
Practical, Distributed Network Coordinates

Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, Robert Morris
MIT Laboratory for Computer Science

{rsc, fdabek, kaashoek, jinyang, rtm}@lcs.mit.edu

ABSTRACT – Vivaldi is a distributed algorithm that assigns
synthetic coordinates to Internet hosts, so that the Euclidean dis-
tance between two hosts’ coordinates predicts the network latency
between them. Each node in Vivaldi computes its coordinates by sim-
ulating its position in a network of physical springs. Vivaldi is both
distributed and efficient: no fixed infrastructure need be deployed
and a new host can compute useful coordinates after collecting la-
tency information from only a few other hosts. Vivaldi can rely on
piggy-backing latency information on application traffic instead of
generating extra traffic by sending its own probe packets.

This paper evaluates Vivaldi through simulations of 750 hosts,
with a matrix of inter-host latencies derived from measurements be-
tween 750 real Internet hosts. Vivaldi finds synthetic coordinates that
predict the measured latencies with a median relative error of 14
percent. The simulations show that a new host joining an existing
Vivaldi system requires fewer than 10 probes to achieve this accu-
racy. Vivaldi is currently used by the Chord distributed hash table
to perform proximity routing, replica selection, and retransmission
timer estimation.

1 Introduction
Synthetic coordinate systems are an approach to predicting
inter-host Internet latencies. Nodes compute synthetic coordi-
nates such that the Euclidean distance between the synthetic
coordinates of different nodes predict latency in the Internet.
Thus, if a node x learns about the coordinates of a node y with
which it hasn’t communicated before, x doesn’t have to per-
form an explicit measurement to determine the latency to y;
instead, the Euclidean distance between x and y in the space
is an accurate predictor of the latency.

The ability to predict latency without prior communication
allows systems to use proximity for better performance with
less measurement overhead. A coordinate system could be
used to select which of a number of replicated servers to fetch
a data item from; such a system is particularly helpful when
the number of potential servers is large or the amount of data
is small. In either case it would not be practical to first probe
all the servers to find the closest, since the cost of the probes
would outweigh the benefit of an intelligent choice. Content
distribution and file-sharing systems such as KaZaA [10], Bit-
Torrent [2], and CoDeeN [23] are examples of systems that
offer a large number of replica servers. CFS [5] and DNS [12]

This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National Science
Foundation under Cooperative Agreement No. ANI-0225660. Russ Cox is
supported by a fellowship from the Fannie and John Hertz Foundation.

are examples of systems that offer modest numbers of repli-
cas, but each piece of data is small.

GNP demonstrated that it is possible to calculate synthetic
coordinates, and that they can be used to predict Internet la-
tencies [14]. GNP relies on a small number (5-20) of “land-
mark” nodes; other nodes measure latency to the landmarks
to help them choose coordinates. The choice of which nodes
are used as landmarks can significantly affect the accuracy of
latency predictions made by GNP.

Vivaldi is a simple, distributed, symmetric algorithm for
computing synthetic coordinates that requires no landmarks
and provides an accuracy similar to that of GNP. In Vivaldi,
each node computes coordinates for itself. Each time a node
communicates with another node, it measures the latency to
that node, and then adjusts its coordinates to minimize the
error between measured latencies and predicted latencies. Vi-
valdi requires the user to set only a single parameter, which
describes how much to adjust a node’s coordinates in re-
sponse to one new latency sample. This parameter is largely
independent of the input and can be set conservatively to en-
sure accuracy at the cost of convergence time.

We believe that Vivaldi’s properties could make synthetic
coordinates more widely applicable. Vivaldi’s simplicity, ac-
curacy, and distributed, symmetric nature align well with the
requirements of peer-to-peer systems that do not inherently
have special, reliable nodes that are candidates for landmarks.
As an example of its applicability, we describe how Vivaldi
can be used to perform proximity routing and server selec-
tion, and to set retransmission timers in the Chord DHT [21].

2 Design
Vivaldi assigns each node synthetic coordinates in a D-
dimensional space. The goal of Vivaldi is to assign coordi-
nates so that the Euclidean distance in synthetic coordinate
space between two hosts accurately predicts the round-trip
latency of packet transmission between the hosts.

Vivaldi chooses coordinates by sampling the network la-
tency between each node and a few other nodes, and adjust-
ing the nodes’ coordinates to minimize the error between the
predicted and sampled latencies. We first describe a central-
ized algorithm to minimize the error and then generalize it to
a practical, distributed algorithm.

2.1 Centralized algorithm
When formulated as a centralized algorithm, the input to Vi-
valdi is a matrix of real network latencies M , such that Mxy

is the latency between x and y. The output is a set of coordi-
nates. Finding the best coordinates is equivalent to minimiz-
ing the error (E) between predicted distances and the supplied
distances. We use a simple squared error function:

E =
∑

x

∑

y

(Mxy − dist(x, y))2

where dist(x, y) is the standard Euclidean distance between
coordinates of x and y.

Vivaldi uses an algorithm based on a simulation of a net-
work of physical springs to minimize E. This algorithm was
inspired by work on model reconstruction [9]; it mirrors a
similar recent approach using force fields [20]. Conceptually,
Vivaldi places a spring between each pair of nodes for which
it knows the network latency, with the rest length set to that
latency. The length of each spring is the distance between the
current coordinates of the two nodes. The potential energy
of a spring is proportional to the displacement from its rest
length squared: this displacement is identical to the prediction
error of the coordinates. Therefore minimizing the potential
energy of the spring system corresponds to minimizing the
prediction error E.

Simulating spring relaxation requires much less computa-
tion than more general optimization optimization algorithms
such as the simplex algorithm (used by GNP) and produces
similarly accurate results. The spring-based algorithm outper-
forms simplex mainly because it takes advantage of gradient
information to move the solution toward a minimal error so-
lution; simplex does not depend on such gradient information
and explores the the solution space in a less directed manner.

Vivaldi simulates the physical spring system by running
the system through a series of small time steps. At each time
step, the force on each node is calculated and the node moves
in the direction of that force. The node moves a distance pro-
portional to the applied force and the size of the time step.
Each time a node moves it decreases the energy of the system;
however, the energy of the system stored in the springs will
typically never reach zero since network latencies don’t actu-
ally reflect an Euclidean space. Neither the spring relaxation
nor the simplex algorithm is guaranteed to find the global
minimal solution; both can converge to a local minimum.

2.2 Distributed calculation
In the distributed version of Vivaldi, each node simulates a
piece of the overall spring system. A node maintains an es-
timate of its own current coordinates, starting at the origin.
Whenever two nodes communicate, the two nodes measure
the latency between them and exchange their current syn-
thetic coordinates. In RPC-based systems, this measurement
can be accomplished by timing the RPC; in a stream oriented
system, the receiver might echo a timestamp. An application
might choose to make several measurements and report the
minimum (or median) to Vivaldi, however, in the current de-
ployment of Vivaldi on the Chord distributed lookup system

// called for each new measurement.
// s_c is the other host’s coordinates.
// s_l is the one-way latency to that host.
// δ starts at 1.0.
update(s_c, s_l) {

// unit vector towards other host
Vector dir = s_c - my_c;
dir = dir / length(dir);
//Distance from spring’s rest position
d = dist(s_c, my_c) - s_l;
// displacement from rest position
Vector x = dir * d;
// reduce δ at each sample
δ -= 0.025;
// but stop at 0.05
δ = max (0.05, δ);
x = x * δ;
// apply the force
my_c = my_c + x;

}

Figure 1: Pseudo-code for the Vivaldi update routine. update()
moves the node’s coordinates (my c) based on the measured latency
to another node and the other node’s current synthetic coordinates.

(see Section 4) we report the latency of each RPC to Vivaldi
without degrading performance.

Once a measurement is obtained, both nodes adjust their
coordinates to reduce the mismatch between the measured
latency and the coordinate distance (see Figure 1). A node
moves its coordinates towards a point p along the line be-
tween it and the other node. The point p is chosen to be the
point which reduces the difference between the predicted and
measured latency between the two nodes to zero. To avoid
oscillation a node moves its coordinates only a fraction δ to-
wards p.

A node initializes δ to 1.0 when it starts, and reduces it
each time it updates its coordinates. Vivaldi starts with a large
δ to allow a node to move quickly towards good coordinates,
and ends up with a small δ to avoid oscillation.

Figure 1 omits one detail: if two nodes have the same coor-
dinates (the origin, for instance), they each choose a random
direction in which to move.

We expect that applications using Vivaldi will contact
other nodes in the ordinary course of events, and report la-
tency information to Vivaldi after each such contact. This
means that Vivaldi will not need to send any packets itself. It
also means that applications must add space for Vivaldi coor-
dinates to their packet formats. The application should ensure
that all nodes sample at roughly the same rate.

3 Evaluation
This section uses simulations to explore Vivaldi’s perfor-
mance, focusing on how quickly Vivaldi converges and on
how well Vivaldi’s coordinates predict Internet latency.

Unless otherwise noted, we perform the simulations as fol-
lows. Each simulation involves 750 nodes. Each node starts
with its synthetic location at the origin. Nodes take latency
samples from randomly chosen other nodes. Synthetic co-
ordinates have 5 dimensions; more dimensions provide bet-
ter accuracy, but the improvement is small after two dimen-
sions. This result is supported by principle component analy-
sis on the matrix of latencies (omitted here but available sepa-
rately [4]), and by similar observations by Ng and Zhang [14].

3.1 Latency data
The Vivaldi simulations are driven by a matrix of inter-host
Internet latencies; Vivaldi uses a subset of the latencies for its
samples, and the full matrix is needed to evaluate the quality
of Vivaldi’s resulting predictions. Since deriving realistic la-
tencies from Internet topology models is difficult, we chose
to use measured latencies.

We built a tool based on the King method [8] to collect
a full matrix of latencies among 750 Internet DNS servers.
To determine the distance between DNS server A and server
B we first measure the round trip time to server A and then
ask server A to recursively resolve a domain served by B.
The difference in times between the two operations yields an
estimate of the round trip time between A and B. We use half
the round trip time as the latency.

We harvested the addresses of recursive DNS servers by
extracting the NS records for IP addresses of hosts participat-
ing in a Gnutella network. If a domain is served by multiple,
geographically diverse name servers, queries targeted at do-
main D (and intended for name server B) could be forwarded
to a different name server, C, which also serves D. Our tool
cannot control where queries are forwarded. To avoid this er-
ror, the list of target domains and name servers was filtered
to include only those domains where all authoritative name
servers are on the same subnet (i.e. the IP addresses of the
name servers are identical except for the low octet).

An asynchronous tool was used to determine the N(N−1)
pair-wise latencies using the King method. The final latency
for a given pair was taken to be the minimum of 10 tri-
als, in order to filter out queuing delays and misses in DNS
server caches. Collecting all pairwise latencies required sev-
eral hours. Figure 2 shows the cumulative distribution of la-
tencies produced from this data set. Because they are name
servers, the machines included in the King trace are likely to
be well connected to the Internet. The servers are geographi-
cally diverse, however, and include machines in North Amer-
ica, Europe, and Asia. For comparison, Figure 2 also shows
pair-wise latencies obtained by direct measurements of 192
PlanetLab hosts [1]. The King data has higher median la-
tency (100 msec) than the PlanetLab data set (75 msec); this is
likely due to the fact that most PlanetLab hosts are located at
North American universities with fast Internet2 connections.

We used the N(N − 1) latencies produced by the King
tool as the input to a packet-level peer-to-peer simulator [7].

0 100 200 300 400 500

Latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

 o
f

no
de

 p
ai

rs

Figure 2: The cumulative distribution of pairwise round-trip laten-
cies in the King data set (solid line) and the PlanetLab data set (dot-
ted line)

0 200 400 600 800

Samples

0

20

40

60

80

E
rr

or
 (

m
se

c)

0.001
0.05
0.5
1
decreasing

1.0

0.001

0.05

0.5

decreasing

Figure 3: A comparison of Vivaldi’s convergence time using dif-
ferent, fixed values of δ. Curves plot the error after the given num-
ber of samples; the error is calculated as the median of all round-trip
pair-wise differences between predicted and actual latency. The lines
marked with numbers indicate performance with the given fixed δ;
the bold line marked “decreasing” shows the actual algorithm’s per-
formance.

The simulator delays each RPC packet by the time specified
in the King data. Each node runs an instance of Vivaldi which
sends RPCs to other nodes, measures the RPCs’ RTTs, and
uses those RTTs to update its synthetic coordinates.

3.2 Setting the timestep
The δ variable (the timestep used during the spring simula-
tion) in Figure 1 affects how fast Vivaldi converges. Figure 3
compares Vivaldi’s performance with a range of fixed δ val-
ues against the actual algorithm’s slowly decreasing δ. Each
curve in Figure 3 shows results from a simulation with a dif-
ferent fixed δ. Each simulation begins with all 750 nodes
starting Vivaldi at the same time. The x-axis reflects how
much time has passed; the units are the number of samples
each node has taken. The y-axis shows median error over all
pair-wise predictions.

Figure 3 shows that small δ values (such as 0.001) result
in long convergence times. Intermediate values (as large as

0 20 40 60 80 100

Samples

20

40

60

80

E
rr

or
 (

m
se

c)

Initial nodes
Final node

Figure 4: This figure compares Vivaldi’s convergence time when
all nodes join at once with the convergence time when a few nodes
join an existing converged system. The solid line shows a node join-
ing an already stable system: the node converges after collecting
fewer than 10 samples.

0.5) result in much faster convergence at the cost of some
accuracy. As δ increases, final accuracy decreases, since large
δ values allow nodes to vibrate more around their “correct”
positions. Very large δ values (such as 1.0) cause the system
to oscillate and fail to converge.

The bold line marked “decreasing” in Figure 3 shows the
performance with a decreasing δ. The initial value is large,
so the error decreases quickly. δ eventually becomes small,
so the error converges to a low value and does not oscillate.
Using the decreasing δ (with a minimum of 0.05), the median
error drops below 20 ms after 70 samples. When δ is fixed at
0.05 from the start of the simulation, the error does not drop
below 20 ms until sample 157.

Vivaldi has no user-tunable parameters other than δ. This
simplicity makes the algorithm more robust and easier to de-
ploy.

3.3 Time to Convergence

Figure 3 also shows that when all nodes join at the same
time with incorrect initial coordinates, the system converges
slowly (the median error is still dropping after 500 timesteps).
Many applications of Vivaldi are likely to involve new nodes
joining a larger existing system; thus new nodes are likely to
join a system whose Vivaldi coordinates have already con-
verged.

Figure 4 shows what happens when 10 new nodes join a
converged Vivaldi system of 740 nodes. The solid line shows
the error for one of the 10 nodes. The dashed line shows
how long 740 nodes take to converge when they all start at
once. New nodes arrive at good coordinates with less than ten
samples. The algorithm’s large initial δ allows the new node
to converge rapidly in this case. The spike in the solid line
around sample three is caused by the fact that the initial δ is
probably too large and allows a brief initial period of oscilla-
tion.

3.4 Vivaldi Accuracy
To understand the accuracy of Vivaldi we measured the er-
ror in the prediction of each pairwise latency using a relative
error metric [14]:

abs(measured − predicted)

min(measured, predicted)

Figure 5 shows the distribution of relative errors between
every pair of nodes for Vivaldi. The error (solid line) is mea-
sured after the system has converged. In this experiment, Vi-
valdi’s communication pattern was not restricted; the results
determine the best-case performance of Vivaldi. Also shown
is the error when Vivaldi is limited to communication with 64
neighbors (dot-dash line) and 32 neighbors (dashed line). Re-
ducing the number of neighbors a node communicates with
reduces the accuracy of predictions. The median error in the
unrestricted case is 14 percent; using 64 neighbors the error
is 22 percent; using 32 neighbors the error is 30 percent. De-
termining the exact influence of communication patterns on
Vivaldi’s performance is an area of future work.

3.5 Comparison with GNP
To understand Vivaldi’s performance, we perform an initial
comparison to GNP by running the GNP software [13] on our
data sets. GNP’s performance depends on the placement of
landmarks in the network. To measure the effect of landmark
placement, we performed 30 experiments, each with a ran-
dom set of 32 landmarks. For each experiment we produced
a cumulative distribution of errors; the dotted line shows the
median of the values of those distributions at a given cumula-
tive fraction. Error bars denote the highest and lowest values
and a given fraction.

The variance in GNP prediction error in Figure 5 shows
that GNP’s performance depends on the appropriate place-
ment of landmarks. It is not clear in practice how to place
landmarks appropriately. The authors of GNP suggest a clus-
tering technique that depends on a priori knowledge of the
complete latency matrix, but the running time of the provided
implementation of this algorithm prevented us from running
it on our data sets. One of Vivaldi’s advantages is symmetry:
no nodes need be selected as landmarks.

Vivaldi’s best performance (when nodes’ communication
is not restricted) is better than GNP’s best performance. To
better compare the two systems, we examine the error when
nodes running Vivaldi communicate with 32 random neigh-
bors (GNP was run with 32 landmarks). In this test, Vivaldi’s
median error (30 percent) closely matches the best median
error of GNP (28 percent).

This comparison illustrates that Vivaldi’s prediction error
is competitive with that of GNP. A more detailed comparison
of the two systems is future work.

4 Applications
We believe Vivaldi will be useful for a variety of distributed
applications such as CDNs, the DNS, and file-sharing appli-

0.0 0.5 1.0 1.5 2.0

Relative error

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
ac

ti
on

 o
f

no
de

 p
ai

rs

GNP (20 landmarks)
Vivaldi (random comm.)
Vivaldi (32 neighbors)
Vivaldi (64 neighbors)

Figure 5: Vivaldi and GNP accuracy. The solid line shows Vivaldi’s
accuracy when nodes’ communication is unrestricted. The dashed
line shows Vivaldi’s accuracy when nodes are restricted to commu-
nicating with 32 neighbors. Several GNP experiments were run, each
with a different set of 32 random landmarks. The dotted line denotes
the median result, the error bars show the best and worst prediction
errors.

cations such as KaZaA. We developed Vivaldi to assist prox-
imity routing and server selection in the Chord [21] peer-to-
peer lookup system. We will describe that application in detail
here.

Chord uses coordinates to efficiently build routing tables
based on proximity so that lookups are likely to proceed to
nearby nodes. A node receives a list of candidate nodes and
selects the one that is closest in coordinate space as its routing
table entry; coordinates allow the node to make this decision
without probing each candidate.

Chord utilizes coordinates when performing an iterative
lookup. When a node n1 initiates a lookup and routes it
through some node n2, n2 chooses a next hop that is close
to n1 based on Vivaldi coordinates. In an iterative lookup n1

sends an RPC to each intermediate node in the route, so prox-
imity to n1 is more important than proximity to n2.

A new version of DHash [5], a distributed hash table built
on top of Chord, uses Vivaldi to perform server selection.
DHash uses erasure coding to divide blocks into a number
of fragments. Only a subset of these fragments are necessary
to reconstruct the original block. A node fetches a block by
asking the block’s successor for a list of the nodes holding
the fragments, along with the coordinates of those nodes. The
fetching node then fetches fragments from the nodes with the
closest coordinates. If the node had to first measure the la-
tency to each of these nodes, the extra round-trip time would
probably cancel out the benefit of choosing the closest frag-
ments.

Chord (and DHash) also use Vivaldi in their RPC system.
Chord sends RPCs over UDP, so Chord must handle retrans-
missions. Chord often contacts other nodes just once, so it
cannot profitably measure the round-trip time in order to set
the RPC retransmission timer. Instead, Chord uses a small
multiple of the latency predicted by Vivaldi as the initial RPC

retransmission timer.
Chord and DHash required a few modifications to use Vi-

valdi. Whenever one node sends an RPC request or reply
to another, it includes its own coordinates. The RPC system
times each RPC and tells Vivaldi the measured latency and
the coordinates of the other node. This allows Vivaldi to col-
lect information without much added overhead, since the co-
ordinates increase the size of each RPC message by just 12
bytes. In addition, whenever nodes exchange routing infor-
mation about other nodes, they send along the coordinates of
those other nodes as well as their IP addresses. Thus Chord
always knows the coordinates of any node it is about to con-
tact, even if it has never talked to that node before.

After we modified DHash to perform proximity routing
and replica selection using Vivaldi the time required to fetch
a block decreased by a factor of two when the system was run
on the PlanetLab test bed.

5 Related work
Vivaldi was inspired by GNP [14], which demonstrated that
coordinates can effectively describe the latencies between
hosts on the Internet. Vivaldi’s contribution is a distributed al-
gorithm that computes coordinates without landmark nodes.

IDMaps [6] is a proposed infrastructure to help hosts pre-
dict Internet latency to each other. The IDMaps infrastruc-
ture consists of a few hundred or thousand tracer nodes. Ev-
ery tracer measures the Internet latency to every other tracer.
The tracers also measure the latency to every CIDR address
prefix, and jointly determine which tracer is closest to each
prefix. Then the latency between host h1 and host h2 can be
estimated as the latency from the prefix of h1 to that prefix’s
tracer, plus the latency from the prefix of h2 to that prefix’s
tracer, plus the latency between the two tracers. One advan-
tage of IDMaps over Vivaldi is that IDMaps reasons about
IP address prefixes, so it can make predictions about hosts
that are not even aware of the IDMaps system. Vivaldi, on the
other hand, requires no separate infrastructure.

Waldvogel and Rinaldi [22, 19] describe a spring relax-
ation technique to assign IDs to landmark nodes as part of the
Mithos proximity-aware overlay network. A number of as-
pects of their algorithm require a centralized implementation.

Lighthouse [15] is an extension of GNP that is intended
to be more scalable. Lighthouse, like GNP, has a special set
of landmark nodes. Unlike GNP, a node that joins Lighthouse
does not have to query those global landmarks. Instead, the
new node can query any existing set of nodes to find its coor-
dinates relative to that set, and then optionally transform those
coordinates into coordinates relative to the global landmarks.

Priyantha et al. [16] describe a distributed node localiza-
tion system for wireless sensor networks that uses spring re-
laxation. The sensors use ultrasound propagation times to
measure inter-sensor distances and cooperate to derive co-
ordinates consistent with those distances. Much of the algo-
rithm is devoted to solving a problem that doesn’t affect Vi-

valdi: the fact that two non-adjacent sensors cannot measure
the distance between themselves makes it hard for the system
to avoid letting the coordinate space double back on itself.

Rao et. al. [17] compute virtual coordinates for use in geo-
graphic forwarding in a wireless ad-hoc network. Their algo-
rithm does not attempt to predict latencies; instead, the pur-
pose is to make sure that directional routing works.

A number of peer-to-peer networks incorporate proximity
routing [18, 3, 11]. We hope that many of these systems will
benefit from using synthetic coordinates.

6 Conclusions and Discussion
Vivaldi is a simple, distributed algorithm for finding syn-
thetic coordinates that accurately predict Internet latencies.
Vivaldi is fully distributed; for example, it does not require a
pre-selected subset of nodes to be designated as landmarks.
Vivaldi is simple; it has only one tunable parameter. These
properties make it easy to deploy Vivaldi in distributed sys-
tems: we have used Vivaldi to improve the performance of the
Chord peer-to-peer lookup system.

Additional work remains to further understand and im-
prove Vivaldi’s performance. For example, we are exploring
how nodes’ communication patterns affect prediction accu-
racy. We are also interested in determining to what extent
Internet latencies can be embedded in a N-dimensional Eu-
clidean space and the reasons such an embedding is possible.
Finally, we plan to modify additional distributed applications
to take advantage of Vivaldi and quantify how much Vivaldi
improves performance.

References
[1] Planetlab. www.planet-lab.org.

[2] BitTorrent. http://bitconjurer.org/BitTorrent/protocol.html.

[3] Miguel Castro, Peter Druschel, Y. C. Hu, and Antony Row-
stron. Exploiting network proximity in peer-to-peer overlay
networks. Technical Report MSR-TR-2002-82, Microsoft Re-
search, June 2002.

[4] Russ Cox and Frank Dabek. Learning Euclidean coordinates
for Internet hosts. www.pdos.lcs.mit.edu/˜rsc/6867.pdf, De-
cember 2002.

[5] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Mor-
ris, and Ion Stoica. Wide-area cooperative storage with CFS.
In Proc. 18th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’01), October 2001. http://www.pdos.lcs.

mit.edu/chord.

[6] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance estima-
tion service. IEEE/ACM Transactions on Networking, October
2001.

[7] Thomer Gil, Jinyang Li, Frans Kaashoek, and Robert Mor-
ris. Peer-to-peer simulator, 2003. Source available at:
cvs.pdos.lcs.mit.edu.

[8] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble.
King: Estimating latency between arbitrary Internet end hosts.
In Proc. of SIGCOMM IMW 2002, November 2002.

[9] H. Hoppe. Surface reconstruction from unorganized points.
PhD thesis, Department of Computer Science and Engineer-
ing, University of Washington, 1994.

[10] KaZaA media dekstop. http://www.kazaa.com/.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi,
Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris
Wells, and Ben Zhao. OceanStore: An architecture for global-
scale persistent storage. In Proceeedings of the Ninth interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), pages
190–201, Boston, MA, November 2000.

[12] P. Mockapetris and K. J. Dunlap. Development of the Do-
main Name System. In Proc. ACM SIGCOMM, pages 123–
133, Stanford, CA, 1988.

[13] Eugene Ng. Gnp software, 2003. Source available at:
http://www-2.cs.cmu.edu/~eugeneng/research/gnp/

software.html.

[14] T. S. Eugene Ng and Hui Zhang. Predicting Internet network
distance with coordinates-based approaches. In Proceedings
of IEEE Infocom 2002, 2002.

[15] Marcelo Pias, Jon Crowcroft, Steve Wilbur, Tim Harris, and
Salem Bhatti. Lighthouses for scalable distributed location. In
IPTPS, 2003.

[16] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller.
Anchor-free distributed localization in sensor networks. Tech-
nical Report TR-892, MIT LCS, April 2003.

[17] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott
Shenker, and Ion Stoica. Geographic routing without location
information. In ACM MobiCom Conference, September 2003.

[18] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott
Shenker. Topologically-aware overlay construction and server
selection. In Proceedings of IEEE Infocom 2002, 2002.

[19] Roberto Rinaldi and Marcel Waldvogel. Routing and data lo-
cation in overlay peer-to-peer networks. Research Report RZ–
3433, IBM, July 2002.

[20] Yuval Shavitt and Tomer Tankel. Big-bang simulation for em-
bedding network distances in Euclidean space. In Proc. of
IEEE Infocom, April 2003.

[21] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking, pages
149–160, 2002.

[22] Marcel Waldvogel and Roberto Rinaldi. Efficient topology-
aware overlay network. In Hotnets-I, 2002.

[23] Limin Wang, Vivek Pai, and Larry Peterson. The Effectiveness
of Request Redirecion on CDN Robustness. In Proceedings of
the Fifth Symposium on Operating Systems Design and Imple-
mentation, Boston, MA USA, December 2002.

