Device-Transparent Personal Storage
by
Jacob Alo Strauss

S.B., Massachusetts Institute of Technology (2001)
M.Eng., Massachusetts Institute of Technology (2002)

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2010
(© Massachusetts Institute of Technology 2010. All righteresd.

AUTNOT . L e
Department of Electrical Engineering and Computer Science
September 3, 2010
Certified DY . ..o e
M. Frans Kaashoek
Professor of Computer Science and Engineering
Thesis Supervisor
Certified DYo e

Robert T. Morris
Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by

Professor Terry P. Orlando
Chair, Department Committee on Graduate Students

Device-Transparent Personal Storage

by
Jacob Alo Strauss

Submitted to the Department of Electrical Engineering anth@uter Science
on September 3, 2010, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Users increasingly store data collections such as digitatqgraphs on multiple personal
devices, each of which typically presents the user with sag® management interface
isolated from the contents of all other devices. The resuhat collections easily become
disorganized and drift out of sync.

This thesis presentSyo, a novel personal storage system that providiegce trans-
parency a user can think in terms of “fil&™”, rather than “fileX on deviceY”, and will
see the same set of files on all personal deviegs.allows a user to view and manage the
entire collection of objects from any of their devices, efrem disconnected devices and
devices with too little storage to hold all the object conten

Eyo separates metadata (application-specific attributes jetts) from the content of
objects, allowing even storage-limited devices to stdrmatadata and thus provide device
transparency. Fully replicated metadata allows any s&yofdevices to efficiently syn-
chronize updates. Applications can specify flexible plasetnules to guid€&yads partial
replication of object contents across devidegds application interface provides first-class
access to object version history. If multiple disconnectedces update an object concur-
rently, Eyopreserves each resulting divergent version of that obfgmplications can then
examine the history and either coalesce the conflictingaesswvithout user direction, or
incorporate these versions naturally into their existisgrunterfaces.

Experiments usindeyo for storage in several example applications—media players
photo editor, podcast manager, and an email interface—#aivaevice transparency can
be had with minor application changes, and within the sl bandwidth capabilities
of typical portable devices.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Robert T. Morris
Title: Professor of Computer Science and Engineering

Prior Publication

This thesis includes material from an earlier workshop papesented the case for a device
transparent storage system and argued for global metaddtdwtion as one enabling

mechanism toward that goal [55].

Acknowledgments

| am deeply indebted to my advisors, Frans Kaashoek and RbMueris, for years of
guidance, advice, and encouragement. | can’'t imagine arbgtbup of mentors. | am
continually amazed that they have managed to bring togstiedr a wonderful group of
people.

| did not work alone on this thesis alone, or on the earliejguts that are mentioned
here. Chris Lesniewski-Laas has been, at various timesroaay years, a lab partner, an
officemate, a housemate, a coauthor, an occasional coicatespbut most importantly a
friend. Bryan Ford provided the vision and drive behind tha project; without this Eyo
certainly would not exist. Even though Justin Mazzola Hadwgot involved a little bit later,
he’s been invaluable ever since; much of the applicativatidesigns and modifications are
due to him. Sean Rhea formed a core part of the UIA team wheneve @oing the initial
design and implementation. Sam Madden, a thesis commitediar, made many helpful
suggestions that demonstrated the utility of a fresh vievatds the project.

Jamey Hicks and John Ankcorn provided feedback and encenmagt throughout the
design of this work. Franklin Reynolds, Zoe Antoniou, Dinsitkalafonos, Paul Wisner,
and Max Van Kleek helped tremendously while serving as aralniser group for UIA.

| wish to thank all of PDOS, both present and past, for praxgdsuch a supportive
and animated atmosphere. May the spirit continue unab¥ikde | was first working on
network measurements, along with Eddie Kohler, Sachini kattl Chuck Blake, much of
the advising came from Dina Katabi.

Looking farther back in time, | should note that without théuence of several years of
6.001 students and staff, | would never have consideredntong) on to graduate school.
It was only after then that Frans and Robert started to teaeh fittle bit about what CS
research actually is, and that | actually enjoyed it. Eveth& back, Bob Welling for put
code I'd written to real use for the first time.

| wish to thank my parents and family for pointing me toware tight path, and check-
ing in along the way.

To Jessica, | simply say thank you, and that yes, you win.

| graciously thank Quanta Computer, Nokia Research Cerdaerbtidge, and the Na-
tional Science Foundation for funding support.

Contents

1

Introduction 17

1.1 Existing Approaches 81

1.1.1 Hub-and-Spoke
1.1.2 CloudStorage i

1.2 Device TransparenCy v v v v v vt e e 12

1.3 Eyopersonal storage system o
1.4 Evaluation
1.5 Contributions
1.6 Limitations e
1.7 Outline e

Overview 27
2.1 Approach
2.2 Application Assumptions 28
2.3 Eyo ... e e
2.3.1 DesignOverview e e
2.3.2 APIFeatures
2.3.3 DesignChallenges,

A Device-Transparent Storage API 33
3.1 Objects, metadata,andcontent 33
3.2 ObjectVersion Histories 35
3.3 Conflicts.
34 QUEHES e e
3.5 PlacementRules.

Connectivity & Synchronization 41
4.1 Device ldentity and Communication 41

4.2 SynchronizationOverview 42
4.3 Metadata Synchronization 42
4.4 History and Version Truncation 48
4.5 Addingand RemovingDevices, 52
4.6 Content Synchronization 52
Implementation 55
9.1 EeYOre. e e e e 55
5.2 Application Client Libraries 55
53 Limitations 57
Evaluation 59
6.1 Method e 59
6.2 ApplicationsOverview 60
6.3 ResultsEyoAPI Experiences 61
6.4 Results: Metadata Storage Costs, 64
6.5 BandwidthCosts 66
6.6 DisconnectedDevices 69
6.7 Synchronization Comparison L0 e 70
Related Work 73
7.1 Cimbiosys & Perspective oo 73
7.2 Optimistic Replication Schemes 74
7.3 StarTopologies 75
7.4 Pointto point synchronization: 75
7.5 \VersionControl Systems oo 75
7.6 AttributeNaming 76
Discussion and Future Work 77
8.1 EXtensions. 77
8.1.1 Securityconsiderations 07
8.1.2 Extensiontomultipleusers. 77

8.1.3 Extension for storage-limited devices 78

10

8.1.4 UserStudy e 78

8.2 Alternative Designs 78
8.2.1 Implementingeyowithout UIA 78
8.2.2 MutableContent 79
8.2.3 No Disconnected Operations 9 7
8.2.4 Without placing all metadata everywhere 79
9 Summary 81

11

12

List of Figures

1-1
1-2

2-1

Hub-and-Spoke synchronizationmodel 19
Cloud Service synchronizationmodel 20
Eyo placementoverviewo 03
Eyoobjectstore.. 34
EyoAPIsummary e 35
VersionGraphs 38
State for Metadata Synchronization. 44
Pseudocode to send metadata synchronization requestsiadle replies . 45
Pseudocode to handle incoming metadata synchromza&tipiests. 46
Metadata Synchronization 47
Pseudocode to archive generations 49
Pseudocode to identify common ancestors of head versian. 50
Pseudocode to prune object versiongraphs bl
Content Synchronization 53
Internaleeyorecomponents. oo 56
Topology for the scenarios in sections6.5and6.6 66
Average connection bandwidth required to continuosighchronize meta-

datachanges. 67
Storage consumed by metadata versions queued for andescted device. . 68

13

14

List of Tables

6.1 Source lines of code comparisons of applications adapteyo 61
6.2 Applications that can show user-visible conflicts 63
6.3 Metadata store sizes for exampledatasets 65
6.4 Synchronization Delay Comparison 70

15

16

Chapter 1

Introduction

Users often own many devices that combine storage, netagar&ind multiple applications
managing different types of data: e.g., photographs, nfieg; videos, calendar entries,
and email messages. When a single user owns more than ondesticé, that user needs
a mechanism to access their data objects from whicheveceldwy are using, in addition
to the device where they first created or added the objecteio ¢bllection. The storage
capacities and network availability of these devices cam s@nificantly. Some fixed ma-
chines may always have a working network connection, anficgirft storage to hold an
entire user’s collection of media objects. Small mobileides, in contrast, may contain
significantly less local storage, and consequently can stolge a small subset of a user’s
data locally. Mobile devices also frequently move to déiarlocations with different net-
work availability and cost, and may often be powered off ieesenergy. These events result
in periods where devices have a slow connection to othercdsvf they are reachable at
all. Systems that include such devices must be designednididhaetwork partitions as
normal occurrences rather than an exceptional event. dngvhighly available access to
data in these settings therefore requires policies and améins for replicating data across
devices.

An individual person could now have a laptop, a tablet corapwt phone, a camera,
a television, a digital video recorder, a photo frame, a ttgskomputer, a video camera,
and a networked backup disk. All of these devices could dispt manipulate the same
type of data, such as digital photographs, and each of thedeed can contain one or
more network wireless or wired network interfaces. Thugatld be useful to join such a
set of devices into a distributed storage system to managsatime photo collection. The
smallest of these devices may currently contain only a feyalgytes of storage, whereas
the largest could easily hold multiple terabytes of storbcts. While these values will
certainly increase over time, the relative disparity betwthe smallest and largest may not.

In settings with intermittent network connectivity, eacvite can manage only locally
stored data, in isolation from other devices. As a resuliayaisers see a storage abstraction
that looks like “object: on devicex”, “object b on devicey,” etc.: itis up to the user to keep
track of where an object lives and whetlesindb are different objects, copies of the same
object, or different versions of the same object. At a higeeel, the user bears the burden

17

of organizing object collections larger than a single de'gistorage, and synchronizing
the collections on different devices. While a user could uadly identify each object that
needs copying, this approach quickly becomes infeasibkengarge numbers of files and
only a few devices.

This thesis focuses on the problem of managing personalatgésts in sets of de-
vices including those that cannot hold the entire collectio this situation, the user must
partition the data collection among the devices, as wellupdichate objects that should be
available from multiple devices. The overall goal of thisriwes to limit the complexity
that end users and application developers encounter whihaging data over a distributed
collection of personal devices. The main approach thiggtiakes toward this goal is the
introduction of a new system properdgvice transparengyhat allows users to think about
their data collection in its entirety, rather than as theoarof objects on a set of devices,
as well as the design and implementation of a personal s@gsgfemEyao, that provides
device transparency through a new storage API.

The remainder of this chapter describes existing appr@acked in these situations,
expands on the motivation for a device-transparent st@gsfems, and provides an outline
for the rest of the thesis.

1.1 Existing Approaches

Storage systems that share data between different corsfiaez a long history. Those sys-
tems were usually meant for settings where several diftgreaple, each with a worksta-
tion, shared a common set of data. For example, distributedystems such as NFS [49]
and AFS [24] have long allowed workstations to share filegsvbeth multiple users while
connected to a centralized set of servers. Alternativelséset systems supported types of
disconnected operations, for example Coda [27] and FicBjs [Ehese systems all aim to
providenetwork transparengywhere applications and users did not need to know whether
a given object was stored local on the local machine, or ochviemote server.

In contrast to these managed systems, the introduction afl snobile devices have
lead to individual people needing to share data betweertdethat spend significant time
disconnected from networks, or powered off, and that lackaditional managed server.
The lack of a managed server combined with disconnectedeege has led users toward
two main approaches for managing personal data over dewilsetions, neither of which
involve a traditional distributed filesystem.

Both models free the user from the complexity of manually agamg files as they
move between devices, and from having to remember whichdfiiesld reside where. In
one model, the set of devices is split into one master hulzdand some number of edge
devices that pass updates through the hub. The other mgidigtes the hub device with a
cloud Internet service which all other devices use to acttesdata collection.

18

hub device

s

edge devices

7
g

Figure 1-1: Hub-and-Spoke synchronization model

1.1.1 Hub-and-Spoke

In a hub-and-spoke usage model, as illustrated in figureHeluser designates a single
master device to hold a complete copy of the data collecliortopy data to another spoke
device, the user brings that other device to the master goidsobjects from it via a fast
local connection, such as a direct cable or a local networky dépdates that should pass
to other spoke devices first must be synchronized back to #stendevice first, and then
passed from there to the other hub devices.

This arrangement has several advantages that aid manageBecause the single
master device holds all objects, viewing the complete cotb@ simply requires viewing it
on that master device. Handling concurrency is also simp&rause the hub device holds
the authoritative copy of each object. If a user updates ggtbbn an edge device, he must
synchronize it with the copy already on the hub device beitocan replace the original
version as the authoritative version. The remaining edgedswill learn about the update
when they next fetch new updates from the hub device.

Apple’siTunes [2] is one popular example of a current syaiemg this model, helping
the user to organize objects and synchronize with storiagigetl music player devices.
iTunes allows users to view their complete collection of mexlich as music and videos
from one device. When users plug music players into a hultdeta a USB cable, iTunes
automatically passes updates in both directions so thdit eastains the updated files.
Users can choose what subset of their collection shouldeesn each connected device
based on sophisticated but easy to set rules based on,gi@stiésts, recent use or ratings.
Edge devices generally cannot edit data other than metabtlata recent uses, so the hub
device can handle those kinds of conflicts without user wetetion, though iTunes does
fall back to user intervention when the specified collectioesn’t fit on a mobile device.

iTunes does demonstrate several limitations to the hubspodle model. (1) The hub
device must be available to exchange updates. (2) It isduitih star-shaped device topolo-
gies. Edge devices cannot exchange updates directly witheunub device, even if they

19

sl

A L)

flickr or 2" or ...

upload
to service

Figure 1-2: Cloud Service synchronization model

are directly connected or on the same local network. (3) Ebtkyéces cannot even show
users the complete list of files unless they have enoughgegaapacity to hold all the file

content. (4) Hub device must hold the entire collection,chiimeans the total collection
size is limited by that one device. (5) There must be exactiy/laub device per user, which
means that a collection cannot be composed only of edgeaewior can it have two or

more hub-class devices. While these limitations may nacaféll users, they are funda-
mental to the hub-and-spoke device organization and caeasily be addressed without
moving to a different usage model.

1.1.2 Cloud Storage

The key limitations in the hub and spoke model (dependencesingle hub device) have
been recognized before, and are one of the many reasoncént qgroliferation of online
photo sharing websites (e.g., Flickr [15], SmugMug [52)a3a [41]), as well as more
general storage systems such as MobileMe [3] and infrastieicloud storage services
such as Amazon’s S3 [1]. These services exemplify an alienhaud-based storage model.
In this organization, as shown in figure 1-2, a single websitéaces the central hub device
of the hub-and-spoke model. Though the website may in faetfibe constructed as a
distributed system, from the point of view of the end useerghis once again a single
location to view their entire data collection. All of the usedevices can access the single
collection via web browsers, as long as they have a workirtggar& connection to the
cloud service. Edge devices need not be able to store theletargwllection via local
storage, as edge devices generally only hold copies of shydwen they are imported into
or exported from the system.

The cloud service approach gains several advantages avéuthand spoke model,
as the service can usually maintain much higher availghilith less geographical depen-
dence than a single user’s device. The cloud approach atiosmyeral new limitations,
however: (1) The service provider may limit the types of supgd data to those usable by

20

a single application. (2) Edge devices must have a workitgrhet connection. (3) Edge

devices still cannot directly exchange updates, even whey have a fast local network

available. (4) All data accesses need to go through thealesstrvice rather than be handled
locally, which can be slow and expensive due to latency andwalth limitations.

1.2 Device Transparency

Both the cloud storage and the hub-and-spoke models for givamaata across devices
share a key feature: there is a designated location to viewdmplete collection, but both
place limitations on the devices and conditions that camigeosuch a global view.

An improvement to both such organization would provide t@e global view on all
of a user’s devices, regardless of storage capacity or meemnectivity. Inspired by loca-
tion transparency [60] for network file systems, we namettiegoaldevice transparency
the principle that the user should be able to view and managentire data collection
from any device, even if the data is partitioned and repdidadcross many devices, and
even when not all data objects may be available all the tinge, (@hen the user is off the
Internet carrying only one or two storage-limited device&)device transparent storage
system presents each object as a first-class entity, rétueas an object-on-a-device, and
hence allows the user to manage data as a unified collectioer han in isolated device-
sized fragments. Unlike location transparency, whichest#tat the name of objects should
remain the same even if its location changes, device tra@spga states that the set of
objects visible should not change by viewing from a diffémdevice.

Given the possibility of disconnection, each device mustesa replica of some or all
of the data associated with each object in order to provideddransparency. A conse-
guence of replication is that the user may make concurretrfticing modifications. It is
well known that such conflicts can often only be resolved \aipiplication-specific logic.
Existing systems resolve conflicts at synchronization tusiag separate resolvers that un-
derstand application file formats (e.g., Coda [27] and F[23§). This approach is often
insufficient. For example, a user may wish to defer resoldangflicts, and instead ex-
plicitly see and use multiple versions of an object. Thisaaly be handled by the storage
system preserving multiple versions after synchronira@émd by applications being aware
during ordinary operation of the existence of multiple vans.

This thesis’s core contribution is two design observationitscal for any system that
is to provide device transparency. Firspntent must be separated from metadatathat
a complete set of metadata may be copied to storage-liméetes which can use it to
present the user with a device-transparent interface. riseapplications must see diver-
gent versions and conflicts as first-class entjtsgsthat they can automatically resolve most
common divergent version histories without user intervemiand incorporate presentation
and resolution of other conflicts to the user as part of orgioperation. For a storage sys-
tem to be used by multiple applications, these observatimnst be reflected as critical
features in the API. In contrast to application-specifiohesrs [28], the storage APl must
separate data from metadata, and must present objectsis ¢éwversion histories.

21

1.3 Eyo personal storage system

A central question is how much developers must do to gain émetits of device trans-
parency, and whether these benefits are substantial enloumyider to answer this question,
we implemented a prototype storage system for personal miataedeyo, which provides
device transparencyEyois a special-purpose storage system designed for a singte us
with a small number of devices.

Eyofaces several design challenges driven by the need of stipgpdisconnected op-
eration: (1) Limited storage space on devices, (2) Conatirpdates while disconnected,
(3) Continuous synchronization without user direction Agplications must automatically
resolve conflicts arising from concurrent object modifiocas, and (5) the system must be
able to locate data held on disconnected devices.

To address these challengé&sjo provides a new storage API to applicationgyo
expects applications to separate object metadata fronttobpatent. Eyo replicates the
metadata to all of a user’s devicdsyds API allows applications to create and locate ob-
jects via metadata attributes, examine and manipulatatrebgect version histories, and to
register for notifications when other devices and apphcetiadd new changeByads API
allows applications to specify placement rules, as in Cosys [44] and Perspective [48],
which instructEyoto store copies of objects on selected devices.

Applications delegate most of the work of inter-device $ywoaization toEyo. In or-
der to minimize the cases where devices do not all see the newestt versions of a file,
which can lead to conflict&youses a fast synchronization protocol to automatically pass
updates between devices without user intervention. Whesodnected operations do lead
to update conflictsiEyds API provides notifications to applications which in marases
permit those applications to automatically resolve cotsfheithout user intervention.

1.4 Evaluation

To evaluate the feasibility of interacting with a devicarisparent storage system, both for
application developers and for end users, we WSgato examine the following questions:
(1) What can end users do by usiggo that they could not do otherwise? (2)HEyds
API a good match for real applications? (3) Byos design decisions, such as splitting
metadata from content, and global metadata replicatiodulyrburden devices’ storage
capacity and network bandwidth?

We modified five applications to udgyo as their storage system: a photo editor, two
media players, a podcast manager, and an email interfaeeorlginal versions each im-
plemented a specialized storage system atop a traditidgeaystem. Our modifications
transformed these applications into distributed appbecatthat no longer act in isolation
on a single device. Replacing these internal storage sgstétih Eyds was simple, didn’t
increase application complexity, and required no changdke user interface to present
the application’s global data collection. Separation ofadata and content, version histo-
ries, and placement rules allowed the applications to peogi device-transparent storage

22

systems to users. For example, in the photo editor, userpardorm basic tasks such as
adding tags to photos, searching for photos matching taglsyiawing thumbnail versions
of photos, even from devices that cannot store the comptatection. In most cases,
the modified applications can automatically handle comaurchanges to the same objects
without user intervention.

To investigate the storage and communication costs of deransparency, and to eval-
uateEyds metadata-everywhere design, we ran experiments witmodified applications
using personal data sets. The costs of storage and bandwaited reasonable for typi-
cal portable devices. These experiments show that the atetederywhere approach to
implementing device transparency imposes only modesagtoand bandwidth costs for
typical usage.Eyds synchronization protocol aims to quickly identify chasgto permit
devices to synchronize continuously without user intetioen To evaluate this design, we
comparedeyoto several other data synchronization systems, and foat@&yopropagates
updates faster than stand-alone file synchronization asoigell as cloud synchronization
services.

1.5 Contributions

This thesis makes the following contributions:

e The articulation of the goal of device transparency, wheredch device shows the
same data collection to applications and users.

e A new storage API for applications that separates objecadats from content, and
provides first-class version histories.

e The design and implementation BYo, which is the first device-transparent storage
system for disconnected collections of personal devices.

e Distinct metadata and content synchronization protod@s permitEyoto continu-
ously pass updates between devices whenever connectarityigs, without user or
application direction.

e An evaluation ofEyo with real applications that shows that the new API is a good
fit for users and applications, provides new features to eedsunot available previ-
ously, permits applications to handle many types of comcumpdates automatically,
all within the storage and bandwidth capabilities of typmartable devices.

While Eyouses many techniques pioneered by existing systems (sgponthected op-
eration in Coda [27], application-aware conflict resolatio Bayou [58], placement rules
in Cimbiosys [44] and Perspective [48], version historie§it [19] and Subversion [56],
update notifications in EnsemBlue [39]), itis the first syste provide device transparency
for disconnected storage-limited devices.

23

1.6 Limitations

There are several limitations inherent in the goal of a deWansparent storage system,
in addition to more specific limitations that apply only Eyo. This section describes

several of these limitations; chapter 8 discusses waysdread these limitations through

extensions or modifications #yds design.

Any device-transparent storage system that supports ngeam entire data collection
from disconnected devices must place all of that colle®iametadata (or alternately, all
content as well) on each device. This requirement meanghbamallest device in each
group must be able to hold a copy of all of the metadata. Faesysthat do not need
to support disconnected operation, the storage capacihsiead limited by the largest
device, rather than the smallest.

While the ideal of a device-transparent storage systemddoelgenerally applicable
to a variety of systemdyo is designed for a more limited set of uses. It is meant for
small groups of devices owned by a single user, so that dewda&in such a group do not
need to control access to individual files within the groupd $he number of devices is
small enough that replicating small messages to each devieasonable. Section 8.1.2
describes a possible extension to multiple users.

Eyds storage system is targeted towards data types where tteelata changes fre-
guently, but the underlying data objects rarely changenoftéhey change at all. All of the
applications we have examined satisfy this assumptiohelBjpplications did change data
frequently, the tools available to applications for regavconflicts would need augment-
ing from the current set targeted towards metadata-onlggds An additional assumption
about the types of data thBtyomakes is that the data objects will be larger than the meta-
data that describes those objects, which once again isdrad bf the media-file examples
we examined, but might not be true in other types of uses, asi¢hthe data objects were
individual measurements collected by devices and storaccentralized storage system.

The ability to allow a heterogeneous group of devices to@péte in a single storage
system that requires changes both to the system softwareose tevices, and to indi-
vidual applications requires that some mechanism exis¢pday storage system software
to those devices in the first place. This thesis will not adgslithis requirement, though
there are several different paths by whieyo could be deployed onto devices. The most
straightforward would be if the device’s manufacturer timilsupport forEyo. An increas-
ing set of portable devices now permit end users to instaglliegtions onto their devices,
though the capabilities granted to applications differ ysstem. Ensemblue [39] describes
a method for supporting devices that expose only a simptagganterface but do not al-
low user-supplied software, aityocould in principle adopt some of these approaches for
similar devices. For more traditional desktop and laptografing systems, application de-
velopers could of course choose to bugodirectly into applications without needing any
further coordination. Though this approach would not reisua fully-general deployment,
it would still provide a direct benefit to end users while gsihose specific data types and
applications.

24

1.7 Outline

The remainder of this thesis is organized as follows. Chaptdescribe€€yds design
goals, and provides an overview of the overall system de<idgpapter 3 presents the stor-
age API thatEyo provides for applications. Chapter 4 descriligsis synchronization
mechanisms, and Chapter 5 summarizggs prototype implementation. Chapter 6 eval-
uateskEyds design with existing applications and object colleciohapter 7 putEyds
contributions in the context of previous systems, Chapor&iders extensions and alter-
natives, and Chapter 9 concludes.

25

26

Chapter 2

Overview

This chapter provides a an overview of the main challengbsiiding a device-transparent
storage system, outlines the main approach to solving tbleakenges along with appli-
cation assumptions, and provides a high-level descrifdhe design of th&yo storage
system.

The main challenge in providing a device-transparent gesystem is supporting dis-
connected operations. To illustrate this challenge, ctandiow users tackle this problem
today. If a user has several devices which can display phintised storage space means
that the user must manually decide which subset of the ¢mleto copy to each. Addi-
tionally, they must organize the devices into a star topgladnere one master device holds
the authoritative copy of each object.

Using devices while they cannot communicate with the maspgica means that changes
to individual photos will only be eventually consistent wihe master replica. The user
cannot exchange updates between two non-hub devices,fdtiey are on the same local
network, since those two devices might not hold the sameciidin to begin with.

The process of synchronizing updates between devicesirelgrdependent on user
direction, both for remembering which devices hold updatdsich other devices need
those updates, and how to handle any conflicts between thedmgces and the hub. In
many cases, users need to manually examine each replicaide déhat the final state of an
object should be. Merging conflicting changes made to s&pegplicas may be entirely up
to the user, making any method other than simply choosingwaneer’ version to replace
both infeasible.

The risk of this mode of operation is that replicas can digafghe user forgets to
reconcile updates between replicas. Each new differendesna more complicated to
manage the data collection, and hence more likely that tHeation will diverge even
more over time.

A device-transparent storage system should automate dsontite data management
process as possible. By limiting opportunities for the datitection to diverge, the system
can provide a better approximation to a truly device-transpt collection, even in the face
of disconnected updates. Doing so requires enough automktat the user no longer
needs to keep track of which devices and data objects needagd

27

We have built a storage systeEyo, that combines three main approaches to construct-
ing a storage system with several simplifying assumptidi®itapplication behavior to
build a specialized device-transparent storage systepeimonal media collections.

2.1 Approach

Eyds approach to device-transparency includes three maimpoosnts:

e Separating Metadata from Content: In order to ensure that all devices, including
disconnected devices, know about all objects, the metddathose objects must
be replicated to each device. Object content, however,atditron all devices, so
each device will hold some subset of the total collectiomliviidual content objects
may be replicated to more than one device if they are impbrt@his separation
affects all layers of the system design, as both the appitaitand the end users,
need to interact with data items that may have only the maaataessible and not
the content.

e Peer-to-Peer Continuous Synchronization:Any pair of devices that communicate
should be able to exchange updates. This approach botk fssibilities for object
replicas to diverge while out of touch with a hub device, alsd aids in object avail-
ability. If a user doesn’t have content available on one @&\t might be available
from a nearby device instead. The process of synchronizivgces must proceed
continuously without direction from users so that devicesspnt the same data col-
lection as soon as network connectivity permits. If two desihave a working net-
work connection, updates from one should appear immegliatethe other device
without any additional user action.

e Automated Conflict Resolution: Even with continuous synchronization to pass up-
dates as quickly as possible, intervals of no communicdiemeen devices will
result in concurrent changes to the same object. These nasésto be resolved
automatically as often as possible without user intereentiAutomating conflict
resolution requires application cooperation, as onlyiappbns understand both the
format of data, and the types of reasonable changes that owy.oThe storage
system needs to provide an API that makes it easy for aplicato identify con-
current updates, reason about their meaning, easily mgbé/ common types of
conflicts automatically without user intervention.

2.2 Application Assumptions

In addition to the three approaches described earlier tdlbatisconnected operations in a
device-transparent storage syst&yomakes several assumptions about the types of appli-
cations, their organization, and the types of data stordldersystem. These assumptions

28

transform a problem that is quite difficult in general intoedhat is feasible in practice,
by limiting the number of participating devices to one paaaroup, limiting the amount
of metadata in the system to one person’s collection, antitigrthe update patterns to
structured metadata instead of arbitrary data of unknowesyEyorequires that these as-
sumptions hold in order to perform reasonably well. Everhiese limitations, however,
Eyoproves to be well suited to personal data collections.

Eyois meant to be used by applications that manage large dolsadf objects for the
user, such as e-mail messages, song tracks, images, valeo3,hese applications must
keep separate notions olbject metadatdauthor, title, size, classification tags, play count,
etc.) andbbject conten(image data, message body, etc.). This separation of niatiiden
content must be carried through the application so thatskeinterface makes sense even
when the device can show only metadata but does not havedbeiai®d content available
locally. For example users could view lists of songs or mgss$eeaders, search by name,
genre, or composer, sort by rating or play count. All of theses would not require the
associated content, which would be the message body tex¢ @ong’s audio data.

In addition to the difference between always-present natadnd sometimes-present
object contentEyo assumes that each class of data undergoes different upakiens.
Modification of metadata is common, as are creation andidalef objects, but modifica-
tions to object content is rare. For example, a user may maigéf set of folders in which
an email message appears, but the message content itselfidioehange after its initial
addition to the systemEyo does not require that content be immutable. If content does
changeEyoassigns a new identity to each content version, unlike @arsontrol systems
that merge source code content changes line-by-line.

Although Eyo allows applications to place arbitrary data in metadataadsa must
be small enough that a user’s entire collection of metadaafic on each of that user’s
devices. This requirement enforces a relation betweenrttalest device in a personal
group and the amount of metadata that the collection can @hject content is instead
limited by the sum total of the devices’ storage capacity gnaup of devices.

Eyoassumes that application developers agree upon a basitsshantics regarding
metadata for common data types in order to permit multipfdiegtions to share the same
data objects. Applications can still attach arbitrary datanetadata in addition to the
commonly agreed upon portions. For example, applicationfdcagree to use the standard
header fields for email messages, fields analogous to thelaefin jpeg image files, or
the ID3 tags from MP3 for audio files.

2.3 Eyo

We have designed and built a personal storage sydtsm,that uses the approach de-
scribed in this chapter to provide device-transparentqretisstorageEyo provides a new
storage API to applications which separates object coritent metadata.Eyo continu-
ally synchronizes updates between peer devices as soortvaskeonnectivity permits.
The Eyo API provides applications with two explicit history infoation to automatically

29

e

overlay

fMusic Player
-— > \Detwork

(Photo Editor D

(Mail Client ——
User Application storage
€))

Figure 2-1: Eyo sits between applications and local stor&ye uses an overlay network
to manage all inter-device communication.

resolve conflicts, and placement rules to specify whichais/should hold which content
objects.

2.3.1 Design Overview

Eyo sits between applications, local storage, and remote mktdevices, as shown in
Figure 2-1. Placindeyo directly between applications and local storage meansHEhat
learns about all local updates directly as a result of appbo requests Eyo then uses

an overlay network to identify a user’s devices, and tra@nttas they move to different
locations and networks€Eyo manages all communication with these devices directly, and
determines which updates it must send to each peer deviceewbethose devices are
reachable. As a consequence of this involvement learns about all remote updates
directly and notifies applications as appropriate.

2.3.2 API Features
TheEyostorage API provides several features not found in tradktifilesystem interfaces,
such as separate content and metadata, explicit versitoriegs and event notifications.

Applications usingeyds storage API can attach arbitrary metadata tags to ohjaots$
then use those application-specified metadata attriboitssarch for files.

30

Unlike the extended attributes found in many Unix filesystgayo ensures that meta-
data searches are efficient enough to serve as the primatipgnamechanism applications
use to locate objects. Multiple applications can therelsreshhe same objects without
needing to agree on a single directory and path name, or ateati¢al directory hierarchy
for each device.

The storage API provides a notification mechanism for appibois to learn about up-
dates immediately without polling. For example, applicas can learn about writes per-
formed on other devices, as well as events such as chandesgettof content objects are
locally available.

Eyotracks the recent modification history for objects, and jates that history to appli-
cations. If after modifying an object, Eyocan ensure that no other application or device
modified the same object at the same tiEgowill supply just that version to applications.

If an object has been concurrently modified on multiple deviso that there are mul-
tiple newest versiongyo will preserve and synchronize those versions and all vessio
back to the most recent common ancestor verdityo.will present all of these versions to
the application. The application can automatically redertbe changes (e.g., if the only
changes are increments of play counts), ask the user whrsioweshould supersede the
others, or let the user see and use all versions much as iinbey separate objectiyo
attempts to pass updates between devices as soon as ptssiliénize opportunities for
conflicts to occur.

Eyo will automatically and continuously perform pairwise siinanizations between
devices so that all devices know about all metadata andgsutg space availability) con-
tent. Eyopropagates both new data and modifications to data. Thuexéonple, if a user
changes a song title on an iPhone device, and adds a new santaptop, both devices
will see both changes as soon as they are able to communit#te. user then takes the
iPhone to work, where it can communicate with a desktop nmegtihe desktop machine
can learn about both changes by synchronizing with the iBhewven if there is no direct
communication path between the laptop and desktop.

Eyoautomatically copes with devices with too little storagditall content. It allows
applications (and thus users) to guide its decisions abbighadevices should store which
content. Applications can modify these placement polifiesn any device in a user’s
personal group. Devices can change policies without belihg @ contact the affected
device, though the new policies will not take effect unttkeafthe update later reaches the
affected device. If the device group has adequate storageesmd network capacity to
satisfy the user’s desired object placement polid®& devices will eventually converge
to a state where each device holds the specified objects.

Eyo provides applications with a reasonably accurate guesshafhadevice(s) hold
the content for each object. Thus an application can allowes to search for objects by
metadata (e.g., search for all images taken in a certaitibojaand then tell the user which
device probably has the associated content. The locatfomiation does not require any
network communication, though it will lack all changes (didths as well as deletions)
since last receiving remote updates.

31

Many of the properties described here are similar to praggedescribed in earlier sys-
tems, thougteyoprovides different eventual consistency guarantees foadata and con-
tent. For example, metadata synchronization fulfilisrefix-property[40] where devices
learn of all earlier updates that either knew of prior to camnimating. Eyo does not en-
force any ordering relation between versions of differdnjeots. Metadata updates to a
single object define a partial order of happened-befordioelships [29], rather than an
eventually-serializabl§l3] set as in Bayou [58].Eyo does not provide the prefix prop-
erty for object content: devices may learn about updatesrédhey can see the related
content. When space permitsyoprovideseventual filter consistendg4] for object con-
tent, meaning that, subject to space and bandwidth, deewsmstually hold objects best
matching placement policies.

2.3.3 Design Challenges

Eyofaces two main design challenges: a storage API with auiornanflict resolution,
and protocols for fast synchronization between devices.

The API must provide applications with enough informati@ntsat they can easily
handle conflicts automatically without requiring that wseranually clean up objects af-
ter accessing them from multiple devices. The data modelEpaprovides must match
applications’ needs well enough that common uses requliyestraightforward resolution
strategies instead of arbitrarily difficult procedures.

Eyds synchronization protocols need to efficiently pass ugsldetween each of the
devices in a user’s collection, and do so quickly in order teimize both the chance of out-
of-date collection state leading to conflicts, and to lirné amount of bandwidth consumed
passing file updates. In order to pass updates as soon ablpdssother devicestyo
must learn about changes as soon as applications make By&raannot rely on scanning
the local storage system at synchronization time (for exapnwhenever another device
becomes reachable), as that approach would take too loxgmtifly which changes need
be sent to run continuously if the devices remain in contact.

The next chapter describes the detail€gbs storage API, and how applications use
it, followed by a chapter that describes h&yo synchronizes updates between different
devices.

32

Chapter 3

A Device-Transparent Storage APl

This chapter describes the features of a device-transpstaage API, explains holyo
provides those features, and illustrates the need for tleaseres in the context of manag-
ing photograph collections.

3.1 Objects, metadata, and content

In order to provide device-transparent stordggo provides a storage API that makes the
split between metadata and content explicit.

Eyostores a set of objects on each device, as Figure 3-1 showeis obgect has a unique
non-human-readable identifier, and corresponds to onevisible application object, e.g.,
one photo. An object consists of a directed acyclic graphlgpéa versions. Edges in
the version graph denote parent-child relationships betwbose versions, which child
versions note through predecessor pointers to the paresioms. Each object version
consists of metadata. An object version’s metadata ca@istset oEyo and application-
defined key/value pairs, or attributes; for example, a digihoto’s metadata may include
the key/value paif 1 SO, 400). The metadata also contains a content identifier; the
associated content might or might not be present on the eledicontent item consists of
application-defined data; for example, a JPEG-encodedaémag

Eyostores a flat set of objects, without structure such as direstor file names. Ap-
plications are expected to organize their own objects fes@ntation to the user, perhaps by
storing various tags in metadata attributégolets applications retrieve objects via queries
on the metadata attributes. For example, a photo applicatay adddat e, subj ect
andl ocat i on tags to photos in order to help it organize and retrieve ghfuiothe user.
Applications are expected to store enough information@mntietadata to be able to display
meaningful information to the user about an object even ertds not storing the content.
Applications should use care in setting attribute nameswhgltiple applications may ac-
cess the same object by using commonly agreed upon fieldgrafixing special-purpose
fields with an application-specific prefix, just as applicas need to respect the meaning
of, e.g., id3 tags on music files or exif data in image files.

33

Eyo Objects

— | T

Object ID: 12 Object ID: 34 Object ID: 56 -
(Version ID: 87) |Object ID: 56 Vo5
ersion ID:
Metadata . - . -

Keys Values N (Version ID: 56) (Version ID: 78)
Content-type image/jpeg N (Version ID- 21) GE)
Content-length 5000 N / \ =
Aperture /5.6 . ‘ . -
Resolution 1024x768 (Version ID: 87) (Version ID: 65)
ISO equiv 400 pa N
Name dog.jpg // Content Cache
Date 10/23/09 _ B
Predecessor Version 21 SICIHIRRCA Vallf;
Content ID Content 41

N J

Figure 3-1:Eyoobject store.

Eyds API provides applications with operations to explore da¢a store, to read, cre-
ate, and update metadata and content, to learn about andaepiicts, to specify content
placement rules, and to receive notices about changesobjbet store. Figure 3-2 lists the
commonly usedyo methods. The figure omits alternate iterator-based vessabthese
methods for constructing or viewing large collections, aathbined versions of these base
operations for common usages. For example, applicatioghtmeéad the metadata for an
object, add one new attribute to the metadata, and write aveesions with that tag. All
of these methods access only device-local data, so no meétisdwill block on commu-
nication with remote devices.

If an application tries to read the content of an object, bet¢ontent is not present
on the deviceEyowill signal an error. A user can perform useful operationsretadata
even from a device that doesn’t store content, such as fylemgsiand reorganizing MP3
files. If the user wants to use content that is not on the cuidevice, the system can use
the metadata to help the user find a device that has the cponteadkEyoto try to fetch
the content, using the placement methods in the API (Se&ibn Finally, having the
metadata everywhere allows for efficient synchronizatsme (Chapter 4).

Eyousually assigns random object identities when creating algects. Applications
which import external objects may pass an optional hiiREATE to ensure that importing
the same object from multiple devices does not result inidatgds. Section 6.3 describes
an example use of creation hints.

34

object creation and manipulation:
(objectlD, versionlD < CREATE(ID hint)
(objectlD, versionlD[] + LoOOKUP(query)
versionld] < GETVERSIONYo0bjectID)
(keyvalug[] + GETMETADATA (objectlID, versionlD
contentlD«+ oPENObjectID, versionID
contents— READ(contentlD offset length
versionID<+ NEWV ERSIONobjectlID, versionl], metadatacontent}
versionlD<+ DELETEOBJECT(0bjectID)

placement rules:
rulelD <— ADDRULE(name query, devicespriority)
(rulelD, query, devices, priorily~— GETRULE(namg
(rulelD, query, devices, priorily] «+ GETALLRULES()
REMOVERULE(rulelD)

event notifications:
watchID«— ADDWATCH(query, watchFlags callback
REMOVEWATCH(watchID)
callbackwatchID, evenj

Figure 3-2:Eyo APl summary. Event notifications are discussed in sectidnahd place-
ment rules in section 3.5.

3.2 Object Version Histories

Much of the design of th&yo API and storage model is motivated by the requirements
of device consistency for potentially disconnected des/icuch devices must carry repli-
cas of theEyo object store and might make independent modifications tw thplicas.
Therefore, devices must be prepared to cope with divergghtas.

When anEyo application on a device modifies an object, it calbBwVERSION) to
create a new version of that object’s metadata (and perr@apsm) in the device’s data
store. The application specifies one or more parent versiatts the implication that the
new version replaces those parents. In the ordinary caseithest one parent version, and
the versions form a linear history, with a unique latest igrsEyo stores each version’s
parents as part of the version.

Pairs ofEyodevices synchronize their object stores with each other (d&pter 4 for
the protocol details). Synchronization replaces eachcgéviset of object versions and
metadata attributes with the union of the two devices’ sets.

For example, in Figure 3-1, suppose devitesesEyostore a new photo, and to do so
it creates a new objec?56, with one version(”56:34, and metadata and content for that
version. If A and B synchronize B’s object store will then also contain the new object,
its one version, that version’s metadata, and perhaps thermo If an application o3
then modifies the metadata by replacing the default camefiaadi file name with a user-
specified value folO56 and perhaps replacing the content after editing the caonteat

35

application will calINEWVERSIONO56, [056:34] hewmetadatanewcontent indicating
that the newly created version during the c@lb6:78, should supplant the existing version.
When A and B next synchronizeA will learn aboutO56:78, and will know from its parent
that it supersede®56:34. Again, the version history is linear, arfitlo applications will
use the unique most recent version.

A more interesting situation arisesAf had produced a new version ©66 before the
second synchronization with, such as adding additionaht egory orl ocat i on tags
to the photo. In that case, both new versions would have paesion056:34. After
synchronization A and B would both have two “latest” versions 6356 in their object
stores. These are callb@adversions.

It is this case, in which there is no unique head version,riti@tvates much of th&yo
API. One strategy is for the application to continue on witredyent versions, presenting
both to the user in object lists, and letting the user modityez or both. Another strategy
is for the application to automatically merge the two headiems, producing a single new
version that supersedes both by indicating that it has twenis; version 21 in Figure 3-1
is the result of such a merge. Another possibility is for theleation to allow the user
to specify how to merge the versions, perhaps by indicatiatydne should override the
other.

Eyds version graphs with explicit multiple parent versions arspired by version con-
trol systems [19, 56], though used for a different purposéeW version control systems
keep history primarily for users to examirteyo uses version history to hide concurrency
from users as much as possible. When combined with syncatiom, version graphs
automatically capture the fact that concurrent updates baeurred, and also indicate the
most recent common ancestor. Many procedures for resobanfiicting updates require
access to the most recent ancestor. Skygepreserves and synchronizes complete ver-
sion graphs back to those recent ancestors, applicatiahssers can defer the merging
of conflicting updates as long as they want. For examplegausbf either missing a fleet-
ing functioning network opportunity or interrupting theansat an inopportune time to ask
about an irrelevant data obje&lyoallows the user to wait until some more convenient time
to merge conflicts, or perhaps ignore the conflicts foreverortler to ensure that parent
pointers in object version histories always lead back torarnon ancestoi:yo transfers
older versions of metadata before newer ones during synidaiion [40].

3.3 Conflicts

The primary goal ofEyds API is to enable automated conflict management. In order
to carry out these functions, applications need accessstorliiinformation, notifications
when conflicts arise, and a way to describe the resolutioomufiicts.

Because applications hold responsibility for handlingatorent updates of the same
object on different devices, those applications shoulststire the representation of objects
in a way that makes concurrent updates either unlikely oy émsnerge automatically
whenever possible. Applications must notice when conotiru@dates arise, and when

36

they do, applications should either resolve them transypigreo the user, or provide ways
for users to resolve them.

When it detects concurrent updat&sjo presents to the application each of the head

versions along with their common ancestors. Alternativeigies could have (1) chosen

a single arbitrary head version and discarded the rest;réepted the application with

all head versions but no older versions; or (3) given theiegfbn all the head versions
along with corresponding version vectorgyo does not use these approaches because
alternative 1 would silently drop changes, and alternat®eand 3 would place a heavy
burden on applications to figure out what changes happen&dimm devices and thus to
compose a reconciled version which reflects the user’stinten

Eyds version history approach permits many concurrent upditdoe resolved auto-
matically and straightforwardly by the application. Foaaxle, a user may move a mail
message between folders on one device, and set the ‘repligidiute flag from another,
or two devices may each update the playcount on a song wisiteinected. Applications
can arrange for these pairs of operations tetm@posableFor mail messages, folder tags
and status bits can be set independently in the metadataoRgs, the merged playcount
should include the sum of the differences between the moshtecommon ancestor and
each of the concurrent versiorisyoidentifies these conflicting modifications, but the ap-
plications themselves merge the changes. The applicdtimvs the uses of these attribute
types, and so can clearly determine the correct final statthése classes of concurrent
changes.

Some concurrent updates, however, require user inteoremiorder to merge them
into a single version. For example, a user might change tme song’s title in different
ways on different devices. In such cases it is sufficienBypoto detect and preserve the
changes for the user to either fix at some later time or ignotieety. Becausd&yokeeps
all of the relevant ancestor versions, it is simple for thpliation to show the user what
changes correspond to each head version.

Eyocan discard versions prior to the most recent common anoafsém object’s mul-
tiple versions to reclaim unneeded storage space. Fig@(e)3shows a graph with one
resolved conflict followed by an unresolved conflict. In threph, once all devices know
about the version B:2, itisanique ancestoior the object, andEyomay prunethe version
graph, deleting the older versions (A:1, C:1, and A:0). Aggtions may not intentionally
create conflicts: when callingewVERSION(), applications may only list head versions as
predecessors. This requirement means that once a unigestanis known to all devices
in a personal group, no version that came before the uniqeeséor can ever be in conflict
with any new written version or any newly learned versione3dpre-unique-ancestor ver-
sions can thus be removed without affecting later conflisbhgtion schemes. If a single
device writes several successive versions of an object dilenear version graph), it may
coalesce those into a single version before synchroniz8ertion 6.6 discusses storage
costs when devices do not agree on a unique ancestor.

Applications permanently remove objects frdfgo via DELETEOBJECT(), which is
just a special case of creating a new version of an object. nVéhdevice learns that a

37

f\A:O\;
e

‘A1l Ca

() (b) (c)

time

EHeEHE)

Figure 3-3: Example version graphs showing predecessatiaet between versions of a
single object. (a) contains a sequence of four versionsnatbonflicts, even though there
were three different writers, devices A, B, and C. (b) showssalved conflict. (c) shows
an unresolved conflict. There are two head versions, A:2 aBdv@ith the unique ancestor
B:2. The dashed versions may be pruned after all devices &sout the unique ancestor.

delete-version is a unique ancestor (or that all head vessame deletes, and seen by all
other devices)igyodeletes that object from the metadata collection.

3.4 Queries

While Eyo does not provide human-readable object identifiers, it étless queries with
which applications can implement their own naming and gmogigchemes. Several of
Eyds APl methods (e.g.Lo0OKUP(), ADDRULE(), ADDWATCH()) use these queries to
search for objects and to define placement rules. Queriesirebject IDs for all objects
that have metadata attributes matching the query.

Eyds LOOKUP() call performs a one-time search, wherea®WATCH() creates a per-
sistent query. Watch queries allow applications to leanmest objects and object versions,
and to observe the progressfointer-device synchronizatiofeyowatch callbacks fulfill
a purpose similar to single-filesystem notification schesueh as inotify [32].

Eyds queries use a subset of SQL, allowing boolean combinstdrtomparisons of
metadata values with constants. Such queries are effici@xitcute but limited in expres-
siveness. For example, the language does not directly suggarching for the 10 most-
played songs or the newest mail message. An applicatiomséead specify queries such
asall music with a rating above,br add tags directly to the objects that should be included
in an automatically-maintained collectiokyo limits queries to these restricted forms to
simplify those uses (watch events and placement ruleshtiiat evaluate queries in two
different contexts: evaluating new or changed queriesenti€ly which objects match, and
determining which existing queries match new or modifieatoty. As in Perspective [48],
users never sdeyoqueries; applications create queries on their behalf.

38

3.5 Placement Rules

Eyoallows applications to specifglacement rulesontrolling which objects’ content has
highest priority for storage on storage-limited deviceachas related systems do [44,48].
Applications are expected to generate placement rulesllmasaser input.

Applications specify placement rules Eyo using the query language. A placement
rule is the combination of a query and the set of devices tiatld hold objects matching
the query. For example, an application might give every dhjea playlist the same tag,
and present a Ul allowing the user to indicate which devidesikl hold the complete
playlist. An application can also let users specify paticwbjects and the devices on
which they should be placed.

Each rule has a priority, and a storage-limited device toegore high-priority content
in preference to low-priority. Devices trade responsipilor content to avoid deleting the
last copy of any item (see section 4.6). When space perEyprovideseventual filter
consistency44] for object content, meaning that each device eventugthers the set of
objects that best matches its preferend&gds synchronization mechanism, as described
in section 4.6, ensures that at least one copy of contenispeeven if no placement rule
matches.

Eyoensures that all devices know all placement rules by staauw rule as an object
with no content, but with attributes containing the quenypipty, and device set. Any
device can modify a placement rule, and if a conflict arisasvéen rule versionskyo
conservatively applies the union of the requirements di@dld versions. Similarly, if any
of an object’s head version matches a placement query,Bkencts as if the query had
matched all versions back to the common ancestor. This esgbat devices have the
content associated with all the versions required to reizegand resolve conflicts.

Experience suggests that users are not very good at preglighat objects they will
need, or at describing those objects with rules [4Bj0s metadata-everywhere approach
makes it easy to find missing objects by searching the metaidadiiscover which devices
currently have copies of the object, and to fix the placemaesrfor the future.

Because placement rules operate at the granularity of bjapplications that store
related content together should express these links asasemdjects with links from the
metadata from one to the other so that different placemées nan apply to the variations.
For example, an application may wish to store both a full arzé a thumbnail size image
of the same base photo, but assign a high priority placem#ato place the thumbnail
size objects on most devices, but only place the full sizeigas on a few high-capacity
devices.

Placement rules do not guarantee that a group of devicesagd#ue optimal placement
of objects to devices in the face of limited storage capaéisyone pathological example,
consider a group of two deviced, andB, each of which stores a single objecn device
A andb on deviceB, and has placement rules rule that specifies thsttould instead hold
b and B should instead hold. If each device’s storage capacity can hold only one of these
objects at a time, and the group doesn’t contain a third @ethen neither device can fetch

39

its preferred object due to lack of swap space. Arbitradngé versions of this scenario
can occur when devices have no free space. If devices carveesgough free space for
duplicating objects while moving, then these kinds of suimal stable configurations will

not occur.

40

Chapter 4

Connectivity & Synchronization

Eyofaces two broad categories of challenges to fulfill its deMi@ansparent storage API:
device-to-device connectivity, and continuous syncleation.

In order to provide device-to-device connectiviyo needs to be able to (1) identify
the set of devices in user’s personal group, (2) locate tegiees as they move to different
network locations, and (3) set up secure communicationratlatetween the devicesyo
uses an overlay network provided by an earlier project, U@][to solve these challenges.

Several challenges remain towards the goal of providindigoous synchronization
between devices. First, to approximate device transpgr&yo systems should synchro-
nize devices frequently. Frequent synchronization alloegices to check for updates
whenever a local application writes new data, or when nééveonnectivity may have
been interrupted.

Second, to approximate device transparency when a caolfeofi devices is discon-
nected from the networlgEyoshould synchronize over any topology: any two devices that
can communicate should be able to exchange objects. Whewondiscted, this feature al-
lows local personal devices to access each others’ objactsgarently, and to show users
the same set of objects from either device. Most existinglssonization tools require
a central server to be able to provide consistency, andftirerelon’t support arbitrary
topologies.

This section describes hd#yosynchronizes updates between devices, extending well-
known techniques to take advantage of the separation betwetadata and content to
allow for frequent, efficient synchronizatiorkyo identifies new updates using a single
message (i.e., a constant amount of information is suffid@no determine whether a
collection is up to date, independent of the number of objstdred), and without a time-
consuming local search that systems like Unison perform.

4.1 Device ldentity and Communication

Eyouses UIA [16] to manage groups of devices. UIA provides twsib&unctions to the
applications using it (which iEyoin this case): naming and routing. UIA allows users to

41

construct a personal namespace, where the user can usena@yandescribe their devices,
and then use those names from any of their devices. UIA thesteacts an overlay network
that allows applications on any of those devices to use thessonal names to reach any
other device regardless of whether it is on the same localarktor at another location
across the Internet. UIA allows users to also create linkgead’s namespaces, in effect
allowing each user to view a hierarchy of groups rooted at tiven set of devices, and use
user-relative names to reach the other deviégmdoes not currently use UIA's multiple-
user naming capabilities, but a possible extension (se@o8e:1.2) would.

When users get new devices, they add them to their devicgpdrpuntroducing the
new device to an older one over some local network connec#dter this introduction,
each device sees a group with all member devidego uses this group information to
authenticate metadata and content synchronization requelA sends all inter-device
communication over an SSL tunnel authenticated by the d&vmublic keys, which are
bound to the user-visible names during the introductiorcgss.

UIA maintains active connections in the overlay networkwesn each of the user's
devices whenever possible, and inforEy®when the set of reachable devices changes, or
when devices join or leave the groupyoattempts to synchronize with each device in the
group whenever UIA finds a new working path to it, either asiihs on and off, or moves
between working networks.

UIA thus provides the communication propertiego requires: device identity, device
location, and secured communication between those devices

4.2 Synchronization Overview

Eyoneeds to synchronize two classes of data between devicésjate and content, and
faces very different needs for these classes. Metadataia@lysmall, and updates must
be passed as quickly as possible in order to provide the sgapemof device-transparency.
The goal ofEyds metadata synchronization protocol is to produce idahtitetadata col-
lections after synchronizing two devices.

Content, on the other hand, can be comprised of many largectsbyvhich change
infrequently. Content can take a long time to send over sletwark links. Synchronizing
content, unlike metadata, results in identical copies dividual objects, but not of the
entire collections. The primary goal of synchronizing @oritis to move objects to their
correct location to best match placement policies.

Given the different needs for these two classes of datauses different protocols for
each type.

4.3 Metadata Synchronization

The primary goal oEyds metadata synchronization protocol is to produce idahtopies
of the entire metadata collection. This process must baeitienough to run continuously:

42

when devices are on the same network and not disconnectatasshould flow immedi-
ately. If connectivity changes frequently, devices mustkjy identify which changes to
send to bring both devices up to date.

The main approach th&yotakes to synchronize metadata is to poll for changes when-
ever connectivity changes, push notifications to reachaéNéces whenever a local appli-
cation writes a new version of an object, and use immutahletsires to pass updates over
the network.

The primary challenge is, at each synchronization oppdstuio quickly identify the
set of changed objects from among a much larger set of unedaoigjects. More con-
cretely, if two devices synchronize their metadata colbe, and there were new object
versions created since the last synchronization time ingafacollection ofM objects, the
amount of work to identify those: new changes, as well as the network communication
must both be bounded Wy (m) rather tharO (). The metadata protocol described here
takesO(n x m) processing time and communication, wheris the number of devices in
the user’s group. FdEyds intended use cases, thoughwill be a small constant. Several
existing synchronization tools [4, 61] iterate over theitalcollections to identify changes
at synchronization time, and consequently take longer than) time to do so. Eyds
metadata synchronization protocol identifies and organiteanges as they occur, rather
than by iterating over the complete collection.

The split between content and metadata synchronizatiowslfor a simple and ef-
ficient synchronization protocol. Figure 4-1 shows a diagad the internal state of the
metadata store for one device, showing the information eaefce needs to keep about
which updates other devices know about. The following payaigs introduce and define
several of the internal structur&youses to track metadata:

e A generationis a grouping of metadata updates into a permanent coliect&en-
erations are named uniquely by the device that created thlemg with anid field
indicating how many generations that device has created.eemtion includes
complete metadata updates, but only the identifiers and tewssbits for content
updates. Generations are serialized for exchanging uptieteveen devices, so all
synchronization occurs at the granularity of individuahgeations. All devices that
hold a copy of a given generation will have an identical copy.

e A generation vectois a vector denoting which generations a device has already
received. These vectors are equivalent to traditionalemengectors [26], but named
differently to avoid confusion with the versions of indivial objects. For a personal
group withn devices, eackyodevice keeps a singleelement vector ofdevice, id)
tuples updated indicating the newest generation authoyetthdt device it holds.
This value is usually denoted @snerationVector in the following pseudocode.
Additionally, each generation contains an attribute, igumted asgv in the figures
and pseudocode, that notes what gheerationV ector of the authoring device was
at the time it created that generation.

e The archive generationis a special generation used for garbage collecting fully-
communicated generations. The archive groups togethatepanade by different

43

generation log

author device: A B C author: A author: A author: A
version: a:23) version: c:32] version: d:9
5 1 3 new objects
~
> 4k >~
G <B:1 C:2> G <A:4 C:2> G <A:4 B:1>
2 2 2 (mennad (amened (20050
S a:74 2 None 2 f:84 - =
o g g t:29
author: A author: C author: C
6 4 version: a:53 version: t:29 version: h:2
nw B <B:lcCia> / Z <A:5B:1> objects in normal generations
C
S |z . / 2
T [g None haN 2 % None
= g > 6 C: E thor: A thor: C thor: C
g > C <A C:4> - Sgrsi%rn: a:7g Sgrsi%;: f:10 \a/grslgl;\ d:3
(] «
)] 7 S N
4] one
~ o author: A hor: uthor: A
G <B:2 C:4> > version: b:3; ver5|on f09 ver5|on ji11
- & D —
2 5
5 a:53
5 \ author: C author: A author: C
> == version: d:23 version: f:59 version: k:09
G <A:7 B:2>
o
8 / é ag? [author A 9& [uthor: A(BJ [author A 35
<B:2 C:551 & version: c: version: version: r:

None

versions i GV

archive generation objects

Figure 4-1. Metadata Synchronization: The stay® stores to track metadata synchro-
nization on deviced. Device B has not written any objects. Section 4.4 describes the
archive generations. This figure omits data to track corterations (Section 4.6), object
attributes, and predecessor relations between objedowers

devices and from different original generations, and dag¢satain those origins. The
archive does have an associated generation vector, wiickstthe newest genera-
tion from each device that has been subsumed into the arc®eetion 4.4 discusses
the uses of the archive.

e Thepending generatiois where devices store changes made by local applications
before they are fixed into a permanent generation. The pgistlincture does not yet
have a generation vector associated with it, as it is alwapsearted to a permanent
generation before sending its contents to other devices.

Figure 4-2 contains client-side pseudocode for requestiagges from other devices,
and incorporating replies into the local metadata storehkevice regularly sendse3-
GENERATIONS requests to other reachable devices. When local applicativodify or
create new objects (vimRewV ERSION calls),Eyoadds these uncommunicated changes to
apendingstructure, and attempts to contact reachable peers. Withafahese requests,
the client includes either it's local generation vectortloE next generation vector it will
write if it has new changes pending. When a devices receiveply, it incorporates the
newly learned changes into it's local data store, updategeneration vector accordingly,

44

~

8:
9:
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:

20:
21:
22:
23:

1
2
3
4:
5
6

. function SENDGETGENERATIONSREQUEST(peer)

gu < generationV ector

if pending # () V NEEDACKGENERATION() then > defined in Figure 4-3
gulself] ++

SENDRPCpeer, (GETGENERATIONS, gv), HANDLESYNCREPLY)

return

. function HANDLE SYNCREPLY(peer, res)
if res.archive # () then
archive.c <— archive.c U res.archive.c
for all (dev,id) € res.archive.gv do
archive.gv[dev] < max(id, archive.gv)
if dev ¢ generationVector V id > generationVector|dev] then
generationV ector|dev]| < id

for all g € sort(res.generations) by generation vectato
if g.id = generationVector|g.author| + 1 then
if g.c # () then
toPoll < alldevices
generations|g.author|[g.id] < g
generationV ector|[g.author| < g.id

//Notify applications of newly learned changes.

//Apply newly changed placement rules against all objects.

I/Apply existing placement rules to newly learned objects.

//Lazily check for generations that may be archived, andives to prune.

Figure 4-2: Pseudocode to send metadata synchronizatjoests and handle replies.

45

1: function HANDLE GETGENERATIONSgv, peer)

2 if pending # () Vv NEEDACKGENERATION then
3 newgen < new Generation()

4: generationV ector[sel f] ++

5: newgen.author < sel f

6 newgen.id < generationVector[sel f]

7 newgen.qu <— generationV ector

8 newgen.c <— pending

9

pending < ()
10: generations|sel f][newgen.id| < newgen
11: if gv A generationVector then
12: /Isend aGETGENERATIONS request tgpeer as soon as possible
13: toPoll < toPoll U peer

14: needarchive < False
15: forall g € archive.gv do

16: if g & gvV archive.gv[g] > gv[g| then

17: needarchive < True

18: 1 < newSyncReply()

19: if needarchive then

20: (r.archive, r.generations) < archive, generations
21: return r

22: (r.archive,r.generations) < (0,0)

23: forall (d,id) € gv do

24: for all g € generations|d|[id +1: —1] do

25: r.generations < r.generations U g

26: return r

27: function NEEDACKGENERATION

28: forall g € generations[—sel f] do

29: if g.gv A generations(sel f][—1].gv A g.c # 0 then
30: return True

31 return False

Figure 4-3: Pseudocode to handle incoming metadata symicltmn requests.

46

time

t GV: <C:0 T:0> GV: <C:0 T:0>
0
GV: <C:1 T:0>
t1 (pending)
getGenerations(<C:1,T:0>)
[l
-
getGenerations(<C:0,T:0>)
-
(Generation: C:1)
GV: <C:1 T:0> =
3 <C:1T:0>
— 2 {objectID: P,
@ versionID : 23cb00,
$ contentID : Pq} >
£ {Pa:hold purged} | Gv: <C:1 T:0>
__~ J
t
Y

Figure 4-4: Metadata Synchronization: Messages sent leetiweo devices for one new
object

notifies applications about newly learned changes, andtep@ad applies placement rules
to the newly learned changes.

When a device receives an incomi@GgTGENERATIONS requests, as described in Fig-
ure 4-3, it first fixes pending changes into a new generatianyifsuch pending changes ex-
ist. It then identifies all the changes the other device lagkd replies with those changes.
If the request includes a generation vector with some compolarger than the device
handling the request knows about, it queuesEAGENERATIONS request in the reverse
direction, either immediately, or when next reachable & thquest fails. In cases where
no new devices have joined the group, the reply will not idel@ complete archive, so
the message size, and time to identify changed objectsndsply on changes authored
since they last communicated.

Figure 4-4 presents an example use of these structuresdretwe devices: a camera
C that temporarily stores photos when the user takes a pjauacka target devic& that

a7

archives the user’s photos. To match the user’s workflowatgget device has a placement
rule matching photos the camera creates; the camera hasmousel and thus tries to push
its photos to other devices.

Initially, at ¢y in Figure 4-4, both devices hold no objects and agree on #aligener-
ation vectoC: 0, T: 0>. When the user takes a pictufeat timet,, the camera adds the
contents of the picture to its local content store with contdentifier P.;;, creates a new
Eyoobject with object idP,,;, and add<’,;, to the metadata stor&yoadds each of these
updates to the next generation under construction (neteding in the figure).

Attimet,, C' holds uncommunicated updates, so it SESEEHSGENERATIONS() requests
to all reachable devices with the single argume@t 1, T: 0>: (s generation vector
with the C element incrementedl” compares the incoming generation vector to its own
and determines that it has no updates dband replies with an empty generation list.
However, since’’s generation vector was larger than its ownnow knows thatC' has
updates it has not seen, ¥ammediately makes its owGETGENERATIONS() call in the
opposite direction with argumerC: 0, T: 0> sincel” has no uncommunicated updates of
its own. Upon receiving the incoming request fr@mC' increments its generation vector
and permanently fixes all uncommunicated updates into ggariC. 1. C' then replies
with generatiorC: 1 and its newly-updated generation vectof/toThe camera makes no
further call back tdl', asT’s generation vector was not larger than its own. Both device
now contain identical metadata.

Although for the sake of clarity this example only includegbtdevices and did not
include a large existing data collection, it does illusrtite protocol’s scaling properties.
For a group containing devices, theeyo metadata synchronization protocol sends only
a single generation vector of lengthto summarize the set of updates it knows about in
a GETGENERATIONS() request. Upon receiving an incoming vector,Eayo device needs
only a simple lookup to identify what generations to sendkbaather than an expensive
search. This lookup requires one indexed read into the ggaeiog per element in the in-
coming generation vector. This low cost means that devigestford to push notifications
instantaneously, and poll others whenever network coivigathanges.

4.4 History and Version Truncation

Eyomust have a way to prune version histories. It must identifiyclv past changes are
no longer needed and reclaim space taken up by those updaisgprocess involves two
separate steps: determining when generation objects lemre een by all devices in a
group and combining the contents of those generation abjatt a single archive, and
truncating the version history of individual objects.

Eyolearns that each other device has seen a given geneatigrchecking that every
other device has written some other generatirithat includes in its generation vec-
tor, meaning thaty’ coversG. At this point, no other existing device can correctly send
a synchronization request that would includan the reply, so it can remov& from its
generation log. Once a device learns that all other deviaes teceived a given generation

48

1: function ARCHIVEGENERATIONS

2 forall (d,i) € generationVector do

3 /i is the newest generation written by devitthat we've received.
4: manid < i

5: for all g € generationVector, g # d do

6 minid < min(minid, generations|g][—1].gv[d))

7 for j < [archive.gv[d] + 1, min(minid, i — 1)] do

8 [//All other devices have seen devig€s jth generation
9 archive.c < archive.c U generations|d|[j].c
10: archive.gv[d] < j
11: deletegenerations|d][j]

Figure 4-5: Pseudocode to archive generations

G, it may lazily moveG’s contents into it@archive generationas shown in pseudocode in
Figure 4-5.Eyopreserves at least one non-archived generation for eadtedeven if that
generation is fully known to all other devices. This enstinesEyoknows the latest gener-
ation each other device has reported as received (usedybyaARCHIVEGENERATIONS).

Object versions in the archive generation are known by alluker’'s devices, and are
thus candidates for pruning, which is the second phase wirliiguncation. Version prun-
ing proceeds as described in section 3.2. To enable garlo#igetion as soon as possible,
devices acknowledge receipt of metadata updates by cgemtiacknowledgment genera-
tion: a generation with no contents except for the newlyriedrgeneration vector, which
is not shown in the example in figure 4-4, but is detailed inrigd-3. Devices do not
acknowledge receipt of these otherwise-empty generatiDesices do not need to pub-
lish acknowledgment generations to achieve device-taesgy: their only purpose is to
reclaim space sooner.

Eyo nominates versions for truncation by searching for comnmmestors back from
each head version. Figure 4-6 contains the details. Thasenoo ancestors are articu-
lation points (also known as cut vertices) in the versiorpgréor a single object: a sin-
gle version that, if deleted, splits the version graph into tonnected components, one
descended from the common ancestor, and one from whichqeddbe common ances-
tor. The search follows the traditional depth-first-seard@thod of identifying articulation
points in a graph [57].Eyo repeats this search considering the subgraph that each head
version derived from, and only includes versions that dua$s common ancestors in all
of the subgraphs. These articulation points representltesoversion of a single object
that applications might need in order to resolve conflictsy sersions older than these are
candidates for pruning, if the device can be sure that nar alééce will write some new
version based on an older version than the common ancestor.

Figure 4-7 details the solution to this requirement, whigthat pruning versions may
only proceed if the common ancestor is in the archive. In¢hise, no later version can
conflict with that ancestor, since the other device knew abmicommon ancestor: any
newer version must derive from that one or a younger desc¢nasEyo does not permit

49

1: function COMMONANCESTORSobjectl D)

2 articulationPoints < ||

3 g < VERSIONGRAPH(objectI D)

4 for all hv € g.headversions do

5: articulation Points[hv] + ()

6: Vn € g,n.visited < False

7 t < 1,arrive < [],low < [|, pred < ||
8 hv.visited <— T'rue

9

; pred[hv] < 0
10: arrive[hv] < low[hv] < 0
11: stack < [hv]
12: while stack # () do
13: v < stack.top()
14: adj < {v.parent} U {v.children reachable viaarent pointers fromhv}
15: found < False
16: forall n € adj do
17: if ~n.visited then
18: found < True
19: n.visited < T'rue
20: arrive[n] < low[n] <t
21: predn] < v
22: stack.push(n)
23: t++
24: if = found then
25: stack.pop()
26: for all n € adj do
27: if n # pred[v] A arrive[n] < arrive[v] then
28: low[v] < min(low[v], arrive[n))
29: else ifv = pred[n] then
30: low[v] < min(low[v], low[n])
31 if low[n] > arrive[v] A v # hv then
32: articulation Points[hv].add(v)
33: 1 <« articulationPoints|g.headversions|0]]
34: forall hv € g.headversions[l : —1] do
35: r < r Narticulation Points|hv]

36: return r

Figure 4-6: Pseudocode to identify common ancestors of tiegsions, where some ver-
sion still exists which is older than the common ancestor.

50

1: function PRUNEOBJECT(object] D)

2 todel < ()

3 for all ca € COMMONANCESTORSobjectI D) do

4 if ca € archive then

5: forall p € ca.parents do

6: todel.push(p)

7 while todel # () do

8 d < todel.pop()

9 if d not already deletethen
10: forall p € d.parents do
11: todel.push(p)

12: deletep from archive

Figure 4-7: Pseudocode to prune object version graphs wéedlons not needed for con-
flict resolution.

applications to intentionally create conflicts, meaningt @il newly written versions must
derive from a currently-known head versideyolazily searches for such candidate meta-
data versions to delete, but does not normally carry outidetke until pressed for storage
space.

Figure 4-1 shows an example of the state stored on one dexiceijth two other
devices. In this example, generatiofisl throughA: 4 andC: 1 throughC: 2 were uni-
versally known. Their contents were moved to the archiveeggion, and hence they no
longer appear in the generation log. Devigén this example has not written any objects,
but has written acknowledgments for other generations floamndC'. At the time of this
example, four generations are eligible to be truncatedh@sdre universally known by all
three devicesA: 5, A: 6, C: 3, andC: 4. Eyocan then move the following three versions
to the generation archiva: 74, f : 84, andt : 29. Eyocan then check whether any of
these versions were unique ancestors, and if so, could ptdaeversions of those objects.

Devices may delete object contents when no local applicasicurrently using that
content object, and one of the following cases applies: ¢lgantent identifier in the meta-
data lists that content identifier, meaning that the astetiabject versions were pruned or
deleted elsewhere without contention, (2) a local appboaissues a directive to remove
all versions of an object permanently, or (3) the device sssfully passed responsibil-
ity for the object, as in the camera example. As in the caseatbdataEyo detects and
notes content objects eligible for deletion, but normathgsl not reclaim space until under
pressure to reuse it.

These truncations mechanisms ensure that when deviceswuicate updates freely,
devices only need to keep a very shallow and linear versistotyi for each object, and
similarly only need to keep a few content versions for eaghaib

51

4.5 Adding and Removing Devices

When a user adds a new device to their personal group, anchélatlevice first syn-
chronizes with an existing devicEyo sees assETGENERATIONS() request with missing
elements in the incoming generation vector. Existing devieply with a complete copy
of all generations plus the archive generation. This copnotieasily be broken down
into smaller units, as the archive generation differs betwa@evices due to pruning. Users
expect new devices to require some setup, however, so thitiime step should not be an
undue burden. Single devices do not normally contain anynacand so do not impose
any burden on the existing devices in the group.

This procedure is not limited to adding a single device toxastimg group. Two exist-
ing device groups can merge, though in this case each devite igroup needs to fetch
a complete archive when it first learns about the merge. Mgrtwo existing groups of
devices should be rare in practice, and so cascading arekoleanges should as well. If
such use were common, it could be handled either by defearictgving generations until
after the merge, or by a more extensive change whereby dekexp multiple separate
archives partitioned by the original group that created it.

Users remove devices from &yo group by deleting them from the underlying UIA
group. Unless the user explicitly resets an expelled desfiteely, it does not then delete
any objects or content, and behaves thereafter as groupwlgtone device. The surviv-
ing group also does not delete objects the expelled deveaeaxn, but neither queries the
expelled device for new updates nor considers the expedleide to determine whether all
devices know about a given generation. Removing an inactiv@communicative device
from anEyogroup allows the surviving devices to make progress trungdiistory. An ex-
pelled device can rejoin the group later, as long as the daises the same underlying UIA
permanent device identifier. This re-introduction maimsaall old history by exchanging
complete archive generations, just as when adding a newelevi

4.6 Content Synchronization

The challenges in moving content to its correct location aitiple devices are (1) deter-
mining which objects a particular device should hold, (2glting a source for each missing
data object on some other device, and (3) ensuring that mesgre lost in the process of
moving them between devices.

Eyo uses placement rules to solve the first of these challengedescribed in sec-
tion 3.5. Each device keeps a sorted list of content objectstth, and updates this list
when it learns about new object versions, or when changektement rules affect the
placement of many objects.

Eyo uses the global distribution of metadata through a usersgomal group to track
the locations of content objects. In addition to the versidormation, devices publish
notifications about which content object they hold (as shawfkigure 4-4). Since all
devices learn about all metadata updates, all devices ¢lams Wwhich devices should hold

52

)
-g a
-
t GV: <C:0 T:0> GV: <C:0 T:0>
)
Peg = iﬁ. . r E
GV: <C:1 T:0>
t (pending)
1
(Generation: C:1)
‘ z <C:1T0>
o {objectID: Pqig,
% versionID : 23cb00,
g contentID : Pgq} ‘
E { P : {hold, purge}}
t, GV: <C:1T:0> (6) GV: <C:1T:0>
getContent (P iq)
GV: <C:1T1>
t (pending)
3
(Generation: T:1)
3 <C1T1> ”
% no changes
! E { Pcig: {hold}}
t, GV: <C:1T:1> 8) GV:<C1T1>
ts %.
Y

Figure 4-8: Content Synchronization. The thick doubleasoepresent a metadata sync
from Figure 4-4.

53

content as part of the same process. WEga learns that another device is reachable, it
can look at the list of content to fetch, and determine whibfects to request from the
reachable device.

To ensure that content objects are not deleted prematlEglyemploys a form of
custodial transfer [12] whereby devices promise to holdeopf given objects until they
can pass that responsibility on to some other device. Wheriaaladds content to its local
data store as a result of a matching placement rule, it sigtsahtent to hold the object via
a flag in the metadata.

If placement rules later change, or the device learns of nbigber-priority data that it
would prefer to hold, it signals a request to delete the dle@ metadata update. At this
point, however, the promise to hold still applies to the madjdata holder. Its responsibility
continues to apply until some other device authors a gaparttat falls strictly later than
the one which removed the promise, and includes a new orirgxigtomise to hold that
same data item. If two different devices each holding thedapy of an object announce
their desire to remove that item concurrently, so that theegaions that contain these
modifications cannot be totally ordered, then neither dewiitl be able to delete the object,
as neither will be able to identify another device that hagpted responsibility for storing
the object.

This protocol ensures that, as long as no devices are logblens each non-deleted
item will have at least one live replica in the device colieat This property does not de-
pend on the existence or correctness of placement ruleBcafppns may delete or modify
placement rules without needing to ensure that some othercomtinues to apply to that
object.

Figure 4-8 shows an example content sync that continuesewthermetadata sync of
Figure 4-4 leaves off. When the target device receives theecals metadata update at time
t9, it evaluates its own placement rules, and affgs to its list of content it desires. The
generatiorC: 1 that7 received included.;;, soT" knows thatC' has a copy (thaoldbit is
set) of P.;4 that it wants to delete (theurgebit). At ¢3, T' sends a getConter(;,;) request
to C', which replies with the new photo. BecauBentends to keeg, it adds ahold bit to
P.;q in the next generation it publisheg, 1.

At t4, the devices synchronize again and the camera and targatcgdain identical
state. But the camera now knows an important fact: the téagedf last contact) contained
a copy of P, knew that”' did not promise to keep’ via thepurgebit, and hence the target
has accepted responsibilityqld but notpurge for storing P. Thus, att;, the camera can
safely deleteP, placing the system in a stable state matching the userferprees.

This content synchronization mechanism allows contentafelg move between de-
vices, while requiring each device to implement only a senfgitch operation to move
objects.

54

Chapter 5

Implementation

Eyds prototype implementation consists of a per-user daeraeyore that runs on each
participating device and handles all external commurocatand a client library that im-
plements th&yostorage API.

5.1 eeyore

eeyore the per-device server process that implementsEy@AP| and protocols as de-
scribed in the previous chapters, is written in Python, amgron Linux and Mac OSX.
eeyorekeeps open connections (via UIA) to each peer device whepeasible, and oth-
erwise attempts to reestablish connections when UIA ingd&yo that new devices are
reachable eeyoreuses SQLite [54] to hold the device’s metadata store, anchpdement
Eyoqueries. The daemon uses separate files in the device'dilesgstem to store content,
though it does not expose the location of those files to agpdins.eeyoreuses XML-RPC
for serializing and calling remote procedures to fetch m&ta updateseeyoreuses sepa-
rate HTTP channels to request content objects. This digtimensures that large content
fetches do not block further metadata updates. Larger obotgects can be fetched as
a sequence of smaller blocks, which should permit swarnmangsters as in DOT [59] or
BitTorrent [7], althougheeyoredoes not yet implement swarming transfers.

5.2 Application Client Libraries

Two client libraries accompangeyore A Python module, and a C library each provide
the Eyo API for applications, though the two versions differ on maryhe details of the
API. For example, the Python module provides a high-lev@aAPI that uses thei | e
object interface for accessing content objects, wherea€tlibrary provides applications
with standard file descriptors for reading content. The @ provides many more low-
level functions for manipulating metadata tags. The Pytimaalule implements metadata

55

Applications local storage eeyore Remote

Replicas
=
. Generations

Sqlite

Eyo API Metadata
g -1 Store

Eyo Client |} ’
Python ===,
Module - ™,

D-Bus 4 Watch
Event
Registry

\
\
\
\J .
\ g
A 5
i
H s
N
d s
! J
i A
.
EENAAN
J
0 . .
S

Eyo API

--| Content File Read/Writes
Store

HTTP

libeyo

Placement
Rules

Figure 5-1: Internabeyorecomponents.

collections via dictionaries and so does not needeytyspecific operations to manipulate
such collections.

The two client libraries preseliyoqueries to applications in different forms, but both
represent queries as lists of operators and values. Forpa&amhen using the Eyo
library, an application could construct a simple query dk¥es, which matches objects
that both have a the metadata attribute “filename”, and wtrerexssociated value is the
string “foo.jpg’:

eyo_build_query(&y, EYO OP_EQUAL, EYO KEY, "fil enane",
EYO VAL_STRING "foo.jpg", EYO OP_NULL);

eeyoredoes not provide any integrity guarantees to protect loethdata and content
state from application bugs which could incorrectly moditydelete objects. Although
eeyoreshould be robust toward applications calliBgo API functions incorrectly, it does
not protect against applications opening and modify@éegorés data structures directly
without using the APl methods, as the data stores are abtessi disk to the user’s appli-
cations.

The Eyo client libraries are both optimized for read performanae ttee assumption
that applications will frequently useookupP() queries to identify data objects and view
groups of objects. Responses to these queries will poputseinterfaces, and so must
return quickly. Write performance, on the other hand, isastmportant. All local writes
eventually result in writing most of the same data over nekvioks, so the network even-
tually limits write performance rather than local storaGéent modules read froreeyorés
metadata and content stores directly, rather than reguinter-process communication
channels for most read accesses. SQLite does not providéfigatmn mechanism for
applications, s&cyouses D-Bus [10] to send watch notifications to client appilbces.

56

eeyorecannot depend on client-side libraries to send watch natifins directly to
interested applications. The API requires that intereafgulications receive exactly one
watch notification for each matching update notificatiomsagthoring a new version and
sending the associated watch notification must be an atgmi@tion.eeyorecannot send a
notification as part of a database transaction to recordta,vais the client application could
fail between the metadata write and the D-Bus method ca#itedd,Eyo client libraries
append their updates to a write-only table in the metadata sind then send a notification
to eeyore eeyorevalidates the write, and copies metadata to the correcind¢isin, sends
related watch notifications, and then replies to the clipptiaation to indicate a successful
write. This process adds latency to application writesthese extra delays are not present
in application reads and queries.

5.3 Limitations

SQLite does not implement any of the fine-grained lockingesads commonly found in
stand-along databases. Instead, client applicationsathit® the metadata database must
lock the entire database for each transaction. Eie prototype inherits this limitation:
many applications can read data concurrently, but any wpegation blocks all other ap-
plication reads, even for unrelated metadata objects.

None of theEyo design, however, depends directly on SQLite. The cliematies do
not expose any of the internal table structure to applioatid-or example, while SQLite
might be appropriate for clients with very limited hardwagsources, an alternate imple-
mentation could present the same application API but us#fexelt internal database to
improve performance. Because tBgo query interface is quite limited and only uses a
small portion of the SQL query language, one of the NoSQLesyst(e.g., MongoDB [35]
or CouchDB [8]) could serve as a viable alternative to SQLite

57

58

Chapter 6

Evaluation

This thesis proposes a new storage API for applicationsAdtd are notoriously difficult
to evaluate. We would like to establish that tBgo API provides substantive benefits to
real applications and that the costs to developers and esrd aEmoving to this new API
are worthwhile. In addition to the API's suitability, we alevaluateEyds design and
implementation, both in terms of the bandwidth and spacen@agls of device-transparent
storage, and the performancemfds continuous synchronization protocols.

We explore these issues by examining the following question

¢ Is Eyads storage model useful for applications and users?
e Is it necessary to involve applications in automatic confesolution?

e Do Eyds design choices, such as splitting metadata from contertuly burden
devices’ storage capacity and network bandwidth?

e Are Eyds continuous synchronization protocols efficient in teroishe bandwidth
consumed, and the delay needed to propagate updates?

The following sections describe methods for answeringehmsgestions followed by
results for each investigation.

6.1 Method

We employ three methods to evaluéigo (1) adapting existing applications to usgas
storage API instead of their native file-based storage tom@é@the modification difficulty
and describe the new features of the modified versions, ¢&ngtexample personal data
collections to examine storage costs, and (3) measuyds synchronization protocol
bandwidth and delays to compare against existing syncration tools.

The purpose for adapting existing applications to Ege as their primary storage in-
terface is to examine wheth&yds API is a good match for those uses, describe how

59

those applications use tlg/o API, and how difficult those changes were. While it would
certainly be possible to design entirely new applicatiosiad theEyo API, those appli-
cations might turn out to use different internal structuhes existing applications.

We evaluatedyds storage and bandwidth costs using three data collecsimnage in
Eya email, music, and photos. These collections served asafoaa synthetic workload
used to measure bandwidth costs and storage costs duedamgsted devices.

We comparedeyds synchronization protocols to two existing synchroni@attools.
While neither of our comparisons aim to provide devicegparent access to a data col-
lection, the comparison does verify that the performandgyok metadata synchronization
protocol is independent of the number of objects in the ctba.

The following sections describe the results of these effand relates them back to the
earlier questions: IEyouseful, is its model appropriate, and are its costs reasePab

6.2 Applications Overview

This section briefly describes the existing applicatiorat the modified. We chose appli-
cations with a wide range of types of interactions betweeamnsuand their data. We focus
on two areas: (1) audio and photo applications, where usem®tcurrently see a device-
transparent data collection, and (2) email, where useea@dyrexpect a device-transparent
view, but typically only get one today when successfullyvaked to a central server. We
modified two media players, Rhythmbox and Quod Libet, the fadio photo manager,
and the gPodder podcast manager, topgeinstead of the local filesystem. We built an
IMAP-to-Eyogateway to enable arbitrary email clients to access messagesd irEyo.

The descriptions in this section refer to the original, udified versions of each appli-
cation. All of these applications are open source; severa popular commercial alterna-
tives that inspired our choices, but we did not investightsé close-sourced applications.

Rawstudio Rawstudio is a photo editor, written mostly in C and C++, ntdanorga-
nizing and process RAW format digital photographs. Usergarnthese raw files, which
usually consists the exact bits recorded by a camera’s salwsw with image settings (e.g.,
white balance, color space, contrast) that the camera figroses internally to produce
a compressed jpeg-format file. In Rawstudio, users candssigi change the development
settings and apply additional effects such as exposure eosapion, to produce JPEG-
format versions of the unmodified originals. Rawstudio leeggentral database of image
metadata, allows users to add short textual tags to indiiglugroups of images, and then
locate those images either by tag or by location in the lotedystem.

Rhythmbox Rhythmbox is a music manager and player, written in C, builh \weveral
GNOME libraries and frameworks. It permits users to add m@sually in MP3 or similar
form) to a logical library, where Rhythmbox keeps a centiatibase of song metadata,
and keeps each song in a separate file on disk. Users can vielagncollections though

60

Size (lines) Rawstudio Rhythmbox QuodLibet gPodder Email
original project size 59,767 102,000 16,089 8,168 3,476

affected module size 6,426 9,467 428 426 312
lines added 1,851 2,102 76 295 778
lines removed 1,596 14 2 2 N/A

Table 6.1: Source lines of code [51] comparisons of apptoatadapted t&yo. In each
case, only a small, self-contained module needed to be raddiffhe project sizes do
not include libraries. For email, the “original projectsiznly includes Twisted's IMAP
module and server example code, and ‘lines added’ inclutie@ur newly written code.
The ‘lines added’ and ‘lines removed’ counts are from diffsand so do not match total
line definitions exactly.

several types of groups, such as playlists, aloum, or uggsted searches that Rhythmbox
carries out against its central metadata database.

QuodLibet QuodLibet is also a music player and manager. It is writteRython, and
consequently has a significantly smaller codebase thanhRtigx. QuodLibet keeps a
centralized database of song metadata, but it allows useid arbitrary tags as metadata
rather than relying on a predefined schema.

gPodder gPodder is a simple podcast manager, written in Python. Idtval users to
subscribe to RSS podcast feeds. It periodically checkstfeesls for updates, and when it
finds that new episodes are available, downloads and caobss files locally on disk until
the user listens to and deletes those objects.

IMAP server Instead of modifying an existing email application, we baih IMAP
server so that existing IMAP client applications could ascemail messages stored in
Eyo Our server differs from traditional folder-based IMAP\g&s in that our server per-
mits messages to appear in multiple folders at the same timeh as GMail permits
tagging messages with multiple tags.

6.3 Results:Eyo API Experiences

Adapting existing applications to useEyo is straightforward. Table 6.1 summarizes
the changes made to each application. In each case, we osdiedh¢o modify a small
portion of each application, indicating that adoptingly®API does not require cascading
changes through the entire application. In all cases theinedjchanges were limited to
modules composing less than 11% of the total project sizeytHRibox required more
changes than the other applications primarily because wedadupport for storing and

61

accessing data frorfayo but did not remove the ability to use the existing filesysteatad
stores. In the other applications we entirely replaced #igtiag storage uses witBya.
Our version of gPodder is slightly smaller, as we omitteccfions to create and manage a
metadata database, and required no additional code toehanudiiple versions of objects
beyond one-line merge calls.

To show thatEyois a good fit for applications, we consider the following geim
addition to simply looking at the magnitude of code changes.

Eyo provides device-transparency. The simple changes transformed the existing media
applications from stand-alone applications with no cohoépharing between devices into
a distributed system that presents the same collectionrouétiple devices. The changes
do not require any user interface modifications to suppaitédransparency; users simply
see a complete set of application objects rather than tlz sobset. However, some user
interface changes are necessary to expose placement nadeaflict resolution to the
user. It is no accident that these new features needed fengebaand indicates thito

is a good match for application-level objects. While the rieatures for the email system
were less dramatic—clients automatically share new messaigd status changes without
a server—these new features required no changes at all insetvefacing email clients,
only in the IMAP server.

Metadata is useful alone even without the related content. The modified media appli-
cations can show the user’s entire music collection. Eveanndontent isn’t present, users
can search for items, modify playlists, see where objecteside, and, if reachable, fetch
remote objects transparently. In Rawstudio, users caclséar photos by tag through the
entire collection even when the content is missing, orgathinse photos into new groups,
and show which devices hold the associated content. Sunglgdew changes were neces-
sary to support objects with missing content. Altholigyo does provide a metadata field
indicating whether the associated content is availablallgcthe applications generally
functioned correctly even without additional logic to exaethis field, e.g., by continuing
on to the next item in a playlist, for two reasons. (1) Appiicas need to fail gracefully
when given files they cannot interpret, such as unsuppantadeé or music file types, and
(2) applications that keep a central metadata database oidypbinters to files in tra-
ditional network filesystems that become unreachable. kandissing content irEyo
triggers these same code paths.

Applications automatically compose concurrent updates. Concurrent updates occur
as a part of normal application operations, for exampleyetere users play the same song
or read the same mail message from disconnected devicese &bgons result in multiple
head versions of these objects when connectivity resumeasokt cases, the version his-
tory Eyo provides permits applications to resolve concurrent charsgmply by applying
the union of all user changes; tegoclient library makes this straightforward. A few cases
require application-specific involvement, e.g. the amlans that track playcounts use a
custom merge procedure to sum up the count increments.

62

User-Visible

ication T ?

Application Type Conflicts Possible? Why

IMAP Emall No Boolean metadata flag changes onl
Gateway 9 9 y

gPodder Podcast No User cannot edit metadata directly
Manager
Media . . .

Rhythmbox Player Yes Edit Song title directly

. Media . . .
QuodLibet Player Yes Edit Song title directly
Rawstudio Ezi?:)? Yes Edit settings: contrast, exposure

Table 6.2: Description of whether applications can hantlleession conflicts internally,
or must show the presence of multiple versions as a resutrésoncurrent events, along
with an explanation or example of why that result holds farteapplication.

The experience with these applications led us to concludeapplications must be
involved in automatic conflict resolution because the airpolicy depends on the ap-
plication and the metadata item. For example, differengq@ant histories could equally
validly be resolved by taking the maximum count instead ofisung the increments. Only
the application designer has sufficient information to ceoive appropriate policy for each
metadata item.

As another example, in our IMAP application if one device ajed the “unread” mes-
sage flag and another device updates the “replied” flag, Byewill flag a conflict to the
application. However, the IMAP gateway knows that theseatg®lare composable and
resolves the conflict without user intervention.

An alternate type of concurrent update arises when imppexternal data objects into
Eyo. Our gPodder version, for example, downloads podcaststanessepisode metadata
and content ireya Itincludes the RSS feedsGUI D> element in the hints tor eat e()
to ensure that multiple clients that independently dowtkb& same episode while discon-
nected automatically merge the objects once connectigitgstored. In addition to the
client-toEyo IMAP server, we also implemented &yo-to-server gateway which, acting
as an IMAP client, pulls new messages from a user’s exteMAHR inbox into theEyo
store. Like gPodder, it uses create hints based on messay®e @void inserting duplicate
messages.

Users rarely encounter version histories. Applications use version histories internally
to merge divergent version histories back into a single weasion, but in most cases users
are never aware when concurrent updates occur, as the ajppig perform these opera-
tions automatically. A few cases however, do result in eserwisible effects. Table 6.2

summarizes the results.

63

Because Rhythmbox and Quod Libet allow users to modify nagtedirectly in the U,
it is possible for users to make conflicting changes reqginranual intervention on two
devices. These kinds of user-visible conflicts only arise wudirect, concurrent changes.
As outlined above, normal operations, such as playing a,samediting a playlist, never
result in user-visible conflicts.

Rawstudio does permit user-visible conflicts, but this dossnormally cause a prob-
lem. Rawstudio allows users to save a set of several versicdhe ‘development settings’
for each photo. If a user concurrently changes the settingwa/o devices, Rawstudio can
show both branches of this conflicted object as a differartfsgettings. The user-supplied
image tags cannot cause conflicts, and all of the other metéidtds are read-only to the
user.

The other applications, gPodder and email, prohibit ussbie conflicts entirely, as
users don'’t edit individual metadata tags directly. Thesedpplicationsrevershow mul-
tiple versions to end users, even though the underlyingsyshaintained version histories
exhibit forks and merges. The ability to hide these evenisatestrates the usefulness of
keeping system-maintained version histories so that eqjins face no ambiguity about
the correct actions to take.

Summary. In summary, we found that modifying applications to use By® storage
model was not difficult. In most cases, applications useaibja the same patterns as they
did before, except that end users experience a cohereattofi rather than a disjoint set
of objects on different device€yo provides applications with the necessary information
to hide many concurrent changes from users.

6.4 Results: Metadata Storage Costs

To determine the expected size of metadata storiéganwe inserted three modest personal
data sets intieya the email, music, and photo collections a single user gathever the
past decade. We included a collection of email messages as&@ase test; this collection
includes a large number of very small objects, so the medamlegrhead will be much larger
than for other data types. Table 6.3 shows the resultingdatdastore sizes. To extract
metadata, we parsed email messages to extract useful beadported the user’'s media
attribute database, and usexli f t ags or dcr awto extract attributes from photos. This
example considers only the static metadata store siagstores a single version of each
object —the next sections examine the costs of multipleioless

The table shows that for each of the three data typges metadata store size is ap-
proximately 3 times as large as the object attributes alohlee overhead comes from
database indexes and implementation-specific data stesctu

The most important feature this data set illustrates isttieasize of the metadata store
is roughly (within a small constant factor) dependent onytbe number of individual
objects, but not the content type, and not the size of contgetts. The number of objects,

64

Email

number of messages 724230
total content size 4.3 GB
median message size 4188 bytes
native metadata size 169.3 MB
Eyometadata store size 529.6 MB
metadata/content overhead 12%
metadata store size per message 766 bytes

Music

number of tracks 5278
number of playlists 21
total content size 26.0 GB
mean track size 5.1 MB
native metadata size 2.6 MB
Eyometadata store size 5.8 MB
metadata/content overhead 0.02%
metadata store size per object 1153 bytes

Photos

number of JPEG/RAW objects 61740/10640
total number of objects 72380
JPEG/RAW content size 32.7/90.1 GB
total content size 122.8 GB
native metadata size 22.6 MB
Eyometadata store size 52.9 MB
metadata/content overhead 0.04%
metadata store size per object 767 bytes

Table 6.3: Metadata store sizes for example datasets. Tive naetadata size is the size

of the attribute key/value pairs before storinggyo. The metadata store size is the on-disk
size after adding all objects.

65

Devices with fast
links generating
objects

Remote
Device

Figure 6-1: Topology for the scenarios in sections 6.5 afid 6.

along with the amount of metadata per object, thus providewar bound on the storage
capacity of each device.

The total metadata size in this example (less than 600 MBgdasanable for today’s
current portable devices, but the total content size (153v@&Rild not fit on a laptop only a
few years old nor on many current portable devices. Addidg@iwould only increase the
disparity between metadata and content store sizes, andaeelative amount of overhead
Eyodevotes to storing object metadata.

6.5 Bandwidth Costs

In addition to storage costs, the metadata-everywhere Inpdaiees bandwidth costs on
other devices in the system, even when those devices daonetbe newly created objects.

Figure 6-1 shows the simplest possible network topologyxtorene bandwidth and
storage costs for disinterested devices that lack any mplecerule matching newly changed
objects (this section), and for absent devices (next s@ctio

In this scenario, a pair of object-generating devices ereatv objects at exponentially
distributed times at a variable average rate, attachingKibobytes of attributes to each
new object (larger than the median email message headesi&leoed in section 6.4). The
disinterested device (“remote” in the topology) has onlyaavdink to the other replicas,
and we measure the synchronization bandwidth passed asesiolwv link, averaged over
a month of simulated time. The disinterested device doesetch any of the associated
content objects, hence all of the bandwidth in this case tadata and protocol overhead.

Figure 6-2 shows that the bandwidth consumed over the slaky &s expected, in-
creases linearly with the update rate. If the slow link hadable capacity of 56 kbps, and
new updates arrive once per minute on average, the disstéerdevice must spend approx-
imately 1.5% of total time connected to the network in oraestay current with metadata
updates. This low overhead is expected intuitively: smaitgble devices routinely fetch
all new email messages over slow links, so the metadata hdtidiwr comparable content
will be similar.

66

—(9.7 bits/sec) x (#updates/hour)
TFUpdate size = 2 kilobytes
O-Update size = 4 kilobytes

|
T

Bandwidth consumed (kilobits/second)

0.01 | | |
1 10 100 1000

Frequency of metadata updates (#/hour)

Figure 6-2: Average connection bandwidth required to ecattusly synchronize metadata
changes.

67

Size of metadata store (megabytes)

512

RN
N Ol
|

R W o
T TN

i

—(2.56 kilobytes) x #minutes
{FSize before synchronizing
-O-Size after synchronizing

Most objects modified
(1000 minutes)

$

2

1/8 1/4 1/2 1 2 4 8 16 32 64 128
Time between disconnecting and reconnecting (days)

Figure 6-3: Storage consumed by metadata versions queuadifsconnected device.

68

6.6 Disconnected Devices

When anEyo device, R, is disconnected from the rest of the group due to network par
titions, or because the device in question is turned off,atfier devices will keep extra
metadata object versions, which might prove necessaryrstaat causally ordered ver-
sion graphs oncé& returns.

Using the topology in Figure 6-1, we place an initial set 00Q@nconflicted objects
synchronized across the three devices. The remote déviten disconnects from the
network, and stays disconnected for a single period of meanging from four hours
to four months. Starting afteR is out of communication, the other replicas generate new
versions to one of the existing objects at an average raten@é per minute, attaching
2 kilobytes of uniqgue metadata, so the devices save no spaséobing only changed
attributes.

After the intervalAt, we measure the size of tlsyo metadata store on the generating
devices, allowR? to reconnect and synchronize, let each device prune itdattzaand then
measure the metadata store again. Figure 6-3 shows thelagidafter sizes as a function
of the disconnect intervakt. The figure shows two regions, fdst before and after 1000
minutes, the point at which most objects have been modified. A% > 1000 minutes,
the system reaches a steady state where the size of the taetéml@ is proportional to
the amount of time passed, but after returning and synchiranshrinks to a constant size
independent of the amount of time spent disconnected. Tleiahof recoverable storage
is the difference between the two curves. The cureggbreémplementation stores exactly
one version beyond those strictly necessary to go back todghest unique ancestor for
each object, which is why this steady state size is larger tha initial storage size, and
why the post-synchronization size changes during theaimtn-steady state region.

A collection with more objects (for example, the one showrséttion 6.4) would
show a much smaller fraction of recoverable storage tharettample, though the absolute
amount of recoverable space would be the identical undesairee update pattern.

All of the object types shown in Table 6.3 contain immutaldatents, so disconnected
devices using those data types cause overhekglas metadata store, but not the content
store. If updates change content as well, then the storagis wmuld be proportionally
larger.

Figure 6-3 shows that a long-term uncommunicating devioeaase unbounded growth
of the metadata store on other devices. If this absencesgetsng enough that a device
runs out of spacefEyo can present the user with two options: turn on and syncheoniz
the missing device, or evict it from the system. Evicting thissing device, as discussed
in section 4.5, does not require a consensus vote of the mamgailevices. Temporarily
evicting a device allows the remaining devices to truncé®hy, and preserves data until
re-adding the missing device later.

These results show that users are unlikely to encountetgmzbdue to accumulating
metadata in practice, as large collections and infrequeisttd devices alone cannot cause
problems. It is instead the rate of individual edits thatsranes excess space, and none of

69

System Description

Unison Delays of at least 1 second for small collections.
Large collections take significantly longer:
23 seconds for an existing collection of 500K objects,
87 seconds for 1M objects

MobileMe Most updates arrive with delays of between 5 andefosds.
Occasionally as long as 4 minutes.
Delay does not depend on collection size.

Eyo Alldelays fall between 5 and 15 milliseconds.
Delay does not depend on collection size.

Table 6.4: Synchronization Delay Comparison: Time to pgapa one new update to an
existing data collection between two devices on the sanad fatwork.

the applications we have examined generate changes arg/warthe frequency that this
experiment assumes.

6.7 Synchronization Comparison

This section compares the performanceéegtis synchronization protocol to two existing
alternatives: Unison [4], a stand-alone file-level syndmation tool, and MobileMe [3], a
cloud-based storage subscription service.

These experiments aim to measure the time it takes for a ralmmtadata change to
propagate between two physically adjacent devices. Insiiisng, to provide a device-
transparent view of data and show the same data view to usegsient updates must
pass between devices as quickly as possible. In each casaletvices initially hold a
synchronized data collection with some number of existinglsor metadata-only objects.
One device then makes a single minimal change, and we mehsutiene it takes for that
update to appear on the second device. For MobileMe, théesthgnge took the form of
editing an existing calendar entry to fall instead on thet mexprevious day. For Unison,
the change was a one-byte edit to an existing single bladddile, and foEyothe change
was a new metadata version of an existing metadata object.

Table 6.4 summarizes the results of measuring the updapagation delay for each of
these systems. Since Unison is a stand-alone synchrothiganeasurement time includes
the time to start up the program to send an update, whichtseisutielays of around one
second even for very small data collectio&s.o (and MobileMe) run continuously, so do
not suffer such a startup cost. When started, Unison musitirate over the local data
collection to determine which files have changed, and fgdatata collections, this time
dominates the end-to-end delay, resulting in delays of ¢éisgconds for collections of a
few hundred thousand individual objecEsyonever needs to iterate over the local metadata

70

collection to identify which objects need updateskEge continually tracks object changes
that need propagation to other devices.

MobileMe andEyoboth track updates as applications edit data, so the detaysde-
pendent of the number of objects in the collection. Althobgth systems in this compari-
son send similar amounts of data (less than 10 kilobyteshilelde updates take between
several seconds to several minutes to propagate, wheyeaslelays fall between 5 and 15
milliseconds. MobileMe’s star topology requires that gldates pass through the central
cloud system, even if the two devices are physically adjagethe same local network, as
they are in this example. MobileMe’s delays are not due &ntlpolling, as clients appear
to learn of new updates via an asynchronous notification yaraistent TCP connection,
but are longer than can be attributed solely to network pyapan delaysEyaq, in contrast,
discovers local network paths, and uses those to send diegetly to the local device.

We expect that systems that are designed with the same perfice goal a&yo,
namely to ensure that synchronization processing time anthwnication size is inde-
pendent of the total collection size, (e.g., Cimbiosys [¥IhFS [31]), would show results
very similar toEyds in this type of setting.

The results of these measurements demonstrate that pagsiages quickly between
peer devices requires a synchronization protocol thatiefily identifies missing updates
to send without scanning the data collection, and takingaathge of local networks to
send updates directly whenever possible.

71

72

Chapter 7

Related Work

Many of the underlying mechanisms Eyo derive from mechanisms in other systems.
Cimbiosys & Perspective are the two most closely relatetesys, which we discuss next,
followed by other optimistic replication schemes, and oHystems such as version control
systems and attribute-based file systems.

7.1 Cimbiosys & Perspective

Cimbiosys [44] and Perspective [48], are the two systemst rwlosely related tdEyo.
Though neither attempts to provide device transpardigyg,shares ideas with each. For
example Eyoadopts placement rules from existing mechanisms in botiesys

Cimbiosys is a replication platform for applications to esatent-based filtering rules
with efficient synchronization protocols to minimize commuation overhead. Cimbiosys
does not provide a device-transparent view: devices leldonitaobjects that match their
local filter, and must store all of those objects, but do natrleabout the rest of the objects
in the data collection. Cimbiosys supports large groupseviaks, and unlik&yo, does
not require that the devices knaavpriori of the identities of the other peers. In order
to achieve efficient communication (dependent on the nurabehanges, rather than the
number of total objects), Cimbiosys requires that the des/mrganize into a tree structure
based on their content filters, and that devices periogielthange updates with their
parent and child devices in this tree. The device that sitiseatoot of this tree must hold
a universal filter, meaning that it collects and then holdspyof all content in the data
collection. Eyodoes not require that devices organize into a tree stryabutbat any one
device in the collection hold a complete copy. Cimbiosysinegs that applications manage
communication with peer devices, unliEyo, which manages all communication itself.

Perspective allows users to specifigwsover a data collection, which map content
gueries to devices which should hold replicas of those tdjeRerspective does not pro-
vide communication protocols as efficient as in Cimbiosylsym a single synchronization
event take(min(ny, ny)) time, wheren; is the number of files stored on devitcePer-
spective does not provide disconnected device-transpacegrss to the data collection, as

73

disconnected devices only know about files in their matckiag. Perspective exports it’s
views via a traditional filesystem API, so does not requing @pplication changes, unlike
Eyoand Cimbiosys.

Neither Cimbiosys nor Perspective retains object’s verkigtory, or provides an API
to applications that helps them manage and resolve condlictply, though both detect
concurrent changes to objects.

7.2 Optimistic Replication Schemes

In addition to Cimbiosys and Perspectiyo incorporated ideas found in several other
optimistic replication schemes. Coda [27], Ficus [23], |88], and Pangaea [47] provide
optimistic replication and consistency algorithms for flesstems. Coda uses a centralized
set of servers with disconnected clients. Ficus and Ivynaflir updates between clients,
but do not provide for partial replicas, and Pangaea hamdilmbnnected servers, but not
disconnected clients. An extension to Ficus [45] adds sdgpo partial replicas, at the
cost of no longer supporting arbitrary network topologies.

Several of these systems make use of Application-specslvers [28, 46], which
require developers to construct stand-alone mechanisimmset@ret and resolve conflicts
separately from the applications that normally accessitita. WhileEyods approach does
require direct changes to applications, embedding rasallbgic directly in the appli-
cations avoids the need to recreate application contex¢parate resolvers, and permits
multiple applications to edit, and subsequently resoltanges to the same data objects.
Presenting version history directly to the applicationstead of just the final state of each
conflicting replica, permits applications usiBgos API to precisely identify the changes
made in each branch.

BlueFS [37] and EnsemBlue [39] extend Coda to permit a lichitegree of decentral-
ized updates along with more flexible placement rulegos lookup and watch notifica-
tions provide applications with similar flexibility as EmsBlue’s persistent query interface
without requiring that a central server know about and pgscpieries.

Podbase [42] replicates files between personal devicematitmally whenever network
conditions permit, but does not provide a way to specify @taent rules or merge or track
concurrent updates.

Bayou [58] provides a device transparent view across meltigvices, but does not
support partial replicas, and requires all applicationpriavide merge procedures to re-
solve all conflicts. Bayou, like most optimistic replicatischemes, requires that updates
be eventually-serializabl§l3]. Eyoinstead tracks derivation history for each individual
object, forming a partial order of happened-before refeiops [29].

PersonalRAID [53] tries to provide device transparencyghwith partial replicas. The
approach taken, however, requires users to move a singky®storage token physically
between devices. Only one device can thus use the datatemilet a given time.

74

TierStore [11], WIinFS [31], PRACTI [5], Pheme [25], and Mamwitim [6] each support
partial replicas, but limit the subsets to subtrees of aiticaghl hierarchical filesystems
rather than the more flexible schemes in Cimbiosys [44],d&ets/e [48], andEya Tier-
Store targets Delay-Tolerant-Networking scenarios. \8iakms to support large numbers
of replicas and, likeeyo, limits updates messages to the number of actual chandes rat
than the total number of objects. PRACTI also provides ®ascy guarantees between
different objects in the collectiorEyodoes not provide any such consistency guarantees,
but Eyodoes allow applications to coherently name groups of objgrbugh the exposed
persistent object version and content identifiers. Nonene$eé systems provide device
transparency over a complete collection.

7.3 Star Topologies

A number of systems build synchronization operations tlyeato applications so that
multiple clients receive updates quickly, such as oneavf#?], MobileMe [3], Google
Gears [20], and Live Mesh [34]. Each of these systems follinescloud model described
in section 1.1.2, where a centralized set of servers holdotete copies of the data col-
lections, and applications, either running on the clougteysrthemselves, or on individual
clients, retrieves some subset of the content. Discondeadients cannot share updates
directly, nor view complete data collections while disceated.

7.4 Point to point synchronization:

Point-to-point synchronization protocols such as rsyidg,[6a [9], and Unison [4] provide
on-demand and efficient replication of directory hieragshi Unison compares directory
hierarchies on two machines and updates both copies tai@clhianges made on the other.
Tra keeps additional state on synchronization events tol @eiecting false conflicts when
synchronizing groups of more than two devices. Rsync (whicison uses internally)
efficiently compares large files to only send the changedgat synchronization times.
None of these systems easily extend to a cluster of peeraevandle partial replicas
without extensive hand-written rules, or proactively papsgates whenever connectivity
permit without user intervention. Since all of these systerser the standard file system
interface, none require application changes.

7.5 Version Control Systems

Software version control systems such as Git [19], Subwerfs6], and Mercurial [33]
provide many algorithms and models for reasoning aboutamtsgstories, allowing devel-
opers to time-shift working sets back to arbitrary pointsrsion control systems normally
store the complete history for each object, to permit dgei® to examine the entire life-
time of an individual object. Subversion keeps the comptita collection in a single

75

centralized repository, so users can only resolve conflictexchange updates) when they
can communicate with the repository. Distributed versiontol systems such as git and
Mercurial store complete collections of the entire projeistory on each client, so that
operations such as committing or merging can occur betwegitveo clients. Eyo keeps
only a limited history needed to describe events leadinggotantial conflict. Some ver-
sion control systems (like CVS or Subversion) permit paraalicas, where some clients
check out subdirectories of an overall project. Other® @k, require that clients hold a
complete copy of a data collection. In this respect, git ptes device transparent access
to a repository, though it is not suitable for storage-leditdevices that cannot store the
collection’s entire history.

7.6 Attribute Naming

Storage system organization based on queries or attrilbatesr than strict hierarchi-
cal names have been studied in several single-device @egantic File Systems [18],
HAC [21], hFAD [50], LISFS [38]) and multi-device settings.(., HomeViews [17]), in
addition to the contemporary optimistic replication sysse Several of these systems ob-
serve that strict hierarchies found in traditional filegyss pose unnecessary restrictions on
data organization and concurrency, that users frequegnbyre the folders and use searches
to locate their files instead, and requires that separat@imasagree on a single organiza-
tional structureEyouses attribute-based queries for applications to idenbfgcts for the
same reasons as in each of these systems.

76

Chapter 8

Discussion and Future Work

This chapter covers two topics: (1) it describes severarestons that could incorporate
additional features int&yds current design, and (2) it considers alternative desigas
would follow from different assumptions abobyds use and goals.

8.1 Extensions

This section describes several possible additiois/tis base design to provide additional
features.

8.1.1 Security considerations

TheEyodesign as presented so far assumes (1) that each device a/ignoup of devices
faithfully carries out the synchronization protocol andrst the data it promises to store,
and (2) thatEyo only receives valid instructions from end usetSyo already partially
addresses the first issue by using any storage space taatepliata beyond the copies re-
quired by placement rules, which provides some benefitsse ch device failuresEyo
could adopt the strategies of Polygraph [30] to addressdbersl type of attack (e.g., an
attacker breaks into a device and issues commands to ddléenss). In fact,Eyo al-
ready contains the necessary infrastructure to implemaggRaph’s rollback mechanism,
lacking only an interface to specify when an attack occurred

8.1.2 Extension to multiple users

The discussion oEyo thus far considered only a single user’s devices. Howetvenay
often be useful to share data collections between a fewdiffgpeople, for example if they
live in a single household. For this purpdsgobuilds on UIA's shared groups [16], which
provide a way to name the union of all devices controlled lwesd usersEyo maintains
separate metadata stores on each device, one for perstanamdone for shared data. All

77

devices in a shared group can create, modify, or delete tshijethe shared store, but only
devices in the personal group can see or modify objects ipgrsonal storeEyds support
for shared collections does not currently scale to largebarsof users and devices, but it
should be adequate for family-sized groups, each membéndnavfew devices.

8.1.3 Extension for storage-limited devices

If an Eyo group contains devices that are limited enough that thegaxp be unable to
hold even the full metadata collection, they can insteachadimited edge devices. This
mode of operation would not present a device-transparent, ibut may be useful for
devices such as photo-frames that have limited storages spatt user interfaces. These
devices would gather all metadata updates, but only retabadata objects matching their
own placement rules. They would therefore be unable to fatwadates further.

8.1.4 User Study

Although we have useByoourselves and found it useful for our own purposes, a broader
user study could provide additional support for our conols. In addition to our own
investigations, a group at Nokia research is ugtygin a system to present and propagate
collections of social networking data and has folbyws API to be very useful for this
purpose.

8.2 Alternative Designs

This section describes alternative designs in cases whermeisired properties differ from
Eyds in several ways.

8.2.1 ImplementingEyo without UIA

It would be possible to implement almost all Byds design without relying on UIA for
communicating between devices. If users manually constdug list of their devices, and
limited communication to times when those devices couldally communicate through
secure channels, such as a local USB connection, or via a H§&Rrer, the same metadata
and content exchange protocols could work over such a systérough it would be harder
for end users to describe the group initially.

The resulting system would still provide device-transpayge though it would miss
opportunities for passing updates between devices thad cauminally communicate via
an internet relay. Furthermore, without a way to authetgiti@ose links, devices could not
ensure that the updates they received were authentic. As sad users would be more
likely to experience version conflicts when modifying thengsobjects on multiple devices.

78

8.2.2 Mutable Content

Eyowould not need extensive changes to handle frequently editaintent. The current
design handles mutable content by replacing it entirelyclvis simple but inefficient. On
the storage side of the design, small changes to conterttslgeuld be stored in a Merkle
tree [43] to avoid storing complete copies. The protocolféaching content from other
devices would need to be augmented to take this blockingaictount to avoid transferring
the same sub-portion of an object more than once, as existiog already do (e.g, rsync,
git, and many others). Applications reading objects wogedito read content objects after
combining the multiple blocks, which could be done by prawidcustom functions to read
objects rather than returning file descriptors, or by imm@atmg a FUSE [14] user-level
filesystem and maintaining the existing file descriptors.

Even with these changes, applications would need additavanges to evaluate and
merge content changes. These changes would likely be vegyfispto the individual data
types, and hard to generalize across different applicatimal data types.

8.2.3 No Disconnected Operations

If Eyo devices were only ever used in situations where they couhdnwonicate with a
single large centralized server, devices could providecgetransparent access to a data
collection without requiring that each device store a catgimetadata copy. Much of
Eyds design would still be useful, however, because there avstill be long delays for
devices not physically near the central server. To limitrwssible delays while evaluat-
ing queries and displaying results, it would still make settscache frequently accessed
metadata on devices. Transmission delays for large coobgetts would still necessitate
playing content on individual devices, meaning tBgts placement rules would remain as
designed. If applications checked with the central sermezach data write, and aborted or
rolled back any concurrent writeByo could avoid keeping version histories, as the central
server could decree which was the newest version of anyesoigéct. Applications could
optimize the caching of object metadata by notifylegp (perhaps at install time) which
attributes they use in order to identify and display objeatasers.Eyo could then cache
those values locally, while ignoring attributes or entibgsets that lack an appropriate local
application to view those objects.

8.2.4 Without placing all metadata everywhere

If Eyodid not place metadata for every object on each device, Butesjuired discon-
nected operation, it could not provide device-transpaseogss to the data collection. This
change would provide a different experience to end useswaruld be more similar to
Cimbiosys [44] in operation. The metadata synchronizagpiatocol would need to incor-
porate placement rules that operate on metadata in addiitiades that operate on object
content. The content synchronization protocol would nemdesdifferent mechanism to
locate objects, and to ensure their persistence, withasgigimg this information via the

79

metadata synchronization protocol. One way to ensure tbigddvbe to adopt, as Cim-
biosys did, the requirement that some device serve as th@ftadilter tree, and promise
to hold a complete copy of all metadata and all content. Térsral point would thus serve
as the fallback device to fetch content from.

80

Chapter 9

Summary

Growing storage and network capabilities of mobile devicesnbined with personal data
collections that do not fit on some of the devices, leads tduston caused by the object-
on-a-device abstraction that traditional storage sysi@mgide. This thesis describes an
alternative abstractiomevice transparengyhat unifies the collections of objects on mul-
tiple devices into a single logical collection. It proposesovel storage API that provides
explicit version histories, application-defined metadhéd is stored separately from object
content, and placement rules.

An implementation of this API in th&yo storage system includes effecient synchro-
nization protocols for object metadata and content thraligdct peer-to-peer links. The
metadata protocol communicates updates continuously atwinatically whenever net-
work connectivity permits.

An evaluation with several applications suggests that tdgyds API to achieve
device transparency for these application is modest, nassscof concurrent updates can
be handled automatically by the applications wihtout ustarvention, and that the storage
and bandwidth costs are within the capabilities of typiekpnal devices.

The main ideas explored Eyocan hopefully be adopted into future mobile platforms.
Doing so would enhance their user experiences, and progieles with better control over
their personal data. Users would manage a single unifiedcdéetion, rather than com-
binations of independent device-sized partitions. Theoaode for theEyo prototype
implementation will be available publicly froit t p: // pdos. csai | . mi t. edu/ eyo/ .

81

82

Bibliography

[1] Amazon Simple Storage Service (S3). http://aws.amazon/s3/.
[2] Apple, Inc. iTunes. http://www.apple.com/itunes/.
[3] Apple Inc. MobileMe. http://www.apple.com/mobileme/

[4] S.Balasubramanian and Benjamin C. Pierce. What is ayfiielgonizer? IrProceed-
ings of the Fourth Annual ACM/IEEE International Conferermm Mobile Computing
and Networking (MobiCom '980ctober 1998.

[5] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, #r Venkataramani,
Praveen Yalagandula, and Jiandan Zheng. PRACTI replitatio Proceedings of
the 3rd Symposium on Networked Systems Design and Imp&troar{NSDI) 2006.

[6] Dmitry Brodsky, Jody Pomkoski, Shihao Gong, Alex BrogsKichael J. Feeley,
and Norman C. Hutchinson. Mammoth: A Peer-to-Peer FileeystTechnical Re-
port TR-2003-11, University of British Columbia, Departmef Computer Science,
2002.

[7] Bram Cohen. Incentives build robustness in BitTorrdntWorkshop on Economics
of Peer-to-Peer Systemiune 2003.

[8] Apache CouchDB. http://couchdb.apache.org/.

[9] Russ Cox and William Josephson. File Synchronizatiahwector Time Pairs. Tech-
nical Report MIT-CSAIL-TR-2005-014, MIT, 2005.

[10] D-Bus. http://dbus.freedesktop.org/.

[11] Michael Demmer, Bowei Du, and Eric Brewer. TierStoreDistributed File-System
for Challenged Networks. IRroceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST'Q2008.

[12] Kevin Fall, Wei Hong, and Samuel Madden. Custody Tran$br Reliable Deliv-

ery in Delay Tolerant Networks. Technical Report IRB-TR@&), Intel Research
Berkeley, 2003.

83

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Alan Fekete, David Gupta, Victor Luchangco, Nancy Anth, and Alexander A.
Shvartsman. Eventually-Serializable Data ServicesSymposium on Principles of
Distributed Computing1996.

FUSE: Filesystem in Userspace. http://fuse.sourgefoet.
Flickr. http://mwww.flickr.com/.

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laash &&ea, Frans Kaashoek, and
Robert Morris. Persistent Personal Names for Globally @oted Mobile Devices.
In Proceedings of the 7th USENIX Symposium on Operating Sydbssign and
Implementation (OSDJR006.

Roxana Geambasu, Magdalena Balazinska, Steven Dbiéyiand Henry M. Levy.
Homeviews: peer-to-peer middleware for personal datarshapplications. IrPro-
ceedings of the 2007 ACM International Conference on Mamege of Data (SIG-
MOD’07), 2007.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, add James W. O'Toole. Se-
mantic File Systems. IRroceedings of the thirteenth ACM Symposium on Operating
Systems Principles (SOSRP91.

Git. http://git.or.cz/.
Google Gears. http://gears.google.com.

Burra Gopal and Udi Manber. Integrating Content-ba8edess Mechanisms with
Hierarchical File Systems. [I@SDI '99: Proceedings of the third Symposium on
Operating Systems Design and Implementatic®99.

Robert Grimm, Janet Davis, Eric Lemar, Adam Macbetley&h Swanson, Thomas
Anderson, Brian Bershad, Gaetano Borriello, Steven Geibéhd David Wetherall.
System support for pervasive applicationrSCM Trans. Comput. Sys22(4):421—
486, 2004.

Richard G. Guy, John S. Heidemann, Wai Mak, Thomas WePa&g Gerald J. Popek,
and Dieter Rothmeir. Implementation of the Ficus Repliddtde System. IrPro-
ceedings of the USENIX Summer Conferedoae 1990.

John H. Howard, Michael L. Kazar, Sherri G. Menees, [daki Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Sodl®erformance in a
Distributed File SystemACM Trans. Comput. Sys6(1):51-81, 1988.

Jiandan Zheng, Nalini Belaramani, and Mike Dahlin. ialee Synchronizing Replicas
in Diverse Environments. Technical Report TR-09-07, Ursitg of Texas at Austin,
February 2009.

84

[26] D. Scott Parker Jr., Gerald J. Popek, Gerard RudisiterAStoughton, Bruce J.
Walker, Evelyn Walton, Johanna M. Chow, David Edwards, BepKiser, and
Charles Kline. Detection of Mutual Inconsistency in Distiied Systems.I[EEE
Transactions on Software Engineerji®E-9(3):240-247, May 1983.

[27] James J. Kistler and M. Satyanarayanan. Disconnecgesataflon in the Coda File
System. InProceedings of the Thirteenth ACM Symposium on OperatisteByw
Principles 1991.

[28] Puneet Kumar and M. Satyanarayanan. Flexible and SadelRtion of File Conflicts.
In Proceedings of the USENIX 1995 Technical Confereh©865.

[29] Leslie Lamport. Time, Clocks, and the Ordering of Eeint a Distributed System.
Communications of the ACN1(7):558-565, July 1978.

[30] Prince Mahajan, Ramakrishna Kotla, Catherine MatsMehugopalan Ramasubra-
manian, Thomas Rodeheffer, Douglas Terry, and Ted Woblfiecctive and Efficient
Compromise Recovery for Weakly Consistent Replication. Ptaceedings of the
Fourth ACM European Conference on Computer Systems (Esi@&y2009.

[31] Dahlia Malkhi, Lev Novik, and Chris Purcell. P2P reg@lisynchronization with vector
sets.SIGOPS Oper. Syst. Re#1(2):68—74, 2007.

[32] John McCutchan. inotify. http://inotify.aiken.cz/.

[33] Mercurial source control management. http://memwselenic.com/.
[34] Microsoft. Live Mesh. http://www.livemesh.com.

[35] MongoDB. http://www.mongodb.org/.

[36] Athicha Muthitacharoen, Robert Morris, Thomer M. Gihd Benjie Chen. Ivy: A
Read/Write Peer-to-peer File System.Aroceedings of the 5th USENIX Symposium
on Operating Systems Design and Implementation (QSD02.

[37] Edmund B. Nightingale and Jason Flinn. Energy-efficieand storage flexibility
in the blue file system. IProceedings of the 6th Symposium on Opearting Systems
Design & Implementation (OSDI'042004.

[38] Yoann Padioleau and Olivier Ridoux. A Logic File Systein Proceedings of the
USENIX Annual Technical Conferen@903.

[39] Daniel Peek and Jason Flinn. EnsemBlue: Integratirggributed Storage and Con-
sumer Electronics. I7th USENIX Symposium on Operating Systems Design and
Implementation (OSDJR006.

[40] Karin Petersen, Mike J. Spreitzer, Douglas B. TerryriitaM. Theimer, and Alan J.
Demers. Flexible update propagation for weakly consigteplication. InProceed-
ings of the sixteenth ACM Symposium on Operating Systemsiplas (SOSP '97)
1997.

85

[41] Picasa web albums. http://picasaweb.google.com/.

[42] Ansley Post, Petr Kuznetsov, and Peter Druschel. PseBdransparent Storage
Management for Personal Devices.Hroceedings of the 7th International Workshop
on Peer-to-Peer Systems (IPTPS’0Bgbruary 2008.

[43] Sean Quinlan and Sean Dorward. Venti: A New Approach tohival Storage.
In Proceedings of the First USENIX Conference on File and $@réechnologies
(FAST’02) Monterey, CA, 2002.

[44] Venugopalan Ramasubramanian, Thomas L. Rodeheffeyglas B. Terry, Meg
Walraed-Sullivan, Ted Wobber, Catherine C. Marshall, andriAvVahdat. Cimbiosys:
A Platform for Content-based Partial Replication.Aroceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementid&di’09), 2009.

[45] David Ratner, Peter L. Reiher, Gerald J. Popek, and&ais. Guy. Peer Replica-
tion with Selective Control. IfProceedings of the First International Conference on
Mobile Data Accessl999.

[46] Peter Reiher, John Heidemann, David Ratner, Greg 8kimamd Gerald Popek. Re-
solving File Conflicts in the Ficus File System. Pmoceedings of the 1994 USENIX
Summer Conferenc@994.

[47] Yasushi Saito, Christos Karamanolis, Magnus Karlssaord Mallik Mahalingam.
Taming aggressive replication in the Pangaea wide-areayfitem. InProceedings
of the 5th Symposium on Operating Systems Design and Immuiigioa (OSDI'02)
2002.

[48] Brandon Salmon, Steven W. Schlosser, Lorrie Faith @raend Gregory R. Ganger.
Perspective: Semantic Data Management for the HomePrdoeedings of the 7th
USENIX Conference on File and Storage Technologies (FA5,12009.

[49] Russel Sandberg, David Goldberg, Steve Kleiman, Dalshyand Bob Lyon. Design
and Implemenration of the Sun Network Filesystem.Phoceedings of the Usenix
Summer Conferencpages 119-130, Portland, Oregon, 1985.

[50] Margo Seltzer and Nicholas Murphy. Hierarchical Filgs&ms are Dead. IRro-
ceedings of the 12th Workshop on Hot Topics in Operatinge8ystHotOS X|12009.

[51] SLOCCount. http://www.dwheeler.com/sloccount/.
[52] Smugmug. http://www.smugmug.com/.

[53] Sumeet Sobti, Nitin Garg, Chi Zhang, Xiang Yu, Arvindigtnamurthy, and Ran-
dolph Y. Wang. PersonalRAID: Mobile Storage for Distribditend Disconnected
Computers. IProceedings of the first USENIX Conference on File and Stolagh-
nologies (FAST’02)2002.

[54] SQLite. http://www.sqlite.org/.

86

[55] Jacob Strauss, Chris Lesniewski-Laas, Justin MazRalaska, Bryan Ford, Robert
Morris, and Frans Kaashoek. Device Transparency: a New Modklobile Storage.
In Proceedings of the First Workshop on Hot Topics in Storage Bite Systems
(HotStorage’09)October 2009.

[56] Subversion. http://subversion.tigris.org.

[57] Robert Tarjan. Depth-First Search and Linear GraploAtgms. SIAM Journal on
Computing 1(2):146-160, 1972.

[58] Douglas B. Terry, Marvin M. Theimer, Karin Petersendalan J. Demers. Man-
aging Update Conflicts in Bayou, a Weakly Connected Re@d&torage System.
In Proceedings of the Fifteenth ACM Symposium on Operatinte@gsPrinciples
(SOSP’95)1995.

[59] Niraj Tolia, Michael Kaminsky, David G. Andersen, andi&pnil Patil. An Architec-
ture for Internet Data Transfer. FRroceedings of the 3rd Symposium on Networked
Systems Design and Implementation (NSB8n Jose, CA, May 2006.

[60] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, and BeuG. Lindsay. Transac-
tions and consistency in distributed database systei@M Trans. Database Syst.
7(3):323-342, 1982.

[61] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronizatid@hD thesis,
Australian National University, April 2000.

87

