the 42 kernel security patches

successfully performed by Ksplice. Also, a programmer using OPUS needs to perform

a tedious check for inline functions in the to-be-updated binary in order to ensure

patch safety (looking for the inline keyword in the source code is not sufficient since

modern compilers routinely inline functions that lack the keyword).

The K42 research operating system [3, 4] has implemented hot update capabilities

in K42 by leveraging particular abstractions provided by that operating system’s

modular, object-oriented kernel. Ksplice’s design focuses on immediately supporting

existing, mainstream operating systems, with no strict expectations placed upon the

original, running kernel. For example, a Ksplice user with an existing Linux system

should not need to reboot into a redesigned, “hot update compatible” Linux kernel

before they can start using hot updates.

Ginseng [21] is a user space hot update utility for C programs that handles more

kinds of updates than either OPUS or Ksplice. Ginseng is capable of upgrading user

space software such as OpenSSH across several years’ worth of releases, but Ginseng

makes significant compile-time changes to programs. Ginseng rewrites C programs

at compile time in order to perform function indirection and type wrapping, and

Ginseng expects a programmer to annotate the to-be-updated software to indicate

safe update points. In contrast, OPUS and Ksplice do not rewrite the to-be-updated

software at compile time and do not require any programmer annotations.

The DAS operating system [12] included hot update primitives in the operating

system, but these primitives could not be used to upgrade the kernel.

Gupta et al. built an early system [13] for performing hot updates on C user space

programs that is a predecessor to OPUS. Unlike OPUS, the system requires programs

to be linked against a special library, and, during an upgrade, it loses program state

stored in the kernel because of how it creates a new process instead of performing the

upgrade in place.

In other work, Gupta et al. proved that verifying whether or not a programmer has
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provided a correct transition function for accomplishing a source code upgrade is, in

the general case, undecidable [14]. In other words, hot update system software cannot,

in the general case, prove that a source code patch, along with a state transformation

function, results in a valid state for the new program.

Many other systems have previously been designed for modifying a running pro-

gram’s behavior, but most such systems cannot perform updates to legacy C binaries,

such as an unmodified kernel compiled from C.

5.3 Black hat techniques

The black hat community has been performing hot updates on commodity operating

system kernels for many years as part of rootkits. Computer attackers benefit from

modifying the kernel so that they can hide their activities and exert a high level of

control over the system.

Publications on rootkits for the Linux, BSD, and Microsoft Windows operating

systems [5, 16, 18, 24] describe techniques that aid in the construction of hot updates

for these platforms. Black hats, however, have notably different hot update goals

than system administrators; a black hat only needs one manually-constructed hot

update in order to succeed, and, in general, a black hat is more willing than a system

administrator to tolerate a slight chance that a hot update will destabilize the target

machine.

Instead of pursuing a generalized approach for safely accomplishing arbitrary

source code hot updates, these documents tend to focus on simple approaches which

usually work for accomplishing particular goals. For example, these publications sug-

gest using memory patterns (called “keys”), which are a few bytes long, in order to find

particular parts of the kernel, such as particular data structures, in memory. These

multibyte keys can have several problems, such as appearing several times in memory

or not appearing at all on a different machine. Various strategies exist for obtaining

a “reasonable guess at how useful a key is and if a key is not at all stable” [5] (for

example, a person can try a key on multiple machines and insert a wildcard into the
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key if necessary), but these strategies are laborious and still do not provide strong

expectations about whether the update will work. Ksplice’s approach for generating

expectations for the contents of kernel memory and systematically mapping symbol

names to values is significantly more general than the techniques described in these

rootkit publications.

Although Ksplice is safer and easier to use than existing hot update practices,

Ksplice does not provide malware authors with any troubling capabilities that they do

not already possess. Black hats have known for many years how to create rootkits that

accomplish their goals using ad hoc kernel inspection and modification techniques.

For this reason, once an attacker has unrestricted access to kernel memory, a computer

system must already be assumed to be completely compromised. The best way to

protect against attackers is to promptly patch security vulnerabilities so that attackers

never gain unrestricted access to kernel memory. The goal of Ksplice is to make this

kernel patching process easier.
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Chapter 6

Discussion

Within kernel developer communities, several arguments have been presented about

why eliminating upgrade reboots is more trouble than it is worth. A summary of

some of these arguments and Ksplice’s perspective follows.

Isn’t a general solution too hard to adopt? Some people have approached hot

software upgrades by looking at the problem of how to migrate a running system

from one arbitrary kernel version to the next-released version. Since adjacent ker-

nel versions sometimes contain major code changes, automatically handling adjacent

version transitions can present significant challenges. Systems for handling arbitrary

upgrades inevitably increase the workload associated with releasing a new kernel ver-

sion; for example, a developer might need to write and debug a state-transformer in

order to bring data from an old format into a new format.

As discussed in Section 4.1, most Linux kernel security patches are quite limited

in scope and do not change the semantics of any long-lived data structures. We can

therefore leave the kernel’s internal data entirely alone for most security hot updates,

which allows for an easy-to-adopt solution.

Aren’t dynamic kernel modules enough? Some people have argued that a

kernel module system, which allows the superuser to dynamically add and remove

subsystems from the kernel, eliminates the need for other mechanisms for updating
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the kernel. For example, a security vulnerability in a particular network driver could

be corrected by unloading the old version of that module and then loading a new

version.

Unfortunately, much kernel code cannot be treated as a freely-unloadable module

either because it contains core functions that cannot be unloaded at all or because

it contains important state that the user would not want to lose by unloading the

module. For example, unloading a networking driver could cause the system to lose

important networking state, which would potentially create as much inconvenience

as a reboot.

Isn’t rebooting just fine? Some people argue that rebooting simply is not a seri-

ous concern, because software—in particular, server software—should already handle

machine reboots on an application level gracefully. Although some systems are indeed

designed in order to minimize the negative impact of a machine reboot, many appli-

cations handle reboots poorly because they do not support saving and resuming their

exact previous state. Handling these problems in every application is time-consuming

for developers, and some applications will likely never handle restarts as well as one

would like. Furthermore, even under the best circumstances (with ideal software), the

interruption associated with reboots can be undesirable. Ksplice provides a low-cost,

easy-to-adopt alternative.

Isn’t redundancy, not a hot update system, the right way to achieve high

availability? In some situations where high availability is desirable, redundancy

might be difficult to achieve for cost or other reasons. More importantly, hot update

systems can provide significant benefit even in applications where high availability

is not important. Many desktop machines are not rebooted in order to apply kernel

security updates because of the burden imposed by rebooting. High availability is

not important on these machines, but they can still benefit significantly from hot

updates (since hot updates allow them to be patched when they would not be patched

otherwise).
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Doesn’t kexec already provide the ability to update the kernel? kexec [23]

is a Linux feature which was designed to help users who have a buggy or slow BIOS

to reboot their computers faster; it is not a hot update system. When kexec boots a

machine into a new kernel, the entire state of the running machine is lost, including

all kernel state and all programs in user space.

Doesn’t any software that modifes a running program infringe on U.S.

patent 10/307,902? No, that document is a patent application, not a patent,

and that application received a “final rejection” in April 2006 because of prior art.

Programmers have been making modifications to running programs since some of the

earliest computer systems.
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Chapter 7

Conclusions and Future Work

Ksplice’s binary-level approach to hot updates has been demonstrated to be able to

construct updates, without programmer involvement, for 84% of the 50 significant

Linux kernel security patches from May 2005 to December 2007. The remaining

patches make semantic changes to data structures and therefore would require pro-

grammer involvement in order to perform as hot updates.

A system administrator could, at the present time, use an implementation of

Ksplice to eliminate most reboots associated with security upgrades, which is a no-

table advance over the current state.

Due to Ksplice’s focus on enabling safe hot updates that require minimal program-

mer involvement, it should be possible for any Linux distributor—or other motivated

individual—to start releasing Ksplice-based hot update packages for common starting

kernel configurations. People who subscribe their systems to these updates would be

able to transparently receive kernel hot updates along with the user space software

updates to their system. This kind of distribution of hot updates would, without

any ongoing effort from users, significantly reduce how frequently they are notified by

their computer that they need to reboot for pending security updates to take effect.

Distribution of hot kernel security updates can reduce downtime, decrease windows

of security vulnerability, and improve the user experience.
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Appendix

The table below shows 50 security vulnerabilities from May 2005 to December 2007

along with the type of each vulnerability and the sum of the number of non-empty

lines of non-comment code added and/or removed by the associated patch. The patch

dates do not proceed in chronological order because CVE numbers are not necessarily

assigned in the same order in which vulnerabilities are corrected in Linus’ kernel tree.

The next two columns indicate the date that Linus’ kernel tree was modified to include

the patch and the identification number that Git automatically assigned to the patch.

This commit ID number provides a reliable mechanism for retrieving the patch and

its associated developer commentary. The final column indicates the Linux kernel

version on which the patch was successfully applied using Ksplice. “N/A” appears

in the final column when that vulnerability’s patch changes data structure semantics

and therefore cannot be used with Ksplice.

We performed the vulnerability type classifications by reading the CVE vulner-

ability descriptions and the Linux source code patches. “Read kmem” refers to the

potential for a local user to read the contents of sensitive kernel memory. “Clear

mem” refers to the potential for a local user to receive a buffer that contains traces of

sensitive information that should have previously been cleared from the buffer by the

kernel. “Disclosure” refers to other vulnerabilities which directly enable a local user

to gain access to sensitive information; further exploitation of the system once this

information has been obtained might, or might not, be possible. “Escalation” refers to

vulnerabilities which potentially allow a user to perform privileged operations, such as

the ability to execute arbitrary code as the kernel or the ability to write to privileged

I/O ports.
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Linux x86-32 kernel vulnerabilities from May 2005 to December 2007

CVE # Type Lines ± Patch Date Linus Git Commit # (Patch+Log) Test kernel

2005-1263 Escalation 4 2005-05-11 a84a505956f5c795a9ab3d60d97b6b91a27aa571 2.6.8

2005-1264 Escalation 3 2005-05-13 68f66feb300423bb9ee5daecb1951af394425a38 2.6.8

2005-1589 Escalation 4 2005-05-14 118326e940bdecef6c459d42ccf05256ba86daa7 2.6.11.9

2005-2456 Escalation 3 2005-07-26 a4f1bac62564049ea4718c4624b0fadc9f597c84 2.6.8

2005-2492 Read kmem 4 2005-09-19 6d1cfe3f1752f17e297df60c8bcc6cd6e0a58449 2.6.12

2005-2500 Escalation 3 2005-08-10 58fcb8df0bf663bb6b8f46cd3010bfe8d13d97cf N/A

2005-2709 Escalation 115 2005-11-04 330d57fb98a916fa8e1363846540dd420e99499a N/A

2005-3179 Disclosure 2 2005-10-03 c0758146adbe39514e75ac860ce7e49f865c2297 N/A

2005-3180 Clear mem 10 2005-10-04 9bc39bec87ee3e35897fe27441e979e7c208f624 2.6.12

2005-3276 Clear mem 1 2005-07-27 71ae18ec690953e9ba7107c7cc44589c2cc0d9f1 2.6.12

2005-3784 Escalation 2 2005-11-10 7ed0175a462c4c30f6df6fac1cccac058f997739 2.6.12

2005-4605 Read kmem 38 2005-12-30 8b90db0df7187a01fb7177f1f812123138f562cf 2.6.12

2005-4639 Escalation 2 2005-11-08 5c15c0b4fa850543b8ccfcf93686d24456cc384d 2.6.12

2006-0039 Read kmem 4 2006-05-19 2c8ac66bb2ff89e759f0d632a27cc64205e9ddd9 2.6.16

2006-0095 Clear mem 4 2006-01-06 9d3520a339d62f942085e9888f66905eb8b350bd 2.6.12

2006-0457 Read kmem 15 2006-02-03 6d94074f0804143eac6bce72dc04447c0040e7d8 2.6.12

2006-1056 Disclosure 42 2006-04-20 18bd057b1408cd110ed23281533430cfc2d52091 N/A

2006-1343 Clear mem 2 2006-05-28 6c813c3fe9e30fcf3c4d94d2ba24108babd745b0 2.6.16

2006-1524 Escalation 3 2006-04-17 69cf0fac6052c5bd3fb3469a41d4216e926028f8 2.6.16

2006-1857 Escalation 4 2006-05-19 a601266e4f3c479790f373c2e3122a766d123652 2.6.16

2006-1858 Escalation 6 2006-05-19 dd2d1c6f2958d027e4591ca5d2a04dfe36ca6512 2.6.16

2006-1863 Escalation 9 2006-04-21 296034f7de8bdf111984ce1630ac598a9c94a253 2.6.16

2006-1864 Escalation 3 2006-05-15 3b7c8108273bed41a2fc04533cc9f2026ff38c8e 2.6.16

2006-2071 Escalation 2 2006-04-12 b78b6af66a5fbaf17d7e6bfc32384df5e34408c8 2.6.16

2006-2451 Escalation 2 2006-07-12 abf75a5033d4da7b8a7e92321d74021d1fcfb502 2.6.16

2006-2935 Escalation 2 2006-07-10 454d6fbc48374be8f53b9bafaa86530cf8eb3bc1 2.6.16

2006-3626 Escalation 1 2006-07-14 18b0bbd8ca6d3cb90425aa0d77b99a762c6d6de3 N/A
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CVE # Type Lines ± Patch Date Linus Git Commit # (Patch+Log) Test kernel

2006-3745 Escalation 69 2006-08-22 c164a9ba0a8870c5c9d353f63085319931d69f23 2.6.16

2006-4813 Clear mem 2 2006-10-11 8c58165108e26d18849a0138c719e680f281197a 2.6.16

2006-5751 Escalation 7 2006-11-20 ba8379b220509e9448c00a77cf6c15ac2a559cc7 2.6.16

2006-5753 Escalation 285 2007-01-05 be6aab0e9fa6d3c6d75aa1e38ac972d8b4ee82b8 N/A

2006-6106 Escalation 30 2007-01-08 f4777569204cb59f2f04fbe9ef4e9a6918209104 2.6.16

2006-6304 Escalation 3 2006-12-06 6d4df677f8a60ea6bc0ef1a596c1a3a79b1d4882 2.6.19

2007-0005 Escalation 3 2007-03-06 059819a41d4331316dd8ddcf977a24ab338f4300 2.6.16

2007-0958 Escalation 4 2007-01-26 1fb844961818ce94e782acf6a96b92dc2303553b 2.6.19

2007-1000 Read kmem 2 2007-03-09 d2b02ed9487ed25832d19534575052e43f8e0c4f 2.6.16

2007-1217 Escalation 364 2007-02-28 17f0cd2f350b90b28301e27fe0e39f34bfe7e730 N/A

2007-1353 Read kmem 11 2007-05-05 0878b6667f28772aa7d6b735abff53efc7bf6d91 2.6.16

2007-1730 Read kmem 1 2007-03-16 d35690beda1429544d46c8eb34b2e3a8c37ab299 2.6.16

2007-1734 Read kmem 4 2007-03-28 39ebc0276bada8bb70e067cb6d0eb71839c0fb08 2.6.20.4

2007-2480 Escalation 38 2007-04-30 de34ed91c4ffa4727964a832c46e624dd1495cf5 ∼2.6.21.1∗

2007-2875 Read kmem 15 2007-05-09 85badbdf5120d246ce2bb3f1a7689a805f9c9006 2.6.20.4

2007-3105 Escalation 9 2007-07-19 5a021e9ffd56c22700133ebc37d607f95be8f7bd 2.6.22

2007-3848 Escalation 13 2007-08-17 d2d56c5f51028cb9f3d800882eb6f4cbd3f9099f 2.6.23-rc3

2007-3851 Escalation 15 2007-08-07 21f16289270447673a7263ccc0b22d562fb01ecb 2.6.22

2007-4308 Escalation 4 2007-11-07 5f78e89b5f7041895c4820be5c000792243b634f 2.6.23

2007-4571 Read kmem 65 2007-09-17 ccec6e2c4a74adf76ed4e2478091a311b1806212 N/A

2007-5904 Escalation 199 2007-11-13 133672efbc1085f9af990bdc145e1822ea93bcf3 2.6.24-rc2

2007-6063 Escalation 5 2007-12-01 eafe1aa37e6ec2d56f14732b5240c4dd09f0613a 2.6.23

2007-6206 Disclosure 2 2007-11-28 c46f739dd39db3b07ab5deb4e3ec81e1c04a91af 2.6.23

∗Git revision b7b5f487ab39bc10ed0694af35651a03d9cb97ff
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