
DisViz: Visualizing real-world distributed system logs
with space time diagrams

by

Josiah McMenamy
B.S., Computer Science and Engineering

Massachusetts Institute of Technology, 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2025

©2025 Josiah McMenamy. All Rights Reserved

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce,

preserve, distribute and publicly display copies of the thesis, or release the thesis
under an open-access license.

Authored by: Josiah McMenamy
Department of Electrical Engineering and Computer Science
May 14, 2025

Certified by: Upamanyu Sharma
Doctoral Candidate
Thesis Supervisor

Certified by: M. Frans Kaashoek
Charles Piper Professor
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

DisViz: Visualizing real-world distributed system logs with
space time diagrams

by

Josiah McMenamy

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2025, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis aims to provide an intuitive debugging and learning tool for distributed
systems that communicate by message passing. Understanding and debugging dis-
tributed systems can be challenging and slow to iterate on, so there is a need for tools
that can speed up the time it takes to diagnose the root cause of a bug. There exists
significant prior work in creating tools that can aid in the visualization and debugging
of distributed system executions, such as the ShiViz log visualizer [13]. This work
builds on top of these tools to provide more debugging information, handle large log
files, and be easily instrumented in existing systems. We demonstrate using the tool
to debug issues in an implementation of the Raft consensus algorithm [34].

Thesis Supervisor: Upamanyu Sharma
Title: Doctoral Candidate

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor

2

Acknowledgments

Without the consistent support, encouragement, and guidance of many people, this

thesis would not have been possible. I would like to thank Upamanyu Sharma for

his constant mentorship and our frequent meetings, Frans Kaashoek for guiding this

research and helping determine its scope and goal, and the Parallel and Distributed

Operating Systems Group as a whole for being welcoming and open. Thank you to

my parents for getting me to MIT and always prioritizing my education.

3

Contents

List of Figures 7

List of Tables 9

1 Introduction 10

1.1 Distributed Systems in Go . 11

1.2 Visualizing Logs . 12

1.3 ShiViz . 13

1.4 GoVector . 14

1.5 DisVis . 15

1.6 Roadmap for this Thesis . 15

2 Background and Challenge 16

2.1 ShiViz . 16

2.1.1 Space-time diagram . 17

2.1.2 Exploring the Visualization 20

2.1.3 Parser Settings . 21

2.2 GoVector . 22

2.2.1 Vector Clocks . 23

2.2.2 API . 24

2.3 Challenge . 25

3 DisViz 28

3.1 Ptest . 29

4

3.2 GoVector . 31

3.3 DisViz Client Server Model . 33

3.4 Search in DisViz . 34

3.5 Meeting the design goals . 35

4 Implementation 37

4.1 Ptest . 37

4.2 Changes to GoVector . 38

4.2.1 Zap Primitives . 39

4.2.2 Logging with Zap . 39

4.2.3 Initialization . 42

4.3 Changes to ShiViz . 43

4.3.1 Server . 43

4.3.2 Client . 47

5 Case Studies 52

5.1 etcd . 52

5.2 6.5840 Raft . 55

6 Evaluation 58

6.1 Leader Election . 58

6.2 Committing Logs . 62

6.3 Snapshotting . 66

7 Related Work 71

8 Conclusion 73

8.1 Future Work . 73

8.1.1 Change the Server Side Language 73

8.1.2 TypeScript . 74

8.1.3 JavaScript Runtime . 74

8.1.4 Support Clustering . 74

5

8.1.5 File API . 75

8.1.6 Remote Hosting . 75

6

List of Figures

1-1 A dynamic visualization of the Raft consensus algorithm 13

2-1 ShiViz space-time diagram . 17

2-2 Display of identical logs when hiding and not hiding a process 17

2-3 Display of identical logs when collapsing and not collapsing consecutive

events . 18

2-4 ShiViz left and right panels supporting the main diagram 19

2-5 ShiViz Text Search Input . 19

2-6 ShiViz Structure Search Input . 19

2-7 ShiViz Pairwise Execution Display 20

2-8 Options to change how the log file is parsed and displayed 21

2-9 Latency for ShiViz to create a space time diagram of a Raft test for

leader election, varying the number of elections 25

3-1 System diagram for generating logs and viewing them in DisViz . . . 29

3-2 Command line options for ptest . 30

3-3 Live updates during a Go test run using ptest 30

3-4 Final ptest output after all tests complete 31

3-5 ptest output files . 31

3-6 DisViz display of log information . 34

3-7 DisViz controls for shifting the subset of the log file being displayed . 34

3-8 DisViz search bar during active search 35

3-9 Latency to create visualization for Raft test in ShiViz and DisViz . . 35

7

4-1 An abridged call chain for making a logging call with a GoLog object 42

4-2 A highlighted event during a DisViz search 48

4-3 Time spent in the browser when rendering all log events for an execution 50

6-1 Last log from TestManyElections3A failure 60

6-2 Logs from TestInitialElection3A failure 62

6-3 Displaying a raft object in DisViz . 63

6-4 AppendEntries failure from raft_1 to raft_0 64

6-5 Raft followers successfully committing a log entry 65

6-6 Raft follower ignoring redundant logs from leader 67

6-7 Raft follower after processing an InstallSnapshot RPC 68

6-8 Raft leader updating its commit index 68

8

List of Tables

1.1 Survey of open-source systems implemented in Go 11

5.1 Code changes required to integrate GoVector 57

9

Chapter 1

Introduction

Debugging distributed systems is a challenging task. Bugs may be due to null pointer

de-references, off-by-one errors, or floating point errors. Bugs may be due to the

concurrent behavior in the code such as deadlocks, race conditions, or starvation.

Bugs can also be introduced by the interactions between nodes in the system: network

partitions, message drops, and timing differences between nodes. Reproducing the

bug reliably is also difficult because it can require simulating the network conditions

that were present when the bug occurred. In order to find the cause of the bug, the

programmer needs to understand the execution of the system and how the nodes were

interacting when the bug occurred.

One tried and true method for debugging is to use print or logging statements to

see hints about the execution of the code. With logging, the programmer has granular

control over seeing what path the code has taken and what the state of the system is

on that code path. Unfortunately, distributed system executions can produce massive

log files that give too much information to the programmer, who must tediously read

through the logs and reconstruct the execution to find the bug. Further, reading

through a log file makes it difficult to understand the relative ordering between events

in a distributed system.

Programmers would benefit from tools that can take this log information and help

them more quickly understand what the distributed system is doing. However, these

tools must be careful to help, not hinder the iterative process of debugging. The

10

programmer must be able to easily add information to the logs while hypothesizing the

cause of a bug, in order to get more information to confirm or alter their hypothesis.

The tool used for understanding the logs should not pose restrictions on the kinds

of information that can be in the logs, otherwise the tools becomes inflexible and

cumbersome to use. If some structure does need to be imposed on the logs to ensure

metadata information is present or a certain format is used, then the tool should

provide an API in the language that helps generate logs compatible with the tool.

1.1 Distributed Systems in Go

System Description
Kubernetes [8] An open-source system for automating the deployment,

scaling, and management of containerized applications.
etcd [23] A distributed, reliable key-value store for critical data

in distributed systems.
Docker [5] A platform for containerizing applications.
CockroachDB [30] A cloud-native, distributed SQL database designed for

consistency, scalability, and resilience.
SeaweedFS [9] A fast, simple, and scalable distributed file system for

handling billions of files.
rqlite [33] A lightweight, distributed relational database built on

SQLite.
Jaeger [7] A distributed tracing platform for monitoring and trou-

bleshooting microservices-based systems.
Temporal [39] A durable execution system for managing and scaling

microservice applications.

Table 1.1: Survey of open-source systems implemented in Go

The choice of language impacts many characteristics of a distributed system, such

as the performance, fault tolerance, and maintainability. Some languages are suited

better than others for implementing a distributed system. For example, the Erlang

language was designed specifically for distributed systems, with lightweight processes

and hot swappable components [3, 38]. More recently, the Go programming language

has risen in popularity for distributed system programming, developed at Google, a

leader in scalable distributed systems [6].

11

Go also has lightweight processes in the form of Goroutines, as well as native

support for networking such as HTTP servers, RPC, and TLS. With static typing

and robust tooling including a race detector, Go makes it easier to prevent and detect

bugs before they crash a program. Many modern distributed systems in use today are

implemented in Go, as can be seen in Table 1.1. For this reason, this thesis focuses on

tools that aid in generating and understanding logs from distributed systems written

in Go. etcd is a core distributed system used in the Kubernetes container orchestration

software [22, 23]. It will be used as a litmus test to determine if a tool works well in a

large distributed system.

1.2 Visualizing Logs

In seeking to understand the events in a log file better, one natural desire is to be

able to visualize what the distributed system is doing. This helps gain context and

intuition for how nodes in the system are interacting. The kinds of visualizations that

are possible with distributed systems are highly varied and depend on the nature of

the application, but in general visualizations using graphs or nodes are applicable

since a graph can intuitively represent the topology of a distributed system, giving a

way to encapsulate the entire system as one object.

Visualizations may be static or dynamic. Dynamic visualizations are generally

more difficult to implement because live animation introduces engineering challenges

for performance and proper controls that the user can quickly learn. One example of

a dynamic visualization is the visualization of the Raft consensus algorithm by the

Raft authors [36, 34]. Figure 1-1 shows the visualization. The nodes in the system are

arranged in a circle, the user can control how often the nodes send messages to each

other, and the user can manually control the actions of an individual node, e.g. to

partition it away from the system. The logs for each node are shown on the right side.

This particular visualization is useful for learning Raft, but requires a working Raft

implementation for the visualization to work.

An example of a static visualization is a space-time diagram, as seen in Figure 2-1.

12

Figure 1-1: A dynamic visualization of the Raft consensus algorithm

Here, the members in the system are arranged along one axis. Perpendicularly, the

flow of time in the execution is depicted, and messages between nodes are shown as

nodes, with lines between them depicting one member sending a message to another. A

static visualization has the advantage of requiring less for the user to learn to interact

with it, being simpler to implement and extend, and allowing the user to process the

information at their own pace. A space-time diagram also makes it obvious when a

member stops responding to others, which may be difficult to observe in a dynamic

visualization with many members.

1.3 ShiViz

Some prior work has been done in creating a space-time diagram to visualize distributed

system logs. The ShiViz system, seen in Figure 2-1, was created for that purpose,

by Ivan Beschastnikh, et. al [13, 16]. This is an entirely client side application that

allows the user to load a log file from their machine with a format given by a user

defined regular expression. It creates a partial ordering of events from that log file,

displaying it as a space-time diagram.

13

As we see in more detail in section 2.1, there are some limitations to the existing

version of ShiViz that prevent it from being used to debug real-world distributed

systems. Most importantly, loading and processing the entire file on the client side

introduces too much latency as the log file becomes large. With a log file that has

12,000 events, there is a latency of around 7 seconds just to load the file, seen in

Figure 2-9, and the webpage becomes slow to respond to user actions thereafter.

Further, using a regular expression to parse each log event from the file is too rigid

and inflexible. If a user wants to put information specific to a single log call in the

file, they must resort to a catch-all capture group in the regex to contain all fields

custom for that log call, which becomes difficult to visually parse on the webpage.

1.4 GoVector

As mentioned above, using ShiViz requires having a log file that can be parsed with a

user defined regular expression. By itself, this would present an annoyance for the user,

who must implement a way to carefully generate log files that conform to a particular

regex. Along with ShiViz, Beschastnikh, et. al also created logging libraries to do that

in Go, C, C++, and Java [12]. We focus on the Go logging library, GoVector [15].

GoVector includes a built in RPC library for sending messages. This allows

GoVector to add vector clock and other information to the RPC payload, but contrains

the developer too much. For an implementation that is already using a different API

to send RPCs over the network, it requires non-trivial effort to correctly instrument

the system in a backwards manner. In this situation, functionality already exists

to make the RPC payload and send it across the network, but GoVector requires

wrapping each payload to include the vector clock of that node, so the payload sent

across the network contains the original payload the system wanted to send. For an

implementation of the Raft consensus algorithm, the total number of additional lines

needed to make this change is not large, around 80, however it is error prone, time

consuming, added in different places in the code, and introduces an unnecessary layer

of complexity to sending RPCs.

14

1.5 DisVis

In order to rectify these issues and build a tool that can be used with real-world

distributed systems, we propose DisViz, which extends ShiViz and GoVector, focusing

on the Go programming language. The main design goals for DizViz are to:

• be able to display large log files with low latency

• be compatible with any library used to send RPCs

• make it easy to add information to individual logs

In order to ensure that these changes help with debugging existing real-world dis-

tributed systems, we demonstrate using DisViz to find bugs in a Raft implementation.

1.6 Roadmap for this Thesis

Chapter 2 of this thesis provides more background on debugging distributed systems.

Chapter 3 provides a detailed summary of the features of DisViz, as well as changes

made from the ShiViz and GoVector. Chapter 4 dives into the implementation details

and technical challenges encountered to create DisViz. Chapter 5 shows two case

studies of instrumenting an existing system to generate DisViz-compatible logs, in etcd

and a Raft implementation from MIT’s distributed systems course 6.5840. Chapter

6 evaluates DisViz by demonstrating its usability to investigate bugs in the Raft

implementation. Chapter 7 discusses related work in debugging distributed systems.

Chapter 8 concludes this thesis and proposes ideas for avenues for future work on

DisViz.

15

Chapter 2

Background and Challenge

Using GoVector and ShiViz to debug a distributed system in Go locally, the process

is:

• Refactor or create the system to send RPCs using the GoVector library

• Run tests of the system using any preferred method or framework. Tests running

in parallel must be careful to not use identical names for log files for GoVector

logs.

• Run a GoVector script manually to glue all the separate log files for each node

in the system into one log file

• Open the ShiViz webpage in a brower and upload the combined log file. All the

processing of the file happens on the client side

2.1 ShiViz

ShiViz is a static site that can be run locally, but it is also hosted by Beschastnikh et.

al and can be experimented without additional setup [14].

16

Figure 2-1: ShiViz space-time diagram

Figure 2-2: Display of identical logs when hiding and not hiding a process

2.1.1 Space-time diagram

ShiViz centers around a space-time diagram of events in the logs. Time flows from

top to bottom. The main middle panel, seen in Figure 2-1, displays a directed acyclic

graph of the partially ordered vector timestamps parsed from the input log. The

row of squares at the top represents all the nodes in the system, a singular thread of

execution. Clicking on a process allows the user to hide that process from the diagram,

as seen in Figure 2-2, or filter the diagram to show only those processes/events that

communicate with the filtered process. Multiple processes can be hidden and filtered

17

Figure 2-3: Display of identical logs when collapsing and not collapsing consecutive
events

at the same time. The circles below a process are events that were logged by the

process. Lines connecting two circles represent the happened-before relation between

the events: the higher of the two events happened before the lower event. Dashed

lines represent transitive communication edges. These only appear when a process is

hidden, and two processes that are not hidden communicated indirectly through this

process. ShiViz collapses adjacent process events not incident on any communication

edges into larger circles, seen in Figure 2-3. These have a number inside of them,

indicating the number of events that they represent. The user can click on these

events to expand the events. Radiating lines that fade out represent communication

edges to processes that are currently hidden from view. Each process is associated

with a unique color.

The left and right panels beside the main diagram are seen in Figure 2-4. The

left panel shows the event capture group from each line in the log, as well as the line

number in the original log file it parsed from, with the same color as the corresponding

host in the diagram. The right panel shows all capture groups parsed from this log

event, except for the vector clock. Clicking on a circle in the diagram shows the same

information displayed on the right panel.

18

Figure 2-4: ShiViz left and right panels supporting the main diagram

Figure 2-5: ShiViz Text Search Input

Figure 2-6: ShiViz Structure Search Input

19

2.1.2 Exploring the Visualization

ShiViz supports keyword search across the parsed fields, allowing for logical connectives

and regular expressions, seen in Figure 2-5. The user can also search for subgraphs

or communication topologies of interest. ShiViz supplies pre-defined structures like

broadcast or request-response, but custom communication patterns can also be defined,

seen in Figure 2-6. After searching, the visualization will grey out all events that do

not match the search criteria, and allow the user to jump to the different results of

the search.

Figure 2-7: ShiViz Pairwise Execution Display

When viewing two executions side-by-side, by clicking the "pairwise" button in

Figure 2-4, clicking on "show differences" highlights the differences between two

executions, seen in Figure 2-7. Hosts that are not common to both executions are

represented as rhombuses. Processes present in both executions have their events

compared by the event capture group, and different events are drawn as rhombuses.

For logs with multiple executions, clicking on the "clusters" tab separates executions

into different groups based on a chosen metric. Clustering by the number of processes

groups executions by the midpoint between the smallest and largest number of

processes. Clustering by execution comparison gives an overview of how executions

differ from a selected base.

20

Clicking on the "motifs" tab highlights frequently occurring communication pat-

terns within and across executions. The user can search for 2, 3 or 4-event motifs that

occur in at least 50% of the executions or that appear at least 5 times within a single

execution.

2.1.3 Parser Settings

Figure 2-8: Options to change how the log file is parsed and displayed

Before the log file is parsed and visualized for the user, they must tell ShiViz how

to parse events from the log. This is done with the settings seen in figure Figure 2-8.

Most importantly, a regular expression is entered by the user (or may be parsed from

the log file) that must contain at least three named capture groups, for the host,

vector clock (discussed more in subsection 2.2.1), and the event that occurred. Users

can add additional capture groups, but every log event must conform to this regular

expression. A delimiter can be input to identify where different traces start in the log

file, if the file contains logs from multiple executions of a test, for example. The rest

of the settings let the user change the order that hosts in the system are shown from

left to right.

21

Using a regular expression with capture groups is not flexible enough for the

iterative process of debugging. A programmer often needs to add specific information

or variables to logs at different points in the code, such as the current number of

votes that a raft node has while asking its peers to become leader. If they want this

information to be nicely displayed as a separate field similar to the host and event,

then they need to add a capture group for the field to the regular expression. They

have to either add this information to every other log in the program, which is not

feasible, or carefully structure the regex to let this capture group match 0 characters

in the log event, without disrupting the matching of the rest of the capture groups.

This is error prone and would introduce bugs, which is the opposite of what the tool

should be doing.

Instead, the standard practice for this problem is using a catch-all capture group,

and putting all desired custom information in that capture group. This works, but

the point of the ShiViz tool is to display the log information in a helpful way for the

user, and a catch-all capture group would display as a large block of text, which is

not easily parseable as more information is added to a particular log. This is one pain

point that DisViz addresses.

2.2 GoVector

GoVector is an open-source library implemented in Go that provides logging of vector

clocks [15]. By using vector clocks, GoVector enables ShiViz to order events across

multiple processes without relying on a centralized clock. The repository is structured

as follows:

• govec/govec.go: Contains the main API for the GoLog struct that clients will

call to log events.

• govec/vclock: Implements a vector clock library

• govec/vrpc: Provides an integration between Go’s RPC and the GoLog object

22

For serialization when sending RPCs, GoVector uses an implementation of the

MessagePack format [31]. If a different serialization method is needed, the user can

customize this behavior by providing encoding and decoding callback functions:

1 func (gv *GoLog) setEncoderDecoder(

2 encoder func(interface{}) ([]byte, error),

3 decoder func([]byte, interface{}) error,

4) {

5 gv.encodingStrategy = encoder

6 gv.decodingStrategy = decoder

7 }

The serialization and vrpc APIs are useful for a simple project that does not have

strict RPC needs, but for a larger project like etcd, GoVector is not a sufficient library

for sending RPCs between nodes. etcd uses a Go implementation of gRPC, which is a

RPC framework that allows for multiplexed, low-latency transport and uses Protocol

Buffers for compact, strongly-typed message serialization [25, 24]. It offers features

such as bidirectional streaming, deadline propagation, built-in authentication, load

balancing, and automatic code generation. None of those features are supported by

vrpc, which supports only unary request-response communication. The vrpc library

could be extended to support these features or become an implementation of gRPC,

but from a design perspective, this is mixing unrelated goals. In DisViz, we address

this problem by focusing on logging without dictating the RPC library.

2.2.1 Vector Clocks

The core mechanism in GoVector is the vector clock. The library implements the

vector clock algorithm to maintain a partial order of events by:

• Initializing a vector clock in each process with an entry for the process identifier

(PID) and starting at time zero.

• Incrementing the local clock when a local event occurs.

• Merging received vector clocks with the local vector clock upon message reception.

The merge operation takes the entry-wise maximum of the clock values.

23

This approach ensures that every logged event is stamped with a vector timestamp.

The log messages include the process identifier and the current state of the vector

clock at that point in time. The VClock type has methods for interacting with the

vector clock, and the underlying type is simply map[string]uint64.

2.2.2 API

It is possible to use GoVector without using the vrpc functionality, but the API

methods to create an RPC payload wrap the desired buffer to send in a custom struct

that contains the GoVector specific information:

1 d := vclock.VClockPayload{

2 Pid: gv.pid, VcMap: gv.currentVC.GetMap(), Payload: buf

3 }

This can present an issue when the user has their own RPC library and serialization

method. For a small distributed system where it is feasible to wrap the RPC library

with code that uses this VClockPayload, this approach works and is relatively easy to

implement. But for a larger system with a more complex RPC library, this approach

becomes counterproductive. For example, Protocol Buffers use strongly typed structs

to aid in defining data types between nodes, and the types also help performance of the

serialization. Having to use this vlock.VClockPayload erases type information of the

buf that is sent, which can decrease performance of serialization methods like Protocol

Buffers. A logging library should not introduce friction with message serialization.

DisViz addresses this problem.

Each log output from GoVector includes a message, PID, and vector clock. The

primary GoVector API functions include:

• InitGoVector(processid string, logfilename string, config GoLogConfig):

Initializes a new logger instance for the specified process.

• PrepareSend(mesg string, buf interface, opts GoLogOptions): Called

before sending an RPC, this function increments the local vector clock, logs

24

an event, and encodes the payload together with the vector clock using a user

defined serialization strategy (or MessagePack by default).

• UnpackReceive(mesg string, buf []byte, unpack interface, opts GoLogOptions):

Called upon receipt of a message, this function decodes the byte array to extract

the payload and vector clock, merges the vector clock with the local vector clock,

and logs an event.

• LogLocalEvent(mesg string, opts GoLogOptions): Used for logging events

that occur locally. It increments the local vector clock and logs the event.

There are also configurable logging options through the GoLogConfig (e.g. buffered

logging, encoding/decoding strategy) and GoLogOptions (e.g. log priority) structures.

2.3 Challenge

Figure 2-9: Latency for ShiViz to create a space time diagram of a Raft test for leader
election, varying the number of elections

25

Reduce latency in DisViz

As mentioned in section 1.5, DisViz has three main design goals. The most important

goal is reducing latency when viewing the logs. Since ShiViz is a static site, it must

do all the processing of the logs within the browser environment, and redraw the

entire visualization any time a change needs to be made to it (e.g. collapsing nodes).

This issue becomes apparent when trying to view logs with thousands of events or

more. There is significant latency in preparing the visualization, and latency with

any interaction like searching, clustering, or collapsing nodes. In order to make the

debugging process as fast as possible, latency in the debugging tool must be low.

Figure 2-9 shows how that the latency to create the visualization changes linearly

with the number of log events. This data was collected by running a test of a Raft

implementation that does leader election for a group of 7 nodes. Each iteration for

a varying number of iterations per test, three random servers are disconnected, the

test makes sure there is still a leader, then those three are reconnected. etcd tests

often create log files with tens of thousands of events, mainly from the number of

RPCs passed between nodes, rather than from local events. For complex distributed

system, this latency is not acceptable for debugging. The machine used to to run

ShiViz and measure latency was a 2020 MacBook Air with a 1.1 GHz Dual-Core Intel

Core i3 processor and 8 GB 3733 MHz LPDDR4X RAM. The browser used to run

the ShiViz website was the Brave browser, which is built on Chromium and uses the

V8 JavaScript engine.

Make GoVector more flexible

For existing systems that already have their RPC library implemented, the GoVector

API is too cumbersome to easily use in their system to generate DisViz compatible

logs. It is possible to use GoVector without the vrpc functionality, but wrapping the

RPC payload with a GoVector defined struct adds an unnecessary layer of complexity

that may even reduce performance of the serialization strategy. The second design

goal of DisViz corrects this, allowing GoVector to be used with any RPC library.

26

Add different information in logs

The last design goal of DisViz is to make it easy for users to add information to

specific GoVector logging calls, and for that information to be displayed well in the

visualization. The use of regular expressions in ShiViz is the main reason for this pain

point. Using a regular expression with capture groups that every log must adhere

to is too strict. In the GoVector API all information is added to one message field

for an event, so adding information unique to one log means adding it to a catch-all

capture group that will display everything in that group as one string. This will be

tedious for the user to program and annoying to parse through in the visualization.

DisViz fixes this by changing the GoVector API to accept any number of key-value

pairs for a log, which will be formatted as JSON in the log file and easily parsed by

DisViz. No regular expressions are used, and each key-value pair is separately and

cleanly displayed for each log.

27

Chapter 3

DisViz

A diagram for the DisViz system can be seen in Figure 3-1, which illustrates the

entire process a user will go through to generate and visualize the log file for a test of

their distributed system. The diagram starts with ptest, a lightweight parallel testing

framework discussed more in section 3.1. This allows users to easily execute parallel

runs of multiple tests and bundle the DisViz log files from each node in the system

during a test. When a test is running, the source code uses the updated GoVector

API to log when an RPC is sent or received, as well as log any local events useful for

debugging. The logging functions accept any number of key value pairs, and GoVector

adds the vector clock and PID metadata to each log. GoVector then uses the Zap

library to format those key value pairs into valid JSON logs and write to a log file.

Zap is a Go logging library from Uber for fast, structured, leveled logging [40]. With

the log file, the user can then start up DisViz’s server and navigate to the DisViz

website in a browser. Once on the website, they can load the recent log file, and the

website’s JavaScript will communicate with the server to view small sections of the

log file at a time. The user can then navigate through the log file and search for text

or communication patterns present in the file. The rest of this chapter will give more

detail about each step in the diagram.

28

DisViz

log file

web
socket

web
socket

Request Types

filePathRequest Open a new file

slideWindowRequest View different section of existing file

searchRequest Execute text, structure, or motif search

nextResultRequest Move to next result in current search

topologically
sorted log file

server browser

user

read by
writes to user events

(e.g. scroll, click)static site content
(e.g. html file)

source codeGoVector API

key value
pairs

ptest testing framework

pairs with vector
clocks

Zap API

JSON logs

Figure 3-1: System diagram for generating logs and viewing them in DisViz

3.1 Ptest

Ptest is a command line tool for running Go tests that gives the user granular control

over things like the number of parallel workers running tests, which tests to run, and

the number of iterations for each test. When debugging a distributed system, a race

condition may cause a test failure infrequently. For a bug related to snapshots in the

Raft algorithm, introduced in section 6.3, a failure is only observed around twice in

every 100 test runs. It is necessary to be able to run a particular test many times in

parallel while debugging, in order to iterate as quickly as possible. The native Go

testing framework makes it easy to designate that a test can be run in parallel with

t.Parallel(), but this signals that this test is to be run in parallel only with other

parallel tests; multiple instances of a single test never run in parallel with each other

[10]. In order to run an individual test in parallel, the test itself must be implemented

29

with this in mind using more of the Go testing library, such as t.Run(name string,

f func(t *T)) along with t.Parallel() to run subtests in parallel. When tests

have not been specifically implemented for running in parallel, a testing framework

like ptest is helpful. ptest uses and extends the dstest framework described by a

Teaching Assistant of 6.5840 at MIT [35]. dstest provides the command line options

seen in Figure 3-2, displays live results of the tests as they are running (Figure 3-3),

and gives a summary of the results once all the tests are done running (Figure 3-4).

These figures are the output of running this command on a Raft implementation:

ptest –iter 5 –workers 10 TestManyElections3A TestBasicAgree3B TestReliableChurn3C

TestSnapshotBasic3D

Figure 3-2: Command line options for ptest

Figure 3-3: Live updates during a Go test run using ptest

ptest extends dstest to improve organization of output files and produce a single

log file for each test that can be loaded into DisViz. All the test output files are added

to a directory where the tests were run. For each failed test (or all tests if –archive is

true), ptest will make a directory with the name of the test that failed. The directory

30

Figure 3-4: Final ptest output after all tests complete

contains each of the per node files created by GoVector, an overall system combined

log file with each node file appended together, and another log file capturing all the

data from standard out, which will contain print output during the test. This file

structure can be seen in Figure 3-5.

Figure 3-5: ptest output files

3.2 GoVector

While the tests are running, the source code uses the updated GoVector API to

generate valid DisViz log files. The updated GoVector API is inspired by the Zap API

and offers the same methods as the Zap API. The previous GoVector API is unchanged

for backwards compatibility, but new methods are added. Zap is a widely used Go

31

logging library that allows for fast, structured logging, with highly customizable

formatting [40]. An example of a logging call using the updated GoVector API (same

in the Zap API) is:

1 goLog.Info("failed to fetch URL",

2 // Structured context as strongly typed Field values.

3 zap.String("url", url),

4 zap.Int("attempt", 3),

5 zap.Duration("backoff", time.Second),

6)

Using a strongly typed API to log data gives more type safety to the programmer,

which helps reduce bugs related to logging. The API also allows for the user to forgo

this type safety with a more flexible "sugared" logger:

1 goLog.Sugar().Infow("failed to fetch URL",

2 // Structured context as loosely typed key-value pairs.

3 "url", url,

4 "attempt", 3,

5 "backoff", time.Second,

6)

7 goLog.Sugar().Infof("Failed to fetch URL: %s", url)

The user can also easily make copies of a GoLog to add information to each log or

enable various Zap options:

1 // make a new logger that adds 'grpc' and a url to each log,

2 // and a strack trace for logs at or above Info level

3 goLog.Named("grpc").With(zap.String("url", url)).WithOptions(

4 zap.AddStacktrace(zapcore.InfoLevel)

5)

If the system already has an RPC library, the user does not have to wrap their

payload inside a GoVector payload. Instead, they can put the GoVector payload that

includes the process’s vector clock inside their RPC payload:

1

2 // new methods

3 func (gv *GoLog) PrepareSendZap(mesg string, level zapcore.Level, fields

...zap.Field) (encodedBytes []byte)

4 func (gv *GoLog) UnpackReceiveZap(mesg string, buf []byte, level zapcore.Level,

fields ...zap.Field)

32

3.3 DisViz Client Server Model

After the tests finish and ptest zips up the JSON log files written by the Zap API into

one combined log file for each test, the DisViz server parses the logs. The server has

two functions. First, it acts as a standard web server, hosting all the static content

of the DisViz website. This includes the main HTML file, and all the front end

JavaScript files that respond to user input and create the visualization. Second, it

hosts a websocket that the JavaScript on the browser will connect to once the website

is opened on the browser. On the DisViz website, the user supplies a file path to a

log file on the server’s file system. For now the server and browser are assumed to

be running on the same device, but this is not required (see subsection 8.1.6). When

a log file path is submitted by the user, the browser sends a filePathRequest over

the websocket to the server. With this path, the server now does the heavy lifting,

reading and parsing the entire file. It constructs an ordering of all the log events using

the vector clock and writes a topologically sorted ordering of those events back to

the file system. It is from this sorted file that the server sends small sections to the

browser. This ensures that valid subsets of events are sent to the browser.

After the browser receives the initial subset of data sent by the server, it parses and

displays the logs just like it previously did in ShiViz. The user can interact with the vi-

sualization the same as before (with caveats, see subsection 8.1.4). Once the user scrolls

to the bottom or top of the visualization, the browser sends a slideWindowRequest

over the websocket. The server responds by reading and sending a shifted portion of

data from the sorted log file, and the browser parses and displays the new visualization.

The logs sent over the websocket are valid JSON, from which the browser parses

all the keys and values, displaying each key-value pair separately. With the updated

GoVector API, the caller, function, and stacktrace information can easily be added to

the logs when desired, as seen in Figure 3-6.

When the browser receives data from the server, it displays the subset of data the

user is viewing, and gives controls for the user to manually decide what subset they

are viewing. These controls, seen in figure Figure 3-7, are given on the right panel

33

Figure 3-6: DisViz display of log information

next to the visualization.

Figure 3-7: DisViz controls for shifting the subset of the log file being displayed

3.4 Search in DisViz

When the user enters a query in the search bar, the browser sends the query over the

websocket in a searchRequest. The server again does the heavy lifting of searching

through the entire log file for any matches to the query, then sends the browser the

34

number of matches, and a subset of the log file that contains the first match. The

browser then parses and displays the received data. The search bar now shows how

many results there are and what position in the results the user is at, see figure

Figure 3-8.

Figure 3-8: DisViz search bar during active search

When the user clicks the navigation buttons in the search, or explicitly enters a

result number to view, a nextResultRequest is sent to the server, which will return

a subset of the data containing the next search result.

3.5 Meeting the design goals

Figure 3-9: Latency to create visualization for Raft test in ShiViz and DisViz

35

Reduce latency in DisViz

Moving to a client server model in DisViz significantly improves the latency to create

and interact with the visualization, as desired. See Figure 3-9 for a comparison between

ShiViz and DisViz, visualizing the same logs as described in Figure 2-9. DisViz is

around 3.4 times faster than ShiViz in creating the visualization, comparing the slope

of the fitted least squares regression lines. There is an added benefit when a file is

opened in DisViz that has been visualized before. Since DisViz writes a topologically

sorted version of the log file to the file system, visualizing the file after the first

time will be faster, around 8.6 times faster than ShiViz, since the sorted file can be

immediately read from the file system. Section 4.3.2 discusses the likely reasons for

the improvement in latency.

Make GoVector more flexible

With the changes to the PrepareSend and UnpackReceive methods in GoVector, the

user can put the vector clock payload inside their RPC payload, instead of the other

way around. This makes it easier to instrument an existing distributed system with

GoVector.

Add different information in logs

In GoVector, the user now has a clear and readable way to add unique information to

each log. Since DisViz no longer uses regular expressions to parse each log line, instead

parsing the log as JSON key value pairs, the information in each log is displayed in a

more readable way, as in Figure 3-6.

36

Chapter 4

Implementation

4.1 Ptest

As mentioned, ptest extends dstest to organize output files better in the context

of using DisViz. dstest is implemented in Python, and ptest is a Bash script that

executes dstest, passing through the command line arguments to dstest, then does

some clean up afterward. An abridged version of ptest is seen below:

1 OUTPUT=$(python3 -u $SCRIPT_PATH -o "$RESULT_PATH" "$@" | tee /dev/tty)

2 if [-d "$RESULT_PATH"]; then

3 for folder in "$RESULT_PATH"/*; do

4 if [-d "$folder"]; then

5 GoVector --log_type zap --log_dir "$folder" --outfile

"$folder/combined_logs.log"

6 subfolder=$(basename "$folder")

7 mv "$RESULT_PATH/$subfolder.log"

"$RESULT_PATH/$subfolder/$subfolder.log"

8 fi

9 done

10 fi

While dstest is running, for each test it captures all output meant for standard

out and writes it to a file in the output directory with the name and count for that

test. dstest was modified to pass that same name as the command line argument

output_dir to the go test command:

37

1 test_cmd = ["go", "test", f"-run={test}", "-test.v" if verbose else "",

f"-output_dir={output_dir / f"{test}_{i}"}", *extraargs]

The user’s Go code can then read this command line argument and construct the

appropriate path for where to write the GoVector log file:

1 var goLogPrefix = flag.String("output_dir", "", "Directory where output files

should be written")

2 rf.Logger = govec.InitGoVector(fmt.Sprintf("raft_%v", me),

fmt.Sprintf("%v/raft_%v", *goLogPrefix, me), config)

So, after dstest runs, each test will have a log file capturing the standard out,

and a folder with the same name containing all the files created by the user’s Go

code (in this case, created by GoVector). The files cannot be loaded into DisViz

directly, so the GoVector command will concatenate all the file content together into

one combined_logs.log file, and then move the standard out log file for that test

into the directory with the other log files, as seen in Figure 3-5.

4.2 Changes to GoVector

The GoVector changes largely consist of embedding a Zap Logger inside the GoLog

struct, so that all the Zap logger’s methods are immediately available to any GoLog

object. The main object that user’s of the GoVector library interact with and call

methods on is the GoLog struct:

1 type GoLog struct {

2 ...

3 zapLogPrefix string

4 *zap.Logger

5 goLogWriteSyncer *GoLogWriteSyncer

6 goLogCore *GoLogCore

7 initialized bool

8 preInitializationEntries []*ZapEntryInput

9 SugaredLogger *zap.SugaredLogger

10 wrappedLogger *zap.Logger

11 wrappedLoggerTwice *zap.Logger

12 ...

13 }

38

The fields shown are some of the added fields needed to make GoVector use Zap

internally.

4.2.1 Zap Primitives

The Zap Logger does not directly write to a file. Instead, it stores one or more Zap

Core objects:

1 type Core interface {

2 // If the Level is enabled for this core

3 Enabled(Level) bool

4 // Adds structured context to the Core.

5 With([]Field) Core

6 // Determines whether the supplied Entry should be logged.

7 Check(Entry, *CheckedEntry) *CheckedEntry

8 // Write the log entry

9 Write(Entry, []Field) error

10 // Flushes buffered logs

11 Sync() error

12 }

The Core objects that Zap provides use a Zap Encoder to take a log entry and

produce a byte array that a Zap WriteSyncer writes to the file:

1 type Encoder interface {

2 ObjectEncoder

3 Clone() Encoder

4 // EncodeEntry encodes an entry and fields,

along with any accumulated

5 // context, into a byte buffer and returns it.

6 EncodeEntry(Entry, []Field) (*buffer.Buffer,

error)

7 }

1 type WriteSyncer

interface {

2 io.Writer

3 Sync() error

4 }

4.2.2 Logging with Zap

Using these primitives, we implement our own Core and WriteSyncer objects for a

Zap Logger to use:

39

1 type GoLogWriteSyncer struct {

2 mu sync.RWMutex

3 unbuf zapcore.WriteSyncer

4 buf *zapcore.BufferedWriteSyncer

5 manualBuffer bool

6 // always == unbuf or buf, under mu

7 active zapcore.WriteSyncer

8 }

1 type GoLogCore struct {

2 zapcore.Core

3 gv *GoLog

4 }

The GoLogCore embeds a Zap Core, so we only need to redefine methods to

implement specialized behavior:

1 func (c *GoLogCore) Write(entry zapcore.Entry, fields []zapcore.Field) error {

2 c.gv.mutex.Lock()

3 defer c.gv.mutex.Unlock()

4 fields = c.gv.addMetadataFields(entry, fields)

5 if !c.gv.initialized {

6 return nil

7 }

8 return c.Core.Write(entry, fields)

9 }

10 func (c *GoLogCore) Check(ent zapcore.Entry, ce *zapcore.CheckedEntry)

*zapcore.CheckedEntry {

11 if c.Enabled(ent.Level) {

12 return ce.AddCore(ent, c)

13 }

14 return ce

15 }

One important detail is that when a Zap Logger calls Check() on a core to see

if that core will log the Entry, the core adds itself to the Zap CheckedEntry object,

which contains a slice of all the Core objects that will write the Entry. Even though

the implementation is the same as the library implementation, we must implement

the Check method shown in order to add the GoLogCore object to the CheckedEntry,

instead of the embedded Core object. This way, when the CheckedEntry.Write is

called and the saved Core objects are iterated through, the Write method will be

called on our GoLogCore object, which adds the vector clock metadata to the Entry:

1 func (gv *GoLog) addMetadataFields(entry zapcore.Entry, fields []zapcore.Field)

[]zap.Field {

40

2 if !gv.initialized {

3 gv.preInitializationEntries = append(gv.preInitializationEntries,

&ZapEntryInput{entry: entry, fields: fields})

4 return fields

5 }

6 gv.tickClock()

7 return append(fields,

8 zap.String("processId", gv.pid),

9 gv.currentVC.ReturnVCStringZap("VCString"),

10)

11 }

addMetadataFields uses the initialized boolean to determine if the InitGoVector

method has been called on a GoLog object:

func (gv *GoLog) InitGoVector(processid string, config GoLogConfig, logfilenames

...string) {

...

gv.prepareZapLogger(logfilenames)

gv.initialized = true

...

}

InitGoVector uses the GoLogConfig to set the GoLog options and open the files

that logs should be written to. When instrumenting the etcd repository to use

GoVector to make DisViz-compatible logs (see section 5.1), it was necessary to create

a GoLog object before knowing what the filename should be called. This allows the

GoLog object to be created and passed down to necessary objects for logging before

an appropriate filename is known for the log file to write logs to. If filenames are not

known when a GoLog needs to be created, users can call UninitializedGoVector:

1 func UninitializedGoVector() *GoLog {

2 ...

3 goLogCore := &GoLogCore{Core: NewNopCore(), gv: goLog}

4 goLog.updateLoggers(zap.New(goLogCore, zap.AddCaller(),

zap.AddStacktrace(goLog.level)))

5 ...

6 }

41

updateLoggers updates each of the four stored Zap Logger objects at once: the

original, a sugared logger, and two loggers that skip a level in the stacktrace for when

GoLog.PrepareSend or GoLog.UnpackReceive are called, to only include user level

code in the caller and stacktrace information. Since a GoLog can be passed around

and called on before files have been configured to write to, addMetadataFields will

check if the logger has been initialized yet, and store any Entry objects to log later in

preInitializationEntries once the GoLog.InitGoVector is called.

After the vector clock and pid is added to the fields of the log entry, the GoLogCore

will use its embedded Zap Core to write to the file, which uses a Zap Encoder to prepare

a byte string, and calls GoLogWriteSyncer.Write. GoVector previously supported

toggling buffered logging, so we implement a GoLogWriteSyncer to keep this behavior.

Zap offers a BufferedWriteSyncer, but this does not allow for toggling the buffering.

GoLogWriteSyncer stores a Zap WriteSyncer, a Zap BufferedWriteSyncer that

writes to the same WriteSyncer, and uses a read write mutex to keep track of which

of those two should be written to.

Figure 4-1 shows a summary of what methods are called in what order when

making a call to GoLog.Info. The yellow boxes show Zap methods, and the green

boxes show GoVector methods.

GoLog.Info() = GoLog.Logger.Info() GoLogCore.Check() CheckedEntry.Write() GoLogCore.Write()

GoLog.addMetadataFields()GoLogCore.Core.Write()GoLogWriteSyncer.Write()WriteSyncer.Write()

Figure 4-1: An abridged call chain for making a logging call with a GoLog object

4.2.3 Initialization

Once GoLog.InitGoVector is called, the embedded Zap Logger will be properly

configured with our GoLogCore and GoLogWriteSyncer. Since a GoLog is only created

42

through UninitializedGoVector, the GoLogCore and Zap Logger will already be

created:

1 baseWriteSyncer := zap.Open(filePaths...)

2 goLog.goLogWriteSyncer = &GoLogWriteSyncer{

3 unbuf: baseWriteSyncer, buf: nil, active: baseWriteSyncer,

4 }

5 core := zapcore.NewCore(

6 zapcore.NewJSONEncoder(encoderConfig), goLog.goLogWriteSyncer,

7)

8 goLog.goLogCore.Core = core

9 // opts has options for adding caller and stacktrace

10 goLog.updateLoggers(goLog.Logger.WithOptions(opts...))

4.3 Changes to ShiViz

To run the existing code on the server side, we duplicate the JavaScript, use Node

to run it, Express to set up a web server hosting the static site content, and ws to

host a web socket for the frequent requests between the server and client [19, 26]. The

webpage runs the same JavaScript code, but different changes are made to the server

and browser JavaScript to properly use the web socket. The overall approach was to

break up the monolithic system running entirely in the browser, and split components

of it between the server and browser, trying to change the actual implementation

details minimally.

4.3.1 Server

Using Node to run the JavaScript code originally meant to run in the browser requires

the use of global proxy objects to make the browser dependencies not available in Node

no-ops when called. The JavaScript code uses jQuery and D3, which are dependencies

for manipulating the DOM and easily accessing elements on the webpage. It also uses

the window and document objects available to JavaScript in the browser. Since none

of these are available in Node, the best approach would be to refactor the code and

remove all the uses of these objects. However, the JavaScript code is more than 14, 000

43

lines over 55 files. For the scope of this thesis, and to reduce the chance of introducing

bugs, our approach was to treat the code as modular by trying to make as few changes

as possible to the original code, and instead move pieces of it around. With this in

mind, we define global Proxy objects for all of the browser specific objects that are

called:

1 ['$', 'd3', 'window', 'document'].reduce(

2 (proxy, prop) => globalThis[prop] = proxy, new Proxy(() => {}, {

3 // Intercepts property access, e.g. $().testing

4 get(target, prop, receiver) {

5 return receiver;

6 },

7 // Intercepts function calls, e.g. $()

8 apply() {

9 return $;

10 }

11 }));

This proxy will intercept any property accesses or function calls to return itself, so

existing calls in the JavaScript like

1 $(".input input, .input textarea").on('input propertychange', function(e) {

2 context.resetView();

3 });

are no-ops and do not need to be edited in the server code.

The entry point to the server code is disviz/index.js, and after the global

proxies are defined, we need to run all of the server JavaScript files in the global

context, instead of how imports are usually handled in Node. The webpage defines all

the JavaScript files with <script> tags in the HTML file, which will run all of the

JavaScript in the shared global browser environment. Node import statements do not

run the files in the global context. Instead, they run the file in a separate context and

make any explicit export statements in the file available in the local context of the file

that imported it. In order to mimick how the code runs in the browser, we use the

built in vm module to run all 55 files in the same context:

44

1 [fileNames].forEach(filename => {

2 const filePath = path.join(__dirname, filename);

3 const code = fs.readFileSync(filePath, {encoding: 'utf8'});

4 vm.runInThisContext(code, { filename: filePath });

5 });

With the environment properly set up, the web socket can properly respond to

each type of message:

1 ws.on('message', async (event) => {

2 const message = JSON.parse(event);

3 switch (message.type) {

4 case "filePathRequest":

5 return await handleFilePathRequest(message);

6 case "slideWindowRequest":

7 return await handleSlideWindowRequest(message);

8 case "searchRequest":

9 return await handleSearchRequest(message);

10 case "nextResultRequest":

11 return await handleNextResultRequest(message);

12 }

13 });

filePathRequest

A filePathRequest will read the file, use existing ShiViz functions to get a topological

sorting of log events, then write that sorting back to a new file, from which it

sends sections back to the browser. AbstractGraph.getNodesTopologicallySorted

already existed in ShiViz, but had to be modified to produce a more accurate topological

sort. It uses Khan’s algorithm to produce a valid topological sorting, which maintains

a list of unprocessed events that have no incoming edges from other unprocessed

events, adding an event to the topological sort once all the events with incoming

edges have been processed [29]. getNodesTopologicallySorted did this with a stack,

processing events in a depth first style for a particular node until it reaches an event

with a parent from another node. Using this sorting does not work well when viewing

a small window of log events, because the server may send events only from one node

in the system, when the visualization of all the events would show events from other

45

nodes at the same horizontal position. To give a more accurate view, we use the list

of unprocessed events as a queue instead of a stack. This ensures that every event in

the topological sort appears only after all events that would be rendered higher than

it in the visualation are added to the sort.

slideWindowRequest

This request is processed similarly to how a filePathRequest is processed, it just

does not read a new file before sending a section of the log file back to the browser.

The message request contains the start and ending offsets request by the browser, and

it reads those offsets (adjusted to start and end on newlines) from the current file

and sends that string back to the browser, which processes and visualizes only those

events.

searchRequest

To handle a searchRequest, the browser sends the query string entered by the user,

and the server loads it into the SearchBar object then calls SearchBar.query(),

following the same steps that the browser used to do with an event listener. To send

an appropriate section of the file back to the browser, each log event has an added

offset field containing the offset in the file where the start of that log event is. When

the server gets the search results from the MotifNavigator object, it will contain the

offset in the file where each search result starts. The server then reads a fixed section

of the file starting from that offset and sends it to the browser.

nextResultRequest

This request is processed similarly to how a searchRequest is processed, it just does

not make a new query to the searchBar object, instead it reads a search result from

the existing search, and sends a section of the file containing that result back to the

browser. Once the browser receives the logs and processes them, it runs the same

search query over the logs, so that the visualization can emphasize which events match

the query.

46

4.3.2 Client

The changes to the JavaScript code running in the browser mostly consisted of

making web socket requests where appropriate, but the more technical changes

consisted of handling retry logic with sending web socket messages, and using an

IntersectionObserver to automatically shift the section of the log file being visual-

ized.

Web Socket

We define a sendWithRetry method on our web socket for the browser to send a

message to the server:

1 ws.sendWithRetry = function (message) {

2 if (ws.readyState !== WebSocket.OPEN) {

3 return new Promise((resolve, reject) => setTimeout(() =>

ws.sendWithRetry(message).then(resolve, reject), reconnectDelay));

4 }

5 let { promise, resolve, reject } = Promise.withResolvers();

6 // display error to user if any occurs

7 promise.catch((reason) => {

8 const exception = new Exception(reason, true);

9 Shiviz.getInstance().handleException(exception);

10 });

11 message.id = generateRequestId();

12 // Save the resolver so we can call it when the response comes back.

13 pendingRequests[message.id] = { resolve, reject };

14 setTimeout(() => {

15 if (pendingRequests[message.id]) {

16 delete pendingRequests[message.id];

17 ws.sendWithRetry(message).then(resolve, reject);

18 }

19 }, requestTimeout);

20 ws.send(JSON.stringify(message));

21 return promise;

22 }

23 }

The ws.onmessage callback function can now read the id field from the message

received from the server, and resolve the saved promise that ws.sendWithRetry

47

created. This allows the JavaScript in the browser to await the promise returned by

ws.sendWithRetry, and not have to manually determine if the connection is active or

the request times out. The recursive calls in the case of a timeout or a disconnected

web socket will call the resolve or reject mutator of the original promise once they

resolve, so the original promise won’t be forgotten.

Infinite Scroll

In order to make the visualization easier to use, we must automatically request more

logs from the server once the user scrolls near the top or bottom of the visualization.

We use the builtin IntersectionObserver API to register callback functions to call

once a particular HTML element intersects the user’s view-port [42]. We store this

object in the VisualGraph object, and add sentinel elements in the HTML at the top

and bottom of the visualization, calling IntersectionObserver.observe on them

once the VisualGraph is created. We also do the same for the first and last events in

the visualization. This allows the user to more easily navigate through the entire log

file.

Highlighting Search Events

Figure 4-2: A highlighted event during a DisViz search

48

Highlighting search results for the user required fine grained control over the

JavaScript event loop, specifically the use of queueMicrotask. When the client gets a

response to a searchRequest or nextResultRequest and runs the same query over

the logs from the server, it highlights the event that the user is viewing in the search

results, see Figure 4-2. This is the same behavior when the user hovers over an event;

that event and the corresponding log in the left panel are highlighted. The browser

knows which event to highlight by reading the lineToHighlight field in the response

from the server. Once the browser finds this event during the transformation to

emphasize events matching the user’s search, it needs to dispatch a mouse over event

to the HTML element. However, since the visualization is redrawn during this process,

the HTML element has not been created yet, so we cannot dispatch an event to it.

Instead of modifying how and when HTML elements in the visualization are created,

we can use queueMicrotask:

1 HighlightMotifTransformation.prototype.transform = function(model) {

2 var nodes = this.motifGroup.getNodes();

3 for (var i = 0; i < nodes.length; i++) {

4 var node = nodes[i];

5 var visualNode = model.getVisualNodeByNode(node);

6 const events = node.getLogEvents();

7 for (let i = 0; i < events.length; i++) {

8 const event = events[i];

9 if (event.getLogLine() === this.lineToHighlight) {

10 var id = "#node" + visualNode.getId();

11 queueMicrotask(() => $(id)[0].dispatchEvent(new

MouseEvent("mouseover")));

12 break;

13 }

14 }

15 }

16 }

The JavaScript event loop will process the callback function passed to queueMicrotask

the next time the browser gives up control to the event loop, either by awaiting a

promise, or finishing the execution in its call stack [32]. This allows the execution of

the transformation to finish and the HTML elements to be created before the callback

49

runs. At this point we can successfully dispatch a mouse over event to the appropriate

HTML element, so that the log event in the visualization is highlighted for the user.

Improvement in latency

Figure 4-3: Time spent in the browser when rendering all log events for an execution

As shown in Figure 3-9, moving to the client server model provided a significant

reduction in latency, a factor of about 3.4. However, since the original ShiViz JavaScript

code was duplicated to run on the server, all the same internal objects and algorithms

are still used to analyze a log file and construct a partial ordering of the events in the

log. The speedup does not inherently come from running the code in Node instead

of in the browser. The difference is that the code doesn’t need to create any HTML

elements like the JavaScript code does in the browser or call any of the jQuery methods.

Every time a search is made or a node is collapsed by the user in the browser, the

entire visualization is redrawn and all the HTML elements used in the visualization

are recreated. This is likely what causes the significant latency as the number of log

events increases. As shown in Figure 4-3, when viewing a log file with 12, 000 events in

DisViz and shifting the window to be the entire file, the time is mostly spent running

the browser’s JavaScript code, rather than rendering or painting frames. The main

difference between the JavaScript running in the browser and in the server is that calls

to jQuery or the document are not no-ops and can actually change or create HTML

elements. Since the server does not need to create or modify any HTML elements,

it can produce a partial ordering of log events much faster and send a small window

back to the client. Now the large cost of creating the entire visualization is broken up

50

into smaller delays for the user as they view small sections of the log. Having two

processes running (server and client) also helps decrease latency by sharing the total

work that needs to be done.

51

Chapter 5

Case Studies

In order to evaluate how the changes to GoVector make it easier to use in an existing

distributed system, we describe the changes required to use GoVector in etcd and a

Raft implementation from 6.5840. Making these changes with the old GoVector would

have been feasible with the Raft implementation and would require a similar number

of changes, showing the changes do not worsen GoVector’s compatibility. Using the

old GoVector in etcd would be infeasible due to how their RPC library works, showing

the changes can improve GoVector’s compatiblity.

5.1 etcd

Despite the more flexible GoVector API, instrumenting an existing system to produce

vector clock logs is nontrivial. In etcd, there are many layers of objects that are

created and configurations that are passed down through these layers during a test,

sharing loggers at each step. etcd already uses Zap for its logging, which makes it

easier to capture existing logs with GoVector [21].

etcd operations are submitted through an etcd Client struct and handled by an

EtcdServer struct:

52

1 type Client struct {

2 Cluster

3 KV

4 Lease

5 Watcher

6 Auth

7 Maintenance

8 DisvizLogger *govec.GoLog

9 ...

10 }

1 type EtcdServer struct {

2 DisvizLogger *govec.GoLog

3 ...

4 }

Each of the embedded structs in the Client are interfaces providing the API users

can call on. The embedded objects contain methods that make RPC requests through

the auto-generated protobuf code. These RPC requests are sent to an EtcdServer

object listening for requests. We add a GoLog object to the Client and EtcdServer

structs and pass it down to the embedded objects during initialization. In each of the

methods to send or receive an RPC, GoLog.PrepareSend and GoLog.UnpackReceive

are called. While processing an RPC request, the EtcdServer needs to send RPCs be-

tween Raft nodes. This is done in etcd/server/etcdserver/api/rafthttp/peer.go

by peer.send, where we now call GoLog.PrepareSend and GoLog.UnpackReceive

before and after sending the RPC to the other raft nodes.

In order to get the GoLog object in each of these locations to properly log sending

and receiving messages, we must carefully configure it at the beginning of a test, and

pass it down as each of the etcd structs are defined. A cluster is created with:

var zapLogPrefix = flag.String("output_dir", "", "Directory where output files

should be written")

clus := integration2.NewCluster(t, &integration2.ClusterConfig{Size: 3,

ZapLogPrefix: os.Getwd() + "/" + *zapLogPrefix})

This cluster is created in etcd/tests/framework/integration/cluster.go, where

a Member object contains the Client and EtcdServer for each node in the cluster.

The client is created with a config containing the GoLog to use, and this config is

passed to a factory function to initialize a Client, and pass that GoLog to each of the

embedded interfaces in the Client.

Configuring the EtcdServer GoLog is more difficult, which requires using an

53

uninitialized GoLog. The GoLog objects write to files named with Member.Id() to

identify the node, but this id is configured during the initialization of an EtcdServer,

where we must pass a GoLog into in order for it to make its way into the peer struct.

This makes using an uninitialized GoLog useful:

1 func (m *Member) Launch() error {

2 ...

3 m.DisvizServerLogger = govec.UninitializedGoVector()

4 m.Server = etcdserver.NewServer(m.ServerConfig)

5 config := govec.GetDefaultZapConfig()

6 config.ZapLogPrefix = m.ZapLogPrefix

7 m.DisvizServerLogger.InitGoVector(fmt.Sprintf("etcd_server_%v", m.ID()),

config, fmt.Sprintf("etcd_server_%v", m.ID()))

8 ...

9 }

The GoLog in the Member struct is passed through: Member -> EtcdServer ->

Transport -> peer in the call chain integration2.NewCluster -> Member.Launch

-> etcdserver.NewServer -> Transport.AddPeer -> rafthttp.startPeer.

This completes logging when messages are sent between nodes, but we must also

capture when local events are logged. Since Zap is already used for this in etcd, and we

have implemented our own Zap Core object, we define WrapBaseLogger in GoVector:

1 func (gv *GoLog) WrapBaseZapLogger(baseLogger *zap.Logger, opts ...zap.Option)

*zap.Logger {

2 opts = append(opts, zap.WrapCore(func(core zapcore.Core) zapcore.Core {

3 return zapcore.NewTee(core, gv.Logger.Core())

4 }))

5 return baseLogger.WithOptions(opts...)

6 }

gv.Logger.Core() returns our GoLogCore, which adds our metadata fields. Now

given an existing Zap Logger, we can return a new Logger that uses zapcore.NewTee

to write logs to the existing core as normal, but also write logs to our GoLogCore.

With one carefully placed call early in initialization:

1 func newClient(cfg *Config) (*Client, error) {

2 ...

54

3 client.lg = client.DisvizLogger.WrapBaseZapLogger(client.lg, zap.AddCaller(),

zap.AddStacktrace(client.lg.Level()))

4 ...

5 }

We automatically capture all of the local log events, and similarly for the EtcdServer.

This saves a significant amount of time doing this manually throughout the repository,

and reduces opportunities for bugs. In total, making these changes in etcd amounted

to around 5800 lines changed in auto-generated code from protobuf, and around 900

lines changed manually over 31 files.

5.2 6.5840 Raft

The implementation effort required to instrument an existing system with GoVector

is directly correlated with how large the system is. An implementation of Raft that I

wrote for the MIT class 6.5840 is significantly less intricate than the etcd repository,

and using GoLog is more straightforward. All tests are performed with locally running

Raft nodes, so a channel-based RPC abstraction is used that does not actually use

the network to send messages. All Raft nodes have a list of peer ClientEnd structs

they can send messages to on a stored channel with a Call method. Since a relatively

smaller number of RPCs are possible, it is feasible to define wrapper methods and call

these methods everywhere that RPCs are sent in the Raft implementation. We can also

use the old GoVector pattern of wrapping the payload to send in the GoVector payload,

since the smaller number of RPCs makes this a more straightforward approach:

1 func (rf *Raft) CallWrapper(peer int, svcMeth string, args interface{}, reply

interface{}) bool {

2 result := rf.peers[peer].Call(svcMeth, rf.PrepareSend(svcMeth, peer, args),

args, rf.me)

3 if result.Ok {

4 rf.UnpackReceiveResponse(svcMeth, peer, result.Reply, reply)

5 }

6 return result.Ok

7 }

55

In the RPC implementation when a Call is being processed, we can call these

Raft methods which call the corresponding GoLog methods:

1 // Service uses reflect to dynamically call any defined RPCs in the raft

implementation

2 func (svc *Service) dispatch(methname string, req reqMsg) replyMsg {

3 method := svc.methods[methname]

4 args := reflect.New(req.argsType)

5 svc.methods["UnpackReceive"].Func.Call([]reflect.Value{svc.rcvr,

reflect.ValueOf(methname), reflect.ValueOf(req.from),

reflect.ValueOf(req.args), args})

6 replyv := reflect.New(method.Type.In(2).Elem())

7 method.Func.Call([]reflect.Value{svc.rcvr, args.Elem(), replyv})

8 out := svc.methods["PrepareSendResponse"].Func.Call([]reflect.Value{svc.rcvr,

reflect.ValueOf(methname), reflect.ValueOf(req.from), replyv})

9 }

Now the call chain for every RPC sent will be:
Raft.CallWrapper -> Raft.PrepareSend -> ClientEnd.Call ->

Raft.UnpackReceive -> Raft.PrepareSendResponse -> Raft.UnpackReceiveResponse,

and the request/response for each node in an RPC will be logged. For capturing

local logs, the code calls Raft.Debug, and we can refactor it to call our GoLog:

1 func (rf *Raft) Debug(topic logTopic, format string, a ...interface{}) {

2 time := time.Since(debugStart).Microseconds() / 1000

3 prefix := fmt.Sprintf("%d %v ", int64(time), string(topic))

4 rf.Logger.SugaredLogger.Logf(zapcore.InfoLevel, prefix+format, a...)

5 if topic == DError {

6 panic("got an error")

7 }

8 }

The tests for the Raft implementation frequently kill a Raft node and bring it back

online by initializing a new Raft struct with the same configuration. This introduces

a problem when the GoLog object has already been writing vector clock logs to the

file. When the new Raft struct initializes its GoLog object with the same filename, it

will begin appending to the file with a reset vector clock. In order for the logs to be

valid, the vector clock for node must increase monotonically by 1, which this would

56

violate. When initializing a GoLog, if the filename already exists, we check to read the

last line and try to parse the vector clock from it. If it succeeds, then we initialize the

GoLog with the vector clock read from the existing file, so we can continue increasing

the clock by 1 on each line.

In total, my original Raft implementation has around 1800 lines of go code, and

the changes described here required around 80 lines of code over 3 files, around 10

times less than what was required in etcd, as seen in Table 5.1. This takes significantly

less time and is less bug prone than making the same changes on a larger system like

etcd.

System Lines Changed Files Modified
Raft Implementation 80 3
etcd 900 31

Table 5.1: Code changes required to integrate GoVector

57

Chapter 6

Evaluation

In order to evaluate how DisViz helps with debugging, we use my Raft implementation

from 6.5840 to debug correctness and liveness bugs. For Leader Election, and Commit-

ting Logs, we introduce bugs and step through the process a user would take to find

the bug. For Snapshotting, we look at an existing bug where the cause is unknown.

We show that the logging flexibility provided by GoVector allows for easily adding

new information to logs and viewing it in DisViz. The reduced latency provided by

the client server model makes the visualizations faster to interact with and provides

the same features as ShiViz (e.g. search).

The tests we run are provided by the 6.5840 course staff and are the same used

when I first implemented this system.

6.1 Leader Election

Correctness

We introduce a bug in the Raft.RequestVote RPC handler, when a Raft node is

preparing a response after receiving a request for a vote from another node. The bug

allows for granting a vote more than once in a term:

1 func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

2 ...

58

3 // Correct code: if args.Term < rf.currentTerm || (rf.votedFor != -1 &&

rf.votedFor != args.CandidateId) {

4 if args.Term < rf.currentTerm {

5 reply.VoteGranted = false

6 } else {

7 ...

8 }

We first run each test for leader election to see what might be failing with:

ptest -n 10 -p 10 -v TestInitialElection3A TestReElection3A TestManyElections3A

TestReElection3A and TestManyElections3A each fail 4 times due to a panic, so

we focus on TestManyElections3A. This test makes a cluster with 7 servers and waits

for a leader to be elected. For 10 iterations, three random servers are disconnected,

the test makes sure there is still a leader, and then those three are reconnected.

In the captured output for one of the failures, we see the test fails due to logging

an error, which causes a panic:

1 func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply)

{

2 ...

3 // mark heartbeat

4 if rf.state != follower {

5 rf.Debug(DError, "S%v %v, APPEND ENTRIES FROM UP TO DATE LEADER BUT WE'RE

NOT A FOLLOWER. Current term: %v\n", rf.me, rf.state, rf.currentTerm)

6 }

7 ...

8 }

This cluster is in a split brain situation when this panic occurs. The panicking

node thinks it is leader, but it was sent logs from a node that thinks it is the leader

with the same term number, which should never happen during normal operation.

When viewing the logs for this failure in DisViz, we jump to the end to see the log

entry for this error in Figure 6-1, which belongs to the raft_1 node.

The visualization ends with many logs from this node and no connections to

other nodes, so it seems this node became disconnected before being reconnected and

59

Figure 6-1: Last log from TestManyElections3A failure

receiving an append entries from another node. To find which node sent an append

entries to this node, we search for the last occurrence of "Raft.AppendEntries RPC to

raft_1". The node with name raft_3 sent this log. To find when raft_3 became a

leader we can search for this node’s log in the visualization (see Figure 6-2):

1 func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

2 ...

3 rf.Debug(DVote, "S%v %v, granting for %v in term %v\n", rf.me, rf.state,

args.CandidateId, rf.currentTerm)

4 ...

5 }

The search functionality supports regular expressions, so searching for event=/granting

for . in term 5/, we find seven occurrences, where nodes raft_5, raft_0, and

raft_4 all grant votes for raft_1 and then raft_3 in term 5. Looking at the code for

handling a RequestVote RPC, we have checks for when the term in the RPC is less

than or greater than the current term:

1 func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

2 ...

3 if args.Term > rf.currentTerm {

4 rf.convertToFollower(args.Term)

5 }

6 if args.Term < rf.currentTerm {

7 reply.VoteGranted = false

8 } else {

60

9 // grant vote. We must be a follower now

10 ...

11 }

Before the handler grants a vote, the handler must make sure that it has not voted

for anyone in this term already, which identifies the bug. Using the visualization made

it quicker to gain context about the communication between the nodes in the cluster,

which helped track down the bug.

Liveness

For a liveness bug relating to leader election, we flip a boolean to never send a yes

vote back in a RequestVote RPC:

1 func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

2 ...

3 // Correct code: reply.VoteGranted = true

4 reply.VoteGranted = false

5 ...

6 }

Running the same ptest command as before, we see that no tests are passing.

We will focus on the simplest of these tests TestInitialElection3A, which starts a

cluster of three nodes and checks that a leader is elected and all the terms match for the

nodes. The captured output shows that the test fails with the error message "expected

one leader, got none." From Figure 6-2, we see that the node raft_2 requests a vote

and gets responses from raft_0 and raft_1, and both nodes have the logs "granting

for 2 in term 3". However, the responses received by raft_2 have VoteGranted set to

false, which identifies the bug in RequestVote. These log files are short, which shows

that using DisViz can be helpful regardless of the log file size.

61

Figure 6-2: Logs from TestInitialElection3A failure

6.2 Committing Logs

Correctness

In order to grant a vote for a peer, that peer’s log must be at least as up to date as

the node that receive the RequestVote RPC. We introduce a bug that comments out

this check:

1 func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

2 // if latestTerm > args.LastLogTerm || (latestTerm == args.LastLogTerm &&

rf.getLogIndex(len(rf.log)-1) > args.LastLogIndex) {

3 // reply.VoteGranted = false

4 // return

5 // }

6 }

This causes every run of TestRejoin3B to fail, which makes a cluster of 3 nodes,

and tests the rejoin of a partitioned leader. The test fails because after the partitioned

leader rejoins the cluster, the cluster fails to reach agreement and commit a newly

submitted log. Since it will be helpful to know when a node becomes disconnected

and reconnected, we can add logging statements in the testing code with:

1 func (cfg *config) disconnect(i int) {

2 ...

3 raft := cfg.rafts[i]

4 raft.Logger.Log(zapcore.InfoLevel, "Disconnecting this node",

zap.Object("self", raft))

62

5 ...

6 }

The Zap API makes it easy to define how to log arbitrary objects using zap.Object.

The object to log just needs to implement this method:

1 func (rf *Raft) MarshalLogObject(enc zapcore.ObjectEncoder) error {

2 enc.AddInt("me", rf.me)

3 enc.AddString("state", string(rf.state))

4 enc.AddInt("logLength", len(rf.log))

5 enc.AddInt("logStart", rf.getLogIndex(0))

6 return nil

7 }

And Zap will use this method when encoding the log event. Figure 6-3 shows how

this is displayed in DisViz.

Figure 6-3: Displaying a raft object in DisViz

Searching for when raft_1 becomes reconnected, and viewing the logs after that,

we see that raft_2 was the leader and committed an event with raft_0 before also

being disconnected. Between the disconnection of raft_2 and the reconnection of

raft_1, we see many logs from both nodes that think they are the leader (in different

terms) and are trying to send RPCs to other nodes, but no lines connect those events

63

to other nodes, so no communication is happening. After raft_1 reconnects, it sends

an AppendEntries to raft_0, who responds with a failure because the raft_1 term

is out of date (raft_2 became leader in a new term after raft_1 is disconnected).

Figure 6-4 shows how DisViz makes this communication easy to see.

Figure 6-4: AppendEntries failure from raft_1 to raft_0

Following the events down, raft_1 begins an election and gets a vote from raft_0,

completing a majority and becoming a leader. raft_1 begin sending AppendEntries

RPCs to raft_0, but they all fail because raft_0 has an event committed that raft_1

does not have, so it never accepts new logs from raft_1. This tells us that raft_0

should not have granted a vote to raft_1, which leads us to add the check for up to

date logs for an election candidate.

Liveness

To introduce a liveness bug, we make a small change to the code that applies newly

committed messages to a node’s state machine once a leader receives an AppendEntries

RPC response:

1

2 // Correct code: rf.commitIndex > rf.lastApplied {

3 for rf.commitIndex < rf.lastApplied {

4 // send log to apply channel

5 }

64

This prevents any committed commands from being applied by the leader, but

followers can still apply commands. With this change, all tests for committing logs

fail, so we focus on the simplest, TestBasicAgree3B, which creates a cluster of three

nodes and waits for them to agree on a log entry, without disconnecting anyone. The

test fails for the same reason as the last example; the cluster does not reach agreement

for any committed logs. In DisViz, the visualization is relatively short, as with the

previous liveness bug in section 6.1. raft_0 is elected the leader, and raft_1 and

raft_2 accept AppendEntries RPCs from this leader. Figure 6-5 shows that both

followers commit an entry from the leader and in the next log event send it on their

apply channel. The leader receives the responses from both followers, but there are no

logs for what happens after the response is received. So, we add logging statements for

each update to the Raft state after the receipt of an AppendEntries RPC response.

These logging calls include when the commit index is updated and when a log is sent

on the apply channel. Rerunning the test and loading it into DisViz, it becomes

apparent that the leader is successfully updating the commit index, but no logs are

ever applied to the state machine. This leads us to fixing the error with applying

committed logs.

Figure 6-5: Raft followers successfully committing a log entry

65

6.3 Snapshotting

The previous sections introduced bugs and showed how DisViz can be used. This

section tracks down an unknown bug that is present in my Raft implementation. Of

the seven snapshotting tests, the unknown bug causes TestSnapshotInstall3D and

TestSnapshotInstallUnreliable3D to exhibit failures. Both tests perform similar

actions, disconnecting and crashing nodes in a 3 node cluster over a number of

iterations, waiting for the cluster to commit logs and making sure they do snapshots

so their logs do not grow too large.

Focusing on TestSnapshotInstall3D, it fails because after reconnecting a node,

the cluster cannot reach an agreement for a new log entry. Since we are focusing on

snapshots, the hypothesis is the reconnected node incorrectly applies a snapshot to

catch up, giving it an incorrect log history that does not match the other nodes. This

bug happens infrequently; using ptest, we observe 2 failures during a run of 100 tests.

In DisViz, we see that 6 leaders are elected during the test ending with raft_2 in

term 7. Searching for the logs we added in section 6.2, a node is disconnected then

reconnected 8 times.

The test ends with many AppendEntries RPCs from raft_2 to raft_0 and raft_1.

raft_0 responds with success each time because their logs are up to date with the

leader’s logs, see Figure 6-6.

raft_1 responds with a failure each time because

rf.log[args.PrevLogIndex-rf.startingIndex].Term != args.PrevLogTerm

So the term of the log preceding the new logs does not match between raft_2 and

raft_1. Since we suspect the bug is related to a reconnected node catching up, we

search for the last node to be reconnected, raft_2. After it is reconnected, it receives

an InstallSnapshot RPC, then starts an election and becomes leader. All of the

AppendEntries failures from raft_1 start after raft_2 processes the InstallSnapshot

RPC, so there is more evidence that the bug is related to processing a snapshot.

The next thing we do is add logging statements to show the node’s logs and fields

related to snapshotting. Utilizing zap.Array similar to zap.Object, we write:

66

Figure 6-6: Raft follower ignoring redundant logs from leader

1 type RaftLogs []*RaftLog

2 func (logs RaftLogs) MarshalLogArray(enc zapcore.ArrayEncoder) error {

3 for _, entry := range logs {

4 enc.AppendObject(entry)

5 }

6 return nil

7 }

8 func (r *RaftLog) MarshalLogObject(enc zapcore.ObjectEncoder) error {

9 enc.AddInt("term", r.Term)

10 enc.AddReflected("command", r.Command)

11 return nil

12 }

13 rf.Logger.Info("sending install snapshot", zap.Array("logs", rf.log),

zap.Object("me", rf))

We add the logging call before sending and after receiving an InstallSnapshot

or failed AppendEntries response. Running 50 more tests and viewing a failure in

DisViz, we find that the new execution ends with raft_0 as a leader, getting failed

AppendEntries responses from raft_1 for the same reason as before.

Searching for the logging statement we added at the end of processing an InstallSnapshot,

we see that earlier in the log, raft_0 is leader, disconnects, raft_1 becomes leader,

then raft_0 reconnects and gets an InstallSnapshot from raft_1. Figure 6-7 shows

the raft_0 state after processing the snapshot, as well as the argument and reply to

67

Figure 6-7: Raft follower after processing an InstallSnapshot RPC

Figure 6-8: Raft leader updating its commit index

the RPC. It seems that the snapshot was processed correctly and raft_0 is up to date.

However, if we look at the log events when raft_1 sends the InstallSnapshot (see

68

Figure 6-8), it receives an AppendEntries from raft_2 and updates its commit index.

The line exiting the left side of the figure is the InstallSnapshot sent to raft_0. But

the log events from raft_2 show that it treated the log entry as redundant, thinking

it already had the entry, and did not bother to process it. Viewing the preceding

events from raft_2, it does a snapshot up to index 19, leaving its log length as 0 and

starting index as 20. When raft_1 sends raft_2 another log entry, it should not be

treating that entry as redundant as it does not have it. Looking at the code, we find

the culprit:

1 func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply)

{

2 ...

3 if rf.commitIndex >= lastNewIndex || rf.startingIndex >= lastNewIndex {

4 reply.Term = -1

5 rf.Debug(DLog, "S%v %v ignoring redundant logs and returning", rf.me,

rf.state)

6 return

7 }

8 ...

9 }

The check for the starting index is unnecessary and incorrect. It would be correct

to write rf.startingIndex > lastNewIndex, but the starting index should be at

most 1 greater than the commit index, when the length of the log is 0. Therefore,

rf.commitIndex ≥ lastNewIndex =⇒ rf.startingIndex > lastNewIndex, and

we can remove the second condition entirely, fixing the bug.

This was difficult to find because the bug trickled down for a while without being

caught. The "ignoring redundant logs" log event is 23% of the way from the start

of the log file, so trying to piece together what happened from the error at the end

would be quite difficult from only reading the log file. Using the original ShiViz and

GoVector would be more feasible than reading the log file, but the flexibility offered

by the new GoVector API with Zap was helpful for adding more logging information,

and the reduced latency in DisViz made it less cumbersome to interact with the

visualization. The log files for these tests failures have around 4000− 9000 logs, which

69

gives a latency in ShiViz around 2.5 − 5 seconds to load the visualization and to

perform searches, compared to around 1.5 − 2 seconds in DisViz. Due to the large

number of event listeners and HTML elements in ShiViz when viewing the whole log

file, user interactions like clicking on a log event have a noticeable delay as well, on

the order of hundreds of milliseconds.

70

Chapter 7

Related Work

There is a wide array of existing work in taking the trace or logs from a distributed

system execution and helping the programmer glean useful information from it. These

tools vary in their goals (e.g. debugging, performance optimization), presentation,

and whether they can operate on a live system, but share a commonality of helping

the programmer visualize the complex distributed system.

GridMapper takes logs from a live system and uses ip information to place nodes

on a map of the world, providing a clear depiction of how the distributed system is

physically laid out in the world [2]. Borysenkov et. al used clustering techniques on

the logs and a Time Curve visualization in an offline program to give a high level

representation of how the logs change throughout the execution [17, 11]. The ViSiDiA

tool can support a live debugging session and visualization of a distributed system with

a node-edge graph, however it is platform specific and requires the implementation to

be in Java to use their API [1]. OverView is an Eclipse IDE plugin that allows for

live or offline visualization of a distributed system, but it is also platform specific to

Java [20].

Oddity is another debugging tool that helps the programmer debug a live, running

system [41]. It requires a specific system architecture of deterministic event handlers to

process incoming messages, update node state, and construct replies. It also requires

the user to implement a shim around the communication between nodes, so that

Oddity can control how the system progresses. A server uses this shim to control the

71

system and send information to the client webpage. Through this, Oddity allows the

user to decide when events are fired and messages are received by nodes, as well as

allows the user to time travel backwards by replaying all the events that happened up

until the chosen point. The interface is designed for 10 or fewer nodes, and having to

manually choose the order of events that are processed on each node would be tedious

for long running interactions. Oddity provides useful functionality to the user, but

the architecture requirements and nontrivial shim implementation present barriers to

its use in a real-world distributed system like etcd.

Porcupine is a linearizability checker for distributed systems written in Go, used

by etcd as well as 6.5840 at MIT [4]. The program takes a model specification for

initialization and valid step updates to the state, and checks whether a submitted

history is linearizable with respect to the model. It can visualize the history with

a partial linearization, showing linearization points and which operations violated

linearizability. Jepsen does safety research for distributed system, and has a similar tool

called Knossos that verifies linearizability and generates a visualization for debugging

[27]. They also have a tool called maelstrom for writing toy implementations of

distributed systems which generates timeline visualizations, timeseries graphs, and

lamport diagrams.

Each of these systems is useful for their defined goal and lessons can be taken from

their approach to digesting the log information, but we desire a tool that is primarily

geared for fine-grained analysis of the execution of a distributed system, in an offline

manner. While a program like Oddity would be useful, we have chosen to focus on the

offline processing of log information because of its potential to be easily integrated

into existing distributed system implementations and low overhead.

For improving log visualization in general, not specifically in the context of dis-

tributed systems, the Log-it tool gives the programmer granular control over the

presentation of the logs [28]. Building a tool specifically for distributed systems is

needed due to the unique nature of these types of programs, but it should be a goal

of the tool to mimic the control Log-it gives to the programmer, allowing them to

change and direct how the log information is collected and presented to them.

72

Chapter 8

Conclusion

In conclusion, this thesis presents DisViz as an extension of ShiViz, GoVector, and

dstest to help with debugging distributed systems. ptest provides a way to run

parallel tests and collect all testing output. GoVector was refactored to use Zap and

provide a more flexible API for logging key value pairs. ShiViz was moved from a

monolithic client side design to a server client model. The server does the heavy lifting

of processing the entire log file of a given distributed system execution, and it sends

small sections of the log file to the client to display. Using a time space diagram makes

it easier to understand how nodes in the system are interacting, and a server client

model allows the tool to work well with log files on the order of tens of thousands of

events.

8.1 Future Work

In developing DisViz, several avenues for improvement became apparent. These ideas

are discussed below.

8.1.1 Change the Server Side Language

JavaScript was used on the server side so the original ShiViz code that ran in the

browser could be reused. Using a language such as Go or C++ would likely lead to

73

better performance. This is because JavaScript is a JIT compiled language, generally

runs in a single thread, and does not have static typing to enable more optimizations.

However, this change would require converting around 14, 000 lines of JavaScript. This

may be feasible using LLMs, but would need thorough testing.

8.1.2 TypeScript

Using TypeScript instead of JavaScript on the server and client would lead to better

code quality and increased safety from bugs. TypeScript is a superset of JavaScript

that adds static typing. It is compiled down to JavaScript before execution and the

type information is discarded. This would not require many line changes to achieve,

and would make it easier to identify bugs related to static types.

8.1.3 JavaScript Runtime

One simple change to achieve better performance on the server side is to experiment

with different JavaScript runtimes instead of Node. Bun and Deno are two possible

replacements for Node [37, 18]. They are relatively recent JavaScript runtimes that

have difference performance characteristics, so one of them may provide a performance

improvement without having to change any of the implementation code.

8.1.4 Support Clustering

During the evaluation of DisViz, the feature of clustering was not needed to debug

distributed system executions, so support was not added for it. The case studies

discussed in chapter 5 did not need to include multiple executions within one log file.

Clustering would use these multiple executions and display them side by side in the

visualization. In order to fully support all the features of ShiViz, the server would

need to be changed to detect all the delimiters, and send corresponding portions of

each execution to the user.

74

8.1.5 File API

All the log file processing on the server side is still done entirely in memory, reading

the entire file and constructing a topological sorting in memory before writing that

sorting back to disk. So, the maximum size of the log file DisViz can process is limited

by the memory available to the Node process running. A related issue arises when the

file the server wants to process is not located on the file system of the device running

the server. To solve both issues, a file API could be designed to provide functions for

the server to retrieve and store log events. Different implementations of the API could

then allow for the file to be accessed from another device, or for external memory

techniques to be used to handle files that do not fit in the device’s memory.

8.1.6 Remote Hosting

Since the server hosts the static site content as well as the web socket, the user opening

DisViz on the browser no longer has to store anything related to DisViz on their

device. The server and client devices can be different, so a CI/CD pipeline could

automatically detect test failures after using ptest, start the DisViz server, and provide

a link for users to view the logs from the test failure. For example, the etcd repository

is hosted of GitHub, so implementing this with GitHub Actions can help speed up the

debugging of test failures. This also allows teams of developers to view the same log

file and collaborate on debugging.

As described in subsection 4.3.1, running the ShiViz code in the server required

running all the JavaScript files in the same context, so they can all share and mutate

their state. This would be an issue for multiple clients connecting to the same server,

so one solution would be to create a new fresh context for each client that reruns all

the JavaScript files. Another solution is to change the JavaScript code to not use

singleton objects for the active visualization, search, etc, so the same context can be

shared when the server responds to client requests.

75

Bibliography

[1] Cédric Aguerre, Thomas Morsellino, and Mohamed Mosbah. “Fully-Distributed
Debugging and Visualization of Distributed Systems in Anonymous Networks”.
In: 7th International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications. Ed. by P. Richard et al. Rome, Italy:
INSTICC, Feb. 2012, pp. 764–767. url: https://hal.science/hal-00697093.

[2] William Allcock et al. “GridMapper: A Tool for Visualizing the Behavior of
Large-Scale Distributed Systems”. In: Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing. HPDC ’02. USA:
IEEE Computer Society, 2002, p. 179. isbn: 0769516866.

[3] Joe Armstrong. “Making Reliable Distributed Systems in the Presence of
Software Errors”. PhD thesis. Stockholm, Sweden: Royal Institute of Technology
(KTH), Dec. 2003. isbn: ISRN KTH/IMIT/LECS/AVH-03/09–SE. url: https:
//erlang.org/download/armstrong_thesis_2003.pdf.

[4] Anish Athalye. Porcupine: A fast linearizability checker in Go. https://github.
com/anishathalye/porcupine. 2017.

[5] Docker/Moby Authors. Docker: Open Platform for Building, Shipping, and
Running Applications. 2025. url: https://github.com/moby/moby.

[6] Go Authors. The Go Programming Language. 2025. url: https://go.dev/.

[7] Jaeger Authors. Jaeger: End-to-End Distributed Tracing. 2025. url: https:
//github.com/jaegertracing/jaeger.

[8] Kubernetes Authors. Kubernetes: Production-Grade Container Scheduling and
Management. 2025. url: https://github.com/kubernetes/kubernetes.

[9] SeaweedFS Authors. SeaweedFS: Fast, Simple and Scalable Distributed File
System. 2025. url: https://github.com/seaweedfs/seaweedfs.

[10] The Go Authors. Package testing. The Go Project. 2025. url: https://pkg.
go.dev/testing.

[11] Benjamin Bach et al. “Time Curves: Folding Time to Visualize Patterns of
Temporal Evolution in Data”. In: IEEE Transactions on Visualization and
Computer Graphics 22.1 (Jan. 2016), pp. 559–568. issn: 1077-2626. doi:
10.1109/TVCG.2015.2467851. url: https://doi.org/10.1109/TVCG.2015.
2467851.

76

https://hal.science/hal-00697093
https://erlang.org/download/armstrong_thesis_2003.pdf
https://erlang.org/download/armstrong_thesis_2003.pdf
https://github.com/anishathalye/porcupine
https://github.com/anishathalye/porcupine
https://github.com/moby/moby
https://go.dev/
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/kubernetes/kubernetes
https://github.com/seaweedfs/seaweedfs
https://pkg.go.dev/testing
https://pkg.go.dev/testing
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2015.2467851

[12] Ivan Beschastnikh, Shayan Hosseini, and Finn Hackett. Distributed Clocks. 2024.
url: https://github.com/DistributedClocks.

[13] Ivan Beschastnikh et al. Visualizing Distributed System Executions. New York,
NY, USA, Mar. 2020. doi: 10.1145/3375633. url: https://doi.org/10.
1145/3375633.

[14] Ivan Beschastnikh et al. “Visualizing Distributed System Executions”. In:
ACM Transactions on Software Engineering and Methodology 29.2 (Mar. 2020),
9:1–9:38. doi: 10.1145/3375633. url: https://bestchai.bitbucket.io/
shiviz/.

[15] Ivan et. al Beschastnikh. GoVector: Vector Clock Logging for Go. https:
//github.com/DistributedClocks/GoVector. 2020.

[16] Ivan et. al Beschastnikh. ShiViz: A Tool to Visualize Distributed System Logs.
https://github.com/DistributedClocks/shiviz. 2025.

[17] Dmytro Borysenkov et al. Analyzing Logs of Large-Scale Software Systems
using Time Curves Visualization. 2024. arXiv: 2411.05533 [cs.SE]. url:
https://arxiv.org/abs/2411.05533.

[18] Ryan Dahl and the Deno Contributors. Deno: A Modern Runtime for JavaScript
and TypeScript. 2020. url: https://deno.com/.

[19] Ryan Dahl and the Node.js Contributors. Node.js: JavaScript Runtime Built on
Chrome’s V8 Engine. 2025. url: https://nodejs.org/en/.

[20] Travis Desell et al. “OverView: A Framework for Generic Online Visualization
of Distributed Systems”. In: 107 (2004), pp. 87–101. issn: 1571-0661. doi:
https://doi.org/10.1016/j.entcs.2004.02.050. url: https://www.
sciencedirect.com/science/article/pii/S157106610405193X.

[21] etcd Authors. Logging conventions. etcd, 2023. url: https://etcd.io/docs/
v3.5/dev-internal/logging/ (visited on 04/23/2025).

[22] etcd-io. Adopters of etcd. 2024. url: https://github.com/etcd-io/etcd/
blob/main/ADOPTERS.md.

[23] etcd-io. etcd. 2024. url: https://github.com/etcd-io/etcd.

[24] Google. Protocol Buffers: Google’s Data Interchange Format. https : / /
protobuf.dev/. 2008.

[25] gRPC. gRPC: A high performance, open source universal RPC framework. 2024.
url: https://grpc.io/.

[26] TJ Holowaychuk and the Express Contributors. Express: Fast, Unopinionated,
Minimalist Web Framework for Node.js. 2010. url: https://expressjs.com/.

[27] jepsen-io. Jepsen: Distributed systems testing framework. https://github.
com/jepsen-io. 2025.

77

https://github.com/DistributedClocks
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/
https://github.com/DistributedClocks/GoVector
https://github.com/DistributedClocks/GoVector
https://github.com/DistributedClocks/shiviz
https://arxiv.org/abs/2411.05533
https://arxiv.org/abs/2411.05533
https://deno.com/
https://nodejs.org/en/
https://doi.org/https://doi.org/10.1016/j.entcs.2004.02.050
https://www.sciencedirect.com/science/article/pii/S157106610405193X
https://www.sciencedirect.com/science/article/pii/S157106610405193X
https://etcd.io/docs/v3.5/dev-internal/logging/
https://etcd.io/docs/v3.5/dev-internal/logging/
https://github.com/etcd-io/etcd/blob/main/ADOPTERS.md
https://github.com/etcd-io/etcd/blob/main/ADOPTERS.md
https://github.com/etcd-io/etcd
https://protobuf.dev/
https://protobuf.dev/
https://grpc.io/
https://expressjs.com/
https://github.com/jepsen-io
https://github.com/jepsen-io

[28] Peiling Jiang, Fuling Sun, and Haijun Xia. “Log-it: Supporting Programming
with Interactive, Contextual, Structured, and Visual Logs”. In: Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. CHI
’23. Hamburg, Germany: Association for Computing Machinery, 2023. isbn:
9781450394215. doi: 10.1145/3544548.3581403. url: https://doi.org/10.
1145/3544548.3581403.

[29] A. B. Kahn. “Topological sorting of large networks”. In: Commun. ACM 5.11
(Nov. 1962), pp. 558–562. issn: 0001-0782. doi: 10.1145/368996.369025. url:
https://doi.org/10.1145/368996.369025.

[30] Cockroach Labs. CockroachDB: The Resilient, Distributed SQL Database. 2025.
url: https://github.com/cockroachdb/cockroach.

[31] Vladimir Mihailenco. MessagePack for Go. 2025. url: https://msgpack.
uptrace.dev/.

[32] MIT 6.102 course staff. Reading 17 addendum: More on the JavaScript Event
Loop. https://web.mit.edu/6.102/www/sp25/classes/17-callbacks-
guis/addendum.html. 2025.

[33] Philip O’Toole. rqlite: Lightweight, Distributed SQLite Database. 2025. url:
https://github.com/rqlite/rqlite.

[34] Diego Ongaro and John Ousterhout. “In search of an understandable consensus
algorithm”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association,
2014, pp. 305–320. isbn: 9781931971102.

[35] Jose Javier Gonzalez Ortiz. Debugging by Pretty Printing. Blog post, https:
//blog.josejg.com/debugging-pretty/. Mar. 2021.

[36] raft.github.io. The Raft Consensus Algorithm. 2024. url: https://raft.
github.io/.

[37] Jarred Sumner and the Bun Contributors. Bun: A Modern JavaScript Runtime.
2024. url: https://bun.sh/.

[38] Erlang/OTP Team. Erlang/OTP Official Website. 2025. url: https://www.
erlang.org/.

[39] Temporal Technologies. Temporal: Durable Execution for Microservices. 2025.
url: https://github.com/temporalio/temporal.

[40] Uber Technologies, Inc. zap: Blazing fast, structured, leveled logging in Go.
https://github.com/uber-go/zap. 2025.

[41] Doug Woos et al. A Graphical Interactive Debugger for Distributed Systems. 2018.
arXiv: 1806.05300 [cs.DC]. url: https://arxiv.org/abs/1806.05300.

[42] Stefan Zager et al. Intersection Observer API. https://www.w3.org/TR/
intersection-observer/. 2023.

78

https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://github.com/cockroachdb/cockroach
https://msgpack.uptrace.dev/
https://msgpack.uptrace.dev/
https://web.mit.edu/6.102/www/sp25/classes/17-callbacks-guis/addendum.html
https://web.mit.edu/6.102/www/sp25/classes/17-callbacks-guis/addendum.html
https://github.com/rqlite/rqlite
https://blog.josejg.com/debugging-pretty/
https://blog.josejg.com/debugging-pretty/
https://raft.github.io/
https://raft.github.io/
https://bun.sh/
https://www.erlang.org/
https://www.erlang.org/
https://github.com/temporalio/temporal
https://github.com/uber-go/zap
https://arxiv.org/abs/1806.05300
https://arxiv.org/abs/1806.05300
https://www.w3.org/TR/intersection-observer/
https://www.w3.org/TR/intersection-observer/

	List of Figures
	List of Tables
	Introduction
	Distributed Systems in Go
	Visualizing Logs
	ShiViz
	GoVector
	DisVis
	Roadmap for this Thesis

	Background and Challenge
	ShiViz
	Space-time diagram
	Exploring the Visualization
	Parser Settings

	GoVector
	Vector Clocks
	API

	Challenge

	DisViz
	Ptest
	GoVector
	DisViz Client Server Model
	Search in DisViz
	Meeting the design goals

	Implementation
	Ptest
	Changes to GoVector
	Zap Primitives
	Logging with Zap
	Initialization

	Changes to ShiViz
	Server
	Client

	Case Studies
	etcd
	6.5840 Raft

	Evaluation
	Leader Election
	Committing Logs
	Snapshotting

	Related Work
	Conclusion
	Future Work
	Change the Server Side Language
	TypeScript
	JavaScript Runtime
	Support Clustering
	File API
	Remote Hosting

