
Partial State in Dataflow-Based Materialized Views

by

Jon Ferdinand Ronge Gjengset

MSc, University College London (2013)

Submitted to the Department of Electrical Engineering and Computer
Science in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2021
© 2021 Massachusetts Institute of Technology. All rights reserved.

Author: .
Department of Electrical Engineering and Computer Science

November 10, 2020

Certified by: .
Robert Tappan Morris

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Co-Certified by: .
M. Frans Kaashoek

Professor of Electrical Engineering and Computer Science
Thesis Co-Supervisor

Accepted by: .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Partial State in Dataflow-Based Materialized Views

by

Jon Ferdinand Ronge Gjengset

Submitted to the Department of Electrical Engineering and
Computer Science on November 10, 2020 in Partial

Fulfillment of the Requirements for the Degree of Doctor of
Philosophy in Electrical Engineering and Computer Science

ABSTRACT

This thesis proposes a practical database system that lowers latency and
increases supported load for read-heavy applications by using
incrementally-maintained materialized views to cache query results. As
opposed to state-of-the-art materialized view systems, the presented
system builds the cache on demand, keeps it updated, and evicts cache
entries in response to a shifting workload.

The enabling technique the thesis introduces is partially stateful
materialization, which allows entries in materialized views to be missing.
The thesis proposes upqueries as a mechanism to fill such missing state on
demand using dataflow, and implements them in the materialized view
system Noria. The thesis details issues that arise when dataflow updates
and upqueries race with one another, and introduces mechanisms that
uphold eventual consistency in the face of such races.

Partial materialization saves application developers from having to
implement ad hoc caching mechanisms to speed up their database
accesses. Instead, the database has transparent caching built in.
Experimental results suggest that the presented system increases
supported application load by up to 20× over MySQL and performs
similarly to an optimized key-value store cache. Partial state also reduces
memory use by up to 2/3 compared to traditional materialized views.

Thesis Supervisor: Robert Tappan Morris
Title: Professor of Electrical Engineering and Computer Science

Thesis Co-Supervisor: M. Frans Kaashoek
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Where do I even start to write an acknowledgments section for the past six
years, much less the many many early years that got me to MIT and PDOS
in the first place? Do I go chronologically? By how much of a difference
they’ve made to this thesis in particular? Or to my life more generally? I’m
genuinely more intimidated by this section than by the rest of this thesis.

I think where it feels right to start is to thank my parents for putting
up with my never-ending exploration of everything computer related. They
may have rarely understood much of what I was doing, but they encouraged
me to continue “geeking out”, and boy did I. And the appendix that explains
Noria in simpler terms would never have existed were it not for my mom’s
endless desire to understand what I was working on combined with her lack
of interest in listening to long-winded technical descriptions.

As far as this thesis is concerned, I would never have gotten here without
the help of Malte Schwarzkopf, who worked tirelessly by my side on Noria
for many years. Without him, the Noria paper would have never seen the
light of day, and many of Noria’s key features, like SQL support and joint
query optimization, would not exist. Indeed, the name Noria was his idea!

The same can be said for my advisors, Robert Morris and Frans Kaashoek.
Since I first joined MIT, they have been patient, helpful, understanding, and
insightful at every turn. No matter the topic or severity, their door has al-
ways been open. And despite my frequent detours into side-projects, or my
never-ending desire to TA “just one more class”, they never forced my hand,
and instead let me find my own way back to research productivity. I knew
from when I first met Robert during MIT visit days that I wanted to work
with him — he has this uncanny ability to digest large amounts of complex
technical information and come up with succinct, innocent-sounding ques-
tions that cut right to the core of some previously unidentified technical
challenge, design flaw, or incorrect assumption. This, combined with his
quiet, dry-wit demeanor makes Robert the person with the highest quality-
per-word ratio I have ever met. Meanwhile, Frans excels at holistic think-
ing — he has a deep understanding of which narratives work, and which
do not, without losing sight of the technical contributions, and this thesis

5

wouldn’t convince anyone of anything without Frans’ guidance. He’s also
a social being who knows everyone, and is a delight to be with in social
settings. I couldn’t have wished for a better team to guide me than the two
of them together.

When it came time to put together my thesis committee for this work, I
was delighted that I got Sam Madden on board. While I have not interacted
much with Sam up through the years, he seems to always be in a good mood,
and happy to chat. I was excited to have his experienced database eyes
on this work both to make sure I did not accidentally re-invent a subpar
version of a system that the database community invented in the 1980s,
and to critically evaluate whether Noria might actually work alongside “real
databases”. Luckily, if the defense is anything to go by, he seems to think
this is a pretty good idea!

The Noria project would not be what it is today without Eddie Kohler
from Harvard. He was key to getting the many Noria papers up through
the years over the finish line, provided invaluable experience from his past
database work, and inspired a number of interesting research directions for
Noria. Eddie also instilled in me the importance of thinking in terms of
system invariants, and even initially suggested the term “upquery”!

There have also been countless students involved with the Noria project
over its lifetime, including Jonathan Behrens, who prototyped transaction
support in Noria; Martin Ek, who wrote Noria’s durable storage backend;
Lara Timbó Araújo, Alana Marzoev, Samyukta Yagati, and Jackie Breden-
berg who extended Noria to support privacy and security policies; Nikhil
Benesch who was part of early Noria design discussions; Gina Yuang, who
designed a fault tolerance scheme for Noria; and Jonathan Guillotte-Blouin,
who implemented preliminary support for range queries. Their efforts, and
that of others, not only made Noria better in a technical sense, but also
added to the enthusiasm around the project, and inspired my continued
work on it. Without their involvement, the project may have died long ago.

I’d also like to acknowledge the influence of Frank McSherry on this work.
Not only was his take on the dataflow model a big factor in how Noria was
designed, but being able to bounce ideas off of him has been invaluable in
getting a sobering outside perspective. True to his name, Frank’s advice is

6

always direct and honest, and this work is better as a result.

The Rust programming language community in general, and the Tokio
project maintainers in particular, have also contributed enormous techni-
cal value to Noria. Not only by the tools and ecosystem they have built,
but also through a number of technical discussions that have improve the
implementation of Noria far beyond what I could have done on my own.

Beyond Noria specifically, I cannot overstate the impact my research
group, PDOS, had on my experience at MIT. Adam, Akshay, Alana, Amy,
Anish, Atalay, Cody, David, Derek, Frank, Inho, Jonathan, Josh, Lily, Neha,
Tej, and Zain, I will forever be grateful for the interesting discussions I’ve
had with you all over the years. And especially my roommate through most
of grad school, Tej Chajed, with whom I’ve spent countless hours debating
every topic on earth from system designs to the point of research to the
meaning of words. Outside of PDOS, I am also indebted to Leilani Battle
and Max Wolf for opening up my eyes to the joy of board games, which have
sustained me through many a gray winter night, and to my other roommate,
Davis Blalock, whose never-ending curiosity was always a source of delight
and fun conversation.

I got into research in the first place in large part due to Phil Stocks and
Warren Toomey from Bond University in Australia, and Kyle Jamieson,
Mark Handley, and Brad Karp from University College London, all of whom
inspired me with their wisdom, insight, curiosity, and technical skill. Each
one nudged my appetite for research, and encouraged me down the path I
ultimately took. I also want to give a nod to Martin Kirkengen, my middle
school math teacher, who showed me the joy of figuring out how things work
behind the scenes, and Dave Stanley, my middle school English teacher, who
taught me the value of not being a smart-ass all the time.

Part of what let me keep my sanity through my PhD was my continued
work at Oksnøen, an activity summer camp for kids in Norway. For several
weeks each year, I’d unplug my computer and go there to take my mind
off everything. Being outside, active, and social there recharged my mental
batteries in a way I cannot stress the importance of enough. And I owe my
ability to complete this work to my friends among the counselors there, and
the children who come back year after year and put joy in my heart.

7

These last few years, I also owe a great deal to my girlfriend, Talia Rossi,
who has always been there to listen when things have gotten tough, and to
remind me to not get too absorbed when things got hectic. Not to mention
her understanding and compassion when I sequester myself by my desk in
an attempt to finish this thesis.

And finally, I’d like to thank you who’s reading this. Over the years it’s
taken me to write this PhD, one of my primary drivers has been to build
something that would be useful to other people. If you’re reading this, it
means that I can hopefully contribute something interesting to your life,
and that makes it all worth it.

8

Prior Publication

Parts of this thesis was previously published in a conference paper [56].

9

10

Contents

1. Introduction 15
1.1. Motivation . 15
1.2. Existing Solutions . 17
1.3. Approach: Partial State . 20
1.4. Partial State in Noria . 21
1.5. Contributions . 21
1.6. Reading Guide . 22

2. Background: Noria 25
2.1. High-Level Overview . 25
2.2. Application Interface . 27

2.2.1. SQL Support . 28
2.3. Dataflow Execution . 29
2.4. Consistency Semantics . 33

2.4.1. What Can Go Wrong? 34
2.4.2. Why Does It Go Wrong? 35

2.5. Parallelism . 37
2.5.1. Read Independence 38
2.5.2. Partitioning . 38
2.5.3. Sharding . 40

3. Partial State 43
3.1. Missing State . 43
3.2. Upqueries . 45

3.2.1. Key Provenance Tracing 46

11

Contents

3.2.2. Path Selection . 49
3.2.3. Index Planning . 51

3.3. Eviction . 52

4. Maintaining Correctness 53
4.1. Partial State Inconsistencies 53
4.2. System Invariants . 55
4.3. Linear Dataflow . 57
4.4. Diverging Dataflow . 60
4.5. Merging Dataflow . 61

4.5.1. Unions . 62
4.5.2. Joins . 65

4.6. Sharding . 69

5. Implementation 73

6. Evaluation 77
6.1. Experimental Setup . 78
6.2. Benefits of Partial View Materialization 80
6.3. Rolling Your Own . 84

6.3.1. Denormalization . 84
6.3.2. Caching . 86

6.4. Partial State’s Memory Trade-off 87
6.4.1. Warming the Cache 88
6.4.2. Paying with Tail Latency 89
6.4.3. Upqueries to Disk . 91
6.4.4. Memory Use and Throughput 92

6.5. Cache Lookup Performance 94
6.6. Bringing Up New Views . 97
6.7. Skew . 100
6.8. Cost of (Partial) View Maintenance 104

7. Related Work 107
7.1. Materialized Views . 107
7.2. Caching . 108

12

Contents

7.3. Dataflow . 110

8. Discussion 113
8.1. When is Noria not the Answer? 113
8.2. Emulating Partial State . 114

8.2.1. Lateral Joins . 115
8.2.2. State Sharing . 116

8.3. Consistency . 117
8.3.1. Write Latency as Staleness 117
8.3.2. Transactions . 118
8.3.3. Stronger Consistency 118

9. Future Work 119
9.1. Efficient Migrations . 119
9.2. Ordered State . 120
9.3. Ranged Upqueries . 121
9.4. Sharding Upquery Explosions 122
9.5. Fault Tolerance . 123
9.6. Upstream Database Integration 123
9.7. Maintaining Downstream Systems 124
9.8. Eviction Strategy . 125
9.9. Cursors . 126
9.10. Column-Based Storage . 127
9.11. Time-Windowed Operators 128
9.12. Partial Key Subsumption . 128

10.Conclusion 129

A. Noria In Simpler Terms 131

13

14

1. Introduction

Many web applications written today are poorly served by the databases

currently available to them. The databases are too slow to sustain the

application load, and developers are forced to implement their own ad hoc

caching systems to make the database work for them. This thesis is an

attempt to improve that situation — to build a database tailored to the

particulars of these applications that provides the performance they need.

This chapter explores the thesis motivation in greater detail (§1.1) and

briefly outlines existing solutions and their shortcomings (§1.2). It then

sketches out the proposed approach (§1.3) and its implementation (§1.4),

and provides a list of the thesis contributions (§1.5). The chapter concludes

with a road map for how to read the remainder of the thesis (§1.6).

Non-technical readers should start with Appendix A (on page 131).

1.1. Motivation

Modern web applications typically have a number of traits in common. They

are interactive: each incoming request has a user waiting on the other end.

They are read-heavy: most interactions consume content rather than pro-

duce new content. And they experience significant skew: a small number

of people, posts, teams, and discussions make up the bulk of interactions.

15

1. Introduction

1. Insert vote

stories votes

Query

∑

⋈

Figure 1.1.: Application query execution against a traditional database.
Each application query runs in isolation, and may perform the
same work (orange) repeatedly. Writes do little work (blue),
even though they are less frequent in many applications.

Such applications are usually poorly served by the traditional relational

databases that most of them use to store and query their underlying data.

These applications tend to issue the same set of read-only queries again

and again, with the underlying data changing only infrequently. Existing

databases do not optimize for this kind of workload: they run each query

in isolation1, and thus re-do work that has already been done many times

over. This causes reads, which are the most frequent operation in these

applications, to be slow, while writes are simple and fast.

Figure 1.1 shows how application queries function at a high level in the

1Databases query caches [78, 79] cache results as long as no changes occur to the un-
derlying tables if queries are byte-for-byte identical. While attractive on the surface,
they often work poorly in practice when the workload is not read-only [52, 79].

16

1.2. Existing Solutions

1. Insert vote

stories votes

QueryCache

∑

⋈
3. Query on cache miss

2. Invalidate cache

Figure 1.2.: Application query execution against a cache in front of a
database. Application queries first check for cached results,
and only execute database queries if the results are not cached.
The application invalidates cached results so that later reads
see the effects of new writes. The application logic for both
reads (orange) and writes (blue) is more complex.

traditional model: each query the application issues executes the query plan,

represented by an aggregation and a join in the figure. Multiple concurrent

queries execute independently, even if they run the same query.

1.2. Existing Solutions

To mitigate the lackluster performance of databases for these workloads,

application authors often resort to ad hoc, error-prone techniques [49] to

exploit their applications’ workload patterns. They change their database

schemas by placing and updating computed values in the database tables,

17

1. Introduction

or introduce key-value stores that cache the result of expensive queries as

shown in Figure 1.2 on the previous page. All these techniques introduce

significant application complexity: the application authors must include

logic to ensure that the auxiliary derived state remains up to date as the

underlying data changes, that clients do not all flood the database when

results are not available in the cache, and that concurrent access to the

database and the cache never leaves the system in an inconsistent state.

Existing systems from industry [29, 33, 55] and academia [21, 24, 38, 42]

have chipped away at this problem, but are often lacking in important ways.

Some require significant developer effort, and are infeasible to implement

for any but the largest companies. Some support only a restricted set of

queries, or only provide infrastructure for developers to implement caching

themselves. Many keep the cache up to date only by evicting old results,

and cannot update existing results in-place, which is wasteful.

Eons ago [3, 4], the database community introduced materialized views as

an answer to the problem of how to execute queries that are too slow to exe-

cute on demand. Materialized views store the contents of views (i.e., named

queries) which makes those queries faster to execute [6]. The materialized

views can then be maintained incrementally, meaning results are updated

in-place, rather than invalidating stored results or re-executing queries from

scratch when the underlying data changes [22].

Figure 1.3 on the facing page shows an approximate architecture for an

incrementally-maintained materialized view system. The system updates

the materialized results in response to application writes, and reads access

only the stored results. Sadly, few commercially available databases support

materialized views, and the ones that do have significant restrictions [77].

State-of-the-art research systems support flexible materialized views [39,

74], but do not support low-latency reads. In these systems, reads cannot

18

1.2. Existing Solutions

1. Insert vote

stories votes

QueryMaterialized view

∑

⋈

2. Determine
effects of
write

3. Update view

Figure 1.3.: Application query execution against a materialized view. Ap-
plication queries only hit the view, which gives simple yet fast
reads (orange). The database must determine the effects of
every write and update the views to reflect changes (blue).

access the materialized view directly, and must synchronize with the write-

processing pipeline to get query results. Many of these systems are also

restricted to a predeclared set of queries, and cannot incorporate changes

to application queries without restarting.

Most materialized view systems do not have the ability to evict infre-

quently accessed state that accumulates over time. They thus function

poorly as a replacement for a cache: infrequently accessed results cannot be

evicted, and reads must wait on writes. Dynamic materialized views [12,

16] allow the application to materialize only a subset of each view. This

enables limited eviction, but is cumbersome for the application to manage,

and only allows coarse-grained eviction decisions (§8.2).

19

1. Introduction

1.3. Approach: Partial State

Materialized views represent an “almost there” solution to automatic cach-

ing. They provide a great foundational mechanism for storing and maintain-

ing query results efficiently in a way that meshes well with how applications

already work: by issuing SQL queries. What is missing to make material-

ized views a viable replacement for the ad hoc caching strategies today’s

applications employ is a way to make the materialized views more dynamic.

Specifically, to serve as a good cache-substitute, materialized views must

support efficiently adding new queries and evicting old results at runtime.

To bridge the gap, this thesis proposes partially materialized state2, or

partial state for short. Partial state lets entries in materialized views be

marked as missing, and introduces upqueries to compute such missing state

on-demand. This allows new queries to be added efficiently by leaving the

initial materialized view empty, and populating the view only in response

to application queries. Furthermore, as the application loses interest in old

query results, those results can be evicted to reclaim memory, which can

in turn be used to cache more important query results. In essence, partial

state enables materialized views to function like caches.

In the proposed work, the system model still looks like Figure 1.3 on the

previous page, except that the materialized view also contains parameters

whose value the application supplies at runtime. Queries to the materialized

view can then miss for a given parameter value, just like in a cache. When

they do, the database internally fills in the missing state before it responds

to the application. If the application later executes the same query, the

2The database literature sometimes refers to a view where only some columns are ma-
terialized as “partially materialized” [5]. This meaning of the term is unrelated to
the use of the term in this thesis.

20

1.4. Partial State in Noria

cache holds the result. Over time, the database evicts infrequently accessed

results to save memory and to avoid the overhead of maintaining results the

application is no longer interested in.

1.4. Partial State in Noria

The thesis includes an implementation of partial state in Noria, a state-of-

the-art materialized view system that is already optimized for read-heavy,

dynamic web applications [56]. Noria uses dataflow internally to maintain

its materialized views, a system architecture that allows fast and distributed

computation over a stream of data changes. Dataflow represents compu-

tational dependencies as a directed acyclic graph where edges represent

data dependencies, and vertices represent computations (like aggregations

or joins) over the data that arrives over the incoming edges. Partial state

upqueries flow “up” this dataflow, in the opposite direction of the data,

and trigger the retransmission of past state in the case of a cache miss. The

resulting retransmissions then use the existing Noria dataflow to process

the responses and fill in missing state. This avoids the need for separate

logic for serving cache misses and maintaining already cached state, and

simplifies the implementation.

1.5. Contributions

The main contributions of this thesis are:

• A model for, and implementation of, partial state in a dataflow-based

materialized view system.

21

1. Introduction

• Upqueries — a mechanism that populates missing state on demand.

• An analysis of the inconsistencies that arise when introducing partial

state to a distributed, high-performance stateful dataflow processing

system where updates can race with one another, and with upqueries.

• Techniques for overcoming those inconsistencies while preserving sys-

tem correctness, performance, and scalability.

• Micro and macro evaluations of the performance and memory benefits

of partial state. Experimental results suggest that the presented sys-

tem increases supported application load by up to 20× over MySQL,

and reduces memory use by up to 2/3 compared to existing approaches.

Limitations. The presented system is not without limitations: it is even-

tually consistent (§2.4), supports only a subset of SQL (§2.2.1), increases

memory use (§6.2), and reduces write performance (§6.8). Chapters 8 and

9 discuss possible avenues for mitigating some of these shortcomings.

1.6. Reading Guide

The rest of the dissertation is organized as follows: Chapter 2 describes the

Noria dataflow system. Chapter 3 introduces the partially stateful data-

flow model. Chapter 4 describes additional mechanisms that are needed to

ensure that partially stateful dataflow produces correct query results. Chap-

ter 5 details some of the implementation decisions in the thesis prototype.

Chapter 6 evaluates Noria’s implementation of partial state on a realistic

application query workload. Chapter 7 explores related work. Chapter 8

22

1.6. Reading Guide

discusses shortcomings of, and alternatives to, partial state. Finally, Chap-

ter 9 outlines future work on partial state.

For readers that are unfamiliar with database queries, materialized views,

dataflow, and application caching, but would still like to understand roughly

what this thesis is about, Appendix A starting on page 131 is for you.

23

24

2. Background: Noria

In this thesis, partial state is implemented in Noria [56], a stateful, dynamic,

parallel, and distributed dataflow system designed for the storage, query

processing, and caching needs of typical web applications. Because of the

strong connection between Noria and partial state, this chapter describes

the design and implementation of Noria in sufficient depth to understand

the remainder of the thesis.

2.1. High-Level Overview

Noria runs on one or more multi-core servers that communicate with clients

and with one another using RPCs. A Noria deployment stores both base

tables and derived views. Roughly, base tables contain the data typically

stored persistently in relational tables, and derived views hold data an ap-

plication might choose to cache to improve performance.

Compared to conventional database use, Noria base tables might be

smaller, as Noria derives data that an application may otherwise precom-

pute and store denormalized in base tables for performance. Noria stores

base tables persistently on disk, either on one server or sharded across mul-

tiple servers. Views, by contrast, are likely larger than a typical cache

footprint, because Noria derives more data, including some intermediate

25

2. Background: Noria

results. Noria stores views in memory.

Noria’s interface resembles parameterized SQL queries. The application

supplies a Noria program, which registers base tables and views. Unlike

traditional database views, Noria’s views also contain parameters that the

application supplies values for whenever it retrieves data. The Noria pro-

gram includes base table definitions, internal views used as shorthands in

other expressions, and external views that the application later queries (the

next section gives an example). It can be thought of as an extended schema

for the application that includes its queries.

Noria differs substantially from traditional databases in how it executes

queries. Rather than compute a query’s results on demand when the ap-

plication executes it, Noria does so when the query view is defined. Noria

then caches, or materializes, the contents of that view, and serves queries to

that view directly from that cache. To keep the materialized view current,

Noria internally instantiates a dataflow program to continuously process the

application’s writes and update the views as appropriate.

This kind of view materialization makes Noria well-suited for read-heavy

applications that tolerate eventual consistency, since it shifts query execu-

tion cost from reads, which are frequent, to writes, which are infrequent.

Materialization. Throughout this thesis, the word materialization is often

used as a noun. In the context of Noria, a materialization refers to any

derived computation result that Noria explicitly stores, not just materialized

views. Or, more precisely, Noria may choose to materialize intermediate

results, such as the current value of an aggregation, which do not represent

any of the application’s queries. These intermediate materializations are

still views — they have a schema and consist of rows — but do not reflect

any named views that the application has created.

26

2.2. Application Interface

2.2. Application Interface

/* base tables */

CREATE TABLE stories (id int, title text);

CREATE TABLE votes (story_id int, user int);

/* internal view: vote count per story */

CREATE INTERNAL VIEW VoteCount AS

SELECT story_id, COUNT(*) AS vcount

FROM votes GROUP BY story_id;

/* external view: story details */

CREATE VIEW StoriesWithVC AS

SELECT id, author, title, url, vcount

FROM stories

JOIN VoteCount ON VoteCount.story_id = stories.id

WHERE stories.id = ?;

Listing 2.1.: Noria program for a key subset of the Lobsters news aggrega-
tor [63] that counts users’ votes for stories.

Listing 2.1 shows an example Noria program for a news aggregator ap-

plication where users can vote for stories.

To retrieve data, the application supplies Noria with an external view

identifier (e.g., StoriesWithVC) and one or more sets of parameter values

(? is a parameter). Noria then responds with the records in the view

that match those values. To modify records in base tables, the application

performs insertions, updates, and deletions, similar to a SQL database.

Data is represented as structured records in tabular form [13, 30].

The application may change its Noria program to add new views, to

modify or remove existing views, and to adapt base table schemas. When it

does, Noria adapts the running dataflow to incorporate the changes without

restarting the dataflow engine.

27

2. Background: Noria

2.2.1. SQL Support

Unlike the iterative or graph computations that are the focus of other data-

flow systems [31, 32], Noria focuses entirely on relational operators. Noria

supports much, but not all, of SQL. This subsection describes some note-

worthy subsets of SQL that are not supported. Section 9 also details how

some of these may be supported in the future.

Non-Equality Query Parameters. Query parameters can only be com-

pared using equality. Ordered state (§9.2) could lift this restriction.

Non-Equality Joins. Join clauses may only compare columns by equality.

Views with inequality joins are known to be hard to maintain [58].

Result Set Offsets. Queries cannot contain the OFFSET operator, or a

second argument to the LIMIT operator. While Noria could support such

result set iteration (§9.9), how to evict from a view with such parameters

remains an open question.

Correlated Subqueries. Queries with correlated subqueries are not sup-

ported as these were not used by the evaluated application (§6). Such

queries also do not fall under select-project-join (SPJ) query model that in-

cremental view maintenance algorithms tend to support, and maintenance

of such queries is an open problem.

MIN/MAX Aggregates. Noria does not support the SQL minimum and

maximum aggregate functions, which are also known to be difficult to main-

tain incrementally [9]. This is because those functions may need to scan the

state of their ancestor if the current extremum is removed, which Noria does

28

2.3. Dataflow Execution

not currently provide a mechanism for. Top-k queries (ORDER BY + LIMIT)

are supported, but only in a limited fashion: if an entry in the top k is

removed, the query will not eagerly fetch its replacement. These operators

could be supported if Noria supported ordered indexes (§9.2).

2.3. Dataflow Execution

To keep its materialized views from growing stale as the underlying data

changes, Noria uses dataflow. Noria compiles all the application queries into

a joint dataflow program, which it routes all application writes through.

The dataflow is a directed acyclic graph of relational operators such as

aggregations, joins, and filters. Base tables are the roots of this graph, and

external views form the leaves. Noria extends the graph with new base

tables, operators, and views as the application adds new queries.

When an application write arrives, Noria stores it in a base table and

then injects it into the dataflow as an update. Operators process the update

and emit derived updates to their children. Eventually, updates reach and

modify the external views. Updates are deltas [8, 31] that add to, and re-

move from downstream state. Deltas are similar to mathematical multisets,

or “bags”, except that the multiplicity of an element may be negative.

As an example, a count operator emits deltas that indicate how the count

for a key has changed; a join may emit an update that installs new rows in

a downstream materialization; and a deletion from a base table generates

a “negative” update that revokes derived records. Negative updates re-

move entries when Noria applies them to a materialization, and retain their

negative “sign” when combined with other records (e.g., through joins).

Negative updates hold exactly the same values as the positives they revoke

29

2. Background: Noria

and follow the same dataflow paths.

The combined deltas an operator emits from the beginning of time con-

stitutes the operator’s current state. This state may be entirely virtual, or

the delta stream may be materialized, in which case the current multiset of

records is stored by the system. It is helpful to think of edges as being ma-

terialized, rather than operators or views, since a materialization is exactly

equivalent to the evaluation of the deltas that have flown across that edge.

Noria supports stateless and stateful operators. Stateless operators, such

as filters and projections, need no state to process updates; stateful opera-

tors, such as count, min/max, and top-k, maintain state to avoid inefficient

re-computation of aggregate values from scratch. Stateful operators also

keep one or more indexes to speed up operation. Noria adds indexes based

on indexing obligations imposed by operator semantics; for example, an op-

erator that aggregates votes by user ID requires a user ID index to process

new votes efficiently. Noria’s joins are stateless, but require that the state

of their inputs be materialized to allow an update arriving at one input to

join with all relevant state from the other.

Noria always processes updates in order along any given dataflow edge,

but chooses non-deterministically among different input edges which one to

process updates from next.

Example Execution

Figure 2.1 on the next page shows the dataflow that Noria constructs for

maintaining the Noria program in Listing 2.1 on page 27. At the top are the

entry points into the dataflow — the operators that represent the schema’s

base tables — one for the stories table, and one for the votes table. Con-

nected to the votes table is a counting aggregation operator (
∑

), which

30

2.3. Dataflow Execution

1. Insert vote

stories votes

ReadStoryWithVC

∑

⋈

2. Stream
through
dataflow

3. Update view “B
ottom

”
“Top”

Figure 2.1.: Noria’s dataflow program to maintain Listing 2.1. Text de-
scribes the update path highlighted in blue. The dataflow in-
puts are considered the “top” of the dataflow, and the leaves
are at the “bottom”. Parents are “upstream” of their “down-
stream” children.

corresponds to the internal VoteCount view. It feeds into a join operator

(./), which in turn connects to the external StoryWithVC view.

To understand how Noria uses this program to maintain the external

view, consider what happens when the application adds a new vote. The

application performs the insertion by introducing the write into the dataflow

as a single-row update with a positive sign at the votes operator. Noria

stores the update to durable storage, and then forwards the update as-is to

its children; in this case, the count operator.

The count operator performs a lookup into its own output state for the

31

2. Background: Noria

current count of the new row’s group by column value. The semantics of a

count is that an insertion increments that number by one, so the operator

emits a replacement update for the old state. In particular, the update

it produces contains a negatively-signed delta with the old count, and a

positively-signed delta with the updated count. Both deltas include the

group by column value.

The replacement is represented as a separate negative and positive delta

since the two may take different paths through the dataflow. For example,

a downstream filter might filter out stories with a vote count below a given

threshold. If the latest vote makes the count exceed the threshold, the

negative delta should not flow down the dataflow past the filter, since there

is nothing there for it to revoke. However, the positive delta should, since

the story (with its updated count) now passes the filter.

When the join receives this replacement update from the count, it looks

in its other ancestor, stories, for records that match the join column value

of each delta of the incoming update. In this case, both deltas (the negative

one and the positive one) have the same story identifier as the join value, and

the lookup finds only a single record — the matching story. The operator

then joins each delta with each matching result. This produces an update

that (still) contains one negative and one positive delta, but where each

delta now includes additional columns from the stories table.

Ultimately, this two-delta update arrives at the operator that represents

the external StoryWithVC view. The changes from the update are applied

one by one, with the negative delta removing the entry in the view with the

old vote count, and the positive delta adding the replacement entry.

32

2.4. Consistency Semantics

2.4. Consistency Semantics

To achieve high parallel processing performance, Noria’s dataflow avoids

global progress tracking or coordination. An update injected at a base

table takes time to propagate through the dataflow, and the update may

appear in different views at different times. Noria operators and the con-

tents of its external views are thus eventually-consistent : if writes quiesce,

external views eventually hold results that are the same as if the queries

were executed directly against the base table data at a single point in time.

Eventual consistency is attractive for performance and scalability, and is

sufficient for many web applications [17, 19, 33].

Eventual consistency is an inherently vague consistency model — an even-

tually consistent system may return incorrect results as long as it eventually

returns the right result. In practice, eventual consistency is often “good

enough” despite giving few guarantees, and many eventually consistent sys-

tems appear strongly consistent most of the time [28].

Ensuring even this relatively weak property requires some care. Like

most dataflow systems, Noria requires that operators are deterministic

functions over their own state and the inputs from their ancestors. Further-

more, operators must be distributive over delta addition1 so that evalu-

ating the query using tuple-at-a-time processing is equivalent to evaluating

the whole query at once. Finally, Noria operators must be commutative

so that operators with multiple inputs, like unions and joins, can process

their inputs in any order without coordination2. The standard relational

operators that Noria supports all have this property.

1d1+d2 produces the union of all rows in the deltas d1 or d2 with the signed multiplicity
of each row in the output delta equal to the algebraic sum of that row’s signed
multiplicity in d1 and d2.

2Eventual consistency with partial state requires additional mechanisms (§4).

33

2. Background: Noria

How Eventual? While Noria does not guarantee when a write is visible

in a given view, the time between when a write is acknowledged and when

it becomes visible is not completely arbitrary. A view is stale only while

the write propagates through the dataflow, so the time before the write

manifests depends only on the height and complexity of the dataflow for

the view in question. While eventual consistency allows reads to give arbi-

trary results until they eventually return the correct result, Noria reads are

generally just stale.

2.4.1. What Can Go Wrong?

Noria’s eventual consistency can lead to reads giving strange results under

certain circumstances [64]. This subsection covers a number of such cases.

Incomplete Effects. A client that reads from view V may observe some of

the effects of a base table change, like an insert, but not others. This occurs

if the dataflow that maintains V contains a diamond — a fork followed later

by a merge operator like a union or join. The dataflow update that results

from an insert into a base table is processed by one “side” of the diamond

before the other, and in the intervening time the view reflects only the

effects from that dataflow path. Indeed, if one path is much slower than

the other, multiple base table changes may flow through the fast path, and

be reflected in V , before any effects from the other path manifest.

Independent Writes. If a client writes to a base table A, and then to a

different base table B, and then reads from a view V that is downstream of

both A and B, it may see the effects of only the write to B reflected in V .

For example, if A is a table of albums, and B is a table of images, a client

34

2.4. Consistency Semantics

that creates an albums and adds an image to it may briefly see the image

appear with no associated album.

SELECT data.key FROM data

WHERE data.value IN

(SELECT MAX(data.value) FROM data)

Listing 2.2.: Query that may perpetually produce no results in Noria.

Unsynchronized Joins. Consider the query in Listing 2.2. If the maximum

value changes frequently enough, then the outer and inner query may be

perpetually “out-of-sync”. The current maximum may not yet be present

in the outer query, or a new maximum value may not yet be present in

the inner query. The net result is that the result set of the query would

be empty, even though a traditional database would never yield an empty

query result. If the max value changes less frequently, and Noria has time

to process a new update through both dataflow paths (the inner and the

outer) before the maximum changes again, Noria will produce the expected

non-empty query result.

2.4.2. Why Does It Go Wrong?

Exactly how strange these phenomena become, and how often they manifest,

depends on the nature of the queries and the updates. For example, queries

that access each base table only once produce results that are stale, but

never results that do not match the results a traditional database would

have given given the same base table data. Queries with self-joins on the

other hand are particularly prone to these temporary inconsistencies. For

35

2. Background: Noria

example, a join that computes a parent-child relationship between records

may briefly reflect a new record as a child, but not as a parent, or vice-versa.

This is all because these inconsistencies arise due to race conditions in the

dataflow graph. In particular, if two deltas resulting from a single upstream

change race against each other down different dataflow paths that later

converge, one delta will be applied to the final view before the other. This

leaves the view in an intermediate state where a partial effect of the original

update can be observed until the other delta arrives.

SELECT id, state FROM data WHERE state = 1

UNION

SELECT id, state FROM data WHERE state = 2

Listing 2.3.: Query that may produce duplicates briefly in Noria.

Listing 2.3 gives an example of a query with this kind of race condition.

Imagine that the application changes the state where id = 42 from 1 to

2. In Noria, this is represented by a removal of the now-outdated record,

and an addition of the updated record. The removal follows the dataflow

path for WHERE state = 1, while the addition follows the dataflow path for

WHERE state = 2. One of those updates will arrive first at the union, and

the materialized view. If it is the removal, then reads will not see a record

with id = 42 until the addition is processed. Conversely, if the addition

arrives first, reads will see two records with id = 42 (one with state = 1

and one with state = 2) until the removal is processed.

A query that accesses each base table only once never makes an update

race “with itself”, and thus never produces intermediate output, only stale

output. A self-join on the other hand frequently makes updates resulting

from one base table change race, and can therefore exhibit these “strange”

36

2.5. Parallelism

results.

To mitigate these kinds of inconsistencies, Noria would either need to

enforce that no reads can happen between the application of one “half”

and the other, or somehow hide the partial effects of applying only the

first part. The former requires reads to flow through the dataflow, or at

least synchronize closely with it, which would likely come at a penalty to

read latency. The latter would be provided through something akin to

multi-version concurrency control, which allows low-latency reads, but adds

significant system complexity.

Instead, Noria works under the assumption that queries that produce

these inconsistencies are rare for Noria’s target applications, or that appli-

cation developers direct those queries where strong consistency is necessary

to other, better suited systems.

2.5. Parallelism

Servers have many cores, and high-performance systems must use these

cores to take full advantage of the hardware. Noria does so in several ways.

First, it allows reads to happen independently from any number of threads

concurrently. Second, it allows different threads to process writes in dis-

joint parts of the dataflow concurrently. And third, it supports sharding

individual operators, or cliques of operators, so that multiple threads can

process disjoint subsets of the data concurrently through the same dataflow

segment3. These three mechanisms are described further below.

3Often referred to as “data-parallel execution”.

37

2. Background: Noria

2.5.1. Read Independence

Since Noria is designed for read-heavy workloads, its architecture is op-

timized to allow reads to go ahead at full speed whenever possible. In

particular, Noria does not synchronize reads with reads or writes.

This is achieved through a concurrency primitive that maintains two in-

stances of each materialized view, with deduplication between them [70].

Reads go to one view, and writes to the other. Readers see updates to

the view only when a writer exposes those changes explicitly — the writer

flips an atomic pointer to the other view, and then waits for all readers

to exit the old view before modifying it again. The scheme is similar to

user-space read-copy-update, except that new copies are not continuously

created. This flip can be done on every update, as Noria currently does,

or only occasionally to amortize the cross-core communication penalty and

the wait period for the writer. Crucially, readers do not take locks, and

generally operate only on core-local cache lines.

This design allows Noria to use any number of threads to serve reads from

any view. As long as there are cores available, Noria can use additional

threads to perform view lookups, as well as low-level networking work like

request serialization and read/write system calls.

2.5.2. Partitioning

The dataflow model is inherently streaming, and thus well-suited for dis-

tributed deployments. Operators are independent and communicate only

through their streams, so Noria can place them on different cores, or hosts,

and use appropriate messaging fabrics to connect them.

To take advantage of this, Noria divides the dataflow graph into a number

of sub-graphs called thread domains. Only a single thread can process up-

38

2.5. Parallelism

dates in a given thread domain at a time (except with sharding; see below),

and any update that enters a thread domain is processed to completion

within the domain before another update is processed.

Noria never shares state between thread domains, so state access is not

guarded by locks. Thread domains communicate with each other only

through messages sent across the edges of the dataflow, or in the case of

upqueries, through messages sent on dedicated upquery paths (§3.2.2). All

such communication can happen either over the network if the other thread

domain is on a different host, or over an in-memory channel if it is local.

Since thread domains share nothing, Noria duplicates state across bound-

aries when needed. For example, a join operator at an incoming edge of a

thread domain must be able to perform lookups into the state of its an-

cestor, which sits in a different thread domain. In such a case, Noria will

create a thread-local copy of the join’s ancestor’s state that it can use lo-

cally. Noria’s thread domain assignment heuristics will attempt to draw

domain boundaries such that this kind of duplication is unnecessary. For

example, it will prefer drawing a domain boundary just before an aggrega-

tion (which does not need to look up in the state of its ancestor), and avoid

drawing a domain boundary just before a join.

Join Consistency

The thread-local copy of lookup state, such as for joins, serves a second

purpose: it mitigates a race condition that would otherwise arise from cross-

domain state lookups. Consider a join operator J with parents L and R. If

R’s state was in a different domain than J, then the following can happen:

1. R receives and incorporates a delta dR that adds row rR.

39

2. Background: Noria

2. J receives a delta dL from L that adds row rL.

3. J performs a lookup in R’s state based on dL’s join key. The result

includes rR, so J emits a delta that adds rL ./ rR.

4. dR arrives at J.

5. J performs a lookup in L’s state based on dR’s join key. The result

includes rL, so J emits a delta that adds rL ./ rR a second time.

This issue arises because the lookups bypass deltas in flight between R

and J; the lookups get to observe “the future”. This erroneously causes J

to incorporate the same data at two points in time, which would lead to

perpetually incorrect results in the downstream views.

Duplicating R’s state across the domain boundary avoids the problem —

since thread domains process all updates within the domain to completion,

there can be no deltas in flight between R and J, and the lookup will never

observe future state.

2.5.3. Sharding

To accommodate applications with such a high volume of writes that the

processing at a single operator is a bottleneck, Noria supports sharding an

operator. Multiple threads split the work of handling updates to a sharded

operator, and operate like independent, disjoint parts of the dataflow.

Noria implements static hash partitioning: it decides how to shard an

operator when the operator is added to the dataflow, and this sharding

does not change over the runtime of the application. Sharding by value

ranges and adjusting the sharding dynamically is left for future work.

40

2.5. Parallelism

Noria shards operators primarily based on how they access state. For ex-

ample, an aggregation that performs lookups into its own state is sharded by

the key column of those lookups. Any other sharding would mean that pro-

cessing one update would require coordination among all shards. A join is

sharded by the join key for the same reason. Base tables are sharded by the

table’s primary key. Operators that do not perform lookups (e.g., unions)

continue the sharding of their ancestors to avoid unnecessary resharding.

To shard an operator, Noria introduces two additional nodes in the data-

flow: a sharder placed upstream of the sharded operator, and a shard merger

downstream of it. The sharder routes incoming updates to the appropriate

shard of the sharded operator, and the shard merger is a union operator

that combines the output of all the shards to a single downstream output

stream. Noria then eliminates unnecessary sharders and shard mergers,

such as if an operator and its ancestor are sharded the same way.

Sharding boundaries are also natural thread boundaries, though two con-

nected thread domains may also be sharded differently. Or, phrased differ-

ently, Noria may partition a chain of operators that are all sharded by the

same column into multiple thread domains to increase parallelism.

41

42

3. Partial State

Noria without partial state, as described in §2, uses significant amounts of

memory. All results for all queries must be materialized, and unlike tra-

ditional caching approaches, unimportant cached results are not evicted to

free up memory. To address the high memory use of traditional material-

ized views, this thesis proposes partially materialized state, often shortened

to partial state. Partial state enables Noria to store and maintain only a

subset of a materialized view’s contents, and to compute missing state on

demand. Partial state also enables Noria to implement eviction, so that the

materialization cost is kept low even as the underlying workload changes.

This chapter discusses the partially stateful model and its components.

The next chapter examines the practical challenges that arise when partial

state is implemented in a dataflow system.

3.1. Missing State

Partial state allows state to be missing. Missing state indicates that a

particular value is not yet known, and must be computed on demand if the

application queries for it. State can be marked as missing both in state that

is internal to the dataflow, like the state of an aggregation, and in externally

visible state like Noria’s query result caches.

43

3. Partial State

1 id: 1, author: A A

2 id: 2, author: B B

(3) missing (B)

4 id: 4, author: A A

1

2

3

4

A

B

∅ C

D

By id By author

Figure 3.1.: Multiple indexes in a single view in Noria. Even though some
rows for author B are present, some are missing, so the entry
for B is missing in the author index. Even though there are no
rows for author C, the index entry is not marked as missing,
which would happen if Noria has already checked that there are
indeed no rows in the base tables that match author C.

With partial state, most Noria state starts out as missing, and is popu-

lated according to what data the application queries for. This also allows

Noria to quickly adopt new views, since in the common case no computation

need happen when additional operators are added.

Missing state manifests as missing entries in indices. Indexes over a given

state are either all partial or none of them are. This may seem strange

given how indices work in traditional relation databases. Figure 3.1 gives

an example of two partial indices over a view that holds a unique story

identifier and the story’s author. One index is over the primary key column

id, and one is over the story author. Even though some rows with author

B are present, the index entry for author B is still considered missing, as

not all rows with author B are present. This is necessary, as otherwise a

query for stories authored by B would return a result with missing rows.

44

3.2. Upqueries

While there are no rows for authors C or D, C is considered complete

because Noria has checked upstream that there are indeed no stories written

by C. For D, Noria has not yet done an upstream check, and therefore does

not know what the true result set is.

If Noria encounters missing state while processing an update, the update

must not affect query results that the application has indicated interest in.

In such a case, Noria has two options: eagerly compute the missing state be-

fore proceeding, or discard the update. To avoid unnecessarily maintaining

unimportant cached results, Noria drops updates in this case.

An important corollary of the above is that partial state must be enabled

on all stored state below any partial state. It is illegal for the dataflow to

contain state for two nodes A and B where A is an ancestor of B, A uses

partial state, and B does not use partial state. To see why, consider what

would happen if an update arrives at A for a missing entry. A would discard

that update, and B’s state would never reflect it and grow perpetually stale.

3.2. Upqueries

If an application requests data that is found to be missing, Noria issues an

upquery to compute the requested data. Upqueries flow “up” the dataflow

graph, towards the base tables at the “top”, and constitute a request for

the target of the upquery to retransmit past data. Upqueries may recurse

if the requested state is not available at the initial target.

The response to an upquery takes the form of a regular dataflow update

that flows down the dataflow. It combines all past deltas pertinent to the

upquery into a single update, and holds only positive deltas that represent

the current set of relevant records.

45

3. Partial State

Operators are not generally aware if they are processing an update that

resulted from an upquery response. The upquery response flows in-line with

other dataflow updates, and follows the edges of the dataflow. However,

upquery responses are special in two key ways. First, they only propagate

along edges towards the operator that issued the upquery, so that one up-

query does not populate the relevant data in the state of every operator.

And second, if an operator encounters missing state while processing an

upquery response update, it does not discard that update as it would a

regular dataflow update. Instead, it eagerly does the work necessary to fill

the missing state and then process that update.

When an application query encounters missing state in a view, Noria

needs to know what upqueries to issue to fill that state. The set of upqueries

for each view is that view’s upquery plan. Noria determines upquery plans

by analyzing each view’s query when the application first installs that view,

and deciding how best to recompute its results. It does so by finding all pos-

sible upquery plans, choosing among them, and then informing all involved

domains of the chosen plan. There may be multiple possible candidates if

there are multiple equivalent ways to compute the missing state, such as by

changing the direction in which joins are executed as explained below.

3.2.1. Key Provenance Tracing

To determine what upqueries can reconstitute missing entries in a given

index, Noria must trace the view’s parameter column (? in the query) back

to a column in upstream state. The intuition here is that in order to answer

the application’s query of “give me the results where column C has value

x”, Noria must be able to retransmit rows where C = x from somewhere.

Or, phrased differently, when the output for C = x is missing, Noria must

46

3.2. Upqueries

id title story_id user

story_id vcount

story_id title vcount

stories: votes:

VoteCount:

StoriesWithVC:

Figure 3.2.: Key provenance for each column in the StoriesWithVC view
from Listing 2.1. Notice that story id has multiple base ta-
ble origins, and vcount does not trace back to any base table
columns. The query only uses story id as a parameter, so only
its provenance is used to choose the upquery path.

have a way to get the inputs that generate C = x. As an example, if a

view counts books by a given author, and the current count for author a is

missing, Noria must be able to somehow produce all books by author a.

More generally, in order to recompute the results where C = x in some

view V , Noria must determine the key provenance of C; where C “came

from”. Noria computes key provenance by tracing columns “up” the data-

flow to where they originate, which results in a provenance graph. Figure 3.2

shows the provenance graph for the StoriesWithVC view from Listing 2.1

on page 27, and illustrates two important properties of key tracing:

47

3. Partial State

1. An output column may trace to multiple input columns if it corre-

sponds to the join column in a join, or if it passes through a union.

The provenance of the story id column, for example, traces both to

stories.id and votes.story id.

2. An output column may be entirely computed, and thus have no as-

sociation with a column in the operator’s inputs. For example, the

vcount column is computed by the VoteCount aggregation, and does

not exist in the input data.

In Listing 2.1, Noria is asked to parameterize StoriesWithVC by the

story id column. The key provenance graph tells Noria that it can request

input data for a given story id by sending an upquery either to the stories

table using the id column, or to the votes table using the story id column.

Broken Provenance. Consider what would happen if Listing 2.1 had

WHERE vcount = ? as its parameter instead. If an application query misses

in that case, the upquery would have to be sent to VoteCount, and query

for “all stories whose vote count is x”. If that state is present, all is well,

but if VoteCount is missing the state for vcount = x, there is a problem:

Noria has no way to compute the missing state except by retransmitting all

state in votes without using an index. This is equivalent to a full table scan

in a traditional database. Noria’s only1 efficient option is to disable partial

state for VoteCount. This ensures that any upquery to it never misses, and

therefore a table scan is never needed. Instead, the table scan is performed

only once: when the view is initially added. But this comes at the cost of

maintaining the entire result set of the query for all parameter values.

1Noria cannot disable partial state just for StoriesWithVC, since that would place a
partial index above a non-partial index.

48

3.2. Upqueries

Asymmetric Provenance. The join in Listing 2.1 is an inner join (./), so

Noria can upquery either side. If it upqueries the “left” side of the join,

normal forward processing performs the necessary lookups into the “right”

side of the join, and vice-versa. However, if the query used a left or right

outer join, Noria must upquery a particular side of the join. For a left join,

it must upquery the left ancestor, or risk missing rows in the left ancestor

that have no matching rows in the right ancestor. This would result in

those rows never appearing in downstream views, which violates eventual

consistency. For a right join, the same logic applies, but mirrored to the

right ancestor. Noria does not support full outer joins.

Disjoint Provenance. If the provenance of a column crosses a union, all

ancestors of that union must be upqueried, not just one as is the case with

upqueries through a join. Unlike with a join, the regular dataflow processing

of the upquery response through a union does not bring along results from

the other ancestors, so the requesting operator must ask them individually.

3.2.2. Path Selection

Once Noria has obtained a set of candidate upquery paths through key

provenance, it must decide on an upquery plan based on those paths. If

there is only one candidate, the choice is trivial. But with symmetric joins,

multiple candidate paths may be generated. Here, Noria is free to use

whatever heuristics it sees fit to pick which side of the join to send upqueries

to. For example, it may choose to send upqueries to the larger of the joined

inputs so that fewer lookups are needed when processing the response.

Key provenance tracing produces upquery paths that reach all the way

back to the origin of a column, which is usually located at the base ta-

49

3. Partial State

bles. However, it would be inefficient for operators to issue upqueries all

the way to the base tables on every miss. Some intermediate state may

already have the necessary data, and the upquery data could be sourced

from there instead. Noria therefore trims the paths from key provenance

such that only the suffix of operators starting at the last materialized state

are included. For example, in Figure 3.2, if Noria decides to upquery

StoriesWithVC through VoteCount, the upquery path would source its data

from VoteCount, not from votes.

If an upquery reaches its origin and finds that the requested state is miss-

ing there too, a second upquery is issued using the origin’s upquery paths,

and only when that upquery resolves does the original upquery resume.

Upqueries may recurse all the way up to the base tables this way, but avoid

doing so if any intermediate state can be re-used.

This process leaves Noria with a set of paths to upquery when it en-

counters a missing entry. In many ways, the procedure is similar to that

of traditional query planning and query optimization, and some techniques

from there could likely be applied. At the same time, the desire to use the

existing dataflow to satisfy upqueries introduces some unique challenges.

First, planning cannot change the order of existing operators, since they

are part of the running dataflow that is already maintaining other views.

To modify them, Noria would have to stop the dataflow to rewire the edges.

Second, upquery plans still rely on forward incremental dataflow to compute

the final results — a join strategy that cannot be executed incrementally is

no good, no matter how well it might perform.

Once Noria has a plan, that plan is communicated to all domains that

appear along each path in the plan. This is necessary so that each domain

knows where to route upquery responses that are part of a given plan, and

does not disseminate the response to the entire downstream dataflow.

50

3.2. Upqueries

An Alternative Approach. In theory, partial state could use a separate

execution mechanism to satisfy upqueries, rather than re-using the existing

dataflow. This would allow the use of more traditional query optimiza-

tion techniques that do not work in a dataflow tuple-at-a-time processing

model, but would come at the cost of managing two disjoint query exe-

cution pipelines: one “forward” pipeline for incremental updates and one

“backward” pipeline to query missing state. Noria does not do this, and all

upqueries go through the dataflow.

3.2.3. Index Planning

When an upquery arrives at the materialization it wants to source data

from, Noria needs an efficient way to find the requested data. Specifically,

Noria needs an index on the materialization whose key matches the lookup

key of the upquery. Therefore, when Noria announces the upquery plan,

it may also add additional indices to existing state to facilitate efficient

execution of the new upqueries. In this way, upquery plans adds additional

indexing obligations that Noria must take into account.

The key provenance information from Figure 3.2 gives Noria the informa-

tion it needs to set up these indexes: an index is needed on the upquery key

column on each state on the chosen upquery paths. In the case of the view

from Listing 2.1, an index is needed on StoriesWithVC.story id, as well

as either stories.id or both VoteCount.story id and votes.story id2,

depending on which upquery path Noria chooses across the join.

2An index is needed on votes.story id since the upquery to VoteCount may recurse.

51

3. Partial State

3.3. Eviction

Over time, the subset of data that the application cares about tends to

change. When it does, query results that were accessed previously may

no longer be important to maintain as they are no longer accessed. Partial

state allows Noria to cater to such changing application patterns by evicting

state entries after they have been computed. When an entry is evicted, it

is marked as missing, and subsequent requests for that state trigger an

upquery as usual for missing state.

52

4. Maintaining Correctness

Partial state significantly changes how the underlying dataflow system com-

putes query results. And without care, those changes may cause the system

to violate eventual consistency. This chapter gives an informal correctness

argument for how Noria preserves eventual consistency. Section 4.1 outlines

inconsistencies that can arise because of partial state. Section 4.2 introduces

system invariants that Noria upholds to avoid those inconsistencies and en-

sure eventual consistency. Section 4.3 argues why a single strand of dataflow

yields correct results. Section 4.4 expands that argument to dataflow with

multiple diverging branches. And Section 4.5 completes the argument by

also considering dataflow where multiple strands join together. Finally,

Section 4.6 discusses how partial state interacts with sharded dataflow.

4.1. Partial State Inconsistencies

The most challenging change from partial state is that deltas may be com-

bined and re-processed through the dataflow as single, consolidated updates

in response to upqueries. Since these responses logically overlap with deltas

that may still be in the dataflow, Noria must take care to guarantee eventual

consistency no matter how upquery responses and deltas are interleaved.

This section outlines several inconsistencies that can arise as a result of

53

4. Maintaining Correctness

partial state. While Noria could attempt to fix these inconsistencies after

they manifest, Noria has no mechanism for doing so. Noria instead aims

to not introduce such errors in the first place, through the mechanisms

described in the remainder of the chapter.

Double Application. An upquery requests the current state of an oper-

ator, which represents all earlier deltas at that operator. Therefore, after

a delta flows through an operator, a subsequent upquery to that operator

receives a response that incorporates that delta. This immediately poses a

problem: if a stateful downstream operator applies both the delta and that

upquery response, it will apply the delta twice, leading to incorrect state.

Skipped Deltas. Noria must sometimes not process a delta in order to

avoid the duplication mentioned above. However, it must do so carefully,

or it might skip a delta that succeeds the upquery response, and thus must

be applied. If Noria skips such a delta, that delta will never manifest — the

upquery response does not contain it, and the delta itself was skipped.

Upquery Races. Some queries produce dataflow that diverges and then

converges again so the edges form a diamond shape. This happens if the

query performs a self-join, or otherwise accesses a given base table more

than once. When this occurs, upquery responses needed to fill missing

state may race with one another, or with other dataflow deltas, since the

operator where the strands converge processes updates in an arbitrary order.

This magnifies the challenge of mitigating double applications and skipped

deltas, since the interleaving of different strands must also be considered.

54

4.2. System Invariants

Lost Deltas. If Noria encounters missing state while processing a delta, it

discards that delta (§3.1). However, Noria cannot discard deltas that would

affect downstream state that is not missing. If it did, the downstream state

would be left permanently stale. Noria must therefore ensure that it is

always safe to discard a delta that encounters missing state.

Upquery Deadlock. If Noria encounters missing state while processing an

upquery response u, it faces a dilemma. The downstream dataflow is waiting

for u, but Noria does not have the state it needs to continue processing u.

To fill the missing state, Noria would have to send another upquery and

eventually process that upquery’s response. But that response succeeds u,

which Noria cannot process yet, which makes the system deadlock. While

Noria could set aside u and process subsequent updates, doing so might

invalidate u. Recall that upqueries are supposed to be snapshots of an

operator’s current state, so any delta that follows u is not reflected in u. By

processing a later delta d ahead of u, Noria is effectively telling downstream

operators that d precedes u, and thus that d is accounted for in u. As a

result, a downstream operator may discard d in anticipation of u to avoid

applying d twice. But since u does not actually contain d, d is never applied.

4.2. System Invariants

To ensure that the inconsistencies in the previous section cannot occur,

Noria upholds the following safety invariants:

Invariant I. All reads reflect each base table change at most once.

This invariant ensures that Noria does not duplicate base table changes,

such as by double-counting an insert or deletion. If this invariant were

55

4. Maintaining Correctness

violated, a base table insert might be applied twice, and make a view per-

petually duplicate that row in its result set. The invariant also ensures that

Noria does not double-apply deltas, as doing so would ultimately cause the

base table change that spurred the delta to manifest twice.

The invariant does not preclude a value present in a given base table row

from appearing multiple times in a downstream view. If a query explicitly

duplicates rows with a UNION, or a value appears in multiple output rows

through a JOIN, then each base table change is still reflected at most once.

Invariant II. A read that observes all effects of a given base table change

also observes all effects of earlier changes to that base table that follow the

same dataflow path.

This invariant ensures that Noria does not expose results where deltas

have been dropped, so that downstream views ultimately reflect each base

table change. The invariant is scoped to the same dataflow path so Noria

can process updates on parallel strands of dataflow concurrently (§2.5). As

long as Noria upholds the invariant on each strand in isolation, no updates

that affect readable state may be dropped anywhere. Dataflow path here

refers to a complete dataflow path that spans a linear sequence of connected

operators from a base table to the materialized view of the read in question.

If two paths overlap in a strict subset of the dataflow edges, those are still

independent paths for the purposes of this invariant.

Invariant III. If an operator encounters missing state while processing a

record r in an update, downstream state that reflects r must be evicted.

This invariant ensures that when Noria discards a delta due to missing

state (§3.1), it is safe to do so. Without this invariant, an update may be

discarded even though downstream entries hold data that would grow stale

56

4.3. Linear Dataflow

without that update. For example, consider what happens if an operator

counts the number of votes per author, and contains a count of 7 for the

author “Jane”. Then, the state for “Jane” is evicted from some operator

upstream of the count. If an update now arrives at the operator where

“Jane” is missing it would discard the update, and the downstream count

would remain perpetually stale, violating Invariant II.

Eventually Exactly Once. Together these invariants ensure that Noria’s

views eventually reflect every base table change exactly once. Each base ta-

ble change triggers updates in the dataflow, and by Invariant II none of those

updates can be dropped if the system is to make progress. Furthermore, by

Invariant III, those updates cannot be discarded early if they affect down-

stream reads. The “at most once” from Invariant I must therefore mean

that each base table change is reflected exactly once if the system makes

progress. And since Noria’s operators commute, as long as all updates are

applied, the correct output must eventually result.

4.3. Linear Dataflow

Consider a single strand of dataflow, where each operator has at most one

input and at most one output. For partial state to be correct, it must be

the case that computing missing results with an upquery that combines all

past deltas into a single update produces the same results as processing the

same deltas one-at-a-time.

Recall that the deltas that flow through the dataflow represent changes

to the current state of the operator that emitted the delta. If a base table

produces a negative delta for a row r, it means that r is no longer in that

57

4. Maintaining Correctness

base table’s current state. An upquery fetches current state — the sum of

all past deltas emitted by the queried operator1 — and feeds it through the

same chain of dataflow operators that individual deltas go through.

For upquery processing to be equivalent to one-at-a-time delta processing,

it is necessary that processing a combined update through all the dataflow

operators is equivalent to processing each of the combined updates through

those same operators. Or, more formally, with operators f1 through fN ,

past deltas d1 through dM , and
∑

denoting delta addition:

M∑
i=1

(fN ◦ · · · ◦ f1) (di) = (fN ◦ · · · ◦ f1)
(

M∑
i=1

di

)

With a single operator, this trivially holds since all Noria operators are

distributive over delta addition:

M∑
i=1

f (di) = f

(
M∑
i=1

di

)

Using this property, and the fact that all operators produce and consume

deltas, it is possible to “shift” the delta sum across operator compositions:

1If the dataflow encounters missing state when processing an update, it discards that
update. Thus, there may be state missing in an operator’s state. If an upquery
encounters such missing state, it triggers an upquery for that state before it proceeds.

58

4.3. Linear Dataflow

M∑
i=1

(fn+1 ◦ fn) (di) =
M∑
i=1

fn+1 (fn (di))

= fn+1

(
M∑
i=1

fn (di)

)

= fn+1

(
fn

(
M∑
i=1

di

))

= (fn+1 ◦ fn)

(
M∑
i=1

di

)

Therefore, the same ultimate state results whether the system executes

each dataflow operator in sequence on individual deltas, or whether it first

sums all the deltas into a single update, and then executes the operators in

sequence over that. Or, stated differently, if normal dataflow processing does

not violate the correctness invariants, the same must be true of processing

a combined upquery response2.

Because the first two invariants do not deal with missing state, the ar-

gument above concerns itself only with the processing of updates in the

normal case. However, the system must also uphold Invariant III, which

dictates that Noria cannot discard messages that may affect non-missing,

downstream state. This is not captured by the argument above, but hap-

pens to be the case for linear sequences of dataflow. Upqueries traverse

the dataflow from the leaves and up, and fill entries from the top down as

the responses flow down the dataflow. Thus, if some key k is present in a

materialization m, it must also be present at every materialization above

2This assumes that Noria does not erroneously combine upquery responses with deltas
that the response already contains.

59

4. Maintaining Correctness

m from the upquery chain that ultimately produced the entry for k in m.

Since updates are discarded only when they encounter missing state, a miss

on k anywhere in the dataflow implies that k is also absent downstream3.

When Noria evicts state in the middle of the dataflow, as described in

§3.3, the above argument no longer holds: a miss mid-way down the dataflow

no longer implies that all related state is absent downstream. Therefore, to

uphold the property in the face of evictions, Noria issues evictions down-

stream whenever it evicts entries from state in the middle of the graph. This

ensures that any future update that touches the evicted state can safely be

discarded, as any relevant downstream state has been discarded as well.

The system invariants are thus upheld for any linear operator sequence.

4.4. Diverging Dataflow

Dataflow graphs in real applications are rarely linear. They have branches

where the dataflow diverges, such as if two views both contain data from the

same table. When the dataflow diverges, upstream operators may receive

multiple upqueries for the same data. This happens if multiple downstream

views encounter missing entries that rely on the same upstream data.

The primary concern is that the multiple upquery responses not result

in data duplication, and thus violate Invariant I. If a stateful operator

processes two upquery responses that both reflect some base table change,

the effects of that change would now be duplicated in the operator’s state.

Since upquery results only ever flow along the same edges that the up-

query followed on its way up the dataflow (§3.2), such duplicates are not a

concern for materialization not on the upquery path. Those other branches

3Though see §4.5.2 for an important exception in the case of certain joins.

60

4.5. Merging Dataflow

will never see the upquery response in the first place. Duplication is only a

concern for materializations that lie on the upquery path.

Section 3.2.2 noted that Noria trims upquery paths such that they only

reach back to the nearest materialized state to the target. Beyond improv-

ing efficiency, this is also important for correctness. It ensures that there

are no stateful operators on the upquery path between the source and the

destination. If there were, that operator’s state would be used as the up-

query source instead. Since it is safe to process the same record through

a stateless operator multiple times, this ensures that the processing of the

upquery response on the path to the target state never duplicates effects.

Thus4, partial state on divergent dataflow upholds the system invariants.

4.5. Merging Dataflow

Most applications use joins or unions in their queries, which cause strands of

dataflow to combine. Such dataflow constructions introduce the possibility

of data races. Now, updates may arrive at an operator from two inputs at

the same time, and the operator may process either one before the other.

Furthermore, upqueries must now retrieve data from all ancestors, and

ensure that they combine such that the system invariants are maintained.

How upqueries work across multi-ancestor operators depends on the se-

mantics of that operator. The only two relational multi-ancestor operators,

unions and joins, are discussed below.

4Assuming that Noria does not erroneously upquery for, and incorporate the results of,
the same upstream state multiple times.

61

4. Maintaining Correctness

4.5.1. Unions

Unions merely combine the input streams of their ancestors, and include

little processing beyond column selection. An operator that wishes to up-

query past this operator must therefore split its upquery; it must query each

ancestor of the operator separately, and take the union of the responses to

populate all the missing state.

With concurrent processing, the multiple resulting responses may be arbi-

trarily delayed between the different upquery paths, which can cause issues.

Consider a union, U , across two inputs, A and B, with a single materialized

and partial downstream operator C. C discovers that it needs the state for

k = 1, and sends an upquery for k = 1 to both A and B. A responds first,

and C receives that response.

Imagine that both A and B send one normal dataflow message each, and

both include data for k = 1. When these messages reach C, C faces a

dilemma. It cannot drop the messages, since the message from A includes

data that was not included in A’s upquery response. If it dropped them,

those updates would be lost, and results downstream would not be updated,

violating Invariant II. But it also cannot apply the messages, since B’s mes-

sage includes data that will be included in B’s eventual upquery response.

If it did, that data would be duplicated, which violates Invariant I.

To mitigate this problem, unions must buffer upquery results until all

their inputs have responded. In the meantime, they must also buffer up-

dates for the buffered upquery keys to ensure that a single, complete, up-

query response is ultimately emitted. Listing 4.1 on the next page shows

pseudocode for the buffering algorithm.

For unions to buffer correctly, they must know which upquery responses

belong to the “same” upquery. If there is only one upquery path through

62

4.5. Merging Dataflow

if is_upquery_response(d):

buffered <- buffer[upquery_path_group(d)][key(d)]

if len(buffered) == ninputs - 1:

this is the last upquery response piece.

emit a single, combined response

emit(sum(buffered) + d)

delete buffered

else:

need responses from other parallel upqueries.

buffered[from(d)] = d

discard(d)

else:

this is a normal dataflow delta.

see if any changes in the delta

affect buffered upquery responses.

for group_id, key_buffers in buffer:

for change in d:

change_key <- change[key_column(group_id)]

note the dependence on from(d) below.

changes from parents that have not produced

an upquery response yet are ignored; they

are represented in the eventual response.

buffered <- key_buffers[change_key][from(d)]

if buffered:

buffered += change

always emit the delta, as other downstream

state may depend on it. any operator that is

waiting for missing state will discard.

emit(d)

Listing 4.1.: Pseudocode for union buffering algorithm upon receiving
a delta d. buffer starts out as an empty dictionary.
upquery path group is discussed in the text.

63

4. Maintaining Correctness

∪1

∪2

∪3

a

c

e

b

d

f

v

Figure 4.1.: Chained unions. Only nodes a, b, and v hold state. Highlighted
in blue are two upquery paths that ∪1 must combine upquery
responses for.

the union to each ancestor, this is straightforward, as all upquery responses

for a key k are responses to the same upquery, and should be combined.

However, in more complex dataflow layouts, this is not always the case.

Figure 4.1 shows a dataflow segment where the precise grouping mech-

anism is important (upquery path group in the code listing). There are

three unions in a chain, which makes eight distinct upquery paths. If v

encounters missing state, it must therefore issue eight upqueries, one for

each path. a and b both appear as the root of four paths, and will be up-

queried that many times. The issue arises at the unions, which need to do

the aforementioned union buffering.

64

4.5. Merging Dataflow

Ultimately, a single upquery response must reach v. This means that

∪3 must receive two upquery responses, one from e and one from f , which

it must then combine. So ∪2 must produce two upquery responses, one

destined for e and one for f . This in turn means that ∪2 must receive

two upquery responses from c, and two from d. Which again means that

∪1 must produce four responses, two for c and two for d, out of the eight

responses it receives (four from a and four from b).

These are all the upqueries that pass through ∪1:

1. a → c → e

2. a → c → f

3. a → d → e

4. a → d → f

5. b → c → e

6. b → c → f

7. b → d → e

8. b → d → f

∪1 must combine these so that each downstream union receives the re-

sponses that they expect from their inputs. This grouping achieves that:

1/5. a/b → c → e

2/6. a/b → c → f

3/7. a/b → d → e

4/8. a/b → d → f

The key observation is that the distinction between a and b does not mat-

ter downstream of ∪1; a delta that arrived from a is indistinguishable from

one that arrived from b. Similarly, the distinction between c and d no longer

matters past ∪2, and the same for e and f past ∪3. upquery path group

is thus defined as a unique identifier for v’s upquery plan plus the sequence

of nodes between the union and the target of the upquery response.

4.5.2. Joins

Upqueries across unions must go to all the ancestors. But across joins, up-

queries must only go to one ancestor. This is because a join that processes

65

4. Maintaining Correctness

a message from one ancestor already queries the “other” ancestor and pulls

in relevant state from there. If both sides were queried, the processing of

the upquery responses at the join would produce duplicates of every record.

Noria supports two types of joins: inner joins and partial outer joins (i.e.

“left” and “right” joins). For an inner join, either ancestor can be the target

of the upquery, whereas for a partial outer join, the upquery must go to

the “full” side — the side from which all rows are yielded5. Otherwise, the

upquery may produce only a subset of the results for the join.

Dependent Upqueries

Since upqueries travel through only one ancestor of a join, joins do not

need to buffer upquery responses the same way unions do. However, when

a upquery response passes through a join operator, the join does perform

lookups into the state of the other side of the join. With partial state, those

lookups may themselves encounter missing entries. When this happens,

a problem arises: Noria must produce an downstream upquery response

because the application is waiting for it, but cannot produce that response

since required state is missing.

For the purposes of exposition, and without loss of generality, the text

below refers to the join ancestor that was upqueried as the left side, and

the ancestor that a lookup missed in as the right side.

The join must issue an upquery to the right hand side for the state that

is missing to complete the processing of the original upquery response from

the left. However, this dependent upquery may take some time to complete,

and the system must decide what to do in the meantime. Recall that the

5An upquery for a column from the non-full ancestor must be routed by value. If it is
NULL, the upquery must go to the full ancestor, and its result must be filtered. If it
is non-NULL, it must go to the non-full side. Noria does not support such upqueries.

66

4.5. Merging Dataflow

join is still in the middle of processing an upquery response.

An obvious, but flawed strategy is to have the join block until the response

arrives. This would not only stall processing of deltas from the left parent,

but also leads to a deadlock. In order to observe the eventual upquery

response, the join’s domain must continue to process incoming messages

to the right parent (§2.5.2). But in doing so, it may encounter a different

upquery response from the right parent. That upquery response may require

a lookup into the left parent’s state, which may itself encounter missing

entries. The join is then forced to block on both inputs perpetually.

Instead, the join discards the current upquery response, and remembers

the upquery parameters that triggered it, and the missing state that must

be filled. It then continues processing the next update as normal. When the

missing entries are eventually filled, Noria re-issues the original upquery to

the join’s left parent using the saved parameters. This time, all entries re-

quired for the lookups into the right-hand parent’s state are present, and the

downstream upquery response can be produced. As far as the downstream

dataflow is concerned, nothing abnormal has happened — the upquery re-

sponse just took longer to arrive.

In particularly unfortunate schedules, Noria might evict the state that

the dependent upquery filled before the response to the re-issued upquery

arrives at the join. If this happens, Noria issues another dependent upquery

and the process repeats.

Incongruent Joins

As discussed in §4.3, if some key k is present in a materialization m, it is

also present at every materialization above m from the upquery chain that

ultimately produced the entry for k in m. However, certain queries produce

67

4. Maintaining Correctness

dataflow where more than one key is used to compute an entry. Consider a

dataflow that joins two inputs, story and user, on the story’s author field.

A downstream operator issues an upquery for story number 7. The upquery

is issued to story, which produces a message that contains story number

7 with author “Elena”. That message arrives at the join, which issues a

dependent upquery to user for “Elena”. When that dependent upquery

resolves, the join produces the final upquery response, and the state for

story number 7 is populated in the downstream materialization.

Next, an editor changes the author for story number 7 to “Talia”. This

takes the form of a delta with a negative multiplicity record for [7, "Elena"]

and a positive one for [7, "Talia"]. When this delta arrives at the join,

it may now miss when performing the lookup for “Talia”. According to the

partial model so far, the join should drop [7, "Talia"], and only allow the

negative for “Elena” to propagate to the downstream materialization. But

this violates Invariant III, since there exists downstream state that reflects

the discarded update. And indeed, when this happens, the state for article

number 7 becomes empty (though not missing), and any subsequent read

for article number 7 receives an empty response, which violates Invariant II.

What happened here was that the entry for key k in the leaf-most materi-

alization depends not only on state entries indexed by the same k upstream,

but also on state entries indexed by other keys upstream. While k must be

present upstream, no such guarantee exists for other keys.

This is a result of incongruent joins ; joins whose join column is not the

same as the downstream key column. Incongruence is determined with re-

spect to each upquery path that flows through a join. In the case above, the

author join is incongruent with an upquery on the story number column,

since the join column is the author column. However, the join is congruent

with upqueries from a hypothetical downstream view that is keyed by au-

68

4.6. Sharding

thor instead. A join that is incongruent with any upquery path that flows

through it is considered an incongruent join.

Noria can recognize incongruent joins through key provenance — if an up-

query flows through a join, and the upquery column is not the same as the

join column, the join is incongruent. If an incongruent join encounters miss-

ing state while processing a delta at runtime, it must take action to ensure

that downstream state remains correct. Since the domain that processes the

join cannot produce a valid delta, and does not know what state is present

and missing in the downstream dataflow, its only option is to issue an evic-

tion for any downstream state that may be rendered stale. Concretely, if an

incongruent join processes a record r and encounters a missing state entry,

it should issue an eviction downstream on all incongruent upquery paths

using the appropriate values from r. For example, if the join column is cj,

and upquery path ui through the join is keyed by column ci, then the join

should issue downstream evictions of r[ci] for each ui where ci 6= cj.

All Together Now. With unions and joins covered, the argument is com-

plete. In all dataflows that Noria can construct, no matter how they diverge

and merge, the outlined mechanisms ensure that the system invariants are

maintained at every node, and thus in Noria as a whole.

4.6. Sharding

Noria supports sharding cliques of operators to add parallelism to particular

sections of the dataflow (§2.5.3). When Noria decides to shard operators

in this way, upqueries must continue to work. Partial state with sharding

mainly follows the rules of partial across unions (§4.5.1), with three changes.

69

4. Maintaining Correctness

First, if the node that receives the upquery, R, is sharded the same way

as the querying node, Q, the upquery is sent only to the same shard of R

as the one that is querying. This is called a narrow upquery, and avoids

queries to shards that hold no relevant data. This rule applies even if

the upquery key differs from the sharding key, since while other shards may

have relevant data, that data would be discarded before reaching the current

node anyway. Noria decides whether upqueries should be narrow or broad

when it determines an operator’s upquery plan — key provenance provides

sufficient information to make the decision.

Second, when a narrow upquery response reaches the first shard merger

(effectively a union across shards) on its path, the response must not be

buffered, unlike other upquery responses across unions. This is because the

other upstream shards will not be sending responses.

Third, when the upquery response for an upquery that originated at a

sharded node reaches the last sharder on its path, that sharder must direct

that response only to the querying shard. This is equivalent to the general

rule that upquery responses only flow along the edges that the upquery

traversed. The upquery that triggered the response did not touch other

shards of the upquery originator, and so the response should not go there.

Beyond those three modifications, the existing logic for handling up-

queries across forked strands of dataflow is sufficient.

Shard Consistency. For sharded base tables, the meaning of earlier from

Invariant II is unclear: concurrent updates to different shards of the same

base table do not happen before or after each other in a well-defined way.

This means that a read that observes the effects of one base table change

may not observe the effects of another change that happened before if the

other update went to a different base table shard. Effectively, different

70

4.6. Sharding

shards constitute different dataflow paths in the definition of Invariant II.

The same applies for sharded views. Noria updates the view shards inde-

pendently, so if the effects of an update are present in one shard of a view,

they may not yet have manifested in another shard of that same view.

71

72

5. Implementation

The prototype implementation of Noria with partial state consists of 65k

lines of Rust. It can operate on a single server or across a cluster of servers.

The source code is available at https://github.com/mit-pdos/noria.

Interface. Applications interface with Noria either through native Rust

bindings, using JSON over HTTP, or through a MySQL adapter [72].

Storage. The implementation maintains views in memory, and can main-

tain base tables either in memory (the default) or on disk using using

RocksDB [80], a key-value store based on log-structured merge trees.

Missing State. Noria does not store markers (“tombstones”) for missing

results in a materialization. Instead, it stores materialized results that are

known to be empty in hash tables alongside other (non-empty) materialized

results. This allows even empty results to be evicted to save space.

Upquery Bypass. When Noria encounters missing state and issues an up-

query, it sends that upquery directly to the root of the upquery path. This

saves sending the message along internal edges, but does not affect correct-

ness as the intermediate operators only forward the upquery upstream.

73

5. Implementation

Batching. Noria uses several time-limited batching buffers to improve per-

formance. Writes to a base table are buffered for a few microseconds, and are

emitted into the dataflow as a single combined update to amortize lookup

and processing costs at operators like aggregations and joins. Noria also

buffers upqueries in case other misses for different keys along the same up-

query path occur in quick succession, and forwards them in a single batch.

Runtime. To multiplex I/O and compute, Noria uses Tokio [76], a high-

performance asynchronous Rust runtime. Tokio manages a pool of threads

that cooperatively schedule thread domain processing (§2.5.2), query han-

dling, and control operations like adding and removing queries.

Network Protocol. Noria uses a very simple, Rust-specific binary encod-

ing for its network protocol. The protocol tags each request and response

with a required identifier, which allows Noria to respond to requests as they

complete on the server, rather than process them one-at-a-time. This also

enables the Noria dataflow to process updates in batch more often, since

multiple client requests can be batched together.

Running Out of Memory. Noria does not monitor its own memory use. If

eviction is not aggressive enough, or a given materialization simply requires

more memory than is available, the Noria process aborts.

Storing Result Sets. Noria stores materialized views as a hash table whose

key is the view’s parameter column. The value for a given entry in the hash

table is the collection of rows that a query with that entry’s key should

return. There may be many rows for a given key, including duplicates, so

to support efficient removal of individual rows, the result set is stored as a

74

hash bag: a hash table where the index is each distinct row, and the value

is that row’s multiplicity.

Resizing Pauses. Many of the benchmarks in this thesis continuously ac-

cumulate more data, especially in the base tables, and then measure latency

over time. Since the benchmarking harness captures the full distribution

of latencies, including the far tail, this surfaced a number of “amortized”

costs from data structures like hash tables and vectors that occasionally

double in size as they grow. Those resizes caused significant spikes in tail

latency, which was unfortunate in experiments that aimed to measure tail

latency specifically. Noria therefore now uses specialized data structures

whose resize behavior is also amortized by spreading the cost of resizes

across multiple later inserts.

Nagle’s algorithm. Disabled, as it should be for any latency-sensitive ap-

plication. Many hours were lost in the (multiple) searches for latency spikes

caused by TCP sockets where it had not yet been disabled.

Fast Reads. Query handlers process clients’ RPCs to read from external

views. They must access the view with low latency and high concurrency,

even while a thread domain applies updates to the view. To minimize

synchronization, Noria uses double-buffered hash tables for external views

that are wait-free for readers [70]. The thread domain updates one table

while read handlers read the other, and an atomic pointer swap exposes new

writes. This design can significantly improve read throughput on multi-core

servers over a single-buffered hash table with bucket-level locks. Internally,

the design resembles the “left-right” concurrency scheme [47].

75

5. Implementation

Operator Implementation. The implementation of the various relational

operators in Noria is perhaps surprisingly straightforward, despite the vast

literature on how to implement joins and aggregations more efficiently. The

primary reason for this is that the operators must work in an incremental

fashion with small batches of rows arriving intermittently. Most intelligent

implementations play tricks with how they arrange and walk the indices of

upstream tables, and how the columns of the output rows are collected, but

this is not feasible in a tuple-at-a-time system like Noria. Nevertheless, the

operators try to be efficient where possible: they only look up each distinct

value of a join key or aggregation group column in a batch of rows once,

and sort batches before processing to improve cache efficiency.

Query-Through. The restriction that join inputs must be materialized

(§2.5.2) is not quite as strict in practice as it might first seem. The true

requirement is that the source of the join lookups must reside in the same

thread domain, not that the join’s immediate ancestors be materialized.

For example, if an aggregation (which must have its output materialized)

is a followed by a filter, which is then followed by a join, the output of the

filter does not also need to materialized if all nodes are in the same thread

domain. Noria can reuse the aggregation’s materialization as long as the

filter is applied to any lookup results before the join sees them.

76

6. Evaluation

This thesis is built on the belief that view materialization is useful, but

current implementations are too costly. It presents partial state as an im-

plementation that allows retaining the benefits of view materialization at a

fraction of the cost. This chapter evaluates the usefulness of view material-

ization, and the efficacy of partial state:

1. Why is view materialization desirable? (§6.2)

2. Why is view materialization infeasible currently? (§6.2)

3. Does partial state make view materialization feasible? (§6.2)

4. Why use Noria over ad hoc caching solutions? (§6.3)

5. What are the trade-offs with partial state? (§6.4)

6. How does Noria compare to ad hoc solutions? (§6.5)

7. Does partial state speed up view creation? (§6.6)

8. How does skew affect the efficacy of partial state? (§6.7)

9. What is partial materialization’s effect on writes? (§6.8)

77

6. Evaluation

6.1. Experimental Setup

The experiments in this chapter primarily use the Lobsters news aggregator

web application at https://lobste.rs [63]. This application was chosen

because it is open-source (so we can see what queries it issues), because it

resembles many larger-scale applications (like Hacker News or Reddit), and

because statistics about the site’s data and access patterns are available [57].

The evaluation uses a workload generator that issues page requests ac-

cording to the available statistics [71]. It does not run the real Lobsters

Ruby-on-Rails application, as the application code quickly becomes a bot-

tleneck. Instead, all experiments use an adapter that turns page requests

directly into the queries the real Lobsters code would issue for that same

page request. The generator supports scaling up the rate of access and user

count to emulate a larger user base for benchmarking.

The various pages in Lobsters differ in what queries they issue, how many

queries they issue, and the extent to which they are read or write heavy.

Table 6.1 on the facing page gives an overview of how often each page

is accessed and what loading each page entails. In all evaluation results,

latency is measured across all requests, no matter what page they are for.

Experiments run on Amazon EC2 r5n.4xlarge instances, which have 16

vCPUs and 128GB of memory. The server is always given a dedicated

host, while load-generating clients are split across one or more m5n.4xlarge

instances depending on the desired load factor.

The benchmarks are all “partially open-loop” [53]: clients generate load

according to a workload-dictated distribution of interarrival-times, and has

a limited number of backend requests outstanding, queuing additional re-

quests. This ensures that clients maintain the measurement frequency even

during periods of high latency. The test harness measures offered request

78

6.1. Experimental Setup

Page % W Q Description
Story 55.8 1 14 Renders an individual story’s page, in-

cluding its popularity score, comments,
and the scores of its comments.

Front page 30.1 0 14 Lists the 25 most highly scored stories,
along with their authors and scores.

User 6.7 0 7 Renders a user summary page, including
what story “tags” they contribute to.

Comments 4.7 0 9 Like the front page, but for comments.
Recent 1.0 0 14 25 most recently added stories, along

with their authors and scores.
Vote 1.2 1 2 Vote up/down a given comment or story.
Comment 0.4 2 5 Add a new comment to a story.

Table 6.1.: Pages in Lobsters. % indicates the percentage of requests that
load the given page. W is the number of writes performed by a
given page. Q is the number of (read) queries a page issues.

throughput and “sojourn time” [14], which is the delay the client experi-

ences from request generation until a response returns from the backend.

To capture the variance of measurements, the benchmarks use HdrHis-

togram [81], a data structure that efficiently captures and represents his-

tograms with a high dynamic range over large numbers of samples.

All experiments report the resident virtual memory of the server process

(VmRSS) unless otherwise noted. This measurement therefore includes all

indexes, runtime allocations, and other bookkeeping metadata. For Noria,

it also includes the data stored in the base tables except where indicated.

Since the benchmarks introduce more data as they run, memory use in-

creases with time. Experiments are run for 5 minutes unless otherwise

specified, and memory measurements are taken at the end of the run. All

results are stable and consistent across multiple runs.

79

6. Evaluation

6.2. Benefits of Partial View Materialization

The core argument of this thesis is that partial state makes materialized

views usable as caches. That argument intertwines several questions that

must be answered before further evaluation of partial state is interesting:

1. Why is view materialization desirable?

2. Why is view materialization infeasible currently?

3. Does partial state improve on this situation?

Figure 6.1 on the next page attempts to explain why view materialization

is desirable. It compares the highest sustainable request load of three dif-

ferent systems: MySQL, Noria without partial state, and Noria with partial

state. MySQL is run entirely in RAM by running it on a ramdisk, and on

its lowest isolation level. The figure shows the highest Lobsters throughput

each system achieves before its mean latency exceeds 50ms.

View materialization alone (as provided by Noria) improves performance

by almost 11× compared to MySQL, as query results are now frequently

cached. However, without partial state, this performance increase comes

at a significant memory cost. Beyond 4.6k pages/second, Noria without

partial state runs out of memory, and cannot support the workload. With

partial state, Noria uses much less memory at a given load factor, which

allows it to support 67% higher throughput, over 18× that of MySQL1.

Figure 6.2 on page 82 shows the memory use at 4.6k pages per second

with and without partial state. It demonstrates both the issues with full

materialization, and the improvements brought about by partial state. With

1The Noria benchmarks are memory-constrained, not CPU-constrained. MySQL fully
loads all 16 cores at 417 pages per second.

80

6.2. Benefits of Partial View Materialization

Noria Noria without partial MySQL
0

2k

4k

6k

8k

Pa
ge

s/
s

7.7k

4.6k

417

Figure 6.1.: Maximum achieved throughput on Lobsters benchmark with
and without view materialization. Without view materializa-
tion, MySQL must compute query results each time. Tradi-
tional (full) view materialization runs out of memory at ≈4.6k
pages/second. Partial state allows Noria to reduce memory use
significantly so that it can achieve higher throughput.

full materialization, Noria must store every result for every query in memory.

In contrast, with partial state, Noria stores only frequently accessed results,

which cuts memory use in half.

The memory use reductions with partial state are a direct result of the

skew in Lobsters data popularity and access patterns. Many pages are

simply never visited over the course of the benchmark, and so need not be

brought into the cache. With partial state, Noria also evicts infrequently

accessed results, which further reduces memory use, and ensures that the

81

6. Evaluation

Noria Noria without partial
0

32

64

96

128

R
es

id
en

tv
ir

tu
al

m
em

or
y

[G
B

]

58.2GB

114.9GB

35.1GB

102.1GB

In-memory base tables
Durable base tables

Figure 6.2.: Memory use two minutes into the Lobsters benchmark at 4.6k
pages per second. Right bar in each pair show memory use
when base tables are stored on disk using RocksDB.

cache does not eventually grow to contain all results.

Much of Noria’s memory use goes to storing the base tables in memory.

Since partial state cannot evict base table state, this limits how much mem-

ory can potentially be saved. Figure 6.2 therefore also includes memory use

when running Noria with its durable RocksDB storage backend for base

tables. In that configuration, base tables are kept on disk, not in memory,

which makes the memory savings from partial state more apparent — the

memory use is now about a third that without partial state.

Various other runtime overheads that partial state cannot eliminate re-

main, such as data structures and allocations for in-flight requests and pend-

82

6.2. Benefits of Partial View Materialization

ing responses. With diligent memory optimization, this overhead could

likely be further reduced to increase the relative benefits from partial state.

Noria Noria without partial
0

O
pe

ra
to

rd
at

a
si

ze

214MB

16.2GB

Figure 6.3.: Estimated operator state data size two minutes into the Lob-
sters benchmark at 4.6k pages per second. The value indicated
includes only the sum total size of rows in each operator’s state,
not data structure overheads, indices over the data, or other
memory allocations. Base tables are not included.

To provide some insight into how far memory use can be reduced, Fig-

ure 6.3 shows the total size of the data contained in non-base operator state

in Lobsters. This metric measures only the sum of the data in each row,

and excludes other memory overheads such as hash tables, additional in-

dices, or allocations elsewhere in the application. The results indicate that

partial state in isolation requires only 1.5% of the total operator state to be

materialized; significantly less than the 1/3 seen in Figure 6.2. This suggests

83

6. Evaluation

that there is indeed potential for reducing partial state’s memory footprint.

Since partial state uses less memory, applications that do not need higher

throughput can instead reduce cost by using hosts with less memory. For

example, on AWS EC2, a 16-core instance with 128GB of memory is 25%

more expensive than the same with 64GB of memory. A host with 256GB

of memory is twice the price of a 128GB host.

In summary, Noria’s view materialization increases Lobsters throughput

by an order of magnitude. Partial state cuts memory by more than 50%,

doubling achievable throughput on the same hardware, or enabling cost-

cutting by using server machines with less memory.

6.3. Rolling Your Own

Many applications already require lower latency and higher throughput than

straightforward SQL queries against traditional relational databases pro-

vide. In an attempt to bridge the gap, developers often implement manual

optimizations to improve their application performance, and introduce addi-

tional complexity into their applications in the process. These optimizations

usually come in one of two forms: denormalization and caching. This sec-

tion discusses each of these optimization techniques in turn, as well as how

Noria makes them unnecessary.

6.3.1. Denormalization

The relational database model [2] encourages developers to use a normalized

schema in which redundant data that can be derived from other data is not

84

6.3. Rolling Your Own

stored. Instead, the model suggests that derived data be computed on

demand using standard relational operators. The paper goes on to add:

Only in an environment with a heavy load of queries relative

to other kinds of interaction with the data bank would strong

redundancy be justified in the stored set of relations.

As discussed in the motivation section for this thesis, many web appli-

cations fall into exactly this category. Queries are far more common than

inserts or updates, and with a normalized schema they must constantly

expend resources to re-compute such derived data. For this reason, web

developers often explicitly denormalize their schema to include data that

would be prohibitively expensive to compute on-demand.

For example, in Lobsters, each story has a “hotness”: a score of how pop-

ular a story is, and thus how far up it should appear in listings. This value

depends on a lot of parameters, such as the number of votes, the number

of comments, the score of those comments, etc. It would be prohibitively

expensive to compute a story’s hotness directly in the queries, especially in

the context of computing the front page view, which requires the hotness

for all stories to rank them. Instead, the Lobsters developers chose to add

a computed column, hotness, to the story table. This column is then

updated whenever relevant data changes, such as when:

• a story is upvoted or downvoted;

• a comment is added to a story;

• a comment on a story is upvoted or downvoted;

• a comment or vote is deleted; or

85

6. Evaluation

• one story is merged into another.

There are several such computed columns in Lobsters. For each one,

developers had to inspect each write path and modify them to ensure that

they correctly update all related computed values. This process is manual

and error-prone, but also necessary: without them, the Lobsters experiment

run against MySQL cannot keep up with even 1 request per second.

With Noria, such manual denormalization is unnecessary. View mate-

rialization automatically stores and maintains derived data so that it is

efficient to query. The developer can continue to use normalized schemas

and queries, and does not need to modify their application code to manage

denormalized columns and tables.

6.3.2. Caching

If denormalization does not sufficiently improve the application’s perfor-

mance, the next step is usually to add a cache in front of the database.

This cache often takes the form of a key-value store, like Redis or Memcache,

which holds frequently accessed, computed results. When the application

issues a query, it checks the (fast) cache first, and only if the results are not

available in cache is the (slower) backend consulted.

A dedicated cache speeds up repeated reads, but introduces significant

application complexity. Just like for manual denormalization, all parts of

the application that modify data related to any given cache entry must

know to also invalidate or update the cache. In addition, the developers

must ensure that if multiple clients miss on a given entry, they do not hit

the backend database all at once. This is especially important if a popular

entry is invalidated, as it may cause a “thundering herd” effect where a

large number of clients swarm the backend and overwhelm it. Furthermore,

86

6.4. Partial State’s Memory Trade-off

since the clients must now access two separate systems, mechanisms must

be in place to ensure that the cache remains consistent with the underlying

data. This is difficult since data may be updated at any time, including

just after a client has fetched the (then) latest data from the database.

Because of the challenges above, implementing caching “correctly” re-

quires highly sophisticated machinery [21, 25, 33, 35], which developers

may not even think to employ. A survey from 2016 found that 0.3-3.0% of

application code spread across 2.1-10.8% of the application’s source files is

caching-related, and that cache-related issues make up 1-5% of all issues [50].

With Noria, there is no need to maintain such a query result cache; Noria’s

in-memory materialized views provide high-throughput, low-latency queries

directly from the database. Thanks to partial state, Noria’s materialized

views are usable even for applications whose full cache state exceeds the

amount of memory available on the server host. Since Noria automatically

maintains the materialized views, the application also does not need code to

manage cache invalidation, or to address challenges like thundering herds.

In summary, without Noria, manual performance optimizations like de-

normalization and query result caching are necessary, but error-prone and

labor-intensive. Noria obviates the need for both.

6.4. Partial State’s Memory Trade-off

Partial state’s main drawback compared to complete materialized views is

that the results for an application’s query may not be known. Or, stated

differently, some reads may miss. When this happens, the system must up-

query the missing state, which takes time and consumes resources otherwise

87

6. Evaluation

dedicated to writes. This shows up as increased tail latency for the applica-

tion: queries whose results are not known must wait to be computed. The

hope with partial state is that, once the commonly-accessed query results

are cached, latency quickly drops such that only infrequently accessed query

results must be computed on-demand in the future.

6.4.1. Warming the Cache

The cost of these misses is particularly visible when Noria starts with empty

state. This is equivalent to starting a more traditional caching system with

an empty (cold) cache, and having to “warm” it by filling in the most

popular entries. To measure this warming period, Figure 6.4 on the facing

page shows the latency profile seen by the Lobsters benchmark over time,

starting at the point when the first query is issued. Time increases along

the x-axis, and the measured latency for each time bin is plotted on a

logarithmic scale on the y-axis. Lighter colors include more of the tail.

The figure shows that latency is initially high, but after a few seconds,

the mean and 95th percentile latency drop below 10 milliseconds. By the

time a minute has passed, the 99th percentile has followed suit. Since only a

small portion of the total computed state is cached (as shown in Figure 6.2

on page 82), this experiment supports the hypothesis that partial state

achieves low latency once the most commonly accessed results are cached.

The remaining latency is primarily determined by the number of queries

each page issues, as each one requires a round-trip to Noria.

88

6.4. Partial State’s Memory Trade-off

1 2 4 8 16 32 64 128
Time after start [s]

1ms

10ms

100ms

1s

Pa
ge

la
te

nc
y

25%–50%
95%–99%

50%–90%
99%–Max

90%–95%
Mean

Figure 6.4.: Lobsters latency profile at 1.5k pages per second over time,
starting when the first query is issued. Time increases along
the x-axis, and each bin samples twice as long as the last. Later
bins therefore capture more variance. The bin latency is plotted
on a logarithmic scale. Lighter colors include more of the tail.

6.4.2. Paying with Tail Latency

Partial’s trade-off is that of memory use versus tail latency; with less mem-

ory, Noria precomputes less of the tail, and thus more requests must be

computed on-demand. Figure 6.5 on the following page shows this trade-off

in the steady state of the application by plotting the CDF of the sojourn

latency across all requests with increasingly aggressive eviction.

As Noria reduces memory use by evicting more aggressively (darker lines),

more requests take a long time, and tail latency increases. In other words,

89

6. Evaluation

5ms 10ms 20ms 50ms
75

90

95

100

C
D

F
[%

] Base table + view VmRSS
5.6GB + 16.3GB
5.6GB + 14.3GB
5.6GB + 13.5GB
5.6GB + 13.1GB

1ms 2ms 4ms 6ms 8ms
Page latency

0
25
50
75

Figure 6.5.: CDF of sojourn latency in Lobsters at 1.5k pages per second as
a function of eviction aggressiveness. The figure depicts steady-
state operation — the benchmark has been allowed to run for
two minutes before the latency is measured. Top figure uses a
logarithmic x-scale to highlight the full range of the tail latency.

the lower the memory use, the higher the tail latency. The ability to trade off

tail latency for reduced memory use is the primary benefit of partial state;

without it, requests in the tail are always fast, but all the materialized views

must fit in memory.

The reason why the whole curve shifts, rather than just the tail, is that

these CDFs are across all the different page types in Lobsters. Each one

issues a different set of queries, and so their total time differs, as does the

effect of a longer tail. The exact shape of this curve, and how it shifts in

response to varying resources, depends on the application in question.

90

6.4. Partial State’s Memory Trade-off

6.4.3. Upqueries to Disk

5ms 10ms 20ms 50ms
75

90

95

100

C
D

F
[%

]

In-memory base tables
On-disk base tables

1ms 2ms 4ms 6ms 8ms
Page latency

0
25
50
75

Figure 6.6.: CDF of sojourn latency across all Lobsters pages at 1.5k pages
per second with base tables in memory and on disk. The fig-
ure depicts steady-state operation — the benchmark has been
allowed to run for two minutes before the latency is measured.

If base tables are not kept in memory, the cost of recomputing missing

state from the data in those base tables increases. Exactly how much de-

pends on the performance characteristics of the durability backend in use.

Figure 6.6 shows a CDF of page latencies when Noria’s RocksDB backend

is used, backed by a ramdisk. Latencies increase by around 20%, and varies

depending on the number of misses a given page request experiences.

91

6. Evaluation

6.4.4. Memory Use and Throughput

Memory use can only be reduced so far before the system no longer keeps up

with the offered load. If some of the most frequently accessed query results

are not cached, the system will constantly have to re-compute those results

to satisfy reads that come in shortly after that query result is evicted. This

cache churn increases latency and decreases throughput, often significantly.

Essentially, the system will never finish warming the cache, and latency

will remain at the high levels shown early in Figure 6.4. For Lobsters,

this happens around the 18GB mark. If the eviction is tuned to be more

aggressive than that, Noria can no longer sustain 1.5k pages per second.

Generally speaking, as throughput increases, so must the memory budget,

since the memory budget effectively dictates the hit rate. The more requests

issued per second, the more misses (in absolute terms) result from a given

hit rate. If those misses in the tail are distinct, Noria must satisfy more

upqueries as load increases, while also handling that added load.

SELECT stories.*, COUNT(votes.user) AS nvotes

FROM stories

LEFT JOIN votes ON (stories.id = votes.story_id)

GROUP BY stories.id

WHERE stories.id = ?

Listing 6.1.: Simplified query for vote counting in Lobsters. Effectively the
same as Listing 2.1 on page 27.

While this correlation between throughput and memory use exists in Lob-

sters, it is difficult to show clearly as each page issues many different queries,

and overall load is relatively low. For this reason, the next set of benchmarks

use a simplified version of one particular query from Lobsters shown in List-

92

6.4. Partial State’s Memory Trade-off

ing 6.1 on the facing page. The rest of the thesis refers to this as the “vote

benchmark”. It counts the number of votes for a story, and presents that

alongside the story information. The benchmark issues requests distributed

as 99% reads and 1% writes (inserts into votes). The access pattern is

skewed such that 90% of requests access 1% of keys across 10M stories2.

Load is generated by four clients, and each one batches requests for a max-

imum of 10ms to reduce serialization overheads.

250k 500k 750k 1.0M 1.2M 1.5M 1.8M 2.0M
Achieved throughput [requests per second]

0

10

20

30

40

50

95
-t

h
%

-i
le

la
te

nc
y

[m
s]

VmRSS @ 1M/s
2.5GB + 4.9GB
2.5GB + 4.6GB
2.5GB + 4.4GB
2.5GB + 4.1GB

Figure 6.7.: Achieved throughput vs 95th percentile request latency in vote
with increasingly aggressive eviction. Offered load increases
along the points on each line. A near-vertical line indicates
that the system no longer keeps up with offered load.

Figure 6.7 demonstrates the connection between throughput and memory

2Specifically, it samples keys from a Zipfian distribution with a skew factor (α) of 1.15.

93

6. Evaluation

use. It shows throughput-latency lines for the vote benchmark with pro-

gressively more aggressive eviction. Each point along each line is a higher

offered load; the point’s x-coordinate is the achieved throughput, and its y-

coordinate is the measured 95th percentile latency. When Noria no longer

keeps up, you see a “hockey stick” effect, where achieved throughput no

longer increases, while latency spikes. The figure shows that as the offered

load increases, Noria needs to use more memory to keep up.

In summary, partial state enables applications to improve their tail la-

tency and throughput by “paying” with memory. Noria takes advantage

of additional memory to further reduce tail latency and increase sustain-

able read throughput. Assuming applications see sufficient skew, like in

Lobsters, the cache warms up quickly.

6.5. Cache Lookup Performance

Despite how error-prone the approach is (§6.3), ad hoc application caching

is still common in practice. To present a viable alternative, Noria must not

only reduce the developer burden of getting caching right; it must also offer

competitive performance with manually constructed caching solutions.

Unfortunately, this is difficult to evaluate, since high-performance solu-

tions are often custom-built for a given application, and not available as

general-purpose tools. Effectively applying the general-purpose tools that

are available, like Memcache and Redis, requires significant effort on the

part of the application authors (or the evaluators). To manually add cach-

ing support to Lobsters’ 80 queries, including thundering herd mitigation

and incremental updates, would be a significant undertaking.

94

6.5. Cache Lookup Performance

This fact alone is, in essence, an argument for the Noria approach. The

manual effort involved in making Lobsters use Noria is minimal — just

switch the code to query Noria instead of MySQL, and get automatic cach-

ing. In many cases the application code can even be simplified, such as by

removing denormalized schema modifications (and the associated mainte-

nance code) like the story “hotness” column described in §6.3.

Nevertheless, an experiment to evaluate Noria’s absolute performance

compared to a “real” cache is necessary. Without such a comparison, Noria

can only claim to be “faster than MySQL”, but not “as fast as a cache”.

The next experiment runs the vote benchmark from Listing 6.1 on page 92

against Redis [75], a popular high-performance key-value store that is com-

monly used as a caching backend. In an attempt to approximate how a

carefully planned and optimized application caching deployment might per-

form, it makes the following modifications to the benchmark:

• Every access hits in cache, to emulate perfect thundering herd miti-

gation and invalidation-avoidance schemes.

• Nearly all accesses (99.99%) are reads, since writes would be bottle-

necked by the backing store.

• Data is not stored anywhere except in Redis.

• Accesses are batched to reduce serialization cost and increase through-

put. Specifically, reads are MGETs, and writes are pipelined INCRBYs.

This is not a realistic use of Redis as a cache, and ignores the complexities

of integrating the cache with the application. It also assumes that cached

query results are never spread across more than one key in the cache. How-

ever, it enables an evaluation that assumes the best about the implemented

caching strategy and system.

95

6. Evaluation

0 2.0M 4.0M 6.0M 8.0M 10.0M 12.0M 14.0M 16.0M
Achieved throughput [requests per second]

0

10

20

30

40

50

95
th

%
-i

le
la

te
nc

y
[m

s]

Noria
Redis

Figure 6.8.: Achieved throughput vs 95th %-ile request latency in cache-
optimized vote. Offered load increases along the points on each
line. The vertical line indicates 16× the highest Redis through-
put, since Redis is single-threaded.

Figure 6.8 shows a throughput-latency plot that explores the performance

profiles of Redis and Noria under these experimental conditions3. Redis is

not multi-threaded, and can only use one of the server’s 16 cores, so the

figure also includes the Redis performance extrapolated to 16 cores. This is

an over-estimate, since to achieve this performance in practice, the applica-

tion’s already-perfect caching scheme would need to also shard perfectly4.

3Noria runs with the same modified access patterns as outlined for Redis.
4This is also the reason why Redis was chosen over memcached — Redis’ single-core

implementation avoids all concurrency overhead, and so 16× its performance is likely
to provide a better estimate of a reasonable maximum.

96

6.6. Bringing Up New Views

Noria implements the necessary synchronization internally to take advan-

tage of all the cores without sharding.

The results show that Noria achieves about 2/3 of the theoretical 16-core

performance of Redis. Given the idealized nature of this experiment, the

exact absolute numbers should be taken with several grains of salt, but

they do provide an upper bound of sorts for Redis’ performance. That

Noria approaches this performance is a good indicator that Noria’s cache

hit performance is comparable to that of an ad hoc caching implementation.

And again, Noria does so while providing rich SQL queries, and without

requiring application-specific caching logic.

In summary, Noria’s absolute lookup performance is comparable to that

achievable by using Redis as an ad hoc query cache.

6.6. Bringing Up New Views

When the application issues a query that Noria has never seen before, Noria

must instantiate the dataflow for that query, along with any materializations

it might need. Without partial state, the system must also do all the work

to compute the full state for the new view, and any internal operator state

it depends on, up front and all at once. And during that time, Noria’s

dataflow must spend cycles on computing that new state, slowing down the

processing of other concurrent writes. The new view also cannot serve any

reads until all the state is computed.

Partial state enables such query changes to be instantaneous in many

cases — if the new view can be made partial, Noria makes it empty and

immediately available. Noria then fills it on demand as the application

97

6. Evaluation

CREATE VIEW scores AS

SELECT votes.story_id, COUNT(votes.user) AS score

FROM votes

GROUP BY votes.story_id

UNION

SELECT ratings.story_id, SUM(ratings.rating) AS score

FROM ratings

GROUP BY ratings.story_id;

SELECT stories.*, SUM(scores.score)

FROM stories

LEFT JOIN scores ON (stories.id = scores.story_id)

GROUP BY stories.id

WHERE stories.id = ?;

Listing 6.2.: Updated query for “rating” counting in Lobsters.

submits reads. To demonstrate the difference in behavior between with

and without partial state for migrations, the next benchmark modifies the

“vote” benchmark from Listing 6.1. It introduces a new table, ratings,

which has ratings on a scale from 0 to 1 for each story instead of just a vote

of 0 or 1. It also add a new view, shown in Listing 6.2, which combines the

existing votes with the new ratings to compute a total story score5.

The benchmark inserts votes and issues the original vote query for 90

seconds, and then introduces the new table and query from Listing 6.2

(denoted as time 0). From then on, it issues both votes and ratings, and

queries both views every 10 milliseconds.

Figure 6.9 on the next page plots the cache hit rate seen by reads from

the new view over time (top), as well as the write throughput over the

5By writing the query this way, votes and ratings can co-exist.

98

6.6. Bringing Up New Views

0

50

100
N

ew
vi

ew
hi

t%

Noria
Noria without partial
New view added

0 10 20 30 40 50 60
Time after migration [s]

0

250k

500k

W
ri

te
s/

s

Figure 6.9.: Top: Setting up and access a new view.
Bottom: Write performance across the migration.
Access pattern is skewed such that 90% of accesses are for 10%
of 10M stories (Zipf; α=1.15). Benchmark runs for 90s prior to
migration (solid vertical line). The dashed vertical line denotes
the end of the migration without partial state.

course of the experiment (bottom). Without partial state, the new view is

not accessible until its construction finishes after ≈23 seconds. During that

time, the application write performance drops substantially, as Noria must

compute the content of the new view.

With partial state, the view is immediately accessible, though its cache

hit rate is initially low. However, since there are a few very popular keys,

the hit rate quickly climbs to over 90%. As only results for requested keys

99

6. Evaluation

are computed, write throughput is mostly unaffected by the migration6.

The figure also exposes another interesting effect of using partial mate-

rialization: increased write throughput. Without partial state, every write

must be processed to completion, since all results are cached. With partial

state, writes for keys that have not been read can be discarded early, as there

is no state in memory that must be updated, which increases throughput.

In summary, partial state enables fast adoption of new views without

compromising the performance of concurrent writes. Such partial views also

quickly satisfy most requests. In addition, by maintaining only a subset of

computed state, partial state increases write throughput, since entries that

are not in the cache do not need to be updated.

6.7. Skew

Partial state is mainly useful if accesses are skewed towards a particular

subset of queries and data. When this is the case, caching a small sub-

set of the application’s computed state speeds up a significant fraction of

requests. If this is not the case, the likelihood of missing in the cache is

inversely proportional to the size of the cache, and you would need to cache

computations over most of the data to maintain a decent cache hit rate.

Lobsters is skewed, which is what allows Noria to run it smoothly even

when only a small fraction of results are cached. Significant skew shows up

across a wide range of other real-world datasets [18, 23, 41, 60], including

many social networks [20, 37]. In a large public Amazon data set [68], the

6Overall write throughput is lower after the migration since Noria must now maintain
two views, not just one.

100

6.7. Skew

100,000 most popular book titles (less than 5%) account for roughly 50%

of all book sales, and 75% of the sales are for the top 500,000 titles [67].

In the vote benchmark, which story to fetch and vote for is artificially

skewed using a Zipfian probability distribution [1]; a probability model

that describes skewed frequency distributions in many natural and random

datasets. Given some number of elements N and a skew parameter α, the

normalized frequency of the kth element in a Zipf distribution is given by:

f (k;α,N) =
1/kα

N∑
n=1

(1/nα)

.

Every time the vote benchmark performs a read or a write, it samples a

value, k, in such a way that the likelihood of choosing a given k is given

by f (k;α,N). A higher value for α means that smaller k values will be

sampled more frequently than larger k values, increasing the skew.

It is difficult to estimate the degree of skew for a complex application

ahead of time. But, because many datasets exhibit skew following some-

thing akin to a Zipfian distribution, an analysis of the vote benchmark may

still yield some helpful heuristics for application developers.

After S samples (throughput × time), the expected number of keys hit

is the sum of the probability that each k is sampled at least once, given by:

F (α,N) =
N∑
k=1

(
1− (1− f(k;α,N))S

)
.

Figure 6.10 on the following page plots F (α,N)/N after one second for

different degrees of skew (α) with N = 10M as throughput varies. One

second was chosen as this is how often Noria’s eviction code runs. That

value corresponds to the expected fraction of keys accessed between any

101

6. Evaluation

0 200k 400k 600k 800k 1.0M
Expected number of requests per second

0

2

4

6

8

10

M
us

tb
e

ca
ch

ed
[%

]

Ach
iev

ed
in

vo
te

be
nc

hm
ark

90/1 (α=1.150)
80/5 (α=0.990)
80/20 (α=0.886)
uniform

Figure 6.10.: Probabilistic model of the fraction of 10M keys that are ac-
cessed over the course of one second as throughput increases.
Each line shows a different amount of skew. Skew (X/Y) de-
notes that X% of requests come from Y% of keys. More keys
pushes the curve down.

two eviction cycles, and effectively sets a lower bound on the fraction of the

query results that must be cached. It thus also dictates minimum memory

use. While Noria could maintain a smaller fraction of the query results,

the application would likely need those keys again shortly after evicting

them. This would cause significant churn, where Noria would continuously

compute and then discard frequently accessed query results.

Also indicated on the figure is the cache fraction in the vote benchmark at

250k operations per second, as measured by the metric used in Figure 6.3:

the operator state data size. The benchmark runs smoothly with 90k of 10M

102

6.7. Skew

stories cached, which is close to the 46k stories computed by the formula

for the 90/1 skew that the benchmark uses. If the eviction is tuned to be

even more aggressive, the benchmark no longer keeps up. This suggests

that Noria is indeed able to function at close to the predicted cache ratio,

and that the model may be useful in estimating achievable memory savings.

At very high offered load, Noria can rarely get quite as low as the graph

indicates. For example, at 1M operations per second, Noria must maintain

28% of keys to keep up, even though the model predicts that 1.4% should

be sufficient. There are multiple related reasons for this.

First, Noria currently implements randomized eviction, so frequently ac-

cessed keys will occasionally be evicted. When they do, many requests must

wait for its result to be recomputed. With a less naive eviction scheme, such

as LRU, such evictions can be avoided, and hot keys will never miss.

Second, more upqueries must be serviced per second. Since upqueries are

performed by the dataflow, which is single-threaded along any given path,

the upquery processing itself becomes a bottleneck. To maintain acceptable

latency, Noria is forced to keep many more keys in cache than the model

predicts so that not too many upqueries occur.

And third, Noria’s eviction runs at a fixed interval of one second. As

offered load increases, so too does the number of keys read, and the number

of keys cached in that one second. The eviction logic thus has more keys it

needs to evict each time it runs. This in turn takes up more data flow cycles

on the write path that could otherwise be dedicated to serving upqueries.

In summary, Noria benefits from skewed access, which is common in real-

world datasets. At moderate throughput levels, Noria falls over only when

asked to evict more keys than the predicted size of the “hot” key set.

103

6. Evaluation

6.8. Cost of (Partial) View Maintenance

View maintenance is not free: writes to traditional relational databases need

only modify the contents of a single table, while in Noria those changes

must propagate through the dataflow. What may have started as a single

new table row may cause a host of updates to different views, dependent

upqueries, and incongruent join evictions. Thus, while Noria reads are faster

than reads from traditional databases, writes are slower.

For applications whose workload skews towards reads, this trade-off still

tends to be worthwhile; more CPU cycles are saved from not repeatedly re-

executing queries for reads than are consumed by processing writes through

the dataflow. However, as the application grows and its load increases,

eventually its write volume may still become a bottleneck. This is because

while Noria can process reads in parallel on many cores, writes must flow

through the dataflow, which has less capacity for concurrent processing.

Ultimately, some node in the dataflow will be unable to keep up with the

write load offered to it, and a queue will build up upstream of that node.

Where this bottleneck occurs depends on the application workload, as well

as how the application writes arrive. If writes are also skewed, and arrive in

batches, Noria’s operators can sustain higher throughput than if the writes

are uniformly distributed or arrive in small batches at high frequency.

The reason why Noria plateaus where it does in Figure 6.1 on page 81 is

because of precisely such a bottleneck in the Lobsters queries. In particular,

Lobsters has a query that fetches a user’s notifications. A notification is

generated for user u whenever another user posts a direct response to user

u’s story or comment after u last viewed that story. This last part is

key, because it requires that every time a user visits any story, that visit

must update the user’s notifications in case any should be removed. Thus,

104

6.8. Cost of (Partial) View Maintenance

55.8% (cf. Table 6.1 on page 79) of requests must send an update through

the one dataflow path that updates the notifications view.

When Lobsters latency spikes beyond 7700 pages per second, it is this

dataflow update that drives up the latency. The server has spare memory

and spare cores, but one thread is constantly busy working on the notifica-

tion dataflow7. The ≈ 4300 story requests per second generate over 100,000

reads per second, which Noria handles just fine, but the 4300 updates per

second saturate Noria’s dataflow for the notifications query. This suggests

that Noria’s dataflow cannot support an aggregate update rate beyond 4300

across tables that share a downstream dataflow node.

Partial state has a modest impact on what update rate Noria can support.

Without partial state, every update must be processed to completion, which

reduces throughput as shown in Figure 6.9 on page 99. At the same time,

with partial state, the dataflow must also service upqueries for missing state

in downstream materializations, which reduces the effective update rate that

dataflow can sustain.

In summary, Noria reduces the cost of reads, but increases the cost of

writes in order to do so. Beyond ≈ 4300 updates per second to a single

segment of the dataflow, the write processing pipeline becomes a bottleneck,

and must be sharded or otherwise modified to support higher update rates.

7This load could be spread across cores by sharding the dataflow, though this would
slow down other queries due to limitations in Noria’s basic sharding implementation.

105

106

7. Related Work

This chapter provides an overview of existing systems and their relation to

Noria and partial state.

7.1. Materialized Views

Database materialized views [6] were originally devised to store expensive

analytical query results for quick recollection. Unfortunately, commercial

databases’ materialized view support is limited, and views must usually be

rebuilt from scratch when the underlying data changes [7, 62, 77].

The key to usable materialized views is how they are maintained as the

underlying data changes. Rather than throw away the current materialized

query results, a good materialized view system should only perform the

work needed to incrementally update the materialized results. This has

been the subject of considerable research in the past few decades. Chirkova

and Yang gives a good survey of the current landscape [22].

Modern incremental view maintenance (IVM) techniques tend to be based

on delta queries. Delta queries are algebraically derived queries that give ef-

ficient relational expressions for computing changes to a (materialized) view

given a set of changes to the underlying data. The current state-of-the-art

is Higher-Order IVM, in which the system derives multiple, recursive such

107

7. Related Work

delta queries for each view, and materializes and maintains intermediate

delta query results as well [39, 51]. Recent work proposes techniques for

mitigating the memory overhead of such intermediate materializations by

instead materializing smaller auxiliary state from which the necessary val-

ues can then be efficiently produced when needed [61]. Sadly, few of these

solutions have been adopted in commercially available databases. Unlike

Noria, these systems focus on long-term maintenance of analytics queries —

they do not provide mechanisms for fast reads and do not support eviction.

Dynamic materialized views [12, 16] allow the materialization of only a sub-

set of each view, which enables limited eviction, but is cumbersome for the

application to manage, and only allows coarse-grained eviction decisions1.

Noria’s dataflow resembles Higher-Order IVM, including the materializa-

tion of intermediate results. Noria’s algorithm to determine what dataflow

to use to compute changes to each view is naive compared to delta queries,

and could likely benefit from the techniques in the aforementioned work.

Pequod [38] and DBProxy [10] provide materialized views that also sup-

port partial materialization in response to client demand. However, Pequod

is limited to static queries specified in a datalog-like language, and DBProxy

does not support incremental view maintenance. And neither system shares

state nor processing across views.

7.2. Caching

Application-level caching is often implemented in an ad hoc fashion, and is

the source of many application errors [49]. In particular, such ad hoc system

often fail to invalidate or update the cache as the underlying data changes,

1This strategy is discussed further in §8.2.

108

7.2. Caching

leading to permanently stale entries. Researchers and industry teams alike

have therefore attempted to build systems to automate cache maintenance.

Authors of large applications often build their own custom caching infras-

tructure that solves their immediate needs [33, 55], but does not provide

a ready-to-use solution for other developers who face similar issues. These

custom-built solutions tend to implement only the minimum functionality

the authors need at the time, and forego more complicated, but nonetheless

useful features like incremental cache updates. Noria presents a “plug and

play” solution specifically for query result caching for many applications.

The research community has also produced several systems that aim

to provide more general-purpose transparent caching. TAO [29] and Tx-

Cache [21] implement automated query result caching, but do not support

incremental in-place cache updates like Noria. CacheGenie [24] implements

a trigger-based middleware cache for object-relational mapping frameworks,

and supports in-place cache updates, but is limited to only specific opera-

tions supported by the framework. In contrast, Noria transparently speeds

up regular SQL queries, and does not require the application to use a par-

ticular database abstraction framework.

In the database literature, database caching front ends are sometimes re-

ferred to as Cache-Augmented SQL systems. And there, like with all caching

systems, the primary concern is consistency — some mechanism must en-

sure that the cache remains up to date as the underlying data changes.

Research in this space tends to focus on augmenting the key-value systems

that stores cache entries so that the application can correctly manage races

between database updates and cache invalidations [33, 36, 42]. Noria in-

stead integrates the cache management into the database, which allows the

cache entries to be incrementally updated, automatically, in-place, albeit

with eventual consistency.

109

7. Related Work

A related approach is mid-tier database caching, in which subsets of the

database are replicated onto the hosts that run the application’s code. This

allows certain queries to be run locally without interacting with the re-

mote database backend [11]. While the approach is appealing in that some

database queries can avoid traversing the network, it does not provide the

same speedups that query result caching provides.

7.3. Dataflow

A wide range of dataflow and stream-processing systems exist that excel

at data-parallel computing [15, 27, 32, 34, 40, 43, 45, 46, 48, 73]. How-

ever, these systems cannot easily serve web applications directly. They only

achieve low-latency incremental updates at the expense of limiting how

much state they keep by windowing, which results in incomplete results,

or by keeping full state in memory. Partial state allows Noria to lift this

restriction. Furthermore, these systems generally provide no mechanism

for accessing computed state except through the dataflow or by integrating

with additional external systems, which adds latency.

Many existing system are also limited to a fixed set of queries defined

when the system starts, and cannot easily adopt query changes. Some

dataflow systems do support Noria-like dynamic changes to the running

dataflow [26, 59], but without support for demand-driven partial state these

systems must either fully compute results when the dataflow is extended,

or have new dataflow only take into account subsequent updates.

Some developers use, or consider using, a streaming fabric like Apache

Kafka [69] to build their own view maintenance pipeline [44, 54]. However,

at the time of writing, no general-purpose system exists based on such a

110

7.3. Dataflow

pipeline that achieves the performance and flexibility of Noria.

Differential dataflow [31], and its instantiation in the commercial prod-

uct Materialize [74], bears a striking resemblance to Noria at first glance.

In particular, it uses dataflow to produce automatically-maintained mate-

rialized views over SQL queries. However, Materialize does not implement

partial state, and must therefore maintain similar queries independently

(which misses out on opportunities for shared compute and state) or fully

materialize query results (which uses more memory). The authors behind

Materialize have proposed partial solutions to some of these challenges,

which are discussed in §8.2.

111

112

8. Discussion

This thesis presents the partially stateful model, as well as its implemen-

tation in Noria. And while the model is complete in isolation, there are

a number of secondary considerations, features, and alternatives that are

worth discussing. Those are discussed in this chapter.

8.1. When is Noria not the Answer?

Noria aims to improve the efficiency of certain classes of database-backed

applications, but is not a one-size-fits-all solution. Noria’s materialized

views, and partial state specifically, are tailored for applications that:

1. Are read-heavy. Noria’s design centers around making reads cheap,

often at the expense of writes. For workloads where writes are as

frequent, or more frequent, than reads, other systems will work better.

2. Tolerate eventual consistency, at least for large parts of the applica-

tion’s workload. Much of Noria’s performance advantages over other

materialized view systems stems from the relaxed consistency model.

If much of the application’s workload requires stronger consistency

guarantees, there is little for Noria to speed up.

113

8. Discussion

3. Experience good locality. If the application’s access pattern is com-

pletely uniform, caching is unhelpful unless all results are cached. In

that case, partial state, and the complexity it introduces, provides

little value. Instead, Noria works best if data and access distributions

are skewed, and demonstrate good temporal and spatial locality.

4. Have non-trivial computed state, both in size and complexity. If

all computed state fits in a small amount of memory, a materialized

view system without partial state would work just as well. If all

queries are simple point queries without aggregations or joins, Noria’s

incremental cache update logic is unnecessary, and a simpler cache

invalidation scheme may work better.

Noria may also not perform as well as a fully developed, manually tuned

caching system. While Noria would allow the removal of caching logic

from the application, its general-purpose architecture may miss out on

application-specific optimizations implemented by a tailor-built system.

8.2. Emulating Partial State

A natural question is whether the benefits of partial state can be achieved

without the complexity of upqueries. In particular, can a dataflow sys-

tem that supports only full materialization emulate partial state effectively?

Thoroughly exploring the answers to this question may be worth a thesis in

its own right, but some of the more obvious approaches are discussed below.

114

8.2. Emulating Partial State

8.2.1. Lateral Joins

The commercial materialized view stream processor Materialize [74] sup-

ports lateral joins [65], which is described as

[A] join modifier [that] allows relations used in a join to “see”

the bindings in relations earlier in the join.

In particular, lateral joins let the application author write a query that

has access to the contents of some unrelated control table. For example,

Listing 8.1 shows how a lateral join can be used to emulate a partially

materialize vote count view like the one from Listing 6.1 on page 92. The

idea is to have a control table of “filled” keys, and have the results only for

those keys be included in the final materialized view.

CREATE MATERIALIZED VIEW VoteCount AS

SELECT article_id, votes FROM

(SELECT DISTINCT article_id FROM queries) filled,

LATERAL (

SELECT COUNT(*)

FROM votes

WHERE article_id = filled.article_id

);

Listing 8.1.: Using a Materialize lateral join to emulate partial state in vote.

This same approach is used to implement dynamic materialized views [12,

16], in which only an application-controlled subset of the records in each

view are materialized. In dynamic materialized views, the “lateral join” is

an EXISTS correlated subquery against a control table that holds the keys

the view should maintain.

115

8. Discussion

This approach works well to emulate partial state in simple situations,

but requires significant manual effort for a large application. In Lobsters,

for example, the application author must re-write their queries to use such

lateral joins, and must include application logic to maintain the auxiliary

tables used to indicate what keys are materialized. It is possible to auto-

mate the population of the control table using a feedback-loop cache man-

ager [16], but the requested query results would be unavailable until the

cache manager has updated the control table.

Effort notwithstanding, emulating partial state in this way also presents

an “all or nothing” choice for applications for a given key. Either, all state

for that key is computed, or none of it is. With partial state, the state for a

key in the ultimate materialized view can be evicted without also evicting

the current vote count. The former may be significantly larger than the

latter, since it includes other columns, but is cheap to recompute. The

latter on the other hand is small, but potentially expensive to re-compute.

8.2.2. State Sharing

Partial state allows a single query of the form WHERE x = ? to satisfy

lookups for any value of ?. Without partial state, the system has two

options: remove the filter on x from the query and filter after the fact, or

instantiate a separate query for each concrete value of ?. The former uses a

significant amount of memory, but is also complicated to get right; x may for

example affect what values are aggregated together. The latter is simpler,

and uses less memory, but requires duplicating the dataflow operators for

each query, and keeping separate state for each one.

Recent work introduced arrangements [66] as a way to mitigate this prob-

lem. Arrangements allow sharing indexes and state across related operators

116

8.3. Consistency

to avoid duplication. However, even with arrangements, the system may

execute the same computation over a given input record more than once

if it is needed by more than one instance of a query. Noria supports joint

query optimization [56], which combined with arrangements could reduce

much of the duplicated effort by instantiating each query multiple times,

though this does not improve the eviction process.

8.3. Consistency

Noria provides weaker consistency guarantees than many existing dataflow

and view materialization systems. This has implications for how applica-

tions use Noria, and what behavior the application may observe.

8.3.1. Write Latency as Staleness

By design, Noria’s read and write paths are disconnected from one another:

reads can usually proceed even if the write path is busy. This is both the

reason why Noria’s read performance is so high, and why it gives weaker

consistency guarantees that competing systems. For example, on a 32-core

machine, the application may experience a write throughput ceiling at a

few hundred thousand updates per second, as the write path is processed

by only a small number of cores. Meanwhile, reads can happen across any

number of cores; even if the write path is entirely saturated, Noria may be

able to handle millions of additional reads per second.

While a saturated write path does not slow down the execution of queries

whose results are materialized, it does affect the read path in two important

ways: miss-to-hit time and result staleness. If a query misses, the dataflow

must compute and populate the missing state so that the read can proceed.

117

8. Discussion

This is the same dataflow that handles writes, so the time until the missing

read hits instead will increase if the dataflow is busy. Similarly, while queries

that do not miss can proceed immediately, the returned results will not

reflect updates that have not yet been processed by the dataflow. Therefore,

if the dataflow is busy, the time between when an update is issued and when

it is reflected in later queries will increase.

8.3.2. Transactions

Web applications sometimes rely on database transactions, e.g., to atomi-

cally update precomputed values. Noria does not implement transactions,

though its support for derived views often obviates the need for them.

For example, web applications often use transactions to keep denormal-

ized schemas synchronized: a “like count” column in the table that stores

posts or an “average rating” column in the table that stores products. No-

ria obviates the need for such denormalization, and the transactions needed

to maintain them, by automatically ensuring that computed derived values

are kept up to date with respect to the base data.

8.3.3. Stronger Consistency

Noria is eventually consistent, and so is the partial state implementation

outlined in this thesis. That said, adding partial state to a system with

stronger consistency guarantees should not require extensive changes. In

fact, parts of the design could likely be simplified; the buffering required for

unions (§4.5.1), for example, would likely no longer be necessary, and could

be replaced with some kind of multi-versioned concurrency control.

118

9. Future Work

9.1. Efficient Migrations

Section 6.6 demonstrated that partial state makes some migrations efficient.

This requires that the view can be partial, as per the discussion above. But

even for views that can be partial, work may be required in order to make

upqueries for that view efficient. This work generally means adding an index

to some existing state, which requires scanning the data stored in that view.

Constructing an index tends to be significantly faster than computing the

full cached results of the new view, but it is a non-trivial cost nonetheless.

For example, consider the query in Listing 9.1 on the following page when

added to the vote benchmark query in Listing 6.1 on page 92. To simplify

the argument, assume that the VoteCount view is not partially stateful (i.e.,

it holds all the rows). For upqueries of the new view to be efficient, it must

be possible to query all the stories (along with their vote counts) for a given

author in the VoteCount view that existed previously. This means we must

add an index on the author column of that view’s state, which is costly.

A comparison with what would happen when using a traditional relational

database is useful here. When the application developer decides that they

want to run this new query, they have two choices: either compute it on-

demand, or denormalize the schema by adding a new computed “karma”

119

9. Future Work

SELECT VoteCount.author,

SUM(VoteCount.nvotes) AS karma

FROM VoteCount -- the view from the vote benchmark

GROUP BY VoteCount.author

WHERE VoteCount.author = ?

Listing 9.1.: Query that computes the sum total score of a user’s stories
(their “karma”).

column to the (hypothesized) users table. Neither option is great. The

former is slow to execute, and the latter requires computing the karma

for every story. The index Noria must construct for efficient upqueries is

cheaper to construct than such a computed karma column, which makes

Noria’s single scan seem reasonable.

Note that if VoteCount is partial, the karma view is free to construct

for Noria since indices for partially stateful materializations always start

out empty. Noria constructs an empty index by author, and then fills it on

demand as the application executes the karma query for particular authors.

Whether Noria always does no more work than what a developer would

make a traditional relational database do if they wanted to make a view

efficient to query remains an open question.

9.2. Ordered State

Certain ordered operations, like max aggregations (SELECT MAX) and top-k-

style queries (ORDER BY LIMIT), occasionally require re-fetching underlying

state as the data changes. If the maximum value in a max aggregation

or a row in a top-k view is removed, the new view content can only be

determined by re-evaluating the query.

120

9.3. Ranged Upqueries

The necessary upquery can be performed efficiently if the underlying state

is maintained in the appropriate order, but Noria does not currently support

the necessary ordered indexes. Instead, Noria provides approximate versions

of such operators. In particular, Noria’s top-k operator maintains the top

2k items, so that if an item is removed, the top k items are still known. To

get back to 2k (to allow future removals), the operator fills the top view

with the highest rows it has seen so far.

This scheme avoids the need for upqueries, and works well as long as

removals from the top list are uncommon and the top list rotates over time.

Otherwise, the approach is brittle; if many top rows are removed, or if the

top is changing very infrequently, the top list may eventually hold none of

the actual top items. Support for ordered indexes, and limited upqueries

against those indexes, would address this limitation.

9.3. Ranged Upqueries

Throughout this thesis, upqueries have been described in terms of point

lookups of the form WHERE x = ? AND y = ?. However, the design of

partial state is also amenable to supporting ranged queries (WHERE x = ?

AND y < ?). Much of the necessary work lies in changing the appropriate

index structures and including range information in upqueries, which is all

straightforward. The trickiest part of the change is to ensure that future

updates are not dropped if they fall within a requested range. For example,

consider the following course of events:

1. An insert arrives with x = 42.

2. An upquery arrives with x < 50.

121

9. Future Work

3. An insert arrives with x = 49.

The second insert must be forwarded downstream so it will update the

materialized state for x < 50. For Noria to realize this, it must “remember”

the x < 50 upquery. More generally, it must remember what ranges of

values are present downstream, not just what individual keys. The solution

here is to use an interval tree to track which parts of the key space is present.

An interval tree efficiently stores, merges, and splits ranges as new ones are

introduce (by new upqueries) and retired (by evictions).

9.4. Sharding Upquery Explosions

An unfortunate phenomenon manifests for queries when partial state and

sharding combine in a detrimental way. If Q is R’s parent, R is sharded

differently from Q, Q is partial, and Q’s materialized ancestor P is sharded

differently from Q, then a miss in R may cause k2 upqueries to P , where k

is the sharding factor. The miss in R generates an upquery to every shard

of Q, and every shard of Q sends an upquery to every shard of P .

The three modifications from §4.6 are sufficient to ensure that Noria han-

dles this situation correctly, but more research is needed to reduce the num-

ber of upqueries needed. A promising idea is to optimize for the case where

all shards of Q miss. If every shard of Q knows that every other shard will

upquery P , they may be able to coordinate the upqueries such that any

given key is only upqueried once. The sharder node can then ensure that

the upquery results are sent to all the shards. This is left for future work.

122

9.5. Fault Tolerance

9.5. Fault Tolerance

If an operator’s state is lost, Noria’s current recovery strategy is to remove

and re-introduce the operator, and all of its descendants, as if they were new

queries. This can happen because the Noria worker hosting that operator

fails, or simply because the system is restarted. This scheme works, but

means that any past materialization work is lost and must be re-done.

A mechanism for taking snapshots of materialized state that can be re-

covered later would help mitigate this. However, such a design also requires

care to ensure that any state populated since the snapshot is correctly incor-

porated. In particular, if downstream state now includes entries that reflect

data missing from the snapshot, the system must evict that downstream

state. Otherwise, updates for that data will be discarded at the recovered

operator when it discovers that the related state is missing in its state.

9.6. Upstream Database Integration

Existing applications that wish to adopt Noria may not want to do so whole-

sale. They may wish to continue using their existing data backend because

they rely on its transactional properties, because they trust their current

backup system, or simply to make the transition incrementally.

The most straightforward way to add Noria to an existing application

backend is to feed all changes to the primary database tables into No-

ria. Noria will then maintain its copies of the base tables, with indexes it

manages itself. However, this has the downside of duplication all of the

application’s data between the primary backend and Noria.

A more attractive alternative is to integrate the existing backend into

Noria’s base tables. Noria would still have to be notified as changes are

123

9. Future Work

made to the data so that it can propagate those changes to the maintained

views, but that data would not also have to be stored in Noria’s base tables.

Unfortunately, this design introduces a race condition: there is now a

window of time where a change that has been made to the base data is

visible to upqueries to the base tables, but the corresponding update has

not yet entered the dataflow. This is a problem, because if an upquery

response reflects that new data, and then an update arrives and adds that

same data, the data will be reflected twice and thus violate Invariant I. In

many ways, this is a similar problem to the one that joins face if their input

state resides across an edge that may hold in-flight updates (§2.5.2).

A possible solution is to take a page out of the multi-version concurrency

control playbook, and ensure that lookups into base table state do not see

the effects of any updates that have not yet passed through its Noria oper-

ator equivalent. Ideally, this would be based on the existing transactional

capabilities of the upstream database, but it may also be possible to emulate

using an audit table that records table changes.

9.7. Maintaining Downstream Systems

Noria propagates deltas internally, and these deltas may useful to down-

stream systems. For example, Noria could notify a reactive web application

when the result set for the currently displayed view is modified, and include

in that notification what changed. In response, the application could reflect

that change, all without sending another query to the database.

Extending Noria in this way raises an interesting question around partial

state. What happens if an application “subscribes” to a query, and then

that query’s result set is evicted? Since it is evicted, Noria will not maintain

124

9.8. Eviction Strategy

it any longer, and the application’s view will grow stale. Similarly, what

happens if the application attempts to subscribe to a query whose results

are not yet known? Or, what if the application goes offline briefly, and now

wishes to gather only the changes to the result set since it was last online?

It may be that the solution here is simple — provide a query-and-subscribe

RPC that populates missing state if needed, and ensures that results for

outstanding subscriptions are never evicted. The view could also retain a

log of recent changes to the view for if a stale client wants to catch up.

9.8. Eviction Strategy

Partial state enables Noria to evict state that is infrequently accessed. It

does not dictate any particular eviction strategy as long as the partial state

invariants are maintained. In particular, if state is evicted at some operator,

any downstream state derived from the evicted state must also be evicted.

This thesis does not attempt to innovate in the space of eviction schemes,

and implements simple randomized eviction: when memory use exceeds a

given threshold, keys are evicted randomly from the three largest indices in

each of the three largest domains. The number of keys is chosen propor-

tionally to the size of each state. This scheme works decently, and requires

little coordination or complexity, but suffers when the system runs close to

capacity. Frequently accessed keys may still be evicted due to pure chance,

and when that happens the system falls behind.

To push Noria’s performance, a smarter eviction strategy should be im-

plemented. The primary obstacle to overcome is that evictions must happen

in the dataflow write path, but the information needed to inform eviction

decisions usually come from the read path. Care must be taken to avoid ex-

125

9. Future Work

cessive synchronization between these, otherwise Noria’s read performance

would be bottlenecked by the performance of the write path.

9.9. Cursors

Websites frequently have paginated listings, or pages that fill in with more

content as the user scrolls. Behind the scenes, these techniques are imple-

mented using the same abstract mechanism: the cursor. There are many

ways to implement cursors, but the most common is the LIMIT operator.

On page one of a listing page with 10 results per page, the application

runs the listing query with LIMIT 10. On page two, it runs the same query

with OFFSET 10 to skip the results from page one, or with a WHERE clause

that excludes results that have already been shown. For example, if the

listing query orders results by id, the WHERE clause could be id > ? where

? is the last id on the previous page.

Some databases support persistent cursors. The database tracks what

subset of the results for a query the application has already seen, and the

application can fetch more results directly from the cursor.

Noria currently cannot represent cursors like these since it does not main-

tain the order of in-memory state (§9.2). OFFSET might not skip the same

results as shown on the previous page, and WHERE x > ? is not supported.

If support for ordered state was added, Noria would support these types of

queries much like existing databases.

To make paginated queries partial, additional challenges must be solved.

First, ranged upqueries are required for x > ? conditionals (§9.3). Then,

a decision must be made as to how LIMIT should interact with upqueries.

There are two primary design options: post-limiting and pre-limiting.

126

9.10. Column-Based Storage

In a post-limited design, the query is executed without pagination-related

clauses internally, and all of its results are materialized. The limit and offset

are then applied “at the end”: when a query execution request comes in,

only an appropriate subset of the materialized results are returned. This

solution requires no changes to the partial state logic, but also makes it

necessary to materialize all pages of each query result, even if only the

first few pages are ever accessed. Realistically, a solution that takes this

approach would therefore also include a hard upper limit on how many

results are materialized. Twitter takes an approach like this, where there is

a fixed end to each timeline that the user cannot scroll past.

In a pre-limited design, only results for pages that have been accessed

are materialized. This is attractive since it uses less memory, and fewer

results must be maintained. But, it also requires more complex changes to

partial state. In particular, operators must now have a way to determine if

a state change causes records to appear in, or disappear from, materialized

pages downstream. If they do not, updates may be discarded early even

though they would change downstream materialized state. Furthermore,

since intermediate operators may remove (e.g., filters) or add (e.g., joins)

rows to the result set, the limit requested by the application may not map

directly to the number of results yielded by the corresponding upquery.

Therefore, page-specific upqueries may need to run multiple “iterations” to

fetch additional results if the first response did not return enough rows.

9.10. Column-Based Storage

Noria’s in-memory storage is unoptimized. Specifically, every row in every

materialization is allocated in its own vector. This stresses the memory

127

9. Future Work

allocator, and introduces non-trivial memory overhead. Since Noria knows

the schema of each view in advance, and all rows in the view have the same

schema, a column-based storage format would likely be a much better fit

for many views. Noria could even use heuristics to choose between row- and

column-based storage depending on the semantics of each operator.

9.11. Time-Windowed Operators

Noria has no support for time-windowed queries — those that include NOW,

CURRENT TIME, or other similar dynamic values in the query. These queries

are difficult as they are not pure functions of the data in the base tables.

Instead, the query results change continuously, even if the application insti-

gates no changes. How to support such operators in Noria, and with partial

state which also relies on the purity of operators, remains an open problem.

9.12. Partial Key Subsumption

Noria’s implementation of partial state does not currently take advantage

of situations where upquery keys overlap. For example, consider the case

of an operator X where one downstream operator upqueries on column A,

and another upqueries on the pair of columns A and B. X currently keeps

two indices: one on A, and one on A+B. Each index keeps track of missing

entries independently. So, even if we previously executed and filled in an

upquery for A = 3, a subsequent request for A = 3, B = foo could miss and

cause another upquery to be issued. The operator has sufficient information

that it should be able to resolve this index miss locally, but Noria does not

currently implement this optimization.

128

10. Conclusion

Web applications that have read-heavy, skewed workloads are poorly served

by the database systems that are available to them today. While the

database interface is flexible and convenient, too much extra work is required

on the part of application authors to achieve the latency and throughput

they need. Materialized views provide an excellent foundation for bridging

this gap, but existing solutions lack support for eviction, on-demand query

execution, and low-latency reads. Without those features, they cannot re-

place the caching infrastructure that applications authors currently build

themselves. This dissertation has presented a model for partially materi-

alized state, and an implementation of it in the materialized view system

Noria, which allows materialized views to replace complex and error-prone

ad hoc application query caches. Hopefully, the work from this dissertation

makes materialized views practical for interactive web applications, and save

future developers from implementing caching yet another time.

129

130

A. Noria In Simpler Terms

Hello, and welcome!

This section is written for anyone who wants to understand roughly what

is going on in my thesis, without necessarily understanding all the fiddly

technical bits. The running analogue I’ll be using is one that I have, with

various degrees of success, used to explain my work to non-technical people

over the past five years. Hopefully, it’ll be helpful to you as well!

Throughout the text, you’ll find terms written in italics. Those are tech-

nical terms that are used in the thesis proper, and they will arm you with

some signposts to connect what you are reading here with the thesis content.

If you want more after you read this, you can watch my presentation of

this thesis ahead of my thesis defense at https://youtu.be/GctxvSPIfr8.

The Library. Imagine a huge library that holds all the information for a

website or app of your choice. This could be Facebook, Twitter, Instagram,

TikTok, Reddit, you name it. It holds information about every user, ev-

ery post, every like, every upvote, every comment, every picture, and every

video. Every time you open said website or app, some representative has

to go to the library to collect all the information relevant to whatever you

are trying to view. If you are looking at your Facebook timeline, the rep-

resentative has to figure out who your friends are, what they have posted

recently, what comments there are on those posts, etc. Similarly, if you are

131

A. Noria In Simpler Terms

looking at a Reddit post, the representative must gather the original post,

but must also run around to find all the comments on that post, upvotes on

those comments, etc. The representative may also need to collect additional

information such as your name, and whether you have any new notifications

or messages. It’s an exhausting affair. The library is a database.

The Librarian. The representatives are not allowed to browse the library

themselves. Instead, the library has a librarian who knows the library really

well, and who answers questions about its contents. When a representative

wants to inquire about something, they ask the diligent librarian, who then

scours the library to find the answer to the representative’s query. This

particular librarian is rather forgetful, and by the time the next representa-

tive steps up, they’ve already forgotten all about any previous interactions.

The representatives have grown to find this endearing. The librarian is a

database engine, a word often used interchangeably with “database”.

Answering Questions. As you might imagine, some questions are easy

to answer, whereas others may take a very long time for the librarian to

figure out the answer to. If someone asks “what is Jon’s email address?”,

the librarian only has to look in the user directory (a table) for the entry

for Jon, and all the information is right there. That is, of course, assuming

that there is such a thing as a user directory which has information ordered

by the user’s name (an index whose key is the user’s name). On the other

hand, if someone asks “how many people have liked this post of Jon’s?”, the

librarian has a bigger task in front of them. Even if there is a directory that

lists likes by which post the like was for, the librarian still has to count how

many there are, which could (hopefully) be a lot. Questions can even get so

complicated that the librarian has to look through every single like in the

132

library to get the answer! For example, imagine a representative asks “what

is the post with the most likes?”. To answer that question, the librarian

must know how many likes every post has, which means they have to count

the number of likes on every post. Ouch.

Writing Things Down. If we think back to the fact that these represen-

tatives are ultimately trying to bring content to users who are sitting there

waiting for the page to load, it quickly becomes obvious that we need the li-

brarian to answer questions very quickly. Now, this librarian is very speedy

indeed, but if the questions get sufficiently complex, the answers still take

time to find. So, one day, the librarian has an idea. They realize that a

lot of representatives are asking the same few questions (the distribution of

questions is skewed). For some reason, a lot of representatives want to know

what Robert and Frans are up to (very few bother checking what posts Jon

has made recently), and the librarian figures that if they can save themselves

the repeated trips, it’ll save quite a bit of time. So, the librarian decides

to start writing down the answers they give out to representatives in a

little notebook. When a representative asks a question, the librarian first

checks their list of questions they’ve already found the answer to, and if the

answer is there, they don’t have to leave their comfy chair! The librarian

has decided to materialize, or cache, query results.

Erasing Things. Sadly, the librarian’s plan has a flaw. Over time, their

lists grows so large that they’re spending most of their time just reading

through their list to look for whether they’ve heard a particular question

before! The list is filled with questions no-one has asked in ages, which

makes it hard to find the questions that are asked a lot. Worse yet, because

of their inconvenient forgetfulness, the librarian doesn’t actually remember

133

A. Noria In Simpler Terms

which questions are asked frequently, and which are not. So, the librarian

decides to simply erase a bunch of entries from their list at random. They

figure that questions that are asked a lot will be asked again soon anyway,

and then end up on the list again, whereas questions that aren’t being

asked much, well, are just going to stay off the list. This is eviction, and

specifically randomized eviction. Other eviction strategies exist (like “least

recently used”), but the work in this thesis uses randomized eviction.

Productive Humans. Unfortunately for the librarian, the library is ever-

changing. Every day, representatives bring in piles and piles of new records

that users have produced. Likes, comments, photos, and more are coming

by the boatload. Worse yet, the representatives expect that those records

immediately start showing up in the answers to the questions that other

representatives ask! If Jon posts something, they expect his mother to

then see that post almost immediately. In the past, this wasn’t too much

of a problem — true, the librarian had to file away the records that came

in, which took some time, but at least by the time they were looking for

answers for the next representative, they would also come across those new

records and take them into account. But now that the librarian is using

their notebook, they’re often not even looking at the records, and so risk

giving inaccurate answers! In other words, the answers in the notebook

grow stale, and are no longer consistent with the data in the library.

Work-Work Balance. After thinking about their problem late at night

when they have some downtime, the librarian realizes that they need to

be updating, or maintaining their notebook when they are filing away new

records that arrive. They figure that while this will make filing take longer,

so many more representatives ask questions than bring new records, that on

134

balance the notebook should still allow them to serve more representatives

per day overall. The library workload is read-heavy. The librarian still

has to decide how to split their time between servicing representatives that

bring new records and those that want to ask questions, but as long as both

lines are shrinking, all is good.

Throwing Away the Notebook. The first thing the librarian thinks of is

to simply throw away (invalidate) the notebook any time a representative

brings new files. This works, but the librarian quickly discovers that this

doesn’t save much time over not keeping a notebook at all. Since there is

always a steady stream of new files, the notebook barely gets a few entries

in it before it has to be thrown away! The librarian thinks there might be a

way to only erase entries in the notebook that are related to the newly filed

records, but quickly eliminates that option — the new records that come in

frequently affect the questions that most people have (new likes for Robert’s

newest post alongside questions for how many likes Robert’s newest post

has). If the solution was to throw those entries away, the librarian would

still spend all their time counting how many likes Robert’s newest post has.

Updating the Notebook. While erasing a notebook entry one day, the

librarian catches themselves thinking that what they’re doing makes little

sense. A representative brought in a single new record that was a like on

Frans’ latest post, and the librarian’s eraser currently hovers over an entry

that says that the current number of likes on that very same post is 42,006.

The librarian erases the number, grins, and before moving on to erasing the

next entry puts down 42,007. This is genius! The next time someone asks

for the number of likes on that post, there’s no need to go count all those

likes from scratch again — the entry in the notebook will still be there and

135

A. Noria In Simpler Terms

it will be correct. The librarian maintained the notebook incrementally,

and thereby saved having to do a bunch of redundant work later.

More. More! More!! Now that the librarian has discovered this little

trick, they start looking for other entries that can be updated in the same

way. Unfortunately, while the procedure is simple for some answers in the

notebook, it is very tricky for others. It’s all well and good to add two

numbers, but if Jon, who wasn’t following Robert before, starts following

him, all of Robert’s past posts now have to be placed at the correct position

in the list given as an answer to “what posts have recently been made by

people that Jon follows?”. The librarian takes a break and ponders if there’s

a good way to solve this problem.

A Hierarchy of Notebooks. The next day, the librarian comes in with a

plan, and pulls out a large sheet of drawing paper. Each time a question

comes in, the librarian maps out a flow-chart for how they figured out the

answer to that question. What directories they had to browse through,

in what order, and how the files from those directories were combined.

Then, the librarian keeps a separate notebook for each step in that flow

chart. Count the number of likes in this directory under the entry for a

particular post? Great, write that number down in one notebook. Look for

all the people that both user A and user B follow? Great, write down which

were in both in another notebook. Then, do this all the way down to the

final answer for each question. If two questions require similar steps, the

librarian re-uses the overlapping parts of the flow chart, and uses the same

notebooks for the same steps. The librarian is mapping out the dataflow

of the questions — how the entries in the notebook relate to the data that’s

stored in the library.

136

Using the Flow-Chart. The librarian’s insight only becomes apparent

once the next batch of new records are brought in by a representative. Now,

instead of looking through all the notebook entries, the librarian looks at

where each new record would be filed. Then, the librarian consults the

giant flow-chart, and looks for the step in the chart that indicates to look

something up in that same place. If a new like comes in, then the librarian

looks in the flow-chart for a step that reads “go to the directory that holds

likes”. Then, the librarian follows the edges of the flowchart from that step.

For each step, the librarian finds the entry in that step’s notebook that

matches the new record, updates that entry to include the new record, and

then moves on to the next step. If a step is followed by multiple parallel

steps, the librarian does all of them, one after the other. By the time there

are no more parts of the flow-chart to follow, the librarian has updated all

the notebook entries that can possibly depend on the new record. And cru-

cially, without looking at anything unnecessarily! This is incremental view

maintenance using dataflow, and is what Noria provides.

Common Knowledge. The librarian is now pretty happy — while it takes

a little while to update the notebooks to reflect new records that come in, it’s

not too bad, and a large majority of all the questions that representatives

come in with already have up-to-date answers in the notebooks. Life is

pretty good. But every now and again, the librarian still has to answer

questions whose answer does not appear in a notebook. This is especially

frustrating in cases where the librarian is pretty sure that they found the

answer some time in the past, but has since erased the relevant entry to

save space in the notebook. It feels like there should be a way to cobble the

answer together from related tidbits in other notebooks that may still hold

parts of the answer, rather than having to go all the way back to the library

137

A. Noria In Simpler Terms

shelves and do all that tedious manual counting. If Robert’s post’s like

count is still in some notebook, then the librarian shouldn’t have to count

the likes again just because there isn’t an entry for the specific question the

representative asked.

Suspiciously Similar Flow-Charts. After going through the steps of an-

swering some of these questions where it feels like at least part of the answer

lies in a notebook somewhere, the librarian starts to notice a pattern. When

drawing out the flow-chart steps for the new question, there’s nearly always

overlap with steps from some other questions. And while writing into the

notebooks for those shared steps, there’s almost always an entry with the

exact same answer already present. The librarian realizes eventually that

this is not actually so surprising — if two questions both ultimately require

that the librarian count the number of likes for one of Robert’s post, then

they will both share the prior steps related to that question in the flow-

chart. And the result will in both cases end up in the same entry in the

relevant notebook — the one for that post.

Flow-Charts in Reverse. Following this observation, the librarian decides

to try something. The next time a question comes in for which the note-

books do not have an answer, the librarian maps out the flow-chart for

answering that question as usual. But instead of then following the flow-

chart from the top (“start by opening the likes directory”), the librarian

follows the flow-chart in reverse. The librarian first looks in the answer

notebook at the end of the question’s flow-chart, and if the answer isn’t

written down there, then goes up to the notebook for the second-to-last

step of the flow-chart. If the relevant entry is written down there, then

the librarian can just take what’s written there, do the last flow-chart step,

138

and then have the answer for the representative’s new question! If that

notebook also has no relevant information, the librarian continues “up” the

flow-chart until they either find an entry, or the flow-chart says to look in

one of the data directories, where the relevant data is guaranteed to reside.

What the librarian is doing is an upquery — a reverse lookup in the dataflow

for information that isn’t quite refined enough to answer the question, but

is better than having to consult the entire data directory. Upqueries are

particularly attractive because they allow the librarian to keep only a single

flow-chart, rather than keep multiple “what to do if this notebook doesn’t

have the information?” flow-charts.

This Thesis. This is as far as this analogue will go. It’s not perfect, but it

should give you sufficient working knowledge of the problem area that this

thesis tackles. In particular, the contributions of this thesis is the notion of

“upqueries”, as exemplified by the last paragraph. All the techniques from

the preceding paragraphs already exist in past related work.

Partial State. You may wonder about the lack of the word “upquery” in

the thesis title, and what “partial state” means. This is one place where the

library analogue starts to break down. An approximate explanation is that

partial state is what enables the librarian to erase entries from notebooks,

and upqueries are an important part of how to make having such erased

entries practical. And while the ability to erase things may seem trivial, it

turns out that the librarian’s flow-chart approach gets tricky when infor-

mation may be missing from notebooks part-way through. Especially since

most databases (“libraries”) have multiple concurrently executing “librari-

ans”, which all share notebooks and need to ensure that they do not step

on each other’s toes or overwrite each other’s work!

139

A. Noria In Simpler Terms

The Real World. To understand why this work matters, we need to tie

back all we’ve explored above to real-world concepts. The notebooks rep-

resent computer memory, which in practice is both limited and expensive,

so you can’t just go around writing everything down. This is why it is so

important to keep the notebooks small. The librarian’s work must be done

by a real computer somewhere, and every second of work costs money. If

the librarian does half as much work, that’s a bill, and often a significant

one, cut in half somewhere! Overall, you can think of the strategies we’ve

explored in one of two ways. Either, think of it as letting you do more with

limited resources — the are only so many notebooks, and the librarian only

works eight hours a day. Or, think of it is as letting you do the same with

fewer resources — you can now serve the same number of representatives

while using fewer notebooks and letting the librarian leave early.

I hope that was helpful. Thank you for reading!

140

Bibliography

[1] George Kingsley Zipf. Human behavior and the principle of least effort;
an introduction to human ecology. Addison-Wesley Press, 1949.

[2] E. F. Codd. “Derivability, Redundancy and Consistency of Relations
Stored in Large Data Banks”. In: Research Report / RJ / IBM RJ599
(1969).

[3] Jose A Blakeley, Per-Ake Larson, and Frank Wm Tompa. “Efficiently
updating materialized views”. In: ACM SIGMOD Record 15.2 (1986),
pages 61–71.

[4] Michael Stonebraker et al. “On rules, procedure, caching and views in
data base systems”. In: ACM SIGMOD Record 19.2 (1990), pages 281–
290.

[5] Richard Hull and Gang Zhou. “A framework for supporting data in-
tegration using the materialized and virtual approaches”. In: Proceed-
ings of the 1996 ACM SIGMOD international conference on Manage-
ment of data. Oct. 1996, pages 481–492.

[6] Ashish Gupta and Iderpal Singh Mumick, editors. Materialized Views:
Techniques, Implementations, and Applications. MIT Press, 1999.

[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. “Auto-
mated Selection of Materialized Views and Indexes in SQL Databases”.
In: Proceedings of the 26th International Conference on Very Large
Data Bases (VLDB). Sept. 2000, pages 496–505.

[8] Kenneth Salem et al. “How to Roll a Join: Asynchronous Incremen-
tal View Maintenance”. In: Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data. 2000, pages 129–
140.

141

Bibliography

[9] Themistoklis Palpanas et al. “Incremental maintenance for non-distributive
aggregate functions”. In: Proceedings of the 28th International Con-
ference on Very Large Databases (VLDB). Elsevier. 2002, pages 802–
813.

[10] Khalil Amiri et al. “DBProxy: A dynamic data cache for Web ap-
plications”. In: Proceedings 19th International Conference on Data
Engineering (Cat. No. 03CH37405). IEEE. 2003, pages 821–831.

[11] P. . Larson, J. Goldstein, and J. Zhou. “MTCache: transparent mid-
tier database caching in SQL server”. In: Proceedings. 20th Interna-
tional Conference on Data Engineering. 2004, pages 177–188.

[12] Jingren Zhou, Per-Åke Larson, and Jonathan Goldstein. Partially Ma-
terialized Views. Technical report MSR-TR-2005-77. Microsoft Re-
search, June 2005.

[13] Fay Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: Proceedings of the 7th USENIX Symposium on Op-
erating System Design and Implementation (OSDI). Nov. 2006.

[14] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. “Open
Versus Closed: A Cautionary Tale”. In: Proceedings of the 3rd USE-
NIX Conference on Networked Systems Design and Implementation
(NSDI). 2006, pages 239–252.

[15] Michael Isard et al. “Dryad: Distributed Data-parallel Programs from
Sequential Building Blocks”. In: Proceedings of the 2nd ACM SIGOPS
European Conference on Computer Systems (EuroSys). Mar. 2007,
pages 59–72.

[16] Jingren Zhou et al. “Dynamic Materialized Views”. In: 2007 IEEE
23rd International Conference on Data Engineering. 2007, pages 526–
535.

[17] Brian F. Cooper et al. “PNUTS: Yahoo!’s Hosted Data Serving Plat-
form”. In: Proceedings of the VLDB Endowment 1.2 (Aug. 2008),
pages 1277–1288.

142

Bibliography

[18] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. “Power-
law distributions in empirical data”. In: SIAM review 51.4 (2009),
pages 661–703.

[19] Werner Vogels. “Eventually Consistent”. In: Communications of the
ACM 52.1 (Jan. 2009), pages 40–44.

[20] M. Newman. Networks: An Introduction. OUP Oxford, 2010.

[21] Dan RK Ports et al. “Transactional Consistency and Automatic Man-
agement in an Application Data Cache.” In: Proceedings of the 9th

USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI). Oct. 2010, pages 279–292.

[22] Rada Chirkova and Jun Yang. “Materialized Views”. In: Foundations
and Trends® in Databases 4.4 (2011), pages 295–405.

[23] Benjamin Gufler et al. “Handling Data Skew in MapReduce.” In:
Closer 11 (2011), pages 574–583.

[24] Priya Gupta, Nickolai Zeldovich, and Samuel Madden. “A trigger-
based middleware cache for ORMs”. In: ACM/IFIP/USENIX Inter-
national Conference on Distributed Systems Platforms and Open Dis-
tributed Processing. Springer. 2011, pages 329–349.

[25] Priya Gupta, Nickolai Zeldovich, and Samuel Madden. “A trigger-
based middleware cache for ORMs”. In: ACM/IFIP/USENIX Inter-
national Conference on Distributed Systems Platforms and Open Dis-
tributed Processing. Springer. 2011, pages 329–349.

[26] Derek G. Murray et al. “Ciel: a universal execution engine for dis-
tributed data-flow computing”. In: Proceedings of the 8th USENIX
Symposium on Networked System Design and Implementation (NSDI).
Mar. 2011, pages 113–126.

[27] Tyler Akidau et al. “MillWheel: Fault-tolerant Stream Processing at
Internet Scale”. In: Proceedings of the VLDB Endowment 6.11 (Aug.
2013), pages 1033–1044.

[28] Peter Bailis and Ali Ghodsi. “Eventual consistency today: Limita-
tions, extensions, and beyond”. In: Queue 11.3 (2013), pages 20–32.

143

Bibliography

[29] Nathan Bronson et al. “TAO: Facebook’s Distributed Data Store for
the Social Graph”. In: 2013 USENIX Annual Technical Conference
(USENIX ATC). 2013, pages 49–60.

[30] James C. Corbett et al. “Spanner: Google’s Globally Distributed Database”.
In: ACM Transactions on Computer Systems 31.3 (Aug. 2013), 8:1–
8:22.

[31] Frank McSherry et al. “Differential dataflow”. In: Proceedings of the
6th Biennial Conference on Innovative Data Systems Research (CIDR).
Jan. 2013.

[32] Derek G. Murray et al. “Naiad: a timely dataflow system”. In: Pro-
ceedings of the 24th ACM Symposium on Operating Systems Principles
(SOSP). Nov. 2013, pages 439–455.

[33] Rajesh Nishtala et al. “Scaling memcache at facebook”. In: Presented
as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 2013, pages 385–398.

[34] Matei Zaharia et al. “Discretized Streams: Fault-tolerant Streaming
Computation at Scale”. In: Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP). Nov. 2013, pages 423–438.

[35] Shahram Ghandeharizadeh, Jason Yap, and Hieu Nguyen. “Strong
consistency in cache augmented SQL systems”. In: Proceedings of the
15th International Middleware Conference. 2014, pages 181–192.

[36] Shahram Ghandeharizadeh, Jason Yap, and Hieu Nguyen. “Strong
consistency in cache augmented SQL systems”. In: Proceedings of the
15th International Middleware Conference. 2014, pages 181–192.

[37] Steven L Johnson, Samer Faraj, and Srinivas Kudaravalli. “Emergence
of Power Laws in Online Communities”. In: Mis Quarterly 38.3 (2014),
795–A13.

[38] Bryan Kate et al. “Easy freshness with Pequod cache joins”. In: 11th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI). 2014, pages 415–428.

144

Bibliography

[39] Christoph Koch et al. “DBToaster: higher-order delta processing for
dynamic, frequently fresh views”. In: The VLDB Journal 23.2 (2014),
pages 253–278.

[40] Ankit Toshniwal et al. “Storm@Twitter”. In: Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data.
June 2014, pages 147–156.

[41] Yogesh Virkar and Aaron Clauset. “Power-law distributions in binned
empirical data”. In: The Annals of Applied Statistics (2014), pages 89–
119.

[42] Jason Yap. “Transparent consistency in Cache Augmented Database
Management Systems”. PhD thesis. University of Southern California,
2014.

[43] Paris Carbone et al. “Apache Flink: Stream and batch processing in
a single engine”. In: IEEE Data Engineering 38.4 (Dec. 2015).

[44] Martin Kleppmann. Turning the database inside-out with Apache Samza.
Mar. 2015. url: https://martin.kleppmann.com/2015/03/04/
turning-the-database-inside-out.html.

[45] Sanjeev Kulkarni et al. “Twitter Heron: Stream Processing at Scale”.
In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. May 2015, pages 239–250.

[46] John Meehan et al. “S-Store: Streaming Meets Transaction Process-
ing”. In: Proceedings of the VLDB Endowment 8.13 (Sept. 2015),
pages 2134–2145.

[47] Pedro Ramalhete and Andreia Correia. “Brief Announcement: Left-
Right — A Concurrency Control Technique with Wait-Free Popu-
lation Oblivious Reads”. In: Proceedings of the 29th International
Symposium on Distributed Computing (DISC). Volume 663. Springer,
2015.

[48] Arvind Arasu et al. “STREAM: The Stanford Data Stream Manage-
ment System”. In: Data Stream Management: Processing High-Speed
Data Streams. Edited by Minos Garofalakis, Johannes Gehrke, and
Rajeev Rastogi. Springer, 2016, pages 317–336.

145

Bibliography

[49] Jhonny Mertz and Ingrid Nunes. “A qualitative study of application-
level caching”. In: IEEE Transactions on Software Engineering 43.9
(2016), pages 798–816.

[50] Jhonny Mertz and Ingrid Nunes. “A qualitative study of application-
level caching”. In: IEEE Transactions on Software Engineering 43.9
(2016), pages 798–816.

[51] Milos Nikolic, Mohammad Dashti, and Christoph Koch. “How to win
a hot dog eating contest: Distributed incremental view maintenance
with batch updates”. In: Proceedings of the 2016 International Con-
ference on Management of Data. 2016, pages 511–526.

[52] Matt Lord. MySQL 8.0: Retiring Support for the Query Cache. May
2017. url: https://mysqlserverteam.com/mysql-8-0-retiring-
support-for-the-query-cache/.

[53] Frank McSherry. Throughput and Latency in Differential Dataflow:
open-loop measurements. Aug. 2017. url: https://github.com/

frankmcsherry / blog / blob / master / posts / 2017 - 07 - 24 . md #

addendum-open-loop-measurements-2017-08-14.

[54] Boerge Svingen. Publishing with Apache Kafka at The New York Ti-
mes. Confluent, Inc. Sept. 2017. url: https://www.confluent.io/
blog/publishing-apache-kafka-new-york-times/.

[55] Bing Wei. Flannel: An Application-Level Edge Cache to Make Slack
Scale. Slack Engineering Blog Post. May 2017. url: https://slack.
engineering/flannel-an-application-level-edge-cache-to-

make-slack-scale/.

[56] Jon Gjengset et al. “Noria: dynamic, partially-stateful data-flow for
high-performance web applications”. In: Proceedings of the 13th USE-
NIX Symposium on Operating Systems Design and Implementation
(OSDI). Oct. 2018, pages 213–231.

[57] Peter Bhat Harkins. Lobste.rs access pattern statistics for research
purposes. Mar. 2018. url: https://lobste.rs/s/cqnzl5/lobste_
rs_access_pattern_statistics_for#c_hj0r1b.

146

Bibliography

[58] Muhammad Idris et al. “Conjunctive queries with inequalities un-
der updates”. In: Proceedings of the VLDB Endowment 11.7 (2018),
pages 733–745.

[59] “Ray: A Distributed Framework for Emerging AI Applications”. In:
Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Oct. 2018, pages 561–577.

[60] Giulio Cimini et al. “The statistical physics of real-world networks”.
In: Nature Reviews Physics 1.1 (2019), pages 58–71.

[61] Muhammad Idris et al. “Efficient Query Processing for Dynamically
Changing Datasets”. In: ACM SIGMOD Record 48.1 (2019), pages 33–
40.

[62] Jes Schultz Borland. What You Can (and Can’t) Do With Indexed
Views. Brent Ozar Unlimited Blog. May 2019. url: https://www.
brentozar.com/archive/2013/11/what-you-can-and-cant-do-

with-indexed-views/.

[63] Lobsters Developers. Lobsters News Aggregator. June 2020. url: https:
//lobste.rs.

[64] Frank McSherry. Eventual Consistency isn’t for Streaming. Materi-
alize Inc. July 2020. url: https://materialize.io/eventual-

consistency-isnt-for-streaming/.

[65] Frank McSherry. Lateral Joins and Demand-Driven Queries. Mate-
rialize Inc. Aug. 2020. url: https://materialize.io/lateral-
joins-and-demand-driven-queries/.

[66] Frank McSherry et al. “Shared Arrangements: practical inter-query
sharing for streaming dataflows”. In: Proceedings of the VLDB En-
dowment 13.10 (Aug. 2020), pages 1793–1806.

[67] Wangda Zhang and Kenneth A Ross. “Permutation Index: Exploiting
Data Skew for Improved Query Performance”. In: 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE. 2020,
pages 1982–1985.

147

Bibliography

[68] Amazon.com. Customer reviews dataset. url: https://registry.
opendata.aws/amazon-reviews (visited on 11/16/2018).

[69] Apache Software Foundation. Apache Kafka: a distributed streaming
platform. url: http://kafka.apache.org/.

[70] Jon Gjengset. evmap: A lock-free, eventually consistent, concurrent
multi-value map. url: https://github.com/jonhoo/rust-evmap.

[71] Jon Gjengset. trawler: Lobsters workload generator. url: https://
github.com/jonhoo/trawler.

[72] Jon Gjengset and Malte Schwarzkopf. Noria MySQL Adapter. url:
https://github.com/mit-pdos/noria-mysql.

[73] Google. Google Cloud Dataflow. url: https://cloud.google.com/
dataflow/.

[74] Materialize Inc. Materialize — A Streaming Database For Real-Time
Applications. url: https://materialize.io/.

[75] Redis Labs. Redis. url: https://redis.io/.

[76] The Tokio Maintainers. Tokio: Build reliable network applications with-
out compromising speed. url: https://tokio.rs/.

[77] Microsoft, Inc. Create Indexed Views – Additional Requirements. SQL
Server Documentation. url: https://docs.microsoft.com/en-
us/sql/relational-databases/views/create-indexed-views#

additional-requirements.

[78] Oracle Corporation. The MySQL Query Cache. MySQL 5.7 Documen-
tation. url: https://dev.mysql.com/doc/refman/5.7/en/query-
cache.html.

[79] pgpool-II Developers. pgpool-II In-Memory Query Cache. url: https:
//www.pgpool.net/docs/latest/en/html/runtime-in-memory-

query-cache.html.

[80] Facebook Open Source. A persistent key-value store for fast storage
environments. url: http://rocksdb.org/.

148

Bibliography

[81] Gil Tene. HdrHistogram: A High Dynamic Range Histogram. url:
http://www.hdrhistogram.org/.

149

