DisViz: Visualizing real-world distributed system logs

with space time diagrams
by
Josiah McMenamy

B.S., Computer Science and Engineering
Massachusetts Institute of Technology, 2024

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2025
(©2025 Josiah McMenamy. All Rights Reserved

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce,
preserve, distribute and publicly display copies of the thesis, or release the thesis

Authored by:

Certified by:

Certified by:

Accepted by:

under an open-access license.

Josiah McMenamy
Department of Electrical Engineering and Computer Science
May 14, 2025

Upamanyu Sharma
Doctoral Candidate
Thesis Supervisor

M. Frans Kaashoek
Charles Piper Professor
Thesis Supervisor

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

DisViz: Visualizing real-world distributed system logs with
space time diagrams
by
Josiah McMenamy

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2025, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis aims to provide an intuitive debugging and learning tool for distributed
systems that communicate by message passing. Understanding and debugging dis-
tributed systems can be challenging and slow to iterate on, so there is a need for tools
that can speed up the time it takes to diagnose the root cause of a bug. There exists
significant prior work in creating tools that can aid in the visualization and debugging
of distributed system executions, such as the ShiViz log visualizer [13|. This work
builds on top of these tools to provide more debugging information, handle large log
files, and be easily instrumented in existing systems. We demonstrate using the tool
to debug issues in an implementation of the Raft consensus algorithm [34].

Thesis Supervisor: Upamanyu Sharma
Title: Doctoral Candidate

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor

Acknowledgments

Without the consistent support, encouragement, and guidance of many people, this
thesis would not have been possible. I would like to thank Upamanyu Sharma for
his constant mentorship and our frequent meetings, Frans Kaashoek for guiding this
research and helping determine its scope and goal, and the Parallel and Distributed
Operating Systems Group as a whole for being welcoming and open. Thank you to

my parents for getting me to MIT and always prioritizing my education.

Contents

[List of Figures|

IList of Tables|

(1 Introduction|

2

[2.1.1 Space-time diagram|.

[2.1.2 Exploring the Visualization|

[2.1.3 Parser Settings| oL

10
11
12
13
14
15
15

16
16
17
20
21
22
23
24
25

28

4.2 Changes to GoVector|

A1

Zap Primitives|

122

Logging with Zap|

[6.2 Committing Logs|

[6.3 Snapshotting]

8 Conclusion|

RI1

Change the Server Side Languagef

B12

Typedcript|.

R13

JavaScript Runtime| 00000000

R14

support Clustering|

37
37
38
39
39
42
43
43
47

52
52
55

58
o8
62
66

71

List of Figures

[I-1 A dynamic visualization of the Ratt consensus algorithm| 13
[2-1 ShiViz space-time diagram| 17
[2-2 Display of identical logs when hiding and not hiding a process| 17
[2-3 Display of identical logs when collapsing and not collapsing consecutive |

events 18
[2-4 ShiViz left and right panels supporting the main diagram|. 19
[2-5 ShiViz Text Search Input|. 19
[2-6 ShiViz Structure Search Input|o 19
[2-7 ShiViz Pairwise Execution Display] 20
[2-8 Options to change how the log file 1s parsed and displayed| 21
[2-9 Latency for ShiViz to create a space time diagram of a Raft test for |

leader election, varying the number of elections| 25
[3-1 System diagram for generating logs and viewing them in DisVizl . . . 29
[3-2 Command line options for ptest| 30
[3-3 Live updates during a Go test run using ptest| 30
[3-4 Final ptest output after all tests complete] 31
[3-5 ptest output files|o 31
[3-6 DisViz display of log informationl 34
[3-7 DisViz controls for shifting the subset of the log file being displayed| . 34
[3-8 DisViz search bar during active search| 35
[3-9 Latency to create visualization for Raft test in ShiViz and DisVig| . . 35

An abridged call chain for making a logging call with a GoLog object| 42

[4-2 A highlighted event during a DisViz search| 48
{4-3 'Time spent in the browser when rendering all log events for an execution| 50
[6-1 Last log from TestManyElections3A failurel 60
[6-2 Logs from Testlnitialltlection3A tailure] 62
[6-3 Displaying a ratt object in DisViz{ 63
[0-4 AppendEntries failure from raft 1toratt O 64
[6-5 Raft followers successtully committing a log entry| 65
[6-6 Raft follower ignoring redundant logs from leader| 67
[6-7 Raft follower after processing an InstallSnapshot RPC| 68
[6-8 Raftt leader updating its commit index|] 68

List of Tables

[I.1 Survey of open-source systems implemented in Go|

[>.1 Code changes required to integrate GoVector|

Chapter 1

Introduction

Debugging distributed systems is a challenging task. Bugs may be due to null pointer
de-references, off-by-one errors, or floating point errors. Bugs may be due to the
concurrent behavior in the code such as deadlocks, race conditions, or starvation.
Bugs can also be introduced by the interactions between nodes in the system: network
partitions, message drops, and timing differences between nodes. Reproducing the
bug reliably is also difficult because it can require simulating the network conditions
that were present when the bug occurred. In order to find the cause of the bug, the
programmer needs to understand the execution of the system and how the nodes were
interacting when the bug occurred.

One tried and true method for debugging is to use print or logging statements to
see hints about the execution of the code. With logging, the programmer has granular
control over seeing what path the code has taken and what the state of the system is
on that code path. Unfortunately, distributed system executions can produce massive
log files that give too much information to the programmer, who must tediously read
through the logs and reconstruct the execution to find the bug. Further, reading
through a log file makes it difficult to understand the relative ordering between events
in a distributed system.

Programmers would benefit from tools that can take this log information and help
them more quickly understand what the distributed system is doing. However, these

tools must be careful to help, not hinder the iterative process of debugging. The

10

programmer must be able to easily add information to the logs while hypothesizing the
cause of a bug, in order to get more information to confirm or alter their hypothesis.

The tool used for understanding the logs should not pose restrictions on the kinds
of information that can be in the logs, otherwise the tools becomes inflexible and
cumbersome to use. If some structure does need to be imposed on the logs to ensure
metadata information is present or a certain format is used, then the tool should

provide an API in the language that helps generate logs compatible with the tool.

1.1 Distributed Systems in Go

System Description

Kubernetes |[§] An open-source system for automating the deployment,
scaling, and management of containerized applications.

eted [23] A distributed, reliable key-value store for critical data
in distributed systems.

Docker [5] A platform for containerizing applications.

CockroachDB [30] A cloud-native, distributed SQL database designed for
consistency, scalability, and resilience.

SeaweedF'S [9] A fast, simple, and scalable distributed file system for
handling billions of files.

ralite [33] A lightweight, distributed relational database built on
SQLite.

Jaeger 7] A distributed tracing platform for monitoring and trou-
bleshooting microservices-based systems.

Temporal [39] A durable execution system for managing and scaling

microservice applications.

Table 1.1: Survey of open-source systems implemented in Go

The choice of language impacts many characteristics of a distributed system, such
as the performance, fault tolerance, and maintainability. Some languages are suited
better than others for implementing a distributed system. For example, the Erlang
language was designed specifically for distributed systems, with lightweight processes
and hot swappable components [3], 38]. More recently, the Go programming language
has risen in popularity for distributed system programming, developed at Google, a

leader in scalable distributed systems [6].

11

Go also has lightweight processes in the form of Goroutines, as well as native
support for networking such as HT'TP servers, RPC, and TLS. With static typing
and robust tooling including a race detector, Go makes it easier to prevent and detect
bugs before they crash a program. Many modern distributed systems in use today are
implemented in Go, as can be seen in [Table 1.1} For this reason, this thesis focuses on
tools that aid in generating and understanding logs from distributed systems written
in Go. etcd is a core distributed system used in the Kubernetes container orchestration
software |22, [23]. It will be used as a litmus test to determine if a tool works well in a

large distributed system.

1.2 Visualizing Logs

In seeking to understand the events in a log file better, one natural desire is to be
able to visualize what the distributed system is doing. This helps gain context and
intuition for how nodes in the system are interacting. The kinds of visualizations that
are possible with distributed systems are highly varied and depend on the nature of
the application, but in general visualizations using graphs or nodes are applicable
since a graph can intuitively represent the topology of a distributed system, giving a
way to encapsulate the entire system as one object.

Visualizations may be static or dynamic. Dynamic visualizations are generally
more difficult to implement because live animation introduces engineering challenges
for performance and proper controls that the user can quickly learn. One example of
a dynamic visualization is the visualization of the Raft consensus algorithm by the
Raft authors 36 34]. shows the visualization. The nodes in the system are
arranged in a circle, the user can control how often the nodes send messages to each
other, and the user can manually control the actions of an individual node, e.g. to
partition it away from the system. The logs for each node are shown on the right side.
This particular visualization is useful for learning Raft, but requires a working Raft
implementation for the visualization to work.

An example of a static visualization is a space-time diagram, as seen in [Figure 2-1

12

S1

@ 12345678910

S1|2|31‘|\HHH
o s T 111
O ®S3lﬂil‘\\!
sef@fs] [[11111}
ssHBl [[T TT11]

G)

n @
© A

Figure 1-1: A dynamic visualization of the Raft consensus algorithm

Here, the members in the system are arranged along one axis. Perpendicularly, the
flow of time in the execution is depicted, and messages between nodes are shown as
nodes, with lines between them depicting one member sending a message to another. A
static visualization has the advantage of requiring less for the user to learn to interact
with it, being simpler to implement and extend, and allowing the user to process the
information at their own pace. A space-time diagram also makes it obvious when a
member stops responding to others, which may be difficult to observe in a dynamic

visualization with many members.

1.3 ShiViz

Some prior work has been done in creating a space-time diagram to visualize distributed
system logs. The ShiViz system, seen in |Figure 2-1| was created for that purpose,
by Ivan Beschastnikh, et. al [13,16]. This is an entirely client side application that
allows the user to load a log file from their machine with a format given by a user
defined regular expression. It creates a partial ordering of events from that log file,

displaying it as a space-time diagram.

13

As we see in more detail in [section 2.1] there are some limitations to the existing
version of ShiViz that prevent it from being used to debug real-world distributed
systems. Most importantly, loading and processing the entire file on the client side
introduces too much latency as the log file becomes large. With a log file that has
12,000 events, there is a latency of around 7 seconds just to load the file, seen in
Figure 2-9 and the webpage becomes slow to respond to user actions thereafter.
Further, using a regular expression to parse each log event from the file is too rigid
and inflexible. If a user wants to put information specific to a single log call in the
file, they must resort to a catch-all capture group in the regex to contain all fields

custom for that log call, which becomes difficult to visually parse on the webpage.

1.4 GoVector

As mentioned above, using ShiViz requires having a log file that can be parsed with a
user defined regular expression. By itself, this would present an annoyance for the user,
who must implement a way to carefully generate log files that conform to a particular
regex. Along with ShiViz, Beschastnikh, et. al also created logging libraries to do that
in Go, C, C++, and Java [12]. We focus on the Go logging library, GoVector [15].
GoVector includes a built in RPC library for sending messages. This allows
GoVector to add vector clock and other information to the RPC payload, but contrains
the developer too much. For an implementation that is already using a different API
to send RPCs over the network, it requires non-trivial effort to correctly instrument
the system in a backwards manner. In this situation, functionality already exists
to make the RPC payload and send it across the network, but GoVector requires
wrapping each payload to include the vector clock of that node, so the payload sent
across the network contains the original payload the system wanted to send. For an
implementation of the Raft consensus algorithm, the total number of additional lines
needed to make this change is not large, around 80, however it is error prone, time
consuming, added in different places in the code, and introduces an unnecessary layer

of complexity to sending RPCs.

14

1.5 DisVis

In order to rectify these issues and build a tool that can be used with real-world
distributed systems, we propose DisViz, which extends ShiViz and GoVector, focusing

on the Go programming language. The main design goals for DizViz are to:

e be able to display large log files with low latency
e be compatible with any library used to send RPCs

e make it easy to add information to individual logs

In order to ensure that these changes help with debugging existing real-world dis-

tributed systems, we demonstrate using DisViz to find bugs in a Raft implementation.

1.6 Roadmap for this Thesis

Chapter 2 of this thesis provides more background on debugging distributed systems.
Chapter 3 provides a detailed summary of the features of DisViz, as well as changes
made from the ShiViz and GoVector. Chapter 4 dives into the implementation details
and technical challenges encountered to create DisViz. Chapter 5 shows two case
studies of instrumenting an existing system to generate DisViz-compatible logs, in etcd
and a Raft implementation from MIT’s distributed systems course 6.5840. Chapter
6 evaluates DisViz by demonstrating its usability to investigate bugs in the Raft
implementation. Chapter 7 discusses related work in debugging distributed systems.

Chapter 8 concludes this thesis and proposes ideas for avenues for future work on

DisViz.

15

Chapter 2

Background and Challenge

Using GoVector and ShiViz to debug a distributed system in Go locally, the process

is:
e Refactor or create the system to send RPCs using the GoVector library

e Run tests of the system using any preferred method or framework. Tests running
in parallel must be careful to not use identical names for log files for GoVector

logs.

e Run a GoVector script manually to glue all the separate log files for each node

in the system into one log file

e Open the ShiViz webpage in a brower and upload the combined log file. All the

processing of the file happens on the client side

2.1 ShiViz

ShiViz is a static site that can be run locally, but it is also hosted by Beschastnikh et.

al and can be experimented without additional setup [14].

16

Execution #1 v

& 3¢ «

Figure 2-1: ShiViz space-time diagram

Hidden processes:

Figure 2-2: Display of identical logs when hiding and not hiding a process

2.1.1 Space-time diagram

ShiViz centers around a space-time diagram of events in the logs. Time flows from
top to bottom. The main middle panel, seen in displays a directed acyclic
graph of the partially ordered vector timestamps parsed from the input log. The
row of squares at the top represents all the nodes in the system, a singular thread of
execution. Clicking on a process allows the user to hide that process from the diagram,
as seen in , or filter the diagram to show only those processes/events that

communicate with the filtered process. Multiple processes can be hidden and filtered

17

N © o

Figure 2-3: Display of identical logs when collapsing and not collapsing consecutive
events

at the same time. The circles below a process are events that were logged by the
process. Lines connecting two circles represent the happened-before relation between
the events: the higher of the two events happened before the lower event. Dashed
lines represent transitive communication edges. These only appear when a process is
hidden, and two processes that are not hidden communicated indirectly through this
process. ShiViz collapses adjacent process events not incident on any communication
edges into larger circles, seen in |[Figure 2-3| These have a number inside of them,
indicating the number of events that they represent. The user can click on these
events to expand the events. Radiating lines that fade out represent communication
edges to processes that are currently hidden from view. Each process is associated
with a unique color.

The left and right panels beside the main diagram are seen in [Figure 2-4] The
left panel shows the event capture group from each line in the log, as well as the line
number in the original log file it parsed from, with the same color as the corresponding
host in the diagram. The right panel shows all capture groups parsed from this log
event, except for the vector clock. Clicking on a circle in the diagram shows the same

information displayed on the right panel.

18

Execution #1 PAIRWISE

/timeline uid=alice location=kansas
Initiating sync dest=204.15.23.252 Heceived Syl"IC request s

rc=69.63.191.255

ip: 204.15.23.252
date: 5/27/2013 10:52:24
AM
Sync confirmed src=204.15.23.252 action: INFO

host: westDC

Received sync request src=204.15.23.252

Figure 2-4: ShiViz left and right panels supporting the main diagram

Search the visualization

Search History Structured Search

Text search: search for log lines/events that match a text query.

Examples:
sync

Find events containing the text "sync" in any field.
priority=CRITICAL && text=/fail.x/

Find events with "priority" field set to "CRITICAL" and with "text" field matching the specified regex. Supported
logical operators are: &&, | |, ~

ip="216.58.216.174"
String literals containing non-alphanumeric symbols must be surrounded by quotes.

location="EC2" || (isMobile && useragent=/.*Webkit.*/)
Use parenthesis to specify order of operations.

Figure 2-5: ShiViz Text Search Input

#structure=[{"host":"a","clock":{"a":1}},{"host":"b","clock": {"b":1,"c":1,' X

Search History Text Search Structured Search

Search for a custom structure: draw a graph structure Search for a pre-defined structure:
below (add processes, events, click and drag to add inter- Select one of the options below to

event edges). find the specified structure.

REQUEST-RESPONSE
BROADCAST
° b4 GATHER
[]
°

Figure 2-6: ShiViz Structure Search Input

19

2.1.2 Exploring the Visualization

ShiViz supports keyword search across the parsed fields, allowing for logical connectives
and regular expressions, seen in [Figure 2-5 The user can also search for subgraphs
or communication topologies of interest. ShiViz supplies pre-defined structures like
broadcast or request-response, but custom communication patterns can also be defined,
seen in [Figure 2-6] After searching, the visualization will grey out all events that do

not match the search criteria, and allow the user to jump to the different results of

the search.
is! Search the visualization
Base execution v Some events are different from base v
& & & S Received .
Base execution Some events are ecelved sync request s
different from base rc=204.15.23.252
Initiating sync des Initiating sync des - ° - ° ip: 72.14.255.255
_— — date: 4/24/201512:04:28
- - action: INFO
host: mountainView
Sync confirmed src= Sync confirmed src= T T~
o . ~e

R IROEAET] Request for timelin T T~
ge;;zsrmzz«;.ls.z 14 ¢

Sending confirmatio Sending page dest=2 s ¢

Figure 2-7: ShiViz Pairwise Execution Display

When viewing two executions side-by-side, by clicking the "pairwise" button in
Figure 2-4] clicking on "show differences" highlights the differences between two
executions, seen in . Hosts that are not common to both executions are
represented as rhombuses. Processes present in both executions have their events
compared by the event capture group, and different events are drawn as rhombuses.

For logs with multiple executions, clicking on the "clusters" tab separates executions
into different groups based on a chosen metric. Clustering by the number of processes
groups executions by the midpoint between the smallest and largest number of
processes. Clustering by execution comparison gives an overview of how executions

differ from a selected base.

20

Clicking on the "motifs" tab highlights frequently occurring communication pat-
terns within and across executions. The user can search for 2, 3 or 4-event motifs that
occur in at least 50% of the executions or that appear at least 5 times within a single

execution.

2.1.3 Parser Settings

Options
Select a file:

Choose File | No file chosen

Log parsing regular expression:

(?7<ip>(\d{1,3}\.){3}\d{1,3}) (?<date>("

Multiple executions regular expression
delimiter:

~=== (7<trace>.x) ===

Sort processes in order by:

@ #events O appearance in log

VISUALIZE

Figure 2-8: Options to change how the log file is parsed and displayed

Before the log file is parsed and visualized for the user, they must tell ShiViz how
to parse events from the log. This is done with the settings seen in figure
Most importantly, a regular expression is entered by the user (or may be parsed from

the log file) that must contain at least three named capture groups, for the host,

vector clock (discussed more in [subsection 2.2.1)), and the event that occurred. Users

can add additional capture groups, but every log event must conform to this regular
expression. A delimiter can be input to identify where different traces start in the log
file, if the file contains logs from multiple executions of a test, for example. The rest
of the settings let the user change the order that hosts in the system are shown from

left to right.

21

Using a regular expression with capture groups is not flexible enough for the
iterative process of debugging. A programmer often needs to add specific information
or variables to logs at different points in the code, such as the current number of
votes that a raft node has while asking its peers to become leader. If they want this
information to be nicely displayed as a separate field similar to the host and event,
then they need to add a capture group for the field to the regular expression. They
have to either add this information to every other log in the program, which is not
feasible, or carefully structure the regex to let this capture group match 0 characters
in the log event, without disrupting the matching of the rest of the capture groups.
This is error prone and would introduce bugs, which is the opposite of what the tool
should be doing.

Instead, the standard practice for this problem is using a catch-all capture group,
and putting all desired custom information in that capture group. This works, but
the point of the ShiViz tool is to display the log information in a helpful way for the
user, and a catch-all capture group would display as a large block of text, which is
not easily parseable as more information is added to a particular log. This is one pain

point that DisViz addresses.

2.2 GoVector

GoVector is an open-source library implemented in Go that provides logging of vector
clocks [15]. By using vector clocks, GoVector enables ShiViz to order events across
multiple processes without relying on a centralized clock. The repository is structured

as follows:

e govec/govec.go: Contains the main API for the GoLog struct that clients will

call to log events.
e govec/vclock: Implements a vector clock library

e govec/vrpc: Provides an integration between Go’s RPC and the GoLog object

22

For serialization when sending RPCs, GoVector uses an implementation of the
MessagePack format [31]. If a different serialization method is needed, the user can

customize this behavior by providing encoding and decoding callback functions:

func (gv *GoLog) setEncoderDecoder (
encoder func(interface{}) ([Ibyte, error),
decoder func([lbyte, interface{}) error,

) {

gv.encodingStrategy = encoder

gv.decodingStrategy = decoder

The serialization and vrpc APIs are useful for a simple project that does not have
strict RPC needs, but for a larger project like etcd, GoVector is not a sufficient library
for sending RPCs between nodes. etcd uses a Go implementation of gRPC, which is a
RPC framework that allows for multiplexed, low-latency transport and uses Protocol
Buffers for compact, strongly-typed message serialization |25, |24]. It offers features
such as bidirectional streaming, deadline propagation, built-in authentication, load
balancing, and automatic code generation. None of those features are supported by
vrpc, which supports only unary request-response communication. The vrpc library
could be extended to support these features or become an implementation of gRPC,
but from a design perspective, this is mixing unrelated goals. In DisViz, we address

this problem by focusing on logging without dictating the RPC library.

2.2.1 Vector Clocks

The core mechanism in GoVector is the vector clock. The library implements the

vector clock algorithm to maintain a partial order of events by:

e Initializing a vector clock in each process with an entry for the process identifier

(PID) and starting at time zero.
e Incrementing the local clock when a local event occurs.

e Merging received vector clocks with the local vector clock upon message reception.

The merge operation takes the entry-wise maximum of the clock values.

23

This approach ensures that every logged event is stamped with a vector timestamp.
The log messages include the process identifier and the current state of the vector
clock at that point in time. The VClock type has methods for interacting with the

vector clock, and the underlying type is simply map [string]uint64.

2.2.2 API

It is possible to use GoVector without using the vrpc functionality, but the API
methods to create an RPC payload wrap the desired buffer to send in a custom struct
that contains the GoVector specific information:

d := vclock.VClockPayload{
Pid: gv.pid, VcMap: gv.currentVC.GetMap(), Payload: buf

This can present an issue when the user has their own RPC library and serialization
method. For a small distributed system where it is feasible to wrap the RPC library
with code that uses this VClockPayload, this approach works and is relatively easy to
implement. But for a larger system with a more complex RPC library, this approach
becomes counterproductive. For example, Protocol Buffers use strongly typed structs
to aid in defining data types between nodes, and the types also help performance of the
serialization. Having to use this vlock.VClockPayload erases type information of the
buf that is sent, which can decrease performance of serialization methods like Protocol
Buffers. A logging library should not introduce friction with message serialization.
DisViz addresses this problem.

Each log output from GoVector includes a message, PID, and vector clock. The

primary GoVector API functions include:

e InitGoVector(processid string, logfilename string, config GoLogConfig):

Initializes a new logger instance for the specified process.

e PrepareSend(mesg string, buf interface, opts GoLogOptions): Called

before sending an RPC, this function increments the local vector clock, logs

24

an event, and encodes the payload together with the vector clock using a user

defined serialization strategy (or MessagePack by default).

e UnpackReceive(mesg string, buf [lbyte, unpack interface, opts GoLogOptions):
Called upon receipt of a message, this function decodes the byte array to extract
the payload and vector clock, merges the vector clock with the local vector clock,

and logs an event.

e LogLocalEvent (mesg string, opts GoLogOptions): Used for logging events

that occur locally. It increments the local vector clock and logs the event.

There are also configurable logging options through the GoLogConfig (e.g. buffered
logging, encoding/decoding strategy) and GoLogOptions (e.g. log priority) structures.

2.3 Challenge

Correlation of Log Events With Latency to Create Visualization

w - w (=]
L L ! L

Visualization Latency (seconds)

]
L

T T T T T T
2000 4000 6000 8000 10000 12000
Number of Log Events

Figure 2-9: Latency for ShiViz to create a space time diagram of a Raft test for leader
election, varying the number of elections

25

Reduce latency in DisViz

As mentioned in [section 1.5, DisViz has three main design goals. The most important
goal is reducing latency when viewing the logs. Since ShiViz is a static site, it must
do all the processing of the logs within the browser environment, and redraw the
entire visualization any time a change needs to be made to it (e.g. collapsing nodes).
This issue becomes apparent when trying to view logs with thousands of events or
more. There is significant latency in preparing the visualization, and latency with
any interaction like searching, clustering, or collapsing nodes. In order to make the
debugging process as fast as possible, latency in the debugging tool must be low.
shows how that the latency to create the visualization changes linearly
with the number of log events. This data was collected by running a test of a Raft
implementation that does leader election for a group of 7 nodes. Each iteration for
a varying number of iterations per test, three random servers are disconnected, the
test makes sure there is still a leader, then those three are reconnected. etcd tests
often create log files with tens of thousands of events, mainly from the number of
RPCs passed between nodes, rather than from local events. For complex distributed
system, this latency is not acceptable for debugging. The machine used to to run
ShiViz and measure latency was a 2020 MacBook Air with a 1.1 GHz Dual-Core Intel
Core i3 processor and 8 GB 3733 MHz LPDDR4X RAM. The browser used to run
the ShiViz website was the Brave browser, which is built on Chromium and uses the

V8 JavaScript engine.

Make GoVector more flexible

For existing systems that already have their RPC library implemented, the GoVector
API is too cumbersome to easily use in their system to generate DisViz compatible
logs. It is possible to use GoVector without the vrpc functionality, but wrapping the
RPC payload with a GoVector defined struct adds an unnecessary layer of complexity
that may even reduce performance of the serialization strategy. The second design

goal of DisViz corrects this, allowing GoVector to be used with any RPC library.

26

Add different information in logs

The last design goal of DisViz is to make it easy for users to add information to
specific GoVector logging calls, and for that information to be displayed well in the
visualization. The use of regular expressions in ShiViz is the main reason for this pain
point. Using a regular expression with capture groups that every log must adhere
to is too strict. In the GoVector API all information is added to one message field
for an event, so adding information unique to one log means adding it to a catch-all
capture group that will display everything in that group as one string. This will be
tedious for the user to program and annoying to parse through in the visualization.
DisViz fixes this by changing the GoVector API to accept any number of key-value
pairs for a log, which will be formatted as JSON in the log file and easily parsed by
DisViz. No regular expressions are used, and each key-value pair is separately and

cleanly displayed for each log.

27

Chapter 3
DisViz

A diagram for the DisViz system can be seen in [Figure 3-1], which illustrates the
entire process a user will go through to generate and visualize the log file for a test of
their distributed system. The diagram starts with ptest, a lightweight parallel testing
framework discussed more in [section 3.1} This allows users to easily execute parallel
runs of multiple tests and bundle the DisViz log files from each node in the system
during a test. When a test is running, the source code uses the updated GoVector
API to log when an RPC is sent or received, as well as log any local events useful for
debugging. The logging functions accept any number of key value pairs, and GoVector
adds the vector clock and PID metadata to each log. GoVector then uses the Zap
library to format those key value pairs into valid JSON logs and write to a log file.
Zap is a Go logging library from Uber for fast, structured, leveled logging [40]. With
the log file, the user can then start up DisViz’s server and navigate to the DisViz
website in a browser. Once on the website, they can load the recent log file, and the
website’s JavaScript will communicate with the server to view small sections of the
log file at a time. The user can then navigate through the log file and search for text
or communication patterns present in the file. The rest of this chapter will give more

detail about each step in the diagram.

28

DisViz N

- a

Request Types
SeVer web filePathRequest Open a new file web browser
socket socket
slideWindowRequest | View different section of existing file
searchRequest Execute text, structure, or motif search
nextResultRequest Move to next result in current search
read by
writes to static site content user events
(e.g. html file) (e.g. scroll, click)
Iog file topologically
\ sorted log file user
JSON logs ptest testing framework

—

pairs with vector key value _:m
clocks pairs source code

GoVector API

Figure 3-1: System diagram for generating logs and viewing them in DisViz

3.1 Ptest

Ptest is a command line tool for running Go tests that gives the user granular control
over things like the number of parallel workers running tests, which tests to run, and
the number of iterations for each test. When debugging a distributed system, a race
condition may cause a test failure infrequently. For a bug related to snapshots in the
Raft algorithm, introduced in [section 6.3] a failure is only observed around twice in
every 100 test runs. It is necessary to be able to run a particular test many times in
parallel while debugging, in order to iterate as quickly as possible. The native Go
testing framework makes it easy to designate that a test can be run in parallel with
t.Parallel (), but this signals that this test is to be run in parallel only with other
parallel tests; multiple instances of a single test never run in parallel with each other

[10]. In order to run an individual test in parallel, the test itself must be implemented

29

with this in mind using more of the Go testing library, such as t.Run(name string,
f func(t *T)) along with t.Parallel() to run subtests in parallel. When tests
have not been specifically implemented for running in parallel, a testing framework
like ptest is helpful. ptest uses and extends the dstest framework described by a
Teaching Assistant of 6.5840 at MIT . dstest provides the command line options
seen in , displays live results of the tests as they are running ,
and gives a summary of the results once all the tests are done running .
These figures are the output of running this command on a Raft implementation:

ptest -iter 5 -workers 10 TestManyElections3A TestBasicAgree3B TestReliableChurn3C

TestSnapshotBasic3D

* tests
--sequential -s Run all test of each group in order
--workers -p Number of parallel tasks
--iter -n Number of iterations to run

* ==output -0 Output path to use, required
--verhose -V Verbhosity level
—-archive -a Save all logs intead of only failed ones
--race -r --no-race -R Run with race checker
--loop -1 Run continuously
--growth -g Growth ratio of iterations when using --loop
-=timing -t Report timing, only works on macOS
--timeout -z Set timeout in seconds for each test
--extra -e Give extra args to each go test command
—-help Show this message and exit.

Figure 3-2: Command line options for ptest

0:00:08 75%

TestManyElections3A - 4/5
TestBasicAgree3B 5/5
TestReliableChurn3C - 3/5
TestSnapshotBasic3D - 3/5

Figure 3-3: Live updates during a Go test run using ptest

ptest extends dstest to improve organization of output files and produce a single
log file for each test that can be loaded into DisViz. All the test output files are added
to a directory where the tests were run. For each failed test (or all tests if -archive is

true), ptest will make a directory with the name of the test that failed. The directory

30

Test Failed Total Time
TestManyElections3A %] 5 18.41 = 4.97
TestBasicAgree3B (%] 5 10.02 = 3.49
TestReliableChurn3cC 2 5 22.28 £+ 3.30
TestSnapshotBasic3D (%] 5 16.06 = 5.78

Figure 3-4: Final ptest output after all tests complete

contains each of the per node files created by GoVector, an overall system combined
log file with each node file appended together, and another log file capturing all the
data from standard out, which will contain print output during the test. This file

structure can be seen in [Figure 3-5|

v 20250424_021541

v TestReliableChurn3C_6

> TestReliableChurn3C_18

Figure 3-5: ptest output files

3.2 GoVector

While the tests are running, the source code uses the updated GoVector API to
generate valid DisViz log files. The updated GoVector API is inspired by the Zap API
and offers the same methods as the Zap API. The previous GoVector API is unchanged

for backwards compatibility, but new methods are added. Zap is a widely used Go

31

logging library that allows for fast, structured logging, with highly customizable
formatting . An example of a logging call using the updated GoVector API (same
in the Zap API) is:

goLog.Info("failed to fetch URL",
// Structured context as strongly typed Field values.
zap.String("url", url),
zap.Int("attempt", 3),

zap.Duration("backoff", time.Second),

Using a strongly typed API to log data gives more type safety to the programmer,
which helps reduce bugs related to logging. The API also allows for the user to forgo
this type safety with a more flexible "sugared" logger:

goLog.Sugar () .Infow("failed to fetch URL",
// Structured context as loosely typed key-value pairs.
"url", url,
"attempt", 3,
"backoff", time.Second,

)
goLog.Sugar () .Infof ("Failed to fetch URL: J%s", url)

The user can also easily make copies of a GoLog to add information to each log or
enable various Zap options:

// make a new logger that adds 'grpc' and a url to each log,

// and a strack trace for logs at or above Info level

goLog.Named ("grpc") .With(zap.String("url", url)).WithOptions(
zap.AddStacktrace(zapcore.InfolLevel)

If the system already has an RPC library, the user does not have to wrap their
payload inside a GoVector payload. Instead, they can put the GoVector payload that

includes the process’s vector clock inside their RPC payload:

// mew methods

func (gv *GoLog) PrepareSendZap(mesg string, level zapcore.Level, fields
...zap.Field) (encodedBytes []byte)

func (gv *GoLog) UnpackReceiveZap(mesg string, buf [lbyte, level zapcore.Level,
fields ...zap.Field)

32

3.3 DisViz Client Server Model

After the tests finish and ptest zips up the JSON log files written by the Zap API into
one combined log file for each test, the DisViz server parses the logs. The server has
two functions. First, it acts as a standard web server, hosting all the static content
of the DisViz website. This includes the main HTML file, and all the front end
JavaScript files that respond to user input and create the visualization. Second, it
hosts a websocket that the JavaScript on the browser will connect to once the website
is opened on the browser. On the DisViz website, the user supplies a file path to a

log file on the server’s file system. For now the server and browser are assumed to

be running on the same device, but this is not required (see [subsection 8.1.6). When

a log file path is submitted by the user, the browser sends a filePathRequest over
the websocket to the server. With this path, the server now does the heavy lifting,
reading and parsing the entire file. It constructs an ordering of all the log events using
the vector clock and writes a topologically sorted ordering of those events back to
the file system. It is from this sorted file that the server sends small sections to the
browser. This ensures that valid subsets of events are sent to the browser.

After the browser receives the initial subset of data sent by the server, it parses and

displays the logs just like it previously did in ShiViz. The user can interact with the vi-

sualization the same as before (with caveats, seesubsection 8.1.4). Once the user scrolls

to the bottom or top of the visualization, the browser sends a slideWindowRequest
over the websocket. The server responds by reading and sending a shifted portion of
data from the sorted log file, and the browser parses and displays the new visualization.

The logs sent over the websocket are valid JSON, from which the browser parses
all the keys and values, displaying each key-value pair separately. With the updated
GoVector API, the caller, function, and stacktrace information can easily be added to
the logs when desired, as seen in [Figure 3-6]

When the browser receives data from the server, it displays the subset of data the
user is viewing, and gives controls for the user to manually decide what subset they

are viewing. These controls, seen in figure are given on the right panel

33

JUMP TO JUMP TO

Figure 3-6: DisViz display of log information

next to the visualization.

Start Percent: | 84

End Percent: a0

SHIFT WINDOW

JUMP TO JUMP TO
START END

Figure 3-7: DisViz controls for shifting the subset of the log file being displayed

3.4 Search in DisViz

When the user enters a query in the search bar, the browser sends the query over the
websocket in a searchRequest. The server again does the heavy lifting of searching

through the entire log file for any matches to the query, then sends the browser the

34

number of matches, and a subset of the log file that contains the first match. The
browser then parses and displays the received data. The search bar now shows how
many results there are and what position in the results the user is at, see figure

sending X (1 |04

Figure 3-8: DisViz search bar during active search

When the user clicks the navigation buttons in the search, or explicitly enters a
result number to view, a nextResultRequest is sent to the server, which will return

a subset of the data containing the next search result.

3.5 Meeting the design goals

Performance Comparison between ShiViz and DisViz

| —®— Shiviz, fit: y = 5.49e-04x + 1.7e-01
DisViz (first load), fit: y = 1.60e-04x + 6.4e-01
—8— DisViz (reload), fit: y = 6.38e-05x + 6.0e-01

Visualization Latency (seconds)

T T T T T T
2000 4000 6000 8000 10000 12000
Number of Log Events

Figure 3-9: Latency to create visualization for Raft test in ShiViz and DisViz

35

Reduce latency in DisViz

Moving to a client server model in DisViz significantly improves the latency to create
and interact with the visualization, as desired. See for a comparison between
ShiViz and DisViz, visualizing the same logs as described in [Figure 2-9| DisViz is
around 3.4 times faster than ShiViz in creating the visualization, comparing the slope
of the fitted least squares regression lines. There is an added benefit when a file is
opened in DisViz that has been visualized before. Since DisViz writes a topologically
sorted version of the log file to the file system, visualizing the file after the first
time will be faster, around 8.6 times faster than ShiViz, since the sorted file can be
immediately read from the file system. Section [£.3.2] discusses the likely reasons for

the improvement in latency.

Make GoVector more flexible

With the changes to the PrepareSend and UnpackReceive methods in GoVector, the
user can put the vector clock payload inside their RPC payload, instead of the other
way around. This makes it easier to instrument an existing distributed system with

GoVector.

Add different information in logs

In GoVector, the user now has a clear and readable way to add unique information to
each log. Since DisViz no longer uses regular expressions to parse each log line, instead

parsing the log as JSON key value pairs, the information in each log is displayed in a

more readable way, as in [Figure 3-6

36

10

Chapter 4

Implementation

4.1 Ptest

As mentioned, ptest extends dstest to organize output files better in the context
of using DisViz. dstest is implemented in Python, and ptest is a Bash script that
executes dstest, passing through the command line arguments to dstest, then does

some clean up afterward. An abridged version of ptest is seen below:

OUTPUT=$ (python3 -u $SCRIPT_PATH -o "$RESULT_PATH" "$@" | tee /dev/tty)
if [-d "$RESULT_PATH"]; then
for folder in "$RESULT_PATH"/*; do
if [-d "$folder"]; then
GoVector --log_type zap --log_dir "$folder" --outfile
"$folder/combined_logs.log"
subfolder=$(basename "$folder")
mv "$RESULT_PATH/$subfolder.log"
"$RESULT_PATH/$subfolder/$subfolder.log"
fi
done

fi

While dstest is running, for each test it captures all output meant for standard
out and writes it to a file in the output directory with the name and count for that
test. dstest was modified to pass that same name as the command line argument

output_dir to the go test command:

37

10

11

12

13

test_cmd = ["go", "test", f"-run={testl}", "-test.v" if verbose else ""

f"-output_dir={output_dir / f"{test}_{i}"}", *extraargs]
The user’s Go code can then read this command line argument and construct the

appropriate path for where to write the GoVector log file:

nn

var goLogPrefix = flag.String("output_dir", , "Directory where output files

should be written")
rf.Logger = govec.InitGoVector(fmt.Sprintf ("raft_J%v", me),
fmt.Sprintf ("%v/raft_jv", *goLogPrefix, me), config)

So, after dstest runs, each test will have a log file capturing the standard out,
and a folder with the same name containing all the files created by the user’s Go
code (in this case, created by GoVector). The files cannot be loaded into DisViz
directly, so the GoVector command will concatenate all the file content together into

one combined_logs.log file, and then move the standard out log file for that test

into the directory with the other log files, as seen in [Figure 3-5

4.2 Changes to GoVector

The GoVector changes largely consist of embedding a Zap Logger inside the GoLog
struct, so that all the Zap logger’s methods are immediately available to any GoLog
object. The main object that user’s of the GoVector library interact with and call

methods on is the GoLog struct:

type GoLog struct {

zapLogPrefix string

*zap.Logger

goLogWriteSyncer *GoLogWriteSyncer
goLogCore *GoLogCore
initialized bool

prelnitializationEntries []*ZapEntryInput

SugaredLogger *zap.SugaredLogger
wrappedLogger *zap.Logger
wrappedLoggerTwice *zap.Logger

38

10

11

12

The fields shown are some of the added fields needed to make GoVector use Zap

internally.

4.2.1 Zap Primitives

The Zap Logger does not directly write to a file. Instead, it stores one or more Zap

Core objects:

type Core interface {
// If the Level is enabled for this core
Enabled(Level) bool
// Adds structured context to the Core.
With([]Field) Core
// Determines whether the supplied Entry should be logged.
Check(Entry, #*CheckedEntry) *CheckedEntry
// Write the log entry
Write(Entry, []JField) error
// Flushes buffered logs

Sync() error

The Core objects that Zap provides use a Zap Encoder to take a log entry and

produce a byte array that a Zap WriteSyncer writes to the file:

type Encoder interface { 1 type WriteSyncer
ObjectEncoder interface {
Clone() Encoder 2 io.Writer
// EncodeEntry encodes an entry and fields, 3 Sync() error
along with any accumulated 4 ¥

// context, into a byte buffer and returns it.
EncodeEntry (Entry, []JField) (*buffer.Buffer,

error)

4.2.2 Logging with Zap

Using these primitives, we implement our own Core and WriteSyncer objects for a

Zap Logger to use:

39

1

N

10

11

12

13

14

15

type GoLogWriteSyncer struct { 1 type GoLogCore struct {

mu sync.RWMutex 2 zapcore.Core
unbuf zapcore.WriteSyncer 3 gv *GoLog
buf *zapcore.BufferedWriteSyncer 4 7

manualBuffer bool
// always == unbuf or buf, under mu

active zapcore.WriteSyncer

The GoLogCore embeds a Zap Core, so we only need to redefine methods to

implement specialized behavior:

func (c *GoLogCore) Write(entry zapcore.Entry, fields []zapcore.Field) error {
c.gv.mutex.Lock()
defer c.gv.mutex.Unlock()
fields = c.gv.addMetadataFields(entry, fields)
if !lc.gv.initialized {
return nil
}
return c.Core.Write(entry, fields)
}
func (c *GoLogCore) Check(ent zapcore.Entry, ce *zapcore.CheckedEntry)
xzapcore.CheckedEntry {
if c.Enabled(ent.Level) {
return ce.AddCore(ent, c)
}

return ce

One important detail is that when a Zap Logger calls Check() on a core to see
if that core will log the Entry, the core adds itself to the Zap CheckedEntry object,
which contains a slice of all the Core objects that will write the Entry. Even though
the implementation is the same as the library implementation, we must implement
the Check method shown in order to add the GoLogCore object to the CheckedEntry,
instead of the embedded Core object. This way, when the CheckedEntry.Write is
called and the saved Core objects are iterated through, the Write method will be

called on our GoLogCore object, which adds the vector clock metadata to the Entry:

func (gv *GoLog) addMetadataFields(entry zapcore.Entry, fields []zapcore.Field)
[lzap.Field {

40

10

11

if !gv.initialized {
gv.prelnitializationEntries = append(gv.prelnitializationEntries,
&ZapEntryInput{entry: entry, fields: fields})
return fields

}

gv.tickClock()

return append(fields,
zap.String("processId", gv.pid),
gv.currentVC.ReturnVCStringZap ("VCString"),

addMetadataFields uses the initialized boolean to determine if the InitGoVector
method has been called on a GoLog object:

func (gv *GoLog) InitGoVector (processid string, config GoLogConfig, logfilenames

...string) {

gv.prepareZapLogger (logfilenames)

gv.initialized = true

InitGoVector uses the GoLogConfig to set the GoLog options and open the files
that logs should be written to. When instrumenting the etcd repository to use
GoVector to make DisViz-compatible logs (see , it was necessary to create
a GoLog object before knowing what the filename should be called. This allows the
GoLog object to be created and passed down to necessary objects for logging before
an appropriate filename is known for the log file to write logs to. If filenames are not

known when a GoLog needs to be created, users can call UninitializedGoVector:

func UninitializedGoVector() *GoLog {
goLogCore := &GoLogCore{Core: NewNopCore(), gv: goLog}

goLog.updatelLoggers (zap.New(goLogCore, zap.AddCaller(),
zap.AddStacktrace (goLog.level)))

41

updateLoggers updates each of the four stored Zap Logger objects at once: the
original, a sugared logger, and two loggers that skip a level in the stacktrace for when
GoLog.PrepareSend or GoLog.UnpackReceive are called, to only include user level
code in the caller and stacktrace information. Since a GoLog can be passed around
and called on before files have been configured to write to, addMetadataFields will
check if the logger has been initialized yet, and store any Entry objects to log later in
prelnitializationEntries once the GoLog.InitGoVector is called.

After the vector clock and pid is added to the fields of the log entry, the GoLogCore
will use its embedded Zap Core to write to the file, which uses a Zap Encoder to prepare
a byte string, and calls GoLogWriteSyncer.Write. GoVector previously supported
toggling buffered logging, so we implement a GoLogWriteSyncer to keep this behavior.
Zap offers a BufferedWriteSyncer, but this does not allow for toggling the buffering.
GoLogWriteSyncer stores a Zap WriteSyncer, a Zap BufferedWriteSyncer that
writes to the same WriteSyncer, and uses a read write mutex to keep track of which
of those two should be written to.

Figure 4-1| shows a summary of what methods are called in what order when
making a call to GoLog.Info. The yellow boxes show Zap methods, and the green

boxes show GoVector methods.

Golog.Info() = GoLog.Logger.Info() — GolLogCore.Check() —> CheckedEntry.Write() —> GolLogCore.Write()
WriteSyncer.Write() - GologWriteSyncer.Write() i GologCore.Core.Write() [Golog.addMetadataFields()

Figure 4-1: An abridged call chain for making a logging call with a GoLog object

4.2.3 Initialization

Once GoLog.InitGoVector is called, the embedded Zap Logger will be properly

configured with our GoLogCore and GoLogWriteSyncer. Since a GoLog is only created

42

10

through UninitializedGoVector, the GoLogCore and Zap Logger will already be
created:
baseWriteSyncer := zap.Open(filePaths...)

goLog.goLogWriteSyncer = &GoLogWriteSyncer{

unbuf: baseWriteSyncer, buf: nil, active: baseWriteSyncer,

}
core := zapcore.NewCore(

zapcore.NewJSONEncoder (encoderConfig), goLog.goLogWriteSyncer,
)

goLog.goLogCore.Core = core
// opts has options for adding caller and stacktrace

goLog.updateLoggers (goLog.Logger.WithOptions (opts...))

4.3 Changes to ShiViz

To run the existing code on the server side, we duplicate the JavaScript, use Node
to run it, Express to set up a web server hosting the static site content, and ws to
host a web socket for the frequent requests between the server and client |19, 26]. The
webpage runs the same JavaScript code, but different changes are made to the server
and browser JavaScript to properly use the web socket. The overall approach was to
break up the monolithic system running entirely in the browser, and split components
of it between the server and browser, trying to change the actual implementation

details minimally.

4.3.1 Server

Using Node to run the JavaScript code originally meant to run in the browser requires
the use of global proxy objects to make the browser dependencies not available in Node
no-ops when called. The JavaScript code uses jQuery and D3, which are dependencies
for manipulating the DOM and easily accessing elements on the webpage. It also uses
the window and document objects available to JavaScript in the browser. Since none
of these are available in Node, the best approach would be to refactor the code and

remove all the uses of these objects. However, the JavaScript code is more than 14, 000

43

10

11

lines over 55 files. For the scope of this thesis, and to reduce the chance of introducing
bugs, our approach was to treat the code as modular by trying to make as few changes
as possible to the original code, and instead move pieces of it around. With this in
mind, we define global Proxy objects for all of the browser specific objects that are

called:

['$', 'd3', 'window', 'document'].reduce(

(proxy, prop) => globalThis[prop] = proxy, new Proxy(() => {}, {
// Intercepts property access, e.g. $().testing
get (target, prop, receiver) {

return receiver;
},
// Intercepts function calls, e.g. $()
apply O {
return $;
}
)

This proxy will intercept any property accesses or function calls to return itself, so
existing calls in the JavaScript like
$(".input input, .input textarea").on('input propertychange', function(e) {

context.resetView();

s

are no-ops and do not need to be edited in the server code.

The entry point to the server code is disviz/index.js, and after the global
proxies are defined, we need to run all of the server JavaScript files in the global
context, instead of how imports are usually handled in Node. The webpage defines all
the JavaScript files with <script> tags in the HTML file, which will run all of the
JavaScript in the shared global browser environment. Node import statements do not
run the files in the global context. Instead, they run the file in a separate context and
make any explicit export statements in the file available in the local context of the file
that imported it. In order to mimick how the code runs in the browser, we use the

built in vim module to run all 55 files in the same context:

44

10

11

12

13

[fileNames] .forEach(filename => {
const filePath = path.join(__dirname, filename);
const code = fs.readFileSync(filePath, {encoding: 'utf8'});
vm.runInThisContext (code, { filename: filePath });

B

With the environment properly set up, the web socket can properly respond to
each type of message:
ws.on('message', async (event) => {
const message = JSON.parse(event);
switch (message.type) {
case "filePathRequest":
return await handleFilePathRequest (message) ;
case "slideWindowRequest":
return await handleSlideWindowRequest(message) ;
case '"searchRequest":
return await handleSearchRequest(message);

case "nextResultRequest":

return await handleNextResultRequest (message);

DR

filePathRequest

A filePathRequest will read the file, use existing ShiViz functions to get a topological
sorting of log events, then write that sorting back to a new file, from which it
sends sections back to the browser. AbstractGraph.getNodesTopologicallySorted
already existed in ShiViz, but had to be modified to produce a more accurate topological
sort. It uses Khan’s algorithm to produce a valid topological sorting, which maintains
a list of unprocessed events that have no incoming edges from other unprocessed
events, adding an event to the topological sort once all the events with incoming
edges have been processed [29]. getNodesTopologicallySorted did this with a stack,
processing events in a depth first style for a particular node until it reaches an event
with a parent from another node. Using this sorting does not work well when viewing
a small window of log events, because the server may send events only from one node

in the system, when the visualization of all the events would show events from other

45

nodes at the same horizontal position. To give a more accurate view, we use the list
of unprocessed events as a queue instead of a stack. This ensures that every event in
the topological sort appears only after all events that would be rendered higher than

it in the visualation are added to the sort.

slideWindowRequest

This request is processed similarly to how a filePathRequest is processed, it just
does not read a new file before sending a section of the log file back to the browser.
The message request contains the start and ending offsets request by the browser, and
it reads those offsets (adjusted to start and end on newlines) from the current file
and sends that string back to the browser, which processes and visualizes only those

events.

searchRequest

To handle a searchRequest, the browser sends the query string entered by the user,
and the server loads it into the SearchBar object then calls SearchBar.query(),
following the same steps that the browser used to do with an event listener. To send
an appropriate section of the file back to the browser, each log event has an added
offset field containing the offset in the file where the start of that log event is. When
the server gets the search results from the MotifNavigator object, it will contain the
offset in the file where each search result starts. The server then reads a fixed section

of the file starting from that offset and sends it to the browser.

nextResultRequest

This request is processed similarly to how a searchRequest is processed, it just does
not make a new query to the searchBar object, instead it reads a search result from
the existing search, and sends a section of the file containing that result back to the
browser. Once the browser receives the logs and processes them, it runs the same
search query over the logs, so that the visualization can emphasize which events match

the query.

46

10

11

12

13

14

15

16

17

18

19

20

21

22

23

4.3.2 Client

The changes to the JavaScript code running in the browser mostly consisted of
making web socket requests where appropriate, but the more technical changes
consisted of handling retry logic with sending web socket messages, and using an
IntersectionObserver to automatically shift the section of the log file being visual-

ized.

Web Socket

We define a sendWithRetry method on our web socket for the browser to send a

message to the server:

ws.sendWithRetry = function (message) {
if (ws.readyState !== WebSocket.OPEN) {
return new Promise((resolve, reject) => setTimeout(() =>
ws.sendWithRetry(message) .then(resolve, reject), reconnectDelay));
}
let { promise, resolve, reject } = Promise.withResolvers();
// display error to user if any occurs
promise.catch((reason) => {
const exception = new Exception(reason, true);
Shiviz.getInstance() .handleException(exception);
b;
message.id = generateRequestId();
// Save the resolver so we can call it when the response comes back.
pendingRequests [message.id] = { resolve, reject };
setTimeout (() => {
if (pendingRequests[message.id]) {
delete pendingRequests[message.id];
ws.sendWithRetry(message) .then(resolve, reject);
}
}, requestTimeout);
ws.send (JSON.stringify (message)) ;

return promise;

The ws.onmessage callback function can now read the id field from the message

received from the server, and resolve the saved promise that ws.sendWithRetry

47

created. This allows the JavaScript in the browser to await the promise returned by
ws.sendWithRetry, and not have to manually determine if the connection is active or
the request times out. The recursive calls in the case of a timeout or a disconnected
web socket will call the resolve or reject mutator of the original promise once they

resolve, so the original promise won'’t be forgotten.

Infinite Scroll

In order to make the visualization easier to use, we must automatically request more
logs from the server once the user scrolls near the top or bottom of the visualization.
We use the builtin IntersectionObserver API to register callback functions to call
once a particular HI'ML element intersects the user’s view-port . We store this
object in the VisualGraph object, and add sentinel elements in the HTML at the top
and bottom of the visualization, calling IntersectionObserver.observe on them
once the VisualGraph is created. We also do the same for the first and last events in
the visualization. This allows the user to more easily navigate through the entire log

file.

Highlighting Search Events

f~; MsgHeartbeat X (3 |rser
22 S
Q[éb ©

0

> S
)
&

©

) Gl
. & & @
Log lines . ; :

670086878526454581 sending MsgHeartbeat

3 670086878526454581 sending MsgHeartbea
t to 5097123855255936223 o

670086878526454581 sending MsgHeartbeat

Figure 4-2: A highlighted event during a DisViz search

48

10

11

12

13

14

15

16

Highlighting search results for the user required fine grained control over the
JavaScript event loop, specifically the use of queueMicrotask. When the client gets a
response to a searchRequest or nextResultRequest and runs the same query over
the logs from the server, it highlights the event that the user is viewing in the search
results, see [Figure 4-2| This is the same behavior when the user hovers over an event;
that event and the corresponding log in the left panel are highlighted. The browser
knows which event to highlight by reading the 1ineToHighlight field in the response
from the server. Once the browser finds this event during the transformation to
emphasize events matching the user’s search, it needs to dispatch a mouse over event
to the HT'ML element. However, since the visualization is redrawn during this process,
the HTML element has not been created yet, so we cannot dispatch an event to it.
Instead of modifying how and when HTML elements in the visualization are created,
we can use queueMicrotask:

HighlightMotifTransformation.prototype.transform = function(model) {
var nodes = this.motifGroup.getNodes();
for (var i = 0; i < nodes.length; i++) {
var node = nodes[i];
var visualNode = model.getVisualNodeByNode (node) ;
const events = node.getLogEvents();
for (let i = 0; i < events.length; i++) {
const event = events[i];
if (event.getLogline() === this.lineToHighlight) {
var id = "#node" + visualNode.getId();
queueMicrotask(() => $(id) [0] .dispatchEvent (new

MouseEvent ("mouseover")));

break;

The JavaScript event loop will process the callback function passed to queueMicrotask
the next time the browser gives up control to the event loop, either by awaiting a
promise, or finishing the execution in its call stack [32]. This allows the execution of

the transformation to finish and the HTML elements to be created before the callback

49

runs. At this point we can successfully dispatch a mouse over event to the appropriate

HTML element, so that the log event in the visualization is highlighted for the user.

Improvement in latency

Range: 0 ms-10.85s

Scripting 7,580 ms
Rendering 1,147 ms
System 715 ms
M Painting 159 ms
Loading 2 ms
Total 10,850 ms

Figure 4-3: Time spent in the browser when rendering all log events for an execution

As shown in [Figure 3-9, moving to the client server model provided a significant
reduction in latency, a factor of about 3.4. However, since the original ShiViz JavaScript
code was duplicated to run on the server, all the same internal objects and algorithms
are still used to analyze a log file and construct a partial ordering of the events in the
log. The speedup does not inherently come from running the code in Node instead
of in the browser. The difference is that the code doesn’t need to create any HTML
elements like the JavaScript code does in the browser or call any of the jQuery methods.
Every time a search is made or a node is collapsed by the user in the browser, the
entire visualization is redrawn and all the HTML elements used in the visualization
are recreated. This is likely what causes the significant latency as the number of log
events increases. As shown in [Figure 4-3] when viewing a log file with 12, 000 events in
DisViz and shifting the window to be the entire file, the time is mostly spent running
the browser’s JavaScript code, rather than rendering or painting frames. The main
difference between the JavaScript running in the browser and in the server is that calls
to jQuery or the document are not no-ops and can actually change or create HTML
elements. Since the server does not need to create or modify any HI'ML elements,
it can produce a partial ordering of log events much faster and send a small window

back to the client. Now the large cost of creating the entire visualization is broken up

50

into smaller delays for the user as they view small sections of the log. Having two
processes running (server and client) also helps decrease latency by sharing the total

work that needs to be done.

51

Chapter 5

Case Studies

In order to evaluate how the changes to GoVector make it easier to use in an existing
distributed system, we describe the changes required to use GoVector in etcd and a
Raft implementation from 6.5840. Making these changes with the old GoVector would
have been feasible with the Raft implementation and would require a similar number
of changes, showing the changes do not worsen GoVector’s compatibility. Using the
old GoVector in eted would be infeasible due to how their RPC library works, showing

the changes can improve GoVector’s compatiblity.

5.1 etcd

Despite the more flexible GoVector API, instrumenting an existing system to produce
vector clock logs is nontrivial. In etcd, there are many layers of objects that are
created and configurations that are passed down through these layers during a test,
sharing loggers at each step. etcd already uses Zap for its logging, which makes it
easier to capture existing logs with GoVector [21].

etcd operations are submitted through an etcd Client struct and handled by an

EtcdServer struct:

52

1 type Client struct { 1 type EtcdServer struct {

2 Cluster 2 DisvizLogger *govec.GoLog
3 KV 3

4 Lease 4 }

5 Watcher

6 Auth

7 Maintenance

8 DisvizLogger *govec.GoLog

9

10}

Each of the embedded structs in the Client are interfaces providing the API users
can call on. The embedded objects contain methods that make RPC requests through
the auto-generated protobuf code. These RPC requests are sent to an EtcdServer
object listening for requests. We add a GoLog object to the Client and EtcdServer
structs and pass it down to the embedded objects during initialization. In each of the
methods to send or receive an RPC, GoLog.PrepareSend and GoLog.UnpackReceive
are called. While processing an RPC request, the EtcdServer needs to send RPCs be-
tween Raft nodes. This is done in etcd/server/etcdserver/api/rafthttp/peer.go
by peer.send, where we now call GoLog.PrepareSend and GoLog.UnpackReceive
before and after sending the RPC to the other raft nodes.

In order to get the GoLog object in each of these locations to properly log sending
and receiving messages, we must carefully configure it at the beginning of a test, and
pass it down as each of the etcd structs are defined. A cluster is created with:
var zapLogPrefix = flag.String("output_dir", "", "Directory where output files

should be written")
clus := integration2.NewCluster(t, Zintegration2.ClusterConfig{Size: 3,
ZapLogPrefix: os.Getwd() + "/" + *zapLogPrefix})

This cluster is created in etcd/tests/framework/integration/cluster.go, where
a Member object contains the Client and EtcdServer for each node in the cluster.
The client is created with a config containing the GoLog to use, and this config is
passed to a factory function to initialize a Client, and pass that GoLog to each of the
embedded interfaces in the Client.

Configuring the EtcdServer GoLog is more difficult, which requires using an

53

uninitialized GoLog. The GoLog objects write to files named with Member.Id() to
identify the node, but this id is configured during the initialization of an EtcdServer,
where we must pass a GoLog into in order for it to make its way into the peer struct.

This makes using an uninitialized GoLog useful:

func (m *Member) Launch() error {

m.DisvizServerLogger = govec.UninitializedGoVector ()

m.Server = etcdserver.NewServer (m.ServerConfig)

config := govec.GetDefaultZapConfig()

config.ZaplLogPrefix = m.ZapLogPrefix
m.DisvizServerLogger.InitGoVector (fmt.Sprintf ("etcd_server_jv", m.ID()),

config, fmt.Sprintf("etcd_server_%v", m.ID()))

The GoLog in the Member struct is passed through: Member -> EtcdServer ->
Transport -> peer in the call chain integration2.NewCluster -> Member.Launch
-> etcdserver.NewServer -> Transport.AddPeer -> rafthttp.startPeer.

This completes logging when messages are sent between nodes, but we must also
capture when local events are logged. Since Zap is already used for this in etcd, and we
have implemented our own Zap Core object, we define WrapBaseLogger in GoVector:
func (gv *GolLog) WrapBaseZapLogger (baseLogger *zap.Logger, opts ...zap.Option)

xzap.Logger {

opts = append(opts, zap.WrapCore(func(core zapcore.Core) zapcore.Core {

return zapcore.NewTee(core, gv.Logger.Core())

M)
return baseLogger.WithOptions(opts...)

gv.Logger.Core() returns our GoLogCore, which adds our metadata fields. Now
given an existing Zap Logger, we can return a new Logger that uses zapcore.NewTee
to write logs to the existing core as normal, but also write logs to our GoLogCore.

With one carefully placed call early in initialization:

func newClient(cfg *Config) (*Client, error) {

o4

client.lg = client.DisvizLogger.WrapBaseZapLogger(client.lg, zap.AddCaller(),
zap.AddStacktrace(client.lg.Level()))

We automatically capture all of the local log events, and similarly for the EtcdServer.
This saves a significant amount of time doing this manually throughout the repository,
and reduces opportunities for bugs. In total, making these changes in etcd amounted
to around 5800 lines changed in auto-generated code from protobuf, and around 900

lines changed manually over 31 files.

5.2 6.5840 Raft

The implementation effort required to instrument an existing system with GoVector
is directly correlated with how large the system is. An implementation of Raft that I
wrote for the MIT class 6.5840 is significantly less intricate than the etcd repository,
and using GoLog is more straightforward. All tests are performed with locally running
Raft nodes, so a channel-based RPC abstraction is used that does not actually use
the network to send messages. All Raft nodes have a list of peer ClientEnd structs
they can send messages to on a stored channel with a Call method. Since a relatively
smaller number of RPCs are possible, it is feasible to define wrapper methods and call
these methods everywhere that RPCs are sent in the Raft implementation. We can also
use the old GoVector pattern of wrapping the payload to send in the GoVector payload,
since the smaller number of RPCs makes this a more straightforward approach:
func (rf *Raft) CallWrapper(peer int, svcMeth string, args interface{}, reply
interface{}) bool {
result := rf.peers[peer].Call(svcMeth, rf.PrepareSend(svcMeth, peer, args),
args, rf.me)
if result.0k {

rf.UnpackReceiveResponse(svcMeth, peer, result.Reply, reply)
}

return result.0k

95

In the RPC implementation when a Call is being processed, we can call these

Raft methods which call the corresponding GoLog methods:

// Service uses reflect to dynamically call any defined RPCs in the raft
tmplementation
func (svc *Service) dispatch(methname string, req reqMsg) replyMsg {
method := svc.methods[methname]
args := reflect.New(req.argsType)
svc.methods ["UnpackReceive"] .Func.Call([Jreflect.Value{svc.rcvr,
reflect.ValueOf (methname), reflect.ValueOf (req.from),
reflect.ValueOf (req.args), args})
replyv := reflect.New(method.Type.In(2).Elem())
method.Func.Call([]reflect.Value{svc.rcvr, args.Elem(), replyv})
out := svc.methods["PrepareSendResponse"].Func.Call([]reflect.Value{svc.rcvr,

reflect.ValueOf (methname), reflect.ValueOf (req.from), replyv})

Now the call chain for every RPC sent will be:
Raft.CallWrapper -> Raft.PrepareSend -> ClientEnd.Call ->

Raft.UnpackReceive -> Raft.PrepareSendResponse -> Raft.UnpackReceiveResponse,
and the request /response for each node in an RPC will be logged. For capturing
local logs, the code calls Raft.Debug, and we can refactor it to call our GoLog;:
func (rf *Raft) Debug(topic logTopic, format string, a ...interface{}) {
time := time.Since(debugStart).Microseconds() / 1000
prefix := fmt.Sprintf("%d %v ", int64(time), string(topic))
rf.Logger.SugaredLogger.Logf (zapcore.InfolLevel, prefix+format, a...)

if topic == DError {

panic("got an error")

The tests for the Raft implementation frequently kill a Raft node and bring it back
online by initializing a new Raft struct with the same configuration. This introduces
a problem when the GoLog object has already been writing vector clock logs to the
file. When the new Raft struct initializes its GoLog object with the same filename, it
will begin appending to the file with a reset vector clock. In order for the logs to be

valid, the vector clock for node must increase monotonically by 1, which this would

56

violate. When initializing a GoLog, if the filename already exists, we check to read the
last line and try to parse the vector clock from it. If it succeeds, then we initialize the
GoLog with the vector clock read from the existing file, so we can continue increasing
the clock by 1 on each line.

In total, my original Raft implementation has around 1800 lines of go code, and
the changes described here required around 80 lines of code over 3 files, around 10
times less than what was required in etcd, as seen in [Table 5.1] This takes significantly

less time and is less bug prone than making the same changes on a larger system like

eted.
System Lines Changed | Files Modified
Raft Implementation 80 3
eted 900 31

Table 5.1: Code changes required to integrate GoVector

57

1

2

Chapter 6

Evaluation

In order to evaluate how DisViz helps with debugging, we use my Raft implementation
from 6.5840 to debug correctness and liveness bugs. For Leader Election, and Commit-
ting Logs, we introduce bugs and step through the process a user would take to find
the bug. For Snapshotting, we look at an existing bug where the cause is unknown.
We show that the logging flexibility provided by GoVector allows for easily adding
new information to logs and viewing it in DisViz. The reduced latency provided by
the client server model makes the visualizations faster to interact with and provides
the same features as ShiViz (e.g. search).

The tests we run are provided by the 6.5840 course staff and are the same used

when I first implemented this system.

6.1 Leader Election

Correctness

We introduce a bug in the Raft.RequestVote RPC handler, when a Raft node is
preparing a response after receiving a request for a vote from another node. The bug

allows for granting a vote more than once in a term:

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

58

// Correct code: if args.Term < rf.currentTerm || (rf.votedFor != -1 &¢
rf.votedFor != args.Candidateld) {
if args.Term < rf.currentTerm {
reply.VoteGranted = false
} else {

We first run each test for leader election to see what might be failing with:

ptest -n 10 -p 10 -v TestInitialElection3A TestReElection3A TestManyElections3A

TestReElection3A and TestManyElections3A each fail 4 times due to a panic, so
we focus on TestManyElections3A. This test makes a cluster with 7 servers and waits
for a leader to be elected. For 10 iterations, three random servers are disconnected,
the test makes sure there is still a leader, and then those three are reconnected.

In the captured output for one of the failures, we see the test fails due to logging
an error, which causes a panic:

func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply)
{

// mark heartbeat
if rf.state != follower {
rf .Debug(DError, "S)%v %v, APPEND ENTRIES FROM UP TO DATE LEADER BUT WE'RE
NOT A FOLLOWER. Current term: %v\n", rf.me, rf.state, rf.currentTerm)

This cluster is in a split brain situation when this panic occurs. The panicking
node thinks it is leader, but it was sent logs from a node that thinks it is the leader
with the same term number, which should never happen during normal operation.
When viewing the logs for this failure in DisViz, we jump to the end to see the log
entry for this error in [Figure 6-1 which belongs to the raft_1 node.

The visualization ends with many logs from this node and no connections to

other nodes, so it seems this node became disconnected before being reconnected and

59

Raft.AppendEntries RPC to raft_4 from ra °

AppendEntries RPC received by raft_1 fro °
11329 LOG1 S1 leader Got append entries °
11330 LOG1 S1 leader receiving the logs °
128011330 ERRO S1 leader, APPEND ENTRIES F ®

ROM UP TO DATE LEADER BUT WE'RE NOT A
FOLLOWER. Current term: 5

Figure 6-1: Last log from TestManyElections3A failure

receiving an append entries from another node. To find which node sent an append
entries to this node, we search for the last occurrence of "Raft. AppendEntries RPC to
raft _1". The node with name raft 3 sent this log. To find when raft 3 became a

leader we can search for this node’s log in the visualization (see [Figure 6-2)):

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

rf.Debug(DVote, "S%v %v, granting for %v in term %v\n", rf.me, rf.state,

args.CandidateId, rf.currentTerm)

The search functionality supports regular expressions, so searching for event=/granting
for . in term 5/, we find seven occurrences, where nodes raft 5, raft 0, and
raft 4 all grant votes for raft 1 and then raft 3 in term 5. Looking at the code for
handling a RequestVote RPC, we have checks for when the term in the RPC is less

than or greater than the current term:

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

if args.Term > rf.currentTerm {
rf.convertToFollower (args.Term)

+

if args.Term < rf.currentTerm {
reply.VoteGranted = false

} else {

60

10

11

// grant vote. We must be a follower now

Before the handler grants a vote, the handler must make sure that it has not voted
for anyone in this term already, which identifies the bug. Using the visualization made
it quicker to gain context about the communication between the nodes in the cluster,

which helped track down the bug.

Liveness

For a liveness bug relating to leader election, we flip a boolean to never send a yes

vote back in a RequestVote RPC:

func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {

// Correct code: reply.VoteGranted = true
reply.VoteGranted = false

Running the same ptest command as before, we see that no tests are passing.
We will focus on the simplest of these tests TestInitialElection3A, which starts a
cluster of three nodes and checks that a leader is elected and all the terms match for the
nodes. The captured output shows that the test fails with the error message "expected
one leader, got none." From [Figure 6-2 we see that the node raft_ 2 requests a vote
and gets responses from raft 0 and raft 1, and both nodes have the logs "granting
for 2 in term 3". However, the responses received by raft 2 have VoteGranted set to
false, which identifies the bug in RequestVote. These log files are short, which shows

that using DisViz can be helpful regardless of the log file size.

61

81 4887 VOTE SO follower, granting for 2
in term 3 [J

4887 PERS SO follower Successfully persi

RequestVote RPC Response to raft_2 from

Raft.RequestVote RPC Response received b ®

4887 VOTE S2 candidate Got requestVote r °

Raft.RequestVote RPC Response received b °

Figure 6-2: Logs from TestInitialElection3A failure

6.2 Committing Logs

Correctness

In order to grant a vote for a peer, that peer’s log must be at least as up to date as
the node that receive the RequestVote RPC. We introduce a bug that comments out
this check:
func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {
// if latestTerm > args.LastLogTerm || (latestTerm == args.LastLogTerm &&
rf.getLogIndez(len(rf.log)-1) > args.LastlLogIndez) {
// reply.VoteGranted = false

// return
/7 }

This causes every run of TestRejoin3B to fail, which makes a cluster of 3 nodes,
and tests the rejoin of a partitioned leader. The test fails because after the partitioned
leader rejoins the cluster, the cluster fails to reach agreement and commit a newly
submitted log. Since it will be helpful to know when a node becomes disconnected

and reconnected, we can add logging statements in the testing code with:

func (cfg *config) disconnect(i int) {

raft := cfg.rafts[i]
raft.Logger.Log(zapcore.InfolLevel, "Disconnecting this node",

zap.0bject("self", raft))

62

1

The Zap API makes it easy to define how to log arbitrary objects using zap.0Object.
The object to log just needs to implement this method:

func (rf *Raft) MarshalLogObject(enc zapcore.ObjectEncoder) error {
enc.AddInt("me", rf.me)
enc.AddString("state", string(rf.state))
enc.AddInt("logLength", len(rf.log))
enc.AddInt("logStart", rf.getLogIndex(0))

return nil

And Zap will use this method when encoding the log event. shows how
this is displayed in DisViz.

~ v °

Disconnecting this node

level: [\[5e]
caller: raft/config.go:425
function: 6.5840/raft.(*config).disconnect
raft: {

"me": 1,

"state": "leader",

"logLength": 2,

"logStart": 0

}

Figure 6-3: Displaying a raft object in DisViz

Searching for when raft 1 becomes reconnected, and viewing the logs after that,
we see that raft 2 was the leader and committed an event with raft 0 before also
being disconnected. Between the disconnection of raft 2 and the reconnection of
raft 1, we see many logs from both nodes that think they are the leader (in different

terms) and are trying to send RPCs to other nodes, but no lines connect those events

63

to other nodes, so no communication is happening. After raft 1 reconnects, it sends
an AppendEntries to raft 0, who responds with a failure because the raft 1 term

is out of date (raft 2 became leader in a new term after raft 1 is disconnected).

shows how DisViz makes this communication easy to see.

e i i
9073 LOG1 S2 leader in update peer the 1

I SR
Raft.AppendEntries RPC to raft_1 from ra

AppendEntries RPC received by raft_0@ fro

9173 LEAD S2 leader sending round of hea

Got append entries rpc

9173 LOG1 S2 leader handling peer rf.sna

178 6483 LOGL SO follower, Append failure ¢ o
because current term larger than arg t
erm. currentTerm: 2

917 5 g Sue thany wo

AppendEntries RPC Response to raft_1 fro

° °
Sending append entries ////
°

Figure 6-4: AppendEntries failure from raft 1 to raft 0

Following the events down, raft 1 begins an election and gets a vote from raft 0,
completing a majority and becoming a leader. raft 1 begin sending AppendEntries
RPCs to raft 0, but they all fail because raft 0 has an event committed that raft 1
does not have, so it never accepts new logs from raft 1. This tells us that raft 0
should not have granted a vote to raft 1, which leads us to add the check for up to

date logs for an election candidate.

Liveness

To introduce a liveness bug, we make a small change to the code that applies newly
committed messages to a node’s state machine once a leader receives an AppendEntries

RPC response:

// Correct code: rf.commitIndex > rf.lastdpplied {
for rf.commitIndex < rf.lastApplied {
// send log to apply channel

64

This prevents any committed commands from being applied by the leader, but
followers can still apply commands. With this change, all tests for committing logs
fail, so we focus on the simplest, TestBasicAgree3B, which creates a cluster of three
nodes and waits for them to agree on a log entry, without disconnecting anyone. The
test fails for the same reason as the last example; the cluster does not reach agreement
for any committed logs. In DisViz, the visualization is relatively short, as with the
previous liveness bug in raft 0 is elected the leader, and raft 1 and
raft 2 accept AppendEntries RPCs from this leader. shows that both
followers commit an entry from the leader and in the next log event send it on their
apply channel. The leader receives the responses from both followers, but there are no
logs for what happens after the response is received. So, we add logging statements for
each update to the Raft state after the receipt of an AppendEntries RPC response.
These logging calls include when the commit index is updated and when a log is sent
on the apply channel. Rerunning the test and loading it into DisViz, it becomes
apparent that the leader is successfully updating the commit index, but no logs are
ever applied to the state machine. This leads us to fixing the error with applying

committed logs.

Log lines .° -

1737 LOG1 SO leader in update peer the 1 o—

Raft.AppendEntries RPC to raft_2 from ra

Raft.AppendEntries RPC Response received

1738 LOG1 SO leader got append entries r °

1738 CONFLICT SO leader append resp. fro o

Figure 6-5: Raft followers successfully committing a log entry

65

6.3 Snapshotting

The previous sections introduced bugs and showed how DisViz can be used. This
section tracks down an unknown bug that is present in my Raft implementation. Of
the seven snapshotting tests, the unknown bug causes TestSnapshotInstall3D and
TestSnapshotInstallUnreliable3D to exhibit failures. Both tests perform similar
actions, disconnecting and crashing nodes in a 3 node cluster over a number of
iterations, waiting for the cluster to commit logs and making sure they do snapshots
so their logs do not grow too large.

Focusing on TestSnapshotInstall3D, it fails because after reconnecting a node,
the cluster cannot reach an agreement for a new log entry. Since we are focusing on
snapshots, the hypothesis is the reconnected node incorrectly applies a snapshot to
catch up, giving it an incorrect log history that does not match the other nodes. This
bug happens infrequently; using ptest, we observe 2 failures during a run of 100 tests.
In DisViz, we see that 6 leaders are elected during the test ending with raft 2 in
term 7. Searching for the logs we added in [section 6.2 a node is disconnected then
reconnected 8 times.

The test ends with many AppendEntries RPCs from raft 2 to raft 0 and raft 1.
raft 0 responds with success each time because their logs are up to date with the

leader’s logs, see [Figure 6-6]

raft 1 responds with a failure each time because

rf.loglargs.PrevlogIndex-rf.startingIndex].Term != args.PrevLogTerm

So the term of the log preceding the new logs does not match between raft 2 and
raft 1. Since we suspect the bug is related to a reconnected node catching up, we
search for the last node to be reconnected, raft 2. After it is reconnected, it receives
an InstallSnapshot RPC, then starts an election and becomes leader. All of the
AppendEntries failures from raft 1 start after raft 2 processes the InstallSnapshot
RPC, so there is more evidence that the bug is related to processing a snapshot.

The next thing we do is add logging statements to show the node’s logs and fields

related to snapshotting. Utilizing zap.Array similar to zap.0bject, we write:

66

10

11

12

13

e i 4

Raft.AppendEntries RPC to raft_@ from ra

°
AppendEntries RPC received by raft_0 fro \
° °

28824 LOG1 S2 leader HERE the datalog: [

Got append entries rpc
28824 LOG1 S2 leader in update peer the ® °

994428824 LOG1 SO follower ignoring redund
BEjjant logs and returnin%. commitIndex: 8
3S pgevLogIndex: 83, len(args.Entrie

° []
s
AppendEntries RPC Response to raft_2 fro

Raft.AppendEntries RPC Response received

Figure 6-6: Raft follower ignoring redundant logs from leader

type RaftLogs []*RaftLog
func (logs RaftLogs) MarshalLogArray(enc zapcore.ArrayEncoder) error {
for _, entry := range logs {
enc.AppendObject (entry)
}

return nil

}

func (r *RaftLog) MarshalLogObject(enc zapcore.ObjectEncoder) error {
enc.AddInt("term", r.Term)
enc.AddReflected("command", r.Command)

return nil

}
rf.Logger.Info("sending install snapshot", zap.Array("logs", rf.log),
zap.0Object("me", rf))

We add the logging call before sending and after receiving an InstallSnapshot
or failed AppendEntries response. Running 50 more tests and viewing a failure in
DisViz, we find that the new execution ends with raft 0 as a leader, getting failed
AppendEntries responses from raft 1 for the same reason as before.

Searching for the logging statement we added at the end of processing an InstallSnapshot,
we see that earlier in the log, raft 0 is leader, disconnects, raft 1 becomes leader,
then raft 0 reconnects and gets an InstallSnapshot from raft 1. shows

the raft 0 state after processing the snapshot, as well as the argument and reply to

67

| —

&
SHIFT WINDOW

°
JUMP TO JUMP TO
@ . - QTADT (= \[a}
Done installing snapshot
L)
level: INFO
° caller: raft/installSnapShot.go: 114
function: 6.5840/raft.(*Raft).InstallSnapshot
logs: 1]
° me:
"node number": O,
"state": "follower",
"logLength": O,
° "snapshotPrevLogTerm": 2,
"startingIndex": 20,
"commitindex": 19,
° "lastApplied": 19
"Term": 2,
° "Lastincludedindex": 19,
"LastincludedTerm": 2
}
°

"Term": 2,

Figure 6-7: Raft follower after processing an InstallSnapshot RPC

L 1

>
SHIFT WINDOW
JUMP TO JUMP TO
\ START END
o

5139 CMIT S1 leader w
e updated commit inde

x. old 19 new 20. Startin
glndex: 20, lastApplied:

19

level: INFO
caller: raft/util.go:78
function: 6.5840/raft.(*Re

stacktrace: 6.5840/raft.("Re
/Users/jos
6.5840/raft.(*Re

/Users/josiahm

Figure 6-8: Raft leader updating its commit index

the RPC. It seems that the snapshot was processed correctly and raft 0 is up to date.

However, if we look at the log events when raft 1 sends the InstallSnapshot (see

68

, it receives an AppendEntries from raft 2 and updates its commit index.
The line exiting the left side of the figure is the InstallSnapshot sent to raft 0. But
the log events from raft 2 show that it treated the log entry as redundant, thinking
it already had the entry, and did not bother to process it. Viewing the preceding
events from raft 2, it does a snapshot up to index 19, leaving its log length as 0 and
starting index as 20. When raft 1 sends raft 2 another log entry, it should not be
treating that entry as redundant as it does not have it. Looking at the code, we find
the culprit:

func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply)
{

if rf.commitIndex >= lastNewIndex || rf.startingIndex >= lastNewIndex {
reply.Term = -1
rf.Debug(DLog, "S%v %v ignoring redundant logs and returning", rf.me,
rf.state)

return

The check for the starting index is unnecessary and incorrect. It would be correct
to write rf.startingIndex > lastNewIndex, but the starting index should be at
most 1 greater than the commit index, when the length of the log is 0. Therefore,
rf.commitIndex > lastNewIndex = rf.startingIndex > lastNewIndex, and
we can remove the second condition entirely, fixing the bug.

This was difficult to find because the bug trickled down for a while without being
caught. The "ignoring redundant logs" log event is 23% of the way from the start
of the log file, so trying to piece together what happened from the error at the end
would be quite difficult from only reading the log file. Using the original ShiViz and
GoVector would be more feasible than reading the log file, but the flexibility offered
by the new GoVector API with Zap was helpful for adding more logging information,
and the reduced latency in DisViz made it less cumbersome to interact with the

visualization. The log files for these tests failures have around 4000 — 9000 logs, which

69

gives a latency in ShiViz around 2.5 — 5 seconds to load the visualization and to
perform searches, compared to around 1.5 — 2 seconds in DisViz. Due to the large
number of event listeners and HTML elements in ShiViz when viewing the whole log
file, user interactions like clicking on a log event have a noticeable delay as well, on

the order of hundreds of milliseconds.

70

Chapter 7

Related Work

There is a wide array of existing work in taking the trace or logs from a distributed
system execution and helping the programmer glean useful information from it. These
tools vary in their goals (e.g. debugging, performance optimization), presentation,
and whether they can operate on a live system, but share a commonality of helping
the programmer visualize the complex distributed system.

GridMapper takes logs from a live system and uses ip information to place nodes
on a map of the world, providing a clear depiction of how the distributed system is
physically laid out in the world [2]. Borysenkov et. al used clustering techniques on
the logs and a Time Curve visualization in an offline program to give a high level
representation of how the logs change throughout the execution [17] [11]. The ViSiDiA
tool can support a live debugging session and visualization of a distributed system with
a node-edge graph, however it is platform specific and requires the implementation to
be in Java to use their API [1]. OverView is an Eclipse IDE plugin that allows for
live or offline visualization of a distributed system, but it is also platform specific to
Java |20].

Oddity is another debugging tool that helps the programmer debug a live, running
system [41]. It requires a specific system architecture of deterministic event handlers to
process incoming messages, update node state, and construct replies. It also requires
the user to implement a shim around the communication between nodes, so that

Oddity can control how the system progresses. A server uses this shim to control the

71

system and send information to the client webpage. Through this, Oddity allows the
user to decide when events are fired and messages are received by nodes, as well as
allows the user to time travel backwards by replaying all the events that happened up
until the chosen point. The interface is designed for 10 or fewer nodes, and having to
manually choose the order of events that are processed on each node would be tedious
for long running interactions. Oddity provides useful functionality to the user, but
the architecture requirements and nontrivial shim implementation present barriers to
its use in a real-world distributed system like etcd.

Porcupine is a linearizability checker for distributed systems written in Go, used
by eted as well as 6.5840 at MIT [4]. The program takes a model specification for
initialization and valid step updates to the state, and checks whether a submitted
history is linearizable with respect to the model. It can visualize the history with
a partial linearization, showing linearization points and which operations violated
linearizability. Jepsen does safety research for distributed system, and has a similar tool
called Knossos that verifies linearizability and generates a visualization for debugging
[27]. They also have a tool called maelstrom for writing toy implementations of
distributed systems which generates timeline visualizations, timeseries graphs, and
lamport diagrams.

Each of these systems is useful for their defined goal and lessons can be taken from
their approach to digesting the log information, but we desire a tool that is primarily
geared for fine-grained analysis of the execution of a distributed system, in an offline
manner. While a program like Oddity would be useful, we have chosen to focus on the
offline processing of log information because of its potential to be easily integrated
into existing distributed system implementations and low overhead.

For improving log visualization in general, not specifically in the context of dis-
tributed systems, the Log-it tool gives the programmer granular control over the
presentation of the logs [28]. Building a tool specifically for distributed systems is
needed due to the unique nature of these types of programs, but it should be a goal
of the tool to mimic the control Log-it gives to the programmer, allowing them to

change and direct how the log information is collected and presented to them.

72

Chapter 8

Conclusion

In conclusion, this thesis presents DisViz as an extension of ShiViz, GoVector, and
dstest to help with debugging distributed systems. ptest provides a way to run
parallel tests and collect all testing output. GoVector was refactored to use Zap and
provide a more flexible API for logging key value pairs. ShiViz was moved from a
monolithic client side design to a server client model. The server does the heavy lifting
of processing the entire log file of a given distributed system execution, and it sends
small sections of the log file to the client to display. Using a time space diagram makes
it easier to understand how nodes in the system are interacting, and a server client
model allows the tool to work well with log files on the order of tens of thousands of

events.

8.1 Future Work

In developing DisViz, several avenues for improvement became apparent. These ideas

are discussed below.

8.1.1 Change the Server Side Language

JavaScript was used on the server side so the original ShiViz code that ran in the

browser could be reused. Using a language such as Go or C++ would likely lead to

73

better performance. This is because JavaScript is a JIT compiled language, generally
runs in a single thread, and does not have static typing to enable more optimizations.
However, this change would require converting around 14, 000 lines of JavaScript. This

may be feasible using LLMs, but would need thorough testing.

8.1.2 TypeScript

Using TypeScript instead of JavaScript on the server and client would lead to better
code quality and increased safety from bugs. TypeScript is a superset of JavaScript
that adds static typing. It is compiled down to JavaScript before execution and the
type information is discarded. This would not require many line changes to achieve,

and would make it easier to identify bugs related to static types.

8.1.3 JavaScript Runtime

One simple change to achieve better performance on the server side is to experiment
with different JavaScript runtimes instead of Node. Bun and Deno are two possible
replacements for Node |37, [18]. They are relatively recent JavaScript runtimes that
have difference performance characteristics, so one of them may provide a performance

improvement without having to change any of the implementation code.

8.1.4 Support Clustering

During the evaluation of DisViz, the feature of clustering was not needed to debug
distributed system executions, so support was not added for it. The case studies
discussed in did not need to include multiple executions within one log file.
Clustering would use these multiple executions and display them side by side in the
visualization. In order to fully support all the features of ShiViz, the server would
need to be changed to detect all the delimiters, and send corresponding portions of

each execution to the user.

74

8.1.5 File API

All the log file processing on the server side is still done entirely in memory, reading
the entire file and constructing a topological sorting in memory before writing that
sorting back to disk. So, the maximum size of the log file DisViz can process is limited
by the memory available to the Node process running. A related issue arises when the
file the server wants to process is not located on the file system of the device running
the server. To solve both issues, a file API could be designed to provide functions for
the server to retrieve and store log events. Different implementations of the API could
then allow for the file to be accessed from another device, or for external memory

techniques to be used to handle files that do not fit in the device’s memory.

8.1.6 Remote Hosting

Since the server hosts the static site content as well as the web socket, the user opening
DisViz on the browser no longer has to store anything related to DisViz on their
device. The server and client devices can be different, so a CI/CD pipeline could
automatically detect test failures after using ptest, start the DisViz server, and provide
a link for users to view the logs from the test failure. For example, the etcd repository
is hosted of GitHub, so implementing this with GitHub Actions can help speed up the
debugging of test failures. This also allows teams of developers to view the same log

file and collaborate on debugging.

As described in [subsection 4.3.1], running the ShiViz code in the server required

running all the JavaScript files in the same context, so they can all share and mutate
their state. This would be an issue for multiple clients connecting to the same server,
so one solution would be to create a new fresh context for each client that reruns all
the JavaScript files. Another solution is to change the JavaScript code to not use
singleton objects for the active visualization, search, etc, so the same context can be

shared when the server responds to client requests.

I6)

Bibliography

1]

2]

3]

4]
15]

(6]
17l

18]
19]
[10]

[11]

Cédric Aguerre, Thomas Morsellino, and Mohamed Mosbah. “Fully-Distributed
Debugging and Visualization of Distributed Systems in Anonymous Networks”.
In: 7th International Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications. Ed. by P. Richard et al. Rome, Italy:
INSTICC, Feb. 2012, pp. 764-767. URL: https://hal.science/hal-00697093.

William Allcock et al. “GridMapper: A Tool for Visualizing the Behavior of
Large-Scale Distributed Systems”. In: Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing. HPDC ’02. USA:
IEEE Computer Society, 2002, p. 179. 1SBN: 0769516866.

Joe Armstrong. “Making Reliable Distributed Systems in the Presence of
Software Errors”. PhD thesis. Stockholm, Sweden: Royal Institute of Technology
(KTH), Dec. 2003. 1sBN: ISRN KTH/IMIT/LECS/AVH-03/09-SE. URL: https:
//erlang.org/download/armstrong_thesis_2003.pdf.

Anish Athalye. Porcupine: A fast linearizability checker in Go. https://github.
com/anishathalye/porcupine. 2017.

Docker/Moby Authors. Docker: Open Platform for Building, Shipping, and
Running Applications. 2025. URL: https://github.com/moby/moby.

Go Authors. The Go Programming Language. 2025. URL: https://go.dev/.
Jaeger Authors. Jaeger: End-to-End Distributed Tracing. 2025. URL: https :
//github.com/jaegertracing/jaeger.

Kubernetes Authors. Kubernetes: Production-Grade Container Scheduling and
Management. 2025. URL: https://github.com/kubernetes/kubernetes.

SeaweedF'S Authors. SeaweedFS: Fast, Simple and Scalable Distributed File
System. 2025. URL: https://github.com/seaweedfs/seaweedfs|

The Go Authors. Package testing. The Go Project. 2025. URL: https://pkg.
go.dev/testing.

Benjamin Bach et al. “Time Curves: Folding Time to Visualize Patterns of
Temporal Evolution in Data”. In: IEEE Transactions on Visualization and
Computer Graphics 22.1 (Jan. 2016), pp. 559-568. I1SSN: 1077-2626. DOTI:
10.1109/TVCG.2015.2467851. URL: https://doi.org/10.1109/TVCG.2015.
2467851.

76

https://hal.science/hal-00697093
https://erlang.org/download/armstrong_thesis_2003.pdf
https://erlang.org/download/armstrong_thesis_2003.pdf
https://github.com/anishathalye/porcupine
https://github.com/anishathalye/porcupine
https://github.com/moby/moby
https://go.dev/
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/kubernetes/kubernetes
https://github.com/seaweedfs/seaweedfs
https://pkg.go.dev/testing
https://pkg.go.dev/testing
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1109/TVCG.2015.2467851

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]

[20]

21]
22]

23]
[24]

[25]
[26]

[27]

Ivan Beschastnikh, Shayan Hosseini, and Finn Hackett. Distributed Clocks. 2024.
URL: https://github.com/DistributedClocks.

Ivan Beschastnikh et al. Visualizing Distributed System Ezecutions. New York,
NY, USA, Mar. 2020. DOI: [10.1145/3375633. URL: https://doi.org/10.
1145/3375633.

Ivan Beschastnikh et al. “Visualizing Distributed System Executions”. In:
ACM Transactions on Software Engineering and Methodology 29.2 (Mar. 2020),
9:1-9:38. DOI: |10.1145/3375633. URL: https://bestchai.bitbucket.io/
shiviz/.

Ivan et. al Beschastnikh. GoVector: Vector Clock Logging for Go. https :
//github.com/DistributedClocks/GoVector. 2020.

Ivan et. al Beschastnikh. ShiViz: A Tool to Visualize Distributed System Logs.
https://github.com/DistributedClocks/shiviz. 2025.

Dmytro Borysenkov et al. Analyzing Logs of Large-Scale Software Systems
using Time Curves Visualization. 2024. arXiv: 2411.05533 [cs.SE]. URL:
https://arxiv.org/abs/2411.05533.

Ryan Dahl and the Deno Contributors. Deno: A Modern Runtime for JavaScript
and TypeScript. 2020. URL: https://deno.com/.

Ryan Dahl and the Node.js Contributors. Node.js: JavaScript Runtime Built on
Chrome’s V8 Engine. 2025. URL: https://nodejs.org/en/.

Travis Desell et al. “OverView: A Framework for Generic Online Visualization
of Distributed Systems”. In: 107 (2004), pp. 87-101. 1SsN: 1571-0661. DOTI:
https://doi.org/10.1016/j.entcs.2004.02.050. URL: https://www.
sciencedirect.com/science/article/pii/S157106610405193X.

etcd Authors. Logging conventions. eted, 2023. URL: https://etcd.io/docs/
v3.5/dev-internal/logging/ (visited on 04/23,/2025).

etcd-io. Adopters of eted. 2024. URL: https://github.com/etcd-io/etcd/
blob/main/ADOPTERS.md.

etcd-io. eted. 2024. URL: https://github.com/etcd-io/etcd.

Google. Protocol Buffers: Google’s Data Interchange Format. https: //
protobuf.dev/. 2008.

gRPC. gRPC: A high performance, open source universal RPC framework. 2024.
URL: https://grpc.io/.

TJ Holowaychuk and the Express Contributors. Fxpress: Fast, Unopinionated,
Minimalist Web Framework for Node.js. 2010. URL: https://expressjs.com/.

jepsen-io. Jepsen: Distributed systems testing framework. https://github.
com/jepsen-io. 2025.

7

https://github.com/DistributedClocks
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://doi.org/10.1145/3375633
https://bestchai.bitbucket.io/shiviz/
https://bestchai.bitbucket.io/shiviz/
https://github.com/DistributedClocks/GoVector
https://github.com/DistributedClocks/GoVector
https://github.com/DistributedClocks/shiviz
https://arxiv.org/abs/2411.05533
https://arxiv.org/abs/2411.05533
https://deno.com/
https://nodejs.org/en/
https://doi.org/https://doi.org/10.1016/j.entcs.2004.02.050
https://www.sciencedirect.com/science/article/pii/S157106610405193X
https://www.sciencedirect.com/science/article/pii/S157106610405193X
https://etcd.io/docs/v3.5/dev-internal/logging/
https://etcd.io/docs/v3.5/dev-internal/logging/
https://github.com/etcd-io/etcd/blob/main/ADOPTERS.md
https://github.com/etcd-io/etcd/blob/main/ADOPTERS.md
https://github.com/etcd-io/etcd
https://protobuf.dev/
https://protobuf.dev/
https://grpc.io/
https://expressjs.com/
https://github.com/jepsen-io
https://github.com/jepsen-io

28]

[29]

130]
[31]

32]

[33]

[34]

35)
36]
37]
38)
30]
40}
ja1)

42]

Peiling Jiang, Fuling Sun, and Haijun Xia. “Log-it: Supporting Programming
with Interactive, Contextual, Structured, and Visual Logs”. In: Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. CHI
’23. Hamburg, Germany: Association for Computing Machinery, 2023. ISBN:
9781450394215. DOI: 10.1145/3544548.3581403. URL: https://doi.org/10.
1145/3544548.3581403.

A. B. Kahn. “Topological sorting of large networks”. In: Commun. ACM 5.11
(Nov. 1962), pp. 558-562. 1SSN: 0001-0782. DOI: 10.1145/368996.369025. URL:
https://doi.org/10.1145/368996.369025.

Cockroach Labs. CockroachDB: The Resilient, Distributed SQL Database. 2025.
URL: https://github.com/cockroachdb/cockroach.

Vladimir Mihailenco. MessagePack for Go. 2025. URL: https://msgpack.
uptrace.dev/.

MIT 6.102 course staff. Reading 17 addendum: More on the JavaScript FEvent
Loop. https://web.mit.edu/6.102/www/sp25/classes/17-callbacks-
guis/addendum.htmll 2025.

Philip O’Toole. rqlite: Lightweight, Distributed SQLite Database. 2025. URL:
https://github.com/rqlite/rqlitel

Diego Ongaro and John Ousterhout. “In search of an understandable consensus
algorithm”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association,
2014, pp. 305-320. 1SBN: 9781931971102.

Jose Javier Gonzalez Ortiz. Debugging by Pretty Printing. Blog post, https:
//blog.josejg.com/debugging-pretty/. Mar. 2021.

raft.github.io. The Raft Consensus Algorithm. 2024. URL: https://raft.
github.io/.

Jarred Sumner and the Bun Contributors. Bun: A Modern JavaScript Runtime.
2024. URL: https://bun.sh/.

Erlang/OTP Team. Erlang/OTP Official Website. 2025. URL: https://www .
erlang.org/.

Temporal Technologies. Temporal: Durable Execution for Microservices. 2025.
URL: https://github.com/temporalio/temporal.

Uber Technologies, Inc. zap: Blazing fast, structured, leveled logging in Go.
https://github.com/uber-go/zap. 2025.

Doug Woos et al. A Graphical Interactive Debugger for Distributed Systems. 2018.
arXiv: |1806.05300 [cs.DC]. URL: https://arxiv.org/abs/1806.05300.

Stefan Zager et al. Intersection Observer API. https://www.w3.org/TR/
intersection-observer/. 2023.

78

https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/3544548.3581403
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://github.com/cockroachdb/cockroach
https://msgpack.uptrace.dev/
https://msgpack.uptrace.dev/
https://web.mit.edu/6.102/www/sp25/classes/17-callbacks-guis/addendum.html
https://web.mit.edu/6.102/www/sp25/classes/17-callbacks-guis/addendum.html
https://github.com/rqlite/rqlite
https://blog.josejg.com/debugging-pretty/
https://blog.josejg.com/debugging-pretty/
https://raft.github.io/
https://raft.github.io/
https://bun.sh/
https://www.erlang.org/
https://www.erlang.org/
https://github.com/temporalio/temporal
https://github.com/uber-go/zap
https://arxiv.org/abs/1806.05300
https://arxiv.org/abs/1806.05300
https://www.w3.org/TR/intersection-observer/
https://www.w3.org/TR/intersection-observer/

	List of Figures
	List of Tables
	Introduction
	Distributed Systems in Go
	Visualizing Logs
	ShiViz
	GoVector
	DisVis
	Roadmap for this Thesis

	Background and Challenge
	ShiViz
	Space-time diagram
	Exploring the Visualization
	Parser Settings

	GoVector
	Vector Clocks
	API

	Challenge

	DisViz
	Ptest
	GoVector
	DisViz Client Server Model
	Search in DisViz
	Meeting the design goals

	Implementation
	Ptest
	Changes to GoVector
	Zap Primitives
	Logging with Zap
	Initialization

	Changes to ShiViz
	Server
	Client

	Case Studies
	etcd
	6.5840 Raft

	Evaluation
	Leader Election
	Committing Logs
	Snapshotting

	Related Work
	Conclusion
	Future Work
	Change the Server Side Language
	TypeScript
	JavaScript Runtime
	Support Clustering
	File API
	Remote Hosting

