
The K2 Architecture for Trustworthy Hardware
Security Modules

Anish Athalye
M. Frans Kaashoek
Nickolai Zeldovich

MIT CSAIL

Joseph Tassarotti
New York University

Abstract
K2 is a new architecture and verification approach for hard-
ware security modules (HSMs). The K2 architecture’s rigid
separation between I/O, storage, and computation over se-
cret state enables modular proofs and allows for software
development and verification independent of hardware de-
velopment and verification while still providing correctness
and security guarantees about the composed system. For
a key step of verification, K2 introduces a new tool called
Chroniton that automatically proves timing properties of
software running on a particular hardware implementation,
ensuring the lack of timing side channels at a cycle-accurate
level.

CCS Concepts: • Security and privacy → Systems secu-
rity; Software and application security; Security in hardware;
Logic and verification.

Keywords: Security, Verification

1 Introduction
Hardware security modules (HSMs) are powerful tools for
building secure systems. Applications can factor out key
security-critical state and operations onto these devices,
which have simple special-purpose software and hardware.
For example, certificate authorities like Let’s Encrypt use
HSMs to store their signing key and sign certificates [10, 40];
cloud providers including Apple and Google use HSMs to
enforce guess limits for cloud backup keys protected by a
low-entropy PIN [9, 30, 33]; and end users use USB security
keys to defend private keys used for authentication with
schemes like U2F [46].
Building trustworthy HSMs that are correct, secure, and

free of timing side-channel vulnerabilities, is a major chal-
lenge. Unfortunately, like any other hardware/software sys-
tem, HSMs are susceptible to bugs, including logic bugs,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
KISV ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0411-6/23/10.
https://doi.org/10.1145/3625275.3625402

memory corruption bugs, hardware bugs, and timing side
channels [1–8, 17, 24, 32, 36, 48].
HSMs have a number of hardware/software components

and subsystems, including the storage layer, I/O stack, and
application logic, that not only must work correctly but also
must interoperate correctly. These components interact in
subtle ways, and the misbehavior of any component can
break the security of the system or introduce side-channel
vulnerabilities.

Formal verification is a promising approach for eliminat-
ing correctness and security bugs in individual components
as well as their integration. Prior work has verified HSMs
end-to-end using the Knox framework [16]; Knox requires
directly reasoning about the combined hardware/software
system as a monolith, limiting practicality and scalability.
This paper proposes K2, a new modular architecture for

HSMs that introduces rigid separation between I/O, stor-
age, and computation over secret state. The design enables
modular formal verification, simplifying software and proof
development while maintaining strong guarantees about the
behavior of the entire hardware/software system, including
its timing behavior. Furthermore, the architecture provides
benefits even without end-to-end verification. Isolation of
components limits the damage caused by bugs: for example,
bugs in the I/O driver can’t leak secrets of the application.

K2’s architecture sidesteps a large class of bugs (e.g., bugs
in the I/O driver cannot leak secrets) and simplifies verifi-
cation. In K2’s design, a small kernel runs a tiny amount of
code in RISC-V M-mode (and the rest of its code in U-mode)
and uses Physical Memory Protection (PMP) hardware to
separate I/O with the external world from computation over
secret state. With this setup, computation over sensitive
data — where bugs or side-channel leakage are a concern —
starts from a clean/constrained state, is unaffected by inputs
from the external world, and is unable to produce observ-
able intermediate outputs aside from the final result of the
computation and the end-to-end running time.

Verifying HSM software for K2 is done in two steps. First,
the developer proves functional correctness of their software,
using existing tools for program verification like F★ and
Low★. Then, the developer uses a tool we developed called
Chroniton, which automatically proves the timing behavior
of the software on the HSM’s hardware, ensuring constant-
time execution and the absence of timing side channels.

https://doi.org/10.1145/3625275.3625402


KISV ’23, October 23, 2023, Koblenz, Germany Athalye et al.

var signing_key = null

def load_key(key):
signing_key = key

def sign_certificate(cert):
return rsa_sign(signing_key, cert)

Figure 1. A functional specification for a certificate author-
ity’s certificate-signing HSM. The spec doesn’t support read-
ing out the signing key once it’s installed into the device.
The specification of the rsa_sign function is not shown.

Metatheory ties together hardware-related and software-
related proofs carried out as part of K2 development, provid-
ing a guarantee that an HSM implementation’s wire-level
behavior correctly and securely implements a high-level
functional specification.

2 Threat model and security goal
K2 considers an adversary that gains complete control over
the wire-level interface of the HSM, with the ability to read
and write digital-level signals on wires at every cycle. This
captures realistic adversaries, such as a remote attacker who
gains control over a host machine that is connected to the
HSM.
K2 is concerned with remote attackers, a common adver-

sary that HSMs aim to defend against. K2 does not consider
attacks that require physical access to the HSM, including
attacks that require physical tampering. Side channels other
than digital-level timing side channels, such as electromag-
netic radiation [11], temperature [31], and power [35] are
also out of scope.

K2’s security goals are captured by information-preserving
refinement (IPR) [16]. IPR is a real/ideal-style definition that
relates an HSM’s wire-level behavior to a high-level RPC-
style specification, such as that in Figure 1. Informally, IPR
says that the HSM implementation (and it’s wire-level cycle-
precise behavior) should be indistinguishable from and re-
veal no more information than an oracle that implements the
functional specification (where there is no notion of wires
or timing, only input and output values). This ensures that
the HSM implements the specification, but that an adversary
attempting to exploit the HSM by manipulating wire-level
inputs and observing the outputs at every cycle, learns no
more information than the specification allows. This ensures
the absence of exploitable bugs at the digital level, as well as
the absence of timing side-channel vulnerabilities.

3 Design
K2’s hardware and software architecture isolates compu-
tation over secret data and prevent bugs and timing side
channels. A small kernel runs different functionality at dif-
ferent times in a strict phase-based operation, to maximize

CPU running
I/O code

Storage

CPU running
storage code

CPU running
app code

USB Scratch
memory

1. Read
command

2. Load
state

3. Handle
command

4. Store
state

5. Write
output

Figure 2. A logical view of K2’s architecture contains three
separate CPUs that communicate.The first performs I/Owith
the host machine; the second manages persistent storage; the
third performs sensitive computation over sensitive state.

simplicity and ease verification. Application software is writ-
ten as a state transition system: it receives the HSM state
and a command as input, and it writes an updated state and
output in response.
Figure 2 shows a logical view of the design: I/O, stor-

age, and computation over secret state are split onto sepa-
rate systems-on-a-chip (each with their own CPU, memory,
peripherals, etc.) that communicate with each other. Com-
mands from the host are processed as follows: the I/O CPU
reads in a command; then, the storage CPU reads in the per-
sistent state; both are sent to the app CPU, which takes the
state and command and handles it to produce a new state
and an output; the new state is sent back to the storage CPU,
which persists it; finally, the output is sent to the I/O CPU,
which forwards it to the host.

Figure 3 shows K2’s hardware implementation, which
realizes this logical design on a single CPU using RISC-V
Physical Memory Protection (PMP) hardware and memory-
mapped peripherals, alongwith a small kernel that runs some
code in RISC-V M-mode to manage PMP configuration and
run each phase of the logical design in sequence on the single
CPU, clearing state between phases to ensure isolation.

3.1 Kernel
The software architecture’s main goal is to separate and iso-
late the HSM application code that operates on sensitive
data, such that computing over confidential data runs cor-
rectly and doesn’t leak information via timing side channels.
To accomplish this, the design uses a couple hundred lines
of kernel code that is independent of the particular HSM
application. Tens of lines of code run in RISC-V M-mode to
program the PMP and orchestrate switching between phases.



The K2 Architecture for Trustworthy Hardware Security Modules KISV ’23, October 23, 2023, Koblenz, Germany

Storage

CPU running I/O,
storage, and app code in

phases

USB Scratch
memory

PMP

PMP configuration

Phase 1: USB + scratch memory
Phase 2: storage + scratch memory

Phase 3: scratch memory
Phase 4: storage + scratch memory

Phase 5: USB + scratch memory

Figure 3. K2 hardware uses the RISC-V PMP to isolate I/O,
storage, and computing over sensitive data.

The phases allow the host to send a command to the HSM,
then have the HSM process the command, and finally allow
the host to read back the response from the HSM. Each phase
runs in U-mode with the appropriate PMP permissions set;
a tiny M-mode trampoline ensures appropriate PMP setup
and control flow integrity between phases: a RISC-V ecall
instruction invoked by a phase running in U-mode jumps
back into the M-mode kernel, which switches to the next
phase. Between each phase transition, the software clears all
microarchitectural state in the processor, to avoid leaking
secrets across phases. Figure 2 illustrates the different phases
of operation in the logical design.

Phase 0: Boot and clear state. In case the device is power
cycled when there is sensitive state in RAM or in CPU mi-
croarchitectural state, the software clears all volatile state
on boot, so that any secrets that might have been present
there aren’t leaked.

Phase 1: Read command from host. The kernel pro-
grams the PMP to disable access to the persistent memory,
which is the only place that secret state is stored, while in
this phase. Then, the kernel runs an I/O peripheral driver in
U-mode, which reads a serialized command from the host
machine and writes it into the device’s RAM. Once the host
has written the command, the software transitions to the
next phase. The behavior of the device in this phase is inde-
pendent of secrets.

Phase 2: Load persistent state. The kernel programs the
PMP to disable access to the I/O peripheral, so the device’s
behavior is no longer affected by inputs from the external
world, and the device can’t produce externally-observable
outputs. It also programs the PMP to enable read-only ac-
cess to persistent memory. Then, the kernel uses U-mode
code to copy state from persistent memory into the RAM,

so the RAM now stores both the device’s state as well as the
command from the host machine.

Phase 3: Run application. The kernel programs the PMP
to disable access to both the I/O peripheral and the persistent
memory. It then runs the application code (in RISC-V U-
mode) that the application developer writes, which reads
state and a command from RAM, does some computation,
and writes an updated state and an output back to RAM.

Phase 4: Store persistent state. Thekernel enables read/write
access to the persistent memory, but not the I/O peripheral.
It then uses U-mode code to write updated state from RAM
back into the persistent memory, using a simple journaling
strategy for crash atomicity. Finally, it clears all state, in-
cluding both microarchitectural state in the CPU as well as
the RAM, except the output from the application code (from
phase 3).

Phase 5: Write output to host. The kernel configures the
PMP to disable access to the persistent memory. It then runs
the I/O peripheral driver again (in U-mode), which sends
the output over the I/O interface to the host machine. This
completes the execution of a single command, and the device
returns to phase 0 to begin processing the next command.

3.2 Application code
The developer of an HSM application only writes the soft-
ware that runs in phase 3, implementing a state transition
function with the signature:

void main(char *state, char *cmd, char *out)
The code operates on a copy of the state in RAM, interprets

a serialized command, and updates the state and produces
an output in response to the command, both written back to
the RAM and read by later phases.
With the phase-based operation of the HSM, this appli-

cation code runs start-to-finish with no interruptions, with
the only observables being the final output value and the
end-to-end timing of execution.

The application developer is responsible for writing code
that is correct, i.e., updates the state and produces the correct
output value, according to the specification. Furthermore,
the application developer is responsible for writing code that
runs in constant time. K2 provides a tool that verifies this
property and helps debug violations.

4 Formal verification
Verification of a K2 HSM relates the HSM implementation to
a high-level functional specification such as that in Figure 1
using information-preserving refinement (IPR) [16]. IPR cap-
tures correctness and security of the HSM by requiring that
an implementation implements the specification but leaks
no more information than the specification allows.

K2 decomposes IPR into a number of properties, some that
can be proved in a once-and-for-all manner by the developer



KISV ’23, October 23, 2023, Koblenz, Germany Athalye et al.

of the hardware and kernel, and others that can be proved
by the application developer on a per-application basis, that
together imply IPR.

4.1 Hardware and kernel
The system developer proves functional correctness of all but
phase 3, which is when the application software runs: this is
mostly straightforward functional correctness verification.
On the security and information leakage side, phases 0, 1,
and 5 have no access to secrets; merely showing that the
PMP is configured appropriately is enough. For phases 2 and
4, which handle secret state, the developer proves that the
phases run in constant time, i.e., in a constant number of
cycles.

4.2 Application code
The application developer only needs to prove properties
about the execution of the application software (phase 3).The
functional correctness aspect is standard and can leverage
existing tools and libraries for formally-verified software; we
build on top of HACL★. The challenge is achieving security
and the absence of timing side-channel leakage. To enable
this, K2 includes a tool called Chroniton that allows the
application developer to verify that their software runs in
constant time on the hardware implementation.
Unlike other approaches for verifying timing behavior,

Chroniton verifies the timing behavior of software with re-
spect to the particular HSM’s hardware implementation (e.g.,
Verilog code), rather than a proxy like a leakage model. The
benefit is that this approach does not require making as-
sumptions about the hardware’s timing behavior.

Tools like Icarus Verilog and Verilator are capable of cycle-
accurate simulations of processors running such code. These
simulators operate on concrete values: every bit is a 0 or a 1,
so they are not directly useful for verifying timing properties,
such as how execution time depends on the private key.
Chroniton implements a cycle-accurate symbolic hard-

ware simulator to reason about processors executing code.
Using a symbolic simulator, we can mark state elements in
the circuit, e.g., locations in the processor’s memory such
as those corresponding to state and cmd, as symbolic vari-
ables, and then symbolically execute the entire circuit (as it’s
executing the application code) and determine whether the
circuit’s execution time depends on these symbolic variables.
Symbolic simulation can reason about the number of cy-

cles a circuit, starting from the start of phase 3 (when the
application code starts executing) to the start of the next
phase (when the circuit is no longer computing on secret
values).

5 Current status
We currently have a prototype implementation of anHSM fol-
lowing the K2 design, and we have verified some properties

of the implementation, focusing on verifying constant-time
execution using Chroniton.

The HSM uses mostly off-the-shelf hardware (the Ibex pro-
cessor and OpenTitan SoC) and software (the cryptography
code from HACL★), which is compatible with our approach
and tooling.

5.1 Implementation
Our HSM’s hardware is a stripped-down version of the Open-
Titan open-source root of trust, which uses the Ibex RISC-V
processor. On top of that, we have written a couple hun-
dred lines of C and RISC-V assembly to implement the K2
architecture and phase-based design.

We have written a signature oracle (similar to a certificate-
signing HSM) as an example application, leveraging the
HACL★ [50] formally-verified cryptographic library.

5.2 Verification
Our initial efforts on formal verification have been focused
on proving timing properties of software running on hard-
ware. To do this, we have implemented the Chroniton tool1,
written in approximately 100 lines of Rosette [47] code. It
builds on the Verilog-to-Rosette toolchain from Notary [15,
37], which translates circuits written in Verilog into cycle-
accurate Rosette models supporting symbolic execution.
We have applied Chroniton to verify constant-time exe-

cution of several software applications against several hard-
ware implementations, including verifying that HACL★’s
Ed25519 implementation runs in constant time on our pro-
cessor. We have also applied Chroniton to other HSM-like
devices like the OpenTitan Big Number Accelerator2 (OTBN),
verifying that its X25519 implementation runs in constant
time.

6 Related Work
Hardware/software verification. Knox [16] performs

end-to-end verification of HSM hardware and software with
monolithic reasoning, while modularity is a central goal of
K2. A long line of work performs end-to-end verification
of functional correctness properties for hardware/software
systems, with an emphasis onmodular verification [12, 18, 25,
34]. Proving functional correctness does not prove security
properties (enforcing correct behavior even if a host machine
deviates from the wire protocol, for example) or rule out
timing side channels, while these are central security goals
of HSMs and K2.

Time protection and enclaves. Research on verified security-
focused operating systems proves properties such as pro-
cess isolation in systems like seL4 [39], mCertiKOS [23],
Komodo [27], and Nickel [44]. Recent work proposes time

1https://github.com/anishathalye/chroniton
2https://opentitan.org/book/hw/ip/otbn/index.html

https://github.com/anishathalye/chroniton
https://opentitan.org/book/hw/ip/otbn/index.html


The K2 Architecture for Trustworthy Hardware Security Modules KISV ’23, October 23, 2023, Koblenz, Germany

protection to address violations to process isolation from
timing side channels [29, 45]. Process isolation (taking into
account side channels) is different from K2’s goals: a K2 HSM
must leak no more information than its specification allows,
which is not an isolation-style property. Mapped to the pro-
cess isolation setting: a HSM software that leaks its private
key through timing (or just directly sends it out over the I/O
interface) could be strongly isolated from other processes,
but is clearly insecure.

Leakage models. One approach for verifying constant-
time execution uses leakagemodels [14]; these are commonly
used in verifying constant-time cryptography [13, 19, 22, 26,
43, 50]. Recent work has proposed more sophisticated leak-
age models [21, 28, 38] and validated hardware against these
models through fuzzing [20, 41, 42], sometimes revealing
gaps between leakage models and hardware implementa-
tions. Today’s verified cryptographic software is not verified
against these sophisticated leakage models. In recent work,
Wang et al. [49] formally verify simple open-source RISC-V
processors against leakage contracts. Today’s leakagemodels
reason only about the CPU/ISA and do not support reason-
ing about hardware-level timing behavior of other parts of
the stack, such as code that uses control and status regis-
ters or interacts with peripherals such as storage or I/O in
a system-on-a-chip, whereas our approach with Chroniton
does support this.

7 Discussion
What workloads fit the K2 model? K2 supports tradi-

tional HSM applications, where the state and functionality
is relatively simple. The entire premise of HSMs is to factor
out the key security-related functionality, so these applica-
tions are going to be simple by design. The current K2 design
requires copying the entire state of the HSM for every opera-
tion, so it is not a good fit for functionalities that require large
amounts of state such as table lookup into a large database.

Does the approach scale to more sophisticated CPUs?
Our implementation currently uses a simple two-stage pipelined
RISC-V CPU used in the OpenTitan, but the CPU could be
replaced with a much more powerful one. One challenge
might be that the verification approach doesn’t scale to more
sophisticated hardware. So far, we have successfully applied
Chroniton to software running on the biRISC-V CPU, which
is a 6-stage dual-issue processor that is more complex than
the Ibex processor used in K2. We have not yet tried applying
Chroniton to, e.g., out-of-order processors.

How much does performance matter in this context?
For end-user devices like U2F tokens, as well as for certain
server-side HSM applications where the request rate is low,
the slowdown from K2’s relatively underpowered CPU as
well as architecture with strict time-partitioning of I/O, stor-
age, and computation, is tolerable. In some applications, high

performance is a requirement, such as CA certificate signing:
Let’s Encrypt performed approximately 450 signatures per
second as of September 2019, split over 4 HSMs [10]. When
using K2 HSMs, a greater number can be used to provide the
necessary throughput.

Acknowledgements
This work was supported by NSF award CNS-2225441.



KISV ’23, October 23, 2023, Koblenz, Germany Athalye et al.

References
[1] 2004. CVE-2004-0320. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2004-0320.
[2] 2015. YSA-2015-1. https://developers.yubico.com/ykneo-openpgp/

SecurityAdvisory%202015-04-14.html.
[3] 2018. CVE-2018-6875. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2018-6875.
[4] 2018. YSA-2018-01. https://www.yubico.com/support/security-

advisories/ysa-2018-01/.
[5] 2019. CVE-2019-18671. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2019-18671.
[6] 2019. CVE-2019-18672. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2019-18672.
[7] 2020. YSA-2020-04. https://www.yubico.com/support/security-

advisories/ysa-2020-04/.
[8] 2021. CVE-2021-31616. https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-31616.
[9] 2021. WhatsApp Security Whitepaper: Security of End-to-End En-

crypted Backups. https://www.whatsapp.com/security/WhatsApp_
Security_Encrypted_Backups_Whitepaper.pdf.

[10] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Ecker-
sley, Alan Flores-López, J. Alex Halderman, Jacob Hoffman-Andrews,
James Kasten, Eric Rescorla, Seth Schoen, and BradWarren. 2019. Let’s
Encrypt: An Automated Certificate Authority to Encrypt the Entire
Web. In Proceedings of the 26th ACM Conference on Computer and
Communications Security (CCS). London, United Kingdom, 2473–2487.

[11] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj
Rohatgi. 2002. The EM Side-Channel(s). In Proceedings of the 2002 IACR
Workshop on Cryptographic Hardware and Embedded Systems (CHES).
Redwood City, CA.

[12] Eyad Alkassar, Wolfgang J. Paul, Artem Starostin, and Alexandra Tsy-
ban. 2010. Pervasive Verification of an OS Microkernel: Inline As-
sembly, Memory Consumption, Concurrent Devices. In Proceedings of
the 3rd Working Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE). Edinburgh, United Kingdom, 71–85.

[13] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François
Dupressoir. 2016. Verifiable Side-Channel Security of Cryptographic
Implementations: Constant-Time MEE-CBC. In Proceedings of the 23rd
International Conference on Fast Software Encryption (FSE). Bochum,
Germany, 163–184.

[14] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. 2016. Verifying Constant-Time Implementa-
tions. In Proceedings of the 25th USENIX Security Symposium. Austin,
TX, 53–70.

[15] Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. 2019. Notary: A Device for Secure Transaction
Approval. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP). Huntsville, Ontario, Canada, 97–113.

[16] Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. 2022. Ver-
ifying Hardware Security Modules with Information-Preserving Re-
finement. In Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Carlsbad, CA, 503–519.

[17] Jean-Baptiste Bédrune and Gabriel Campana. 2019. Everybody be
Cool, This is a Robbery! https://donjon.ledger.com/BlackHat2019-
presentation/.

[18] William R. Bevier,Warran A. Hunt Jr., J. StrotherMoore, andWilliamD.
Young. 1989. An Approach to Systems Verification. Journal of Auto-
mated Reasoning 5, 4 (Dec. 1989), 411–428.

[19] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. 2017. Vale: Verifying High-Performance Cryptographic
Assembly Code. In Proceedings of the 26th USENIX Security Symposium.
Vancouver, Canada, 917–934.

[20] Pablo Buiras, Hamed Nemati, Andreas Lindner, and Roberto Guanciale.
2021. Validation of Side-Channel Models via Observation Refinement.
In Proceedings of the 42th IEEE/ACM International Symposium on Mi-
croarchitecture. Athens, Greece, 578–591.

[21] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time
Foundations for the New Spectre Era. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). London, United Kingdom, 913–926.

[22] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,
Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit
Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive
Computation. (June 2019), 174–189.

[23] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-End Veri-
fication of Information-Flow Security for C and Assembly Programs. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). Santa Barbara, CA, 648–664.

[24] Filippo Cremonese. 2020. Security Analysis of the Solo Firmware.
https://blog.doyensec.com/2020/02/19/solokeys-audit.html.

[25] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and
Adam Chlipala. 2021. Integration Verification across Software and
Hardware for a Simple Embedded System. In Proceedings of the 42nd
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). Virtual conference.

[26] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. 2019. Simple High-Level Code For Cryptographic Arithmetic
– With Proofs, Without Compromises. In Proceedings of the 40th IEEE
Symposium on Security and Privacy. San Francisco, CA, 73–90.

[27] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP). Shanghai, China, 287–305.

[28] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021.
Hardware-Software Contracts for Secure Speculation. In Proceedings of
the 42nd IEEE Symposium on Security and Privacy. Virtual conference,
1868–1883.

[29] Gernot Heiser, Toby Murray, and Gerwin Klein. 2020. Towards Prov-
able Timing-Channel Prevention. ACM SIGOPS Operating System
Review 54, 1 (aug 2020), 1–7.

[30] Mason Hemmel, Jason Meltzer, Thomas Pornin, Keegan Ryan,
Javed Samuel, David Wong, Rob Wood, and Greg Worona. 2018.
Android Cloud Backup/Restore. https://research.nccgroup.com/wp-
content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_
EncryptedBackup_2018-10-10_v1.0.pdf.

[31] Michael Hutter and Jörn-Marc Schmidt. 2013. The Temperature Side
Channel and Heating Fault Attacks. In Proceedings of the 12th Smart
Card Research and Advanced Application Conference (CARDIS). Berlin,
Germany, 219–235.

[32] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. 2020. Min-
erva:The curse of ECDSA nonces (Systematic analysis of lattice attacks
on noisy leakage of bit-length of ECDSA nonces). IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020, 4 (2020),
281–308.

[33] Ivan Krstić. 2016. Behind the Scenes with iOS Security. https://www.
blackhat.com/docs/us-16/materials/us-16-Krstic.pdf.

[34] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen,
Michael Norrish, Oskar Abrahamsson, and Anthony Fox. 2019. Ver-
ified Compilation on a Verified Processor. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). Phoenix, AZ, 1041–1053.

[35] Rita Mayer-Sommer. 2000. Smartly Analyzing the Simplicity and the
Power of Simple Power Analysis on Smartcards. In Proceedings of
the 2000 IACR Workshop on Cryptographic Hardware and Embedded
Systems (CHES). Worcester, MA, 78–92.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0320
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0320
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://developers.yubico.com/ykneo-openpgp/SecurityAdvisory%202015-04-14.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6875
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6875
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://www.yubico.com/support/security-advisories/ysa-2018-01/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18671
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18672
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-18672
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://www.yubico.com/support/security-advisories/ysa-2020-04/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31616
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31616
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://donjon.ledger.com/BlackHat2019-presentation/
https://donjon.ledger.com/BlackHat2019-presentation/
https://blog.doyensec.com/2020/02/19/solokeys-audit.html
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/Final_Public_Report_NCC_Group_Google_EncryptedBackup_2018-10-10_v1.0.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf


The K2 Architecture for Trustworthy Hardware Security Modules KISV ’23, October 23, 2023, Koblenz, Germany

[36] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
2020. TPM-FAIL: TPMmeets Timing and Lattice Attacks. In Proceedings
of the 29th USENIX Security Symposium. Virtual conference, 2057–2073.

[37] Noah Moroze, Anish Athalye, M. Frans Kaashoek, and Nickolai Zel-
dovich. 2021. rtlv: push-button verification of software on hardware.
In Proceedings of the 5th Workshop on Computer Architecture Research
with RISC-V (CARRV). Virtual conference.

[38] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trip-
pel. 2022. Axiomatic Hardware-Software Contracts for Security. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA). New York, NY, 72–86.

[39] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Tim-
othy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein.
2013. seL4: from General Purpose to a Proof of Information Flow
Enforcement. In Proceedings of the 34th IEEE Symposium on Security
and Privacy. San Francisco, CA, 415–429.

[40] OASIS PKCS 11 Technical Committee. 2020. PKCS #11 Crypto-
graphic Token Interface Current Mechanisms Specification Version
3.0. https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-
curr-v3.0-os.html.

[41] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein.
2022. Revizor: Testing Black-Box CPUs against Speculation Contracts.
In Proceedings of the 27th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
Lausanne, Switzerland, 226–239.

[42] Oleksii Oleksenko, Marco Guarnieri, Boris Kopf, and Mark Silberstein.
2023. Hide and Seek with Spectres: Efficient discovery of speculative
information leaks with random testing. In Proceedings of the 44th IEEE
Symposium on Security and Privacy. San Francisco, CA, 1737–1752.

[43] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Haw-
blitzel, Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beur-
douche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, Na-
talia Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin. 2020. Ev-
erCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In
Proceedings of the 41st IEEE Symposium on Security and Privacy. San
Francisco, CA, 983–1002.

[44] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Born-
holt, Emina Torlak, and Xi Wang. 2018. Nickel: A Framework for
Design and Verification of Information Flow Control Systems. In Pro-
ceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Carlsbad, CA, 287–306.

[45] Robert Sison, Scott Buckley, Toby Murray, Gerwin Klein, and Gernot
Heiser. 2023. Formalising the Prevention of Microarchitectural Timing
Channels by Operating Systems. In Proceedings of the 25th International
Symposium on Formal Methods (FM). Lübeck, Germany, 103–121.

[46] Sampath Srinivas, Dirk Balfanz, Eric Tiffany, and Alexei Czeskis. 2016.
Universal 2nd Factor (U2F) Overview. https://fidoalliance.org/specs/
fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf.

[47] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic
Virtual Machine for Solver-Aided Host Languages. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Edinburgh, United Kingdom, 530–541.

[48] Florian Uekermann. 2016. Buggy OTP slot range check. https://github.
com/Nitrokey/nitrokey-pro-firmware/issues/4.

[49] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke,
and Marco Guarnieri. 2023. Specification and Verification of Side-
channel Security for Open-source Processors via Leakage Contracts.
https://arxiv.org/abs/2305.06979.

[50] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified
Modern Cryptographic Library. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS). Dallas,
TX.

https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-curr/v3.0/os/pkcs11-curr-v3.0-os.html
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://fidoalliance.org/specs/fido-u2f-v1.1-id-20160915/fido-u2f-overview-v1.1-id-20160915.pdf
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://github.com/Nitrokey/nitrokey-pro-firmware/issues/4
https://arxiv.org/abs/2305.06979

	Abstract
	1 Introduction
	2 Threat model and security goal
	3 Design
	3.1 Kernel
	3.2 Application code

	4 Formal verification
	4.1 Hardware and kernel
	4.2 Application code

	5 Current status
	5.1 Implementation
	5.2 Verification

	6 Related Work
	7 Discussion
	References

