
Certifying a Crash-safe File System

by

Haogang Chen

B.S., Peking University (2007)
M.S., Peking University (2010)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

c⃝ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 29, 2016

Certified by .
M. Frans Kaashoek

Charles Piper Professor of Computer Science and Engineering
Thesis Supervisor

Certified by .
Nickolai Zeldovich
Associate Professor

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

Certifying a Crash-safe File System
by

Haogang Chen

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

File systems are a cornerstone for storing and retrieving permanent data, yet they are
complex enough to have bugs that might cause data loss, especially in the face of system
crashes.

FSCQ is the first file system that (1) provides a precise specification for the core
subset of POSIX file-system APIs; and the APIs include fsync and fdatasync, which allow
applications to achieve high I/O performance and crash safety, and that (2) provides a
machine-checked proof that its I/O-efficient implementation meets this precise speci-
fication. FSCQ’s proofs avoid crash-safety bugs that have plagued file systems, such as
forgetting to insert a disk-write barrier between writing the data from the log and writing
the log’s commit block. FSCQ’s specification also allows applications to prove their own
crash safety, avoiding application-level bugs such as forgetting to invoke fsync on both
the file and the containing directory. As a result, applications on FSCQ can provide strong
guarantees: they will not lose data under any sequence of crashes.

To state FSCQ’s theorems, FSCQ introduces the Crash Hoare Logic (CHL), which
extends traditional Hoare logic with a crash condition, a recovery procedure, and logical
address spaces for specifying disk states at different abstraction levels. CHL also reduces
the proof effort for developers through proof automation. Using CHL, the thesis devel-
oped, specified, and proved the correctness of the FSCQ file system. FSCQ introduces a
metadata-prefix specification that captures the properties of fsync and fdatasync, based
on Linux ext4’s behavior. FSCQ also introduces disk sequences and disk relations to help
formalize the metadata-prefix specification. The evaluation shows that FSCQ enables
end-to-end verification of application crash safety, and that FSCQ’s optimizations achieve
I/O performance on par with that of Linux ext4.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Computer Science and Engineering

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor

3

4

Acknowledgments

I am honored to have Frans Kaashoek and Nickolai Zeldovich as my advisors. This
dissertation would not be possible without their constant guidance, enthusiastic support
and extraordinary patience. They demonstrate a high bar in every aspect, and their
impact on my life is immeasurable. I would like to express my sincere gratitude to Adam
Chlipala for his wise advice from broad directions to minuscule details.

I would like to thank my collaborators in the FSCQ project. Nickolai and Frans
made substantial contributions to the design and implementation of CHL. FSCQ’s hash
model was independently developed by Stephanie Wang [68]. The core of the Rec library
was written by Daniel Ziegler. Tej Chajed made substantial improvements to the CHL
infrastructure.

This research was greatly improved by the feedback of Srivatsa Bhat, Cody Cutler, Jon
Gjengset, Chris Hawblitzel, Eddie Kohler, Butler Lampson, Robert Morris, Neha Narula,
Bryan Parno, Frank Wang, Xi Wang and the anonymous reviewers of HotOS 2015 and
SOSP 2015.

I have had the incredible fortune to work with amazing friends and colleagues in
the PDOS group at MIT. I would like to give special thanks to Xi Wang, Yangdong Mao,
Taesoo Kim, Dong Zhou, Zhihao Jia, Ramesh Chandra and Austin Clements for inspiring
me to work on several intriguing projects while in PDOS.

Last but not least, I thank my parents and my angel, Ze, for their unconditional love,
encouragement and support.

⋆ ⋆ ⋆

This research was supported in part by NSF awards CNS-1053143 and CCF-1253229,
and by the CSAIL cybersecurity initiative. The dissertation incorporates and extends
work published in the following papers:

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Using Crash Hoare Logic for certifying the FSCQ
file system. In Proceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP), Monterey, California, October 2015.

Haogang Chen, Daniel Ziegler, Adam Chlipala, M. Frans Kaashoek, Eddie
Kohler, and Nickolai Zeldovich. Specifying crash safety for storage systems. In
Proceedings of the 15th Workshop on Hot Topics in Operating Systems (HotOS),
Kartause Ittingen, Switzerland, May 2015.

5

6

Contents

1 Introduction 11
1.1 Crash safety . 11
1.2 Specification framework for crash safety . 13
1.3 Specifying file-system behavior . 14
1.4 Building the file system . 15
1.5 Contributions . 16
1.6 Outline . 17

2 Related Work 19
2.1 Finding and fixing bugs in file systems . 19
2.2 Formal reasoning about file systems . 20
2.3 Certified systems software . 21
2.4 Reasoning about failures . 21

3 Background 23
3.1 File-system basics . 23
3.2 Logging protocol and optimizations . 24
3.3 Program correctness . 26

4 Crash Hoare Logic 29
4.1 Disk model . 29
4.2 Crash conditions . 31
4.3 Logical address spaces . 34
4.4 Recovery execution semantics . 37

5 Proving specifications 39
5.1 Overview . 39
5.2 Proving without recovery . 41
5.3 Proving recovery specifications . 43

7

6 Certifying FSCQ’s logging system 45
6.1 Overview . 45
6.2 Representation invariants . 47
6.3 Logging-system specifications . 49
6.4 Logging with checksums . 53
6.5 Log bypass . 56

7 Specification for deferred writes 59
7.1 Example application pattern . 59
7.2 What should the specification be? . 61
7.3 Disk sequences . 63
7.4 Disk relations . 65

8 Building a file system 71
8.1 Overview . 71
8.2 End-to-end specification . 72
8.3 Using address spaces . 73
8.4 Resource allocation . 74
8.5 Buffer cache . 76
8.6 On-disk data structures . 76
8.7 Prototype implementation . 77

9 Evaluation 81
9.1 Application and I/O performance . 81
9.2 Bug discussion . 85
9.3 Specification correctness . 86
9.4 Development effort . 88

10 Conclusion and future directions 91

8

Figures and tables

1-1 Overview of FSCQ’s implementation . 15

4-1 Basic operational semantics of CHL . 30
4-2 Specification for disk_write . 32
4-3 Pseudocode of atomic_two_write . 35
4-4 Specification for atomic_two_write . 35
4-5 Part of log_rep representation invariant for the basic logging protocol . . . 36
4-6 Specification of log_recover . 37
4-7 Specification for atomic_two_write with recovery 38

5-1 Example control flow of a CHL procedure . 40
5-2 Specification for log_begin . 41
5-3 Specification for log_write . 42

6-1 Illustration of FSCQLOG layers and the timeline of a transaction 46
6-2 Part of Applier’s representation invariant . 48
6-3 Part of GroupCommit’s representation invariant 48
6-4 Part of LogAPI’s representation invariant . 49
6-5 Call graph for log_commit and log_flush . 49
6-6 Specification for LogAPI’s log_commit . 50
6-7 Specification for GroupCommit’s group_commit 50
6-8 Specification for LogAPI’s log_flush . 51
6-9 Specification for Applier’s applier_flush . 51
6-10 Specification for Applier’s applier_apply . 52
6-11 Specification for DiskLog’s disklog_append . 52
6-12 On-disk layout of FSCQLOG . 53
6-13 Pseudocode of DiskLog layer . 54
6-14 Specification for LogAPI’s log_dwrite . 57
6-15 Specification for LogAPI’s log_dsync . 57

7-1 Pseudocode for a crash-safe application pattern 60

9

7-2 An illustration of FSCQ’s disk-sequence abstraction 63
7-3 Specification for unlink . 64
7-4 Specification for fsync on directories . 65
7-5 An illustration of disk relations . 66
7-6 Specification for file write that bypasses the write-ahead log 67
7-7 Specification for fdatasync . 68

8-1 FSCQ components . 71
8-2 FSCQ on-disk layout . 72
8-3 Specification for rename with recovery . 73
8-4 Specification for writing to a file through the log 74
8-5 Representation invariant for FSCQ’s file layer 75
8-6 FSCQ’s on-disk inode layout . 77
8-7 Combined lines of code and proof for FSCQ components 78

9-1 Application performance of FSCQ running on a hard disk drive 82
9-2 Application performance of FSCQ running on an SSD drive 83
9-3 I/O performance of FSCQ . 84
9-4 Bugs precluded by FSCQ’s specifications . 85
9-5 Lines of specification code for FSCQ system calls 88

10

ONE

Introduction

This dissertation presents a novel approach to building and certifying a file system that
behaves correctly in the face of system crashes and achieves high I/O efficiency.

The rest of this chapter introduces crash safety, a key property for file-system cor-
rectness, explains why building a file system that is both crash-safe and I/O efficient is
difficult, and proposes our solution to formalizing and certifying a crash-safe file system.

1.1 Crash safety

Applications rely on file systems to store their data, but even carefully written file systems
may have bugs that cause data loss, especially in the face of system crashes. We focus on
fail-stop crashes where the system halts and subsequently reboots due to power failure,
software panics, etc. Because many file-system operations require multiple disk writes
to complete, a crash that happens in between these updates can leave the file system’s
internal data structure in a partially updated state. Once the system reboots, a recovery
procedure must bring the file system back to a consistent state, so that future operations
can run properly. We refer to this property as crash safety.

Recovering from crashes is important because inconsistent state can lead to data loss
or data corruption. For example, using rename to move a file across directories usually
involves two steps: unlinking the file from the source directory and linking it to the
destination directory. If the computer crashes in the middle, depending on the order of
operations, the file could appear in both directories or neither of them. In the latter case,
the data stored in the file is lost; in the former case, a subsequent attempt to remove
the file from one directory can corrupt the data of the same file in the other directory
(assuming the file system recycles the file’s data blocks while it still appears elsewhere).

Achieving crash safety is challenging. Since crashes can happen at any time in the
execution of the file system, it is difficult to reason through all possible executions to
determine if the file system will operate correctly, and, if not, how to recover from the
problematic scenario. Furthermore, modern hard drives usually support asynchronous
I/O—that disk writes do not persist immediately and can be reordered—in order to

11

achieve good performance. File-system developers must insert write barriers (disk syncs)
at appropriate code locations where they believe that ordering is important; and disk sync
is an expensive operation that should be avoided whenever possible. This asynchronous
I/O model further complicates reasoning about crash safety.

The classic recipe for achieving crash safety is write-ahead logging, where a file-system
call does not directly update the on-disk data structures representing the file system.
Instead, it places a description of all the disk writes it wishes to make in a log on the disk.
Once the system call has logged all of its writes, it marks them as a complete (committed)
transaction. At that point, the entire transaction is applied to the on-disk data structures
and erased from the log. If the system crashes and reboots, the recovery procedure
replays each committed transaction in turn from the log, but ignores incomplete ones
at the end of the log. The log makes operations atomic with respect to crashes: after
recovery, either all of an operation’s writes appear on the disk, or none of them does.

While conceptually simple, write-ahead logging imposes extra disk writes and expen-
sive disk syncs. Real-world file systems usually implement sophisticated optimizations to
increase disk throughput. These optimizations include deferring writing buffered data
to the disk, grouping many transactions into a single I/O operation, checksumming log
entries, and bypassing the write-ahead log entirely when writing to file data blocks.

These optimizations complicate both the implementation and the semantics of a file
system. On one hand, it becomes increasingly hard to show that a certain optimization,
or the combination of several optimizations, preserves the semantics of the original
design, as evidenced by bugs that most file systems have experienced. For example, it
took 6 years for ext4 developers to realize that two optimizations (data writes that bypass
the log and log checksum) taken together can lead to disclosure of previously deleted
data after a crash [42], which was fixed in November of 2014 by forbidding users from
mounting an ext4 file system with both log bypass and log checksum.

On the other hand, some optimizations indeed relax the persistence guarantee
provided by the file system, thus changing the interface semantics. For example, to
support log bypass, file systems offer calls such as fsync, which give applications precise
control over when to materialize changes to specific files to the disk. Unfortunately, calls
such as fsync interact in subtle ways with other file-system calls, and their behaviors
under crashes are poorly documented. As a result, it is not uncommon for application
writers to use them incorrectly. Recent studies [10, 57, 78] have investigated several
such bugs in widely used applications, including well-known database applications, and
have shown that these bugs can lead to data loss.

Current approaches to building crash-safe file systems and applications fall roughly
into three categories (see Chapter 2 for more details): testing, program analysis, and
model checking. Although they are effective at finding bugs in practice, none of them can
guarantee the absence of crash-safety bugs in actual implementations. This dissertation fo-

12

cuses precisely on this issue: building an I/O-efficient file system with machine-checkable
proofs that it correctly recovers from crashes at any point, and providing a precise
specification about the crash-safety property of file-system interfaces to applications.

1.2 Specification framework for crash safety

Theorem provers help programmers write machine-checkable proofs that a program meets
its specification, a process called program certification. Researchers have used theorem
provers for certifying real-world systems such as compilers [49], small kernels [47],
kernel extensions [69], and simple remote servers [33], but none of these systems
are capable of reasoning about file-system crashes. Reasoning about crashes is more
complicated because that involves considering not only the states before and after some
operation, but also all possible intermediate states when the operation crashes in the
middle.

Building an infrastructure for reasoning about file-system crashes poses several chal-
lenges. Foremost among those challenges is the need for a specification framework that
allows the file-system developer to state the system behavior under crashes. Second,
the framework must be able to capture realistic hardware characteristics, such as asyn-
chronous disk writes, so that the implementation of a file system can achieve good I/O
performance. Third, the framework must allow modular development: developers should
be able to specify and verify each component in isolation and then compose verified
components. For instance, once a logging layer has been implemented, file-system devel-
opers should be able to prove crash safety in the inode layer simply by relying on the fact
that logging ensures atomicity; they should not need to consider every possible crash
point in the inode code. Finally, it is important that the framework allows for proofs to
be automated, so that one can make changes to a specification and its implementation
without having to redo all of the proofs manually.

A core contribution of this dissertation is a specification framework called Crash
Hoare Logic (CHL) that addresses the above challenges. CHL extends classic Hoare
logic [36] with crash conditions, which allow programmers to specify what invariants
hold in case of crashes. CHL defines a realistic disk model that captures the notion of
multiple outstanding writes in the disk controller; the model allows file-system developers
to reason about all possible disk states that might result when some subset of these
writes persists after a crash. CHL supports the construction of modular systems through
a notion of logical address spaces, and uses representation invariants to hide lower-level
details from upper layers. CHL incorporates the notion of a recovery procedure that runs
after a crash; this enables programmers to write concise end-to-end specifications that
account for both normal execution and the execution of recovery procedures. Finally,
CHL allows for a high degree of proof automation by employing specifications based on

13

separation logic [58].

1.3 Specifying file-system behavior

To prove a file system correct, we must have a specification of what a file system does.
Somewhat surprisingly, no precise specification exists. For example, the POSIX standard
is notoriously vague on what crash-safety guarantees file-system operations provide.
A particular concern is the guarantees provided by fsync and fdatasync. Unfortunately,
file systems provide imprecise promises on exactly what data is flushed to the disk
as the result of these calls. In fact, for the Linux ext4 file system, it depends on the
options that an administrator specifies when mounting the file system [57]. Because of
this lack of precision, applications such as databases and mail servers, which try hard
to make sequences of file creates, writes, and renames crash-safe by inserting fsyncs
and fdatasyncs, may still lose data when the file systems they are running on crash at
inopportune times [10, 78].

This dissertation proposes a precise metadata-prefix specification for fsync and
fdatasync, among other POSIX file-system APIs, based on the default behavior of the
Linux ext4 file system. The essence is that fdatasync(f) on a file f flushes just the data
(contents) of that file, and that fsync is a superset of fdatasync: it flushes both data and
metadata (attributes, directories). Furthermore, fsync flushes all metadata changes. That
is, fsync on a directory effectively ignores its argument: fsync(d) on directory d flushes
changes to other unrelated directories as well. In addition, the file system is allowed to
flush any file’s data to disk at any time, and it is allowed to flush metadata operations
in exactly the order they were issued by the application. This specification strikes a
reasonable balance between ease of use for application programmers and allowing file
systems to implement optimizations that provide high I/O performance. One argument
that the metadata-prefix specification is reasonable is that it matches the behavior of
ext4 in its default configuration, as a side effect of having a single write-ahead log for all
metadata.

The main challenge in formalizing the metadata-prefix specification and proving
that a file system obeys this specification is writing down the specification for the file
system’s external and internal interfaces. This dissertation contributes three specification
techniques that address this challenge: disk sequences to capture metadata ordering, a
hash model for reasoning about log checksums, and disk relations to reason about how
file data writes that bypass the log interact with metadata operations.

The benefit of metadata-prefix specification is twofold: First, it allows file-system de-
velopers to prove that the optimizations that they implement do not violate the metadata-
prefix property. Second, it enables application developers to prove their own application-
level crash-safety properties, based on the guarantees provided by the metadata-prefix

14

specification. For instance, developers of a mission-critical application such as a database
can prove that they are using fsync correctly and that the database does not run the risk
of losing data.

1.4 Building the file system

We have implemented the CHL specification framework and built FSCQ, a certified
crash-safe file system, with the widely used Coq theorem prover [16], which provides a
single programming language for both proving and implementing. Figure 1-1 shows the
components involved in the implementation.

CHL is a specification language embedded in Coq that allows a file-system developer to
write specifications that include the notion of crash conditions and a recovery procedure,
and to prove that their implementations meet these specifications. We have stated the
semantics of CHL and proven it sound in Coq.

FSCQ

Program
Specification

Proof

Crash Hoare Logic (CHL)

Disk model
Crash condition

Proof automation

Coq proof checker

Haskell compiler

FSCQ's Haskell code

FSCQ's FUSE server

Code extraction

OK

FUSE
Upcall

disk read(),
write(), sync()

rename()

$ mv a b

Linux kernel /dev/sda

Haskell libraries
& FUSE driver

Figure 1-1: Overview of FSCQ’s implementation. Shaded boxes denote source code
written by hand. Solid lines denote processes. Dashed lines denote the call graph.

We implemented and certified FSCQ using CHL. That is, we wrote the metadata-prefix
specifications for the core subset of the POSIX system calls using CHL, implemented those
calls inside of Coq, and proved that the implementation of each call meets its specification.
CHL reduces the proof burden because it automates the chaining of internal specifications.
Despite the automation, writing specifications and proofs still took a significant amount
of time, compared to the time spent writing the implementation.

15

As a target for FSCQ’s completeness, we aimed for the core features as the Linux ext4
file system. FSCQ supports fewer features than today’s Unix file systems; for example, it
lacks support for concurrency and permissions. But, it supports the core POSIX file-system
calls, including support for large files using indirect blocks, nested directories, rename
and fsync, etc. FSCQ also implements standard optimizations such as deferring disk
writes, group commit, log bypass for file data, log checksumming, and so on.

Using Coq’s extraction feature, we extract a Haskell implementation of FSCQ. We run
this implementation combined with a small (uncertified) Haskell driver as a FUSE [27]
user-level file server. This implementation strategy allows us to run unmodified Unix
applications but pulls in Haskell, our Haskell driver, and the Haskell FUSE library as
trusted components.

To verify that FSCQ’s optimizations achieve high I/O performance, we ran FSCQ using
FUSE on top of Linux and ran several benchmarks. Experimental results demonstrate
that FSCQ achieves high I/O efficiency similar to that of the Linux ext4 file system: both
ext4 and FSCQ perform a similar number of I/O operations for a given benchmark.

A limitation of the FSCQ prototype is that it has high CPU overheads, because it
generates an executable implementation by extracting Haskell code from Coq. This
results in higher CPU consumption than in Linux ext4 and increases the overall trusted
computing base. We expect that complementary techniques for producing certified
assembly [2, 31, 46, 49, 74] would avoid FSCQ’s CPU overheads and reduce its TCB.

1.5 Contributions

This dissertation’s broad contribution is an approach to building certified file systems
that are both I/O-efficient and safe under computer crashes. This dissertation makes the
following intellectual contributions:

• The Crash Hoare Logic (CHL), which allows programmers to specify what invariants
hold in case of crashes and which incorporates the notion of a recovery procedure
that runs after a crash. CHL supports the construction of modular systems through
a notion of logical address spaces. CHL also allows for a high degree of proof
automation.

• A model for asynchronous disk writes, specified using CHL, that captures the notion
of multiple outstanding writes in the disk controller; the model allows file-system
developers to reason about all possible disk states that might result when some
subset of these writes persists after a crash.

• A write-ahead log, FSCQLOG, certified with CHL, that provides all-or-nothing
transactions on top of asynchronous disk writes, and which provides a simple

16

synchronous disk abstraction to other layers in the file system. FSCQLOG also im-
plements performance-critical optimizations such as deferring disk writes, group
commit, log bypass for file data, checksummed log commit, and so on.

• The FSCQ file system, built on top of FSCQLOG, which is the first file system to
be certified for crash safety, and is I/O efficient. It embeds design patterns that
work well for constructing modular certified file systems; a certified generic object
allocator that can be instantiated for disk blocks and inodes; and a certified library
for laying out data structures on disk.

• A metadata-prefix specification of the core subset of the POSIX file-system API that
captures its semantics under crashes, based on the behavior of the Linux ext4 file
system. It includes a precise specification for fsync and fdatasync. The specification
can help file-system developers to prove the correctness of their optimizations;
and it enables application developers to build applications on top of the POSIX API
and reason precisely about crash safety.

• Several specification techniques to help formalize the metadata-prefix property:
disk sequences to capture meta-data ordering, a hash model for reasoning about
journal checksums, and disk relations to reason about file-data writes that bypass
the log.

• An evaluation that shows that FSCQ provides comparable I/O performance to
ext4, that FSCQ can run a wide range of unmodified Unix applications with usable
throughput, and that FSCQ’s specifications and proofs eliminate bugs found in
other file systems.

• A case study of code evolution in FSCQ, demonstrating that CHL combined with
FSCQ’s design allows for incremental changes to both the proof and the imple-
mentation. This suggests that the FSCQ file system is amenable to incremental
improvements.

1.6 Outline

The rest of the dissertation elucidates how to specify, build and certify FSCQ in depth.
We first relate FSCQ with previous work in Chapter 2, and review some basic concepts

in file-system design and program certification in Chapter 3.
We then introduce Crash Hoare Logic (CHL), the logic framework that forms the

basis of FSCQ, in Chapter 4. We start from defining CHL’s asynchronous disk model, and
demonstrate how to write specifications using CHL’s crash conditions, logical address
spaces and recovery execution semantics. We explain how to prove CHL specifications in
Chapter 5, and illustrate how CHL’s proof automation can help reduce the proof burden.

17

In Chapter 6, we describe how to build and certify FSCQLOG, the logging system that
provides crash safety for FSCQ; we also show how FSCQLOG’s layered design simplifies
the implementation and certification of sophisticated performance optimizations, such
as group commit, log bypass and log checksums.

Chapter 6 discusses the specification for supporting deferred-write, an essential
optimization that sacrifices the file system’s durability guarantee to achieve better per-
formance. We propose the metadata-prefix specification that captures the essence of
fsync and fdatasync, and formalize the metadata-prefix property using novel specification
techniques such as disk sequences and disk relations.

Finally, in Chapter 8 we present the details of building the complete FSCQ file system,
including how to structure the file system in order to aid proving, and how to write the file
system’s end-to-end specification and internal specifications. We share our experiences
and lessons learned in building several components of FSCQ, and point out the limitations
of our prototype. Chapter 9 evaluates FSCQ’s performance, correctness and development
effort.

Chapter 10 concludes and explores some promising future directions.

18

TWO

Related Work

FSCQ is the first file system with a machine-checked proof of crash safety. This section
relates FSCQ to several lines of prior work.

2.1 Finding and fixing bugs in file systems

Previous papers have studied bugs in file systems [50] and in applications that make
inconsistent assumptions about the underlying file systems [78]. One recent example
is the 2013 Bitcoin bounty for tracking down a serious bug that corrupted financial
transactions stored in a LevelDB database [24].

It is widely acknowledged that it is easy for application developers to make mistakes
in ensuring crash safety for application state [57]. For instance, a change in the ext4 file-
system implementation changed the observable crash behavior of the file system, as far as
the application could see, leading to many applications losing data after crashes [17, 30],
due to a missing fsync call to ensure that the contents of a new file are flushed to disk [10].
The ext4 developers, however, maintained that the file system never promised to uphold
the earlier behavior, so this was an application bug. Similar issues crop up with different
file-system options, which often lead to different crash behavior [57].

Model-checking [75–77] and fuzz-testing [39] techniques are effective at detecting
file-system bugs. They enumerate possible user inputs and disk states, inject crashes,
and look for cases where the file system encounters a bug or violates its invariants.
These techniques find real bugs, and we use some of them to do an end-to-end check on
FSCQ and its specifications. However, these techniques often cannot check all possible
execution paths and thus cannot guarantee bug-free systems.

When faced with file-system inconsistencies, system administrators run tools such
as fsck [5: §42] and SQCK [32] to detect and repair corruption [20]. By construction,
certified file systems avoid inconsistencies caused by software bugs.

19

2.2 Formal reasoning about file systems

Building a correct file system has been an attractive goal for verification [26, 40]. There is
a rich literature of formalizing file systems using many specification languages, including
ACL2 [7], Alloy [41], Athena [4], Isabelle/HOL [70], PVS [35], SSL [28], Z [8], KIV [23],
and combinations of them [25]. Most of these specifications do not model crashes.
The ones that do, such as the work by Kang and Jackson [41], do not connect their
specifications to executable implementations.

Prior work has largely focused on specifying the file-system API [10, 59] using trace-
based specifications [34]. However, no prior specifications have addressed bypassing the
log for file data writes and fdatasync. Furthermore, this trace-based approach does not
work well for reasoning about the internals of a file system, which is necessary in order
to prove the correctness of the file system itself. FSCQ introduces disk sequences and
relations to address this challenge.

The closest effort to FSCQ is work in progress by Schellhorn, Pfähler, and others to
verify a flash file system called Flashix [22, 56, 62]. They aim to produce a verified file
system for raw flash, to support a POSIX-like interface, and to handle crashes. One differ-
ence from our work is that Flashix specifications are abstract state machines; in contrast,
CHL specifications are written in a Hoare-logic style with pre- and postconditions. One
downside of CHL is that all procedures (including internal layers inside the file system)
must have explicit pre- and postconditions. However, CHL’s approach has two advantages.
First, developers can easily write CHL specifications that capture asynchronous I/O, such
as for write-back disk caches. Second, it allows for proof automation. Another difference
between FSCQ and Flashix is that FSCQ provides specifications for fsync and fdatasync,
while Flashix does not.

Ntzik et al. [54] extend Views [21] framework with fault conditions, which are similar
to CHL’s crash conditions. Because Views deals with shared-memory concurrency, their
logic models both volatile state and durable state. CHL models only durable state, and
relies on its shallow embedding in Coq for volatile state. Their paper focuses on the
design of the logic, illustrating it with a logging system modeled on the ARIES recovery
algorithm [51]. Their aim isn’t to build a complete verified system, and their logic lacks,
for example, logical address spaces, which help proof automation and certifying FSCQ in
a modular fashion.

Cogent [2] generates highly efficient executable code for a file system, and supports
deferred writes, but lacks a specification and proof for the entire file system. Our FSCQ
prototype suffers from CPU overheads due to extracting code to Haskell. FSCQ could
benefit from using the DSL approach from Cogent to generate more efficient code and
reduce the size of the trusted computing base.

20

2.3 Certified systems software

The last decade has seen tremendous progress in certifying systems software, which
inspired us to work on FSCQ. The CompCert compiler [49] is formally specified and
verified in Coq. As a compiler, CompCert does not deal with crashes, but we adopt
CompCert’s validation approach for proving FSCQ’s cache-replacement algorithm.

The seL4 project [47] developed a formally verified microkernel using the Isabelle
proof assistant. Since seL4 is a microkernel, its file system is not part of the seL4 kernel.
seL4 makes no guarantees about the correctness of the file system. seL4 itself has no
persistent state, so its specification does not make statements about crashes.

A recent paper [45] argues that file systems deserve verification too, and describes
work-in-progress on BilbyFS, which uses layered domain-specific languages, but appears
not to handle crashes [44]. Two other position papers [1, 12] also argue for verifying
storage systems. One of them [12] summarizes our initial thinking about different ways
of writing system specifications, including Hoare-style ones.

Verve [74], Bedrock [13, 14], Ironclad [33], and CertiKOS [31] have shown that proof
automation can considerably reduce the burden of proving. Of these, Bedrock, Verve,
and Ironclad are the most related to this work, because they support proof automation
for Hoare logic. We also adopt a few Coq libraries from Bedrock.

Work on formalization of cryptographic protocols has explored how to formalize
collision-resistant hash functions. For example, the RF* verification-oriented program-
ming language [6] maintains, as auxiliary state, a mutable global dictionary from inputs
to their hashes, including only the inputs already used in the current program execution,
where an error is signaled if a new hash request leads to a collision in this dictionary.
FSCQ builds on this idea of treating hash collisions as program non-termination, and
extends it to handle crashes by reasoning about subsets of hash histories.

2.4 Reasoning about failures

Failures are a core concern in distributed systems, and TLA [48] has been used to
prove that distributed-system protocols adhere to some specification in the presence of
node and network failures, and to specify fault-tolerant replicated storage systems [29].
However, TLA reasons purely about designs and not about executable code. Verdi [71]
reasons about distributed systems written in Coq and can extract the implementation
into executable code. However, Verdi’s node-failure model is a high-level description of
what state is preserved across reboots, which is assumed to be correct. Extracted code
must use other software (such as a file system) to preserve state across crashes, and Verdi
provides no proof that this is done correctly. FSCQ and CHL address this complementary

21

problem: reasoning about crash safety starting from a small set of assumptions (e.g.,
atomic block writes).

Project Zap [55, 67] and Rely [11] explore using type systems to mitigate transient
faults (e.g., due to charged particles randomly flipping bits in a CPU) in cases when the
system keeps executing after a fault occurs. These models consider possible faults at
each step of a computation. The type system enables the programmer to reason about
the results of running the program in the presence of faults, or to ensure that a program
will correctly repeat its computation enough times to detect or mask faults. In contrast,
CHL’s model is fail-stop: every fault causes the system to crash and reboot.

Schlichting [63] describes a variant of Hoare logic with support for crashes, which
models the system using a fail-stop processor and a stable storage. Every program in
the fail-stop processor is a sequence of fault-tolerant actions, which combines the code
with a recovery procedure. In contrast, CHL decouples recovery and normal execution
by introducing explicit crash conditions.

Andronick [3] verified anti-tearing properties for smart-card software, which involves
being prepared for the interruption of code at any point. This verification proceeds by
instrumenting C programs to call, between any two atomic statements, a function that
may nondeterministically choose to raise an uncatchable exception. In comparison, CHL
handles the additional challenges of asynchronous disk writes and layered abstractions
of on-disk data structures.

22

THREE

Background

To better understand the challenge in building and certifying a crash-safe file system,
this chapter explains basic concepts of modern file systems, describes a simple logging
protocol and several optimizations. Finally, we introduce Hoare logic and separation
logic, the formal systems that form the basis of Crash Hoare Logic.

3.1 File-system basics

The purpose of a file system is to organize and store data. In a Unix-like file system,
data is stored in a file, which is an array of bytes. Several files can be grouped inside
a directory, which might also contain other directories (called sub-directories), forming
a tree-like hierarchical structure. The file system maintains on-disk data structures to
represent the tree of named directories and files, to record the identities of the blocks
that hold each file’s content, and to record which areas on the disk are free, as we explain
next.

Buffer cache. Accessing a disk is orders of magnitude slower than accessing memory,
so the file system must maintain an in-memory cache of popular blocks in its buffer cache.
The buffer cache holds the content of a disk block in memory when the block is being
read or written to. If the cache is full, the buffer cache typically evicts the least recently
used block to make room for the new one. For writes, the buffer cache can choose to
write the block to the underlying disk right away (write-through), or to delay the disk
write until the block is to be evicted from the cache (write-back or deferred writes).

Files and inodes. The on-disk representation of a file is called an inode, which holds
important metadata of a file, such as the file’s size and time stamps, and a list of data-
block numbers that belong to the file. File systems usually allocate a contiguous area of
disk to store all inodes. Every inode is of the same size, so it is easy, given a number n, to
find the n-th inode on the disk. Therefore, every inode (and file) in the file system can

23

be internally identified by an index n; we call this an inode number, or i-num for short.
A special inode number is reserved for the root directory.

Directories and pathnames. A directory is implemented internally as a special kind
of file, whose content is a sequence of directory entries. Each directory entry consists of a
name and an inode number that points to another file or directory. File-system users can
refer to a file or a directory in the directory tree symbolically using a pathname, which
concatenates the name of each parent directory along the path from the root.

Allocation bitmaps. File systems use allocation bitmaps to track the usage of free
blocks and inodes. For example, using a block bitmap, a file system can quickly tell which
blocks are free without traversing the entire directory tree.

To see how these concepts work together, consider an example that copies a file
“/path/src” into “/path/dst”. The file system first locates the source file in the directory
tree. To do this, it finds “path” in the root directory entries (which are usually cached in
the memory), follows path’s inode number ipath, loads path’s directory entries and in turn
locates the name “src” and the corresponding inode number isrc. Then the file system
reads the content of the source file by reading from the disk blocks whose addresses
are stored in isrc. To create the destination file, the file system allocates a new inode
idst and marks it as used in the inode allocation bitmap. It then allocates new disk
blocks for “dst”, records the allocated block numbers in idst, updates the block allocation
bitmap accordingly and writes src’s content into the newly allocated blocks. Finally, the
file system appends a new pair (“dst”, idst) into path’s directory entries and writes the
directory’s new content back to the disk. Note that the procedure described here does
not guarantee crash safety, which we will discuss next.

3.2 Logging protocol and optimizations

One of the most interesting problems in file-system design is crash recovery. Many file
system operations involve multiple writes to the disk. For example, creating a file involves
at least two disk writes: allocating an unused inode and linking the inode in the parent
directory. If the system crashes in between the two writes, an inode might be marked as
used in the inode bitmap, while does not belong to any directory.

File systems implement write-ahead logging to make sure these on-disk data struc-
tures are in a consistent state when the system crashes and restarts. The log usually
resides in a fixed region of the disk and consists of two parts: a contiguous log entries
region that stores the description of all the disk writes that an operation wishes to make,
and a single commit block that stores the number of entries.

24

A basic logging protocol works as follows: (1) The logging system starts a transaction
for a file-system operation. (2) For each disk write issued by the operation, the logging
system appends a new address/value pair to the log entries. (3) When the logging system
commits the transaction, it issues a disk sync to persist the log entries on disk, updates the
commit block to reflect the length of the log, and then syncs the disk again to complete
the transaction. (4) The logging system applies the changes in the log to their actual
disk locations and issues a disk sync to persist the change. (5) Finally, it truncates the
log by writing zero to the commit block and syncs the disk. (6) Whenever the system
crashes and reboots, a recovery procedure runs. It reads the log based on the length in
the commit block; and if the log is non-empty, it goes to step (4) to apply the log.

The correctness of the above protocol relies on an important assumption: updating
the commit block is both atomic and synchronous. Atomicity ensures that the commit
block contains either the old length or the new length; synchrony ensures that the disk
controller does not reorder the update to the commit block with other disk writes, and is
enforced by issuing two write barriers (disk syncs) before and after the update. Under
this protocol, a crash midway through a transaction will result in a length of zero in
the commit block; a crash after a commit (but before apply completes) will result in a
non-zero length, and the log must contain exactly the same number of valid entries.

The basic logging protocol imposes disk writes and expensive write barriers. For
example, an operation that writes to a single disk block would require 4 disk writes
(twice for the commit block and twice for the block content) and 4 disk syncs (before
and after both updates to the commit block) to complete. Sophisticated file systems
implements several optimizations to reduce the number of disk operations. For example,
Linux ext4 employs deferred apply, group commit, log checksum and log bypass, as we
explain below.

Deferred apply. After the logging system commits a transaction, it can defer applying
the log entries. Subsequent transactions can simply append more entries to the log. When
the log fills up, all entries can be applied at once. This reduces the amortized number of
synchronous disk write barriers from 4 to 2 per transaction.

Group commit. The logging system can accumulate the writes of multiple system calls
in memory, merge them into a single transaction, and issue a single commit for the
merged transaction. Group commit amortizes number of disk syncs across multiple small
transactions and potentially reduces the number of disk writes by merging writes from
multiple transactions.

Log checksum. If the commit block contains a checksum of all the related log entries,
it is safe to omit the disk sync between writing log entries and updating the commit block.

25

Log checksum further reduces the number of write barriers from 2 to 1 per transaction.
The recovery procedure can determine whether to commit or abort an transaction by
computing the checksum of the log entries and comparing it with the checksum stored
in the commit block.

Log bypass and deferred writes. With log bypass, a file system can write file content
directly to file data blocks, rather than going through the logging system, while metadata
(file attributes and directory entries) updates still go through the log. When combined
with a write-back buffer cache, log bypass relaxes the file system’s consistency guarantee:
It allows each file’s data to be flushed independently of other files and of the metadata, by
using fsync and fdatasync. This enables high performance for applications that perform
in-place data modifications. Because both group commit and log bypass defer updating
the disk (for metadata and non-metadata, respectively), we refer to them using an
umbrella term: deferred writes.

Our FSCQ prototype implements all the above optimizations with a proof of correct-
ness. To prove the implementation, we first need a precise specification that defines what
is the correct semantics for the logging system. FSCQ’s specification framework—Crash
Hoare Logic—is based on Hoare logic and separation logic, which we describe next.

3.3 Program correctness

Hoare logic [36] is a classic formal system for reasoning about program correctness.
Separation logic [58] extends Hoare logic to support predicates on storage state.

Hoare logic A Hoare logic specification is written as a Hoare triple, which describes
how the execution of a piece of code changes the state of the computation. A Hoare
triple is defined as:

{P} C {Q} (3.1)

where P corresponds to the precondition that should hold before the procedure C is run,
and Q is the postcondition. To prove that a specification is correct, we must prove that
procedure C establishes Q, assuming P holds before invoking C. Two basic inference
rules for Hoare logic are:

{P} C1 {Q} {Q} C2 {R}
{P} C1;C2 {R}

(3.2)

P1⇒ P2 {P2} C {Q2} Q2⇒Q1

{P1} C {Q1}
(3.3)

26

Equation (3.2) is the composition rule that enables chaining the specs of two sequential
procedure C1 and C2. Equation (3.3) is the consequence rule, which allows to strengthen
the precondition or to weaken the postcondition (⇒ denotes logical implication).

Separation logic Separation logic makes it easy to combine predicates on disjoint parts
of a storage (such as the disk). A storage is defined as a partial function from addresses
to values. The domain of store d is the set of valid addresses where d is defined:

dom d = { a | d(a) is defined } (3.4)

The basic predicates in separation logic are: (1) the emp assertion, which asserts
that the store has no valid address; (2) the points-to relation, written as a 7→ v, which
asserts that address a is the only valid address, and it has value v; and (3) the separating
conjunction operator (⋆), in which given two predicates P and Q, P ⋆ Q means that the
store can be split into two disjoint parts, where one satisfies the P predicate, and the
other satisfies Q. More formally,

d |= emp iff dom d =∅ (3.5)

d |= a 7→ v iff dom d = {a} ∧ d(a) = v (3.6)

d |= P ⋆ Q iff ∃d1d2, d = d1 · d2 ∧ d1 |= P ∧ d2 |= Q ∧ d1 ⊥ d2 (3.7)

where d1 ⊥ d2 means dom d1 ∩ dom d2 =∅, and “·” is the function-union operator.
In addition to the standard inference rules from Hoare logic (eq. (3.2), eq. (3.3)),

separation logic supports a very important rule called the frame rule:

{P} C {Q}
{P ⋆ R} C {Q ⋆ R}

(3.8)

The frame rule states that if a procedure runs on a small part of store that satisfies
P and produces outcome Q, then it can also safely run on a bigger store that satisfies
P ⋆ R, producing the same outcome (Q), while leaving the additional part of the store
(R) untouched.

The frame rule enables local reasoning, a key property to support modular proofs: we
can prove the specifications for code that manages different parts of the disk (e.g., the
inode region and the block bitmap) separately, and then safely compose them to prove a
module built on top of them (e.g., the file layer).

Separation logic also enables a high degree of proof automation. For instance, the

27

following rules allow to “rewrite” or “cancel” terms on both sides of an implication:

P ⇐⇒ P ⋆ emp P ⋆ Q⇐⇒Q ⋆ P P ⋆ Q ⋆ R⇐⇒ P ⋆ (Q ⋆ R)

P ⇒Q R⇒ S
P ⋆ R⇒Q ⋆ S

P ⇒Q
P ⋆ R⇒Q ⋆ R

(3.9)

28

FOUR

Crash Hoare Logic

A key goal of this dissertation is to allow developers to certify the correctness of a file
system formally—that is, to prove that it functions correctly during normal operation and
that it recovers properly from any possible crashes. A file system might forget to zero out
the contents of newly allocated directory or indirect blocks, leading to corruption during
normal operation, or it might perform disk writes without sufficient barriers, leading to
disk contents that might be unrecoverable. Prior work has shown that even mature file
systems in the Linux kernel have such bugs during normal operation [50] and in crash
recovery [77].

To prove that an implementation meets its specification, we must have a way for
the developer to state what correct behavior is under crashes. Crash Hoare Logic (CHL)
extends Hoare logic with an asynchronous disk model, crash conditions, logical address
spaces, and recovery execution semantics. As we will show in Chapter 7, these features
allow us to state precise specifications (e.g., in the case of rename, that once recovery
succeeds, either the entire rename operation took effect, or none of it did) and prove
that implementations meet them. However, for the rest of this chapter, we will consider
much simpler examples to explain the basics of CHL.

4.1 Disk model

CHL is specialized to proving properties of a small domain-specific language (DSL) that
manipulates the state of a hypothetical disk. Following separation logic [58], the disk is
defined as a partial function from integer block numbers to block contents, where block
numbers greater than the size of the disk do not map to anything.

One interesting question when defining the DSL is how to model an asynchronous
disk. A modern hard drive usually has an internal write buffer. Writes issued to the disk
do not persist immediately. Instead, recent writes are cached in the internal buffer; and
it is up to the hard drive to decide when to flush these outstanding writes to the disk.
More importantly, the hard drive is allowed to reorder buffered writes to improve disk
throughput. If the system does not crash, a disk read always returns the last-written

29

value for a given address. If the system crashes and reboots, however, one might observe
that a write issued later before the crash has made it to the disk, while an earlier one
has not. The hard drive also offers a write-barrier operation, called disk sync, which
forces draining the write buffer. Sync guarantees that upon its return, there will be no
outstanding writes, and all previous writes are persisted on the disk. Disk syncs are very
expensive and should be avoided whenever possible.

To capture this asynchronous nature, CHL describes each block’s contents using a
value-set, instead of a single block value. A value-set is a non-empty set of block values,
denoted by 〈v, vs〉, where v is a special element representing the last value written to
the address, and vs is a set of previously written values that might persist on the disk if
the system were to crash. A disk block is said to be synced if its value-set has a single
value (i.e., vs =∅); otherwise the block is unsynced.

Reading from a block returns the last-written value v, since even if there are previous
values that might appear after a crash, in the absence of a crash a read should return
the last write. Writing to a block makes the new value the last-written value and adds
the old last-written value v to the set of previous values vs. If the system crashes and
reboots, the disk nondeterministically “chooses” any value from v and vs as a block’s
last-written value; and a block’s previous values become empty because there will be
no outstanding writes in the disk’s write buffer right after reboot. A global disk sync
discards all previously written values vs for each block, so that the last-written values
become the only possible value that will persist after a crash. Finally, reading or writing
a block number that does not exist causes the system to “fail” (as opposed to finishing or
crashing). Figure 4-1 illustrates CHL’s basic operational semantics for a given block.

Event Transition Resulting state

disk_read (a) explicit a 7→ 〈v, vs〉 and return v
disk_write (a, v′) explicit a 7→ 〈v′, {v} ∪ vs〉
disk_sync explicit a 7→ 〈v, ∅〉
sync implicit a 7→ 〈v, vs′ 〉 where vs′ ⊆ vs
crash implicit a 7→ 〈v′, ∅〉 where v′ ∈ {v} ∪ vs

Figure 4-1: Basic operational semantics of CHL, assuming the initial state satisfies
a 7→ 〈v, vs〉 for a given address a. “explicit” means that the transition is triggered by
stepping the program; “implicit” indicates the transition can happen any time.

CHL’s semantics allow the disk to flush its write buffer at any time in the background
(shown as “sync implicit” in Figure 4-1), which might discard some previous values for a
block. This poses a challenge to write concise predicates about the resulting disk state
using the regular points-to relation. For example, even though disk_read(a) does not
change the disk’s state, a background disk sync might drop some values from vs silently.

30

If that happens, the assertion a 7→ 〈v, vs〉 will become false when disk_read(a) returns.
To mitigate this issue and make implicit disk syncs transparent to the specification,

CHL introduces a relaxed subset-points-to relation, denoted by a↣ 〈v, vs〉, which asserts
that address a’s last-written value is v, and its previously written values are a subset of vs.
Formally, the subset-points-to relation can be defined in terms of the regular points-to
relation:

a↣ 〈v, vs〉 ⇐⇒ ∃vs′, a 7→ 〈v, vs′ 〉 ∧ vs′ ⊆ vs (4.1)

It is easy to see that

a 7→ 〈v, vs〉 ⇒ a↣ 〈v, vs〉 (4.2)

a 7→ 〈v, ∅〉 ⇐⇒ a↣ 〈v, ∅〉 (4.3)

which means, if we replace “7→” with “↣” from Figure 4-1, all assertions about the
resulting state will still hold. We can restate both the initial state and the resulting state
of implicit sync as a ↣ 〈v, vs〉, making it essentially a no-op with respect to the ↣
relation. FSCQ always uses↣ to describe the state of the physical disk (i.e., the hard
drive).

CHL’s disk model assumes that blocks are written atomically; that is, after a crash, a
block must contain either the last-written value or one of the previous values, and partial
block writes are not allowed. This is a common assumption made by file systems, as long
as each block is exactly one sector, and we believe it matches the behavior of many disks
in practice (modern disks often have 4 KB sectors). We could capture the notion of partial
sector writes by specifying a more complicated operational semantics for crashes, but
the disk model shown here matches the common assumption about atomic sector writes.
We leave to future work the question of how to build a certified file system without that
assumption.

4.2 Crash conditions

Given the asynchronous disk model and the subset-points-to relation, developers can
write down predicates about disk states for any crash-free execution of the file-system
code in Hoare logic and separation logic. The next question is: how to specify all possible
intermediate disk states when a crash interrupts the execution?

Unsurprisingly, a Hoare logic specification “{P}C {Q}” is insufficient to reason about
crashes. In our file-system settings, the procedure C could be the implementation of the
rename system call, or a lower-level operation such as allocating a disk block. In any
case, C consists of a sequence of primitive disk operations (e.g., disk_read, disk_write and
disk_sync), interspersed with computation, that manipulates the persistent state on disk.
A crash may cause C to stop at any point in its execution and may leave the disk in a

31

state where Q does not hold (e.g., in the rename example, the new file name has been
created already, but the old file name has not yet been removed).

To reason about the behavior of a procedure in the presence of crashes, CHL extends
Hoare logic with a new crash condition. A CHL specification is a quadruple written as:

{P}C {Q} {R} (4.4)

where {Q} is the postcondition as before, which describes the state at the end of C’s
crash-free execution; and {R} is the crash condition that describes the intermediate states
during C’s execution in which a crash could occur.

For example, Figure 4-2 shows the CHL specification for FSCQ’s disk_write primitive.
Note that in our implementation of CHL, these specifications are written in Coq code;
we show here an easier-to-read version. Corresponding to the quadruple in eq. (4.4),
the specification has four parts: the procedure about which we are reasoning, disk_write;
the precondition, disk |= F ⋆ a↣ 〈v0, vs〉; the postcondition if there are no crashes,
disk |= F ⋆ a↣ 〈v, {v0} ∪ vs〉; and the crash condition, disk |= F ⋆ a↣ 〈v0, vs〉 ∨
F ⋆ a↣ 〈v, {v0} ∪ vs〉.

SPEC disk_write (a, v)
PRE disk |= F ⋆ a↣ 〈v0, vs〉
POST disk |= F ⋆ a↣ 〈v, {v0} ∪ vs〉
CRASH disk |= F ⋆ a↣ 〈v0, vs〉 ∨

F ⋆ a↣ 〈v, {v0} ∪ vs〉

Figure 4-2: Specification for disk_write

The disk_write specification asserts through the precondition that the address being
written, a, must be valid (i.e., within the disk’s size), by stating that address a points to
some value-set 〈v0, vs〉 on disk. The specification’s postcondition asserts that the block
being modified will contain the new value-set 〈v, {v0} ∪ vs〉; that is, the new last-written
value is v, and v0 is added to the set of previous values. The specification also asserts
through the crash condition that disk_write could crash in two possible states: either the
write did not happen (a still has 〈v0, vs〉), or it did (a has 〈v, {v0} ∪ vs〉).

Moreover, the specification asserts that the rest of the disk is unaffected: if other
disk blocks satisfied some predicate F before disk_write, they will still satisfy the same
predicate afterwards. This illustrates the power of local reasoning in separation logic: the
specification only focuses on the address that disk_write updates, and it does not have to
say anything about the rest of the disk.

As we mentioned in Section 4.1, CHL’s disk model allows the disk to sync in the
background. Therefore the specification of disk_write uses subset-points-to (↣) instead

32

of the regular points-to (7→) to describe the state of the disk. The specification also
assumes that the frame predicate F should be agnostic to disk syncs, a property called
sync-invariant; otherwise F might not hold for other disk blocks in the postcondition, as
background syncs can discard previous values from any disk block. The formal definition
of sync-invariant is:

∀d d ′, d |= F ∧ dom d = dom d ′ ∧ ∀a, ∃v vs vs′,

d(a) = 〈v, vs〉 ∧ d ′(a) = 〈v, vs′〉 ∧ vs′ ⊆ vs ⇒ d ′ |= F
(4.5)

which states that, if a disk d satisfies some predicate F , and (partially) syncing d yields
a new disk d ′ that also satisfies F , then the predicate F is sync-invariant. It is easy
to see that if F only uses “↣” (or any combination of such formulas using separating
conjunction) to describe the disk state, then it must be sync-invariant. In contrast, a
predicate that contains the regular points-to relation (7→) is not sync-invariant.

The specification of disk_write captures two important behaviors of real disks—that
I/O can happen asynchronously and that writes can be reordered—in order to achieve
good performance. CHL could model a simpler synchronous disk by specifying that a
points to a single value (instead of a set of values) and changing the crash condition to
say that either a points to the new value (a 7→ v) or a points to the old value (a 7→ v0).
This change would simplify proofs, but this model of a disk would be accurate only if the
disk were running in synchronous mode with no write buffering, which achieves lower
performance.

One subtlety of CHL’s crash conditions is that they describe the state of the disk
just before the crash occurs, rather than just after. Right after a crash, CHL’s disk model
specifies that each block nondeterministically chooses one value from the set of possible
values before the crash. For instance, the first line of Figure 4-2’s crash condition states
that the disk still “contains” all previous writes, represented by 〈v, vs〉, rather than
a specific value that persisted across the crash, chosen out of {v} ∪ vs. This choice of
representing the state before the crash rather than after the crash allows the crash
condition to be similar to the pre- and postconditions. For example, in Figure 4-2, the
state of other blocks just before a crash matches the F predicate, as in the pre- and
postconditions. However, describing the state after the crash would require a more
complex predicate (e.g., if F contains unsynced disk writes, the state after the crash
must choose one of the possible values). Making crash conditions similar to pre- and
postconditions is good for proof automation (as we describe in Chapter 5).

Much like other Hoare-logic-based approaches, CHL requires developers to write
complete specifications for every procedure, including internal ones (e.g., allocating an
object from a free bitmap). This requires stating precise preconditions and postconditions.
In CHL, developers must also write crash conditions for every procedure. In practice,

33

we have found that the crash conditions are often simpler to state than the pre- and
postconditions. For example, in FSCQ, most crash conditions in layers above the log
simply state that there is an active (uncommitted) transaction; only the top-level system-
call code begins and commits transactions.

4.3 Logical address spaces

The above example illustrates how CHL can specify predicates about disk contents, but
file systems often need to express similar predicates at other levels of abstraction as well.
Consider the Unix pwrite system call. Its specification should be similar to disk_write,
except that it should describe offsets and values within the file’s contents, rather than
block numbers and block values on disk. Expressing this specification directly in terms
of disk contents is tedious. For example, describing pwrite might require saying that we
allocated a new block from the bitmap allocator, grew the inode, perhaps allocated an
indirect block, and modified some disk block that happens to correspond to the correct
offset within the file. Writing such complex specifications is also error-prone, which can
result in significant wasted effort in trying to prove an incorrect specification.

To capture such high-level abstractions in a concise manner, we observe that many
of these abstractions deal with logical address spaces. For example, the disk is an address
space from disk-block numbers to disk-block contents; the inode layer is an address space
from inode numbers to inode structures; each file is a logical address space from offsets
to data within that file; and a directory is a logical address space from file names to
inode numbers. Building on this observation, CHL generalizes the separation logic for
reasoning about the disk to similarly reason about higher-level address spaces like files,
directories, or the logical disk contents in a logging system.

As an example of logical address spaces, consider the simple procedure in Figure 4-3.
atomic_two_write captures the essence of file-system calls that must update two or more
blocks. The procedure performs two disk writes inside of a transaction using a write-ahead
log, which supplies the log_begin, log_commit, and log_write APIs. If atomic_two_write
crashes and the system reboots, the recovery procedure of the logging system log_recover
runs. If there is a crash during recovery, then after reboot the recovery procedure runs
again. In principle, this may happen several times. Nevertheless, as long as log_recover
finishes, the logging system guarantees that either both writes happen or none do, no
matter when and how many crashes happen.

To simplify the reasoning, throughout the rest of this chapter, we assume the logging
system uses the basic logging protocol described in Section 3.2. That is, the logging
system does not employ deferred apply, group commit, log checksum or log bypass.

The spec of atomic_two_write, as shown in Figure 4-4, demonstrates how address

34

def atomic_two_write(a1, v1, a2, v2):
log_begin()
log_write(a1, v1)
log_write(a2, v2)
log_commit()

Figure 4-3: Pseudocode of atomic_two_write

spaces help to write a concise specification. Rather than describing how atomic_two_write
modifies the on-disk logging data structures, the specification introduces new address
spaces, start_state and new_state, which correspond to the contents of the logical disk
provided by the logging system. Logical address spaces allow the developer of the
logging system to state a clean specification, which provides the abstraction of a simple,
synchronous interface to higher layers in the file system. Developers of higher layers can
then largely ignore the details of the underlying asynchronous disk.

SPEC atomic_two_write (a1, v1, a2, v2)
PRE disk |= log_rep(NoTxn, start_state)

start_state |= F ′ ⋆ a1 7→ 〈vx , vsx〉 ⋆ a2 7→ 〈vy , vsy〉
POST disk |= log_rep(NoTxn, new_state)

new_state |= F ′ ⋆ a1 7→ 〈v1, ∅〉 ⋆ a2 7→ 〈v2, ∅〉
CRASH disk |= log_intact(start_state, new_state)

Figure 4-4: Specification for atomic_two_write

Specifically, in the precondition, a1 7→ 〈vx , vsx〉 applies to the address space repre-
senting the starting contents of the logical disk, and in the postcondition, a1 7→ 〈v1, ∅〉
applies to the new contents of the logical disk. Like the physical disk, these address
spaces are partial functions from addresses to values (in this case, mapping 64-bit block
numbers to 4 KB block values). Unlike the physical disk, writing to the logical disk
through the logging system is synchronous: the new contents of the address being writ-
ten to will become a single synced value 〈v1, ∅〉, as opposed to 〈v1, {vx} ∪ vsx〉. This is
because the logging system exports a synchronous interface, proven correct on top of
the asynchronous interface underneath.

To make this specification precise, we must describe what it means for the transaction’s
logical disk to have value 〈v1, ∅〉 at address a1. We do this by connecting the transaction’s
logical address spaces, start_state and new_state, to their physical representation on disk.
For instance, we specify where the starting state is stored on disk and how the new state is
logically constructed (e.g., by applying the log contents to the starting state). We specify
this connection using a representation invariant; in this example, the representation
invariant “log_rep” is a predicate describing the physical disk contents.

log_rep takes logical address spaces as arguments and specifies how those logical

35

address spaces are represented on disk. Several states of the logging system are possible;
log_rep(NoTxn, start_state) means the disk has no active transaction and is in state
start_state. In Figure 4-4, the log_rep invariant shows up twice. It is first applied to
the disk address space, representing the physical disk contents, in the precondition.
Here, it relates the starting disk contents to the start_state logical address space. log_rep
also shows up in the postcondition, where it connects the physical disk state after
atomic_two_write returns and the logical address space new_state. Syntactically, we use
the notation “las |= predicate” to say that the logical address space las matches a
particular predicate; this is used both to apply a representation invariant to an address
space (such as log_rep in the disk address space) as well as to write other predicates
about an address space (such as a1 7→ 〈v1, ∅〉 in new_state).

Representation invariants can be thought of as macros, which boil down to a set of
“points-to” relationships. For instance, Figure 4-5 shows part of the log_rep definition for
an interesting case, namely an active transaction. It states that, in order for a transaction
to be in an ActiveTxn state, the commit block must contain zero, all of the blocks in
start_state must be on disk, and cur_state is the result of replaying the transaction’s
pending writes (i.e., log entries cached in memory) starting from start_state. “replay” is
the one part of log_rep that does not boil down to points-to predicates: it is simply a
function that takes one logical address space and produces another logical address space
(by applying log entries from pending_writes). Note that, by using ∅ as the previous
values, log_rep requires that the commit block must have been synced.

log_rep (ActiveTxn, start_state, cur_state) ::=

CommitBlock↣ 〈0, ∅〉 ⋆ (∀a, start_state(a) = 〈v, vs〉 ⇒ a↣ 〈v, vs〉) ∧

cur_state= replay (start_state, pending_writes)

Figure 4-5: Part of log_rep representation invariant for the basic logging protocol

The crash condition of atomic_two_write, from Figure 4-4, describes all of the states
in which atomic_two_write could crash using log_intact(start_state, new_state), which
stands for all possible log_rep states that recover to transaction states start_state or
new_state. Using log_intact allows us to concisely capture all possible crash states during
atomic_two_write, including crashes deep inside any procedure that atomic_two_write
might call (e.g., crashes inside log_commit).

36

4.4 Recovery execution semantics

After the computer crashes and reboots, it often runs a recovery procedure (such as
log_recover) before resuming normal operation. Crash conditions and address spaces
allow us to specify the possible states in which the computer might crash in the middle
of a procedure’s execution. But we also need a way to reason about recovery, including
crashes during recovery. Hoare logic does not provide a notion that at any point during
C’s execution, a recovery procedure may run.

For example, we want to argue that a transaction provides all-or-nothing atomicity: if
atomic_two_write crashes prior to invoking log_commit, none of the calls to log_write will
be applied; after log_commit returns, all of them will be applied; and if atomic_two_write
crashes during log_commit, either all or none of them will take effect. To achieve this
property, the logging system must run log_recover after every crash to roll forward any
committed transaction, including after crashes during log_recover itself.

The specification of the log_recover procedure is shown in Figure 4-6. It states that,
starting from any state matching log_intact(last_state, committed_state), log_recover will
either roll back the transaction to last_state or will roll forward a committed transaction
to committed_state. Furthermore, the specification is idempotent, since the crash condition
implies the precondition; this will allow for log_recover to crash and restart multiple
times.

SPEC log_recover ()
PRE disk |= log_intact(last_state, committed_state)
POST disk |= log_rep(NoTxn, last_state) ∨

log_rep(NoTxn, committed_state)
CRASH disk |= log_intact(last_state, committed_state)

Figure 4-6: Specification of log_recover

To state that log_recover must run after a crash, CHL provides a recovery execution
semantics. In contrast to CHL’s regular execution semantics, which talks about a procedure
producing either a failure (accessing an invalid disk block), a crash, or a finished state,
the recovery semantics talks about two procedures executing (a normal procedure and
a recovery procedure) and producing either a failure, a completed state (after finishing
the normal procedure), or a recovered state (after finishing the recovery procedure).
This regime models the notion that the normal procedure tries to execute and reach
a completed state, but if the system crashes, it starts running the recovery procedure
(perhaps multiple times if there are crashes during recovery), which produces a recovered
state.

37

The CHL specification with recovery execution semantics can be noted by:

{P} C \ R {Q} (4.6)

where \ denotes the joint execution of program C and R. The specification states that,
if C runs under condition P, and the recovery procedure R is executed whenever the
system crashes inside C or R itself, then when either C or R terminates, condition Q will
be established.

Figure 4-7 shows how to extend the atomic_two_write specification to include recovery
execution using the \ notation. The postcondition indicates that, if atomic_two_write
finishes without crashing, both blocks were updated, and if one or more crashes occurred,
with log_recover running after each crash, either both blocks were updated or neither
was. The special status variable indicates whether the system reached a completed or a
recovered state and in this case enables callers of atomic_two_write to conclude that, if
atomic_two_write completed without crashes, it updated both blocks (i.e., updating none
of the blocks is allowed only if the system crashed and recovered).

SPEC atomic_two_write (a1, v1, a2, v2) \ log_recover ()
PRE disk |= log_rep(NoTxn, start_state)

start_state |= F ′ ⋆ a1 7→ 〈vx , vsx〉 ⋆ a2 7→ 〈vy , vsy〉
POST disk |= log_rep(NoTxn, new_state) ∨

(status= Recovered ∧ log_rep(NoTxn, start_state))
new_state |= F ′ ⋆ a1 7→ 〈v1, ∅〉 ⋆ a2 7→ 〈v2, ∅〉

Figure 4-7: Specification for atomic_two_write with recovery. The \ operator indicates
the combination of a regular procedure and a recovery procedure.

Note that distinguishing the completed and recovered states allows the specification
to state stronger properties for completion than recovery. Also note that the recovery-
execution version of atomic_two_write’s specification does not have a crash condition,
because the execution always succeeds, perhaps after running log_recover many times.

In this example, the recovery procedure R is just log_recover, but the recovery proce-
dure of a system built on top of the logging system may be composed of several recovery
procedures. For example, recovery in a file system consists of first reading the superblock
from disk to locate the log and then running log_recover.

38

FIVE

Proving specifications

The preceding chapter explains how to write specifications using CHL. This chapter
describes how to prove that an implementation meets its specification. A key challenge
in the design of CHL was to reduce the proof burden on developers. In developing FSCQ,
we often refactored specifications and implementations, and each time we did so we had
to redo the corresponding proofs. To reduce the burden of proving, we designed CHL so
that it allows for stylized proofs. As a result of this design, several proof steps can be
done automatically, as we describe in this chapter.

Even with this automation, a significant amount of manual effort is still required for
proving. First, CHL itself must be proven to be sound, which we have done as part of
implementing CHL in Coq; developers using CHL need not redo this proof. Second, each
application that uses CHL typically requires a significant amount of effort to develop its
specifications and proofs, because there are many aspects that cannot be fully automated.
We examine the amount of work required to build the FSCQ file system in more detail in
Chapter 9.

5.1 Overview

To get some intuition for how CHL can help automate proofs, consider the control flow
of the example procedure in Figure 5-1. The outer box corresponds to the top-level
specification of a procedure; in this example, it is a procedure that returns the address of
the bnumth block from an inode, with recovery-execution semantics. It has a precondition,
a postcondition, and a recovery condition.

The arrows correspond to the procedure’s control flow, and smaller rounded boxes
correspond to procedures that the top-level procedure invokes (e.g., log_read). Each
of these procedures has a precondition, a postcondition, and a crash condition. In the
figure, after calling the if statement, the procedure can follow two different paths: it
may call log_read and then return, or it may immediately return a different value. More
complicated procedures may have more complicated control flows, including loops.

39

log_recover

PRE

POST

RECOVER

if bnum >= NDIRECT:
 indirect = log_read(inode.blocks[NDIRECT])
 return indirect[bnum - NDIRECT]
else:
 return inode.blocks[bnum]

if

log_read

return

return

Figure 5-1: Example control flow of a CHL procedure that looks up the address of a block
in an inode, with support for indirect blocks. (The actual code in FSCQ checks for some
additional error cases.) Rounded boxes represent the specifications of procedures. The
dark red box represents the recovery procedure. Green, blue and pink boxes represent
preconditions, postconditions and crash conditions, respectively. Dashed arrows represent
control flow as well as logical implication.

The top-level procedure also has a recovery procedure (e.g., log_recover). The recov-
ery procedure has a precondition, postcondition, and recovery condition. The recovery
procedure may be invoked at any point after a crash. To capture this, the control flow can
jump from the crash condition of a procedure to the recovery procedure. The recovery
procedure can itself crash, so there is also an arrow from the recovery procedure’s crash
condition to its own precondition.

Proving the correctness of the top-level procedure C entails proving that, if C is
executed and the precondition held before C started running, either 1) its postcondition
holds; or 2) the recovery condition holds after recovery finishes. For the first case, we
must show that the precondition of the top-level procedure implies the precondition of
the first procedure invoked, that the postcondition of the first procedure called implies
the precondition of the next procedure invoked in the control flow, and so on. Similarly
for the second case, we must prove that the crash condition of each procedure implies
the precondition of the recovery procedure, and so on.

In both cases, the logical implications follow exactly the control flow of the procedure,
which allows for a high degree of automation. Our implementation of CHL automatically
chains the pre- and postconditions based on the control flow of the procedure. If a
precondition is trivially implied by a preceding postcondition in the control flow, then
the developer does not have to prove anything. In practice this is often the case, and the
developer must prove only the representation invariants (e.g., log_rep and log_intact).
The rest of this chapter describes this automation in more detail, while explicitly noting
what must be proven by hand by developers. The basic strategy is inspired by the Bedrock
system [13] but extends the approach to handle crashes and address spaces.

40

5.2 Proving without recovery

The process of proving a CHL specification is to repeatedly apply inference rules on
existing specification to deduce the target specification. Similar to Hoare logic and
separation logic (Section 3.3), CHL supports the following composition rule, consequence
rule and frame rule:

{P1} C1 {P2}{R1} {P2} C2 {P3}{R2}
{P1} C1;C2 {P3}{R1 ∨ R2}

(5.1)

P ′⇒ P {P} C {Q}{R} Q⇒Q′ R⇒ R′

{P ′} C {Q′}{R′}
(5.2)

{P} C {Q}{R}
{P ⋆ S} C {Q ⋆ S}{R ⋆ S}

(5.3)

CHL’s proof automation can automatically apply the above rules whenever possible.
In general, the proof strategy consists of two steps:

Phase 1: Procedure steps. The first phase of CHL’s proof strategy is to use the compo-
sition rule (eq. (5.1)), and turn the theorem about C’s specification into a series of proof
obligations that will be proven in the next phase. Specifically, CHL considers every step in
C (e.g., a procedure call) and reasons about what the state of the system is before and
after that step. CHL assumes that each step already has a proven specification. The base
primitives (e.g., disk_read and disk_write) of CHL have proven specifications provided by
the implementation of CHL.

CHL starts by assuming that the initial state matches the precondition, and, for every
step in C, generates two proof obligations: (1) that the current condition (either C’s
precondition or the previous step’s postcondition) implies the step’s precondition, and
(2) that the step’s crash condition implies C’s crash condition. At the end of C, CHL
generates a final proof obligation that the final condition implies C’s postcondition.

SPEC log_begin ()
PRE disk |= log_rep(NoTxn, start_state)
POST disk |= log_rep(ActiveTxn, start_state, start_state)
CRASH disk |= log_rep(NoTxn, start_state)

Figure 5-2: Specification for log_begin

For example, consider the atomic_two_write procedure from Figure 4-3, whose speci-
fication is shown in Figure 4-4. As the first step, CHL considers the call to log_begin

41

and, using the specification shown in Figure 5-2, generates two proof obligations:
that atomic_two_write’s precondition matches the precondition of log_begin, and that
log_begin’s crash condition implies atomic_two_write’s crash condition.

SPEC log_write (a, v)
PRE disk |= log_rep(ActiveTxn, start_state, old_state)

old_state |= F ⋆ a 7→ 〈v0, vs0〉
POST disk |= log_rep(ActiveTxn, start_state, new_state)

new_state |= F ⋆ a 7→ 〈v, ∅〉
CRASH disk |= log_rep(ActiveTxn, start_state, any_state)

Figure 5-3: Specification for log_write

When specifications involve multiple address spaces, CHL recursively matches up
the address spaces starting from the built-in disk address space. For instance, the next
step in atomic_two_write is the call to log_write, whose specification appears in Figure 5-
3. By matching up the disk address spaces in log_begin’s postcondition and log_write’s
precondition, CHL concludes that the address space called start_state in atomic_two_write
is the same as the old_state address space in log_write. CHL then generates another proof
obligation that the predicate for start_state in atomic_two_write implies the predicate for
old_state in log_write.

Phase 2: Predicate implications. Some obligations generated in phase 1 are trivial,
such as that the precondition of atomic_two_write implies the precondition of log_begin;
since the two are identical, CHL immediately proves the implication between them using
the consequence rule (eq. (5.2)) and first-order logic.

For more complicated cases, CHL relies on separation logic’s frame rule (eq. (5.3))
to prove the obligations and to help carry information from precondition to post-
condition. Continuing with our example, consider the proof obligation generated at
atomic_two_write’s first call to log_write, which requires us to prove that F ′ ⋆ a1 7→
〈vx , vsx〉 ⋆ a2 7→ 〈vy , vsy〉 implies F ⋆ a 7→ 〈v0, vs0〉. Because separating conjunction
(⋆) applies only to disjoint predicates, CHL matches up a1 7→ 〈vx , vsx〉with a 7→ 〈v0, vs0〉
(thereby setting v0 to vx) and “cancels out” these terms from both sides of the implica-
tion obligation. CHL then sets the arbitrary predicate F from log_write’s precondition
to F ′ ⋆ a2 7→ 〈vy , vsy〉. This has two effects: first, it proves this particular obligation;
and second, it carries over information about a2 7→ 〈vy , vsy〉 into subsequent proof
obligations that mention F from log_write’s postcondition (such as atomic_two_write’s
next call to log_write).

Some implication obligations cannot be proven by CHL automatically and require
developer input. This usually occurs when the developer is working with multiple levels

42

of abstraction, where one predicate mentions a higher-level representation invariant
(e.g., a directory represented by a function from file names to inode numbers) but the
other predicate talks about lower-level state (e.g., a directory represented by a set of
directory entries in a file).

5.3 Proving recovery specifications

So far, we described how CHL proves specifications about procedures without recovery.
Proofs of specifications that involve a recovery procedure, such as Figure 4-7, are also
automated in CHL: if the recovery procedure is idempotent (i.e., its crash condition
implies its precondition), CHL can automatically prove the specification of procedure C
with recovery based on the specification of C without recovery. The rule for proving a
recovery specification is called the recovery rule:

{P} C {Q}{R} {R} R {S}{R}
{P} C \ R {Q ∨ S}

(5.4)

The recovery rule states that, if the recovery procedure R handles both program C’s crash
states and its own crash states, and if the outcomes of C and R are Q and S, respectively,
then running C in combination with R will result in condition Q ∨ S when they both
terminate.

For instance, since the log_recover procedure is idempotent (see Figure 4-6), CHL
can automatically prove the specification shown in Figure 4-7 based on the specification
from Figure 4-4.

43

44

SIX

Certifying FSCQ’s logging system

The previous chapters provide examples of specifications for a basic logging protocol,
written in CHL. This chapter explores how to build and certify FSCQLOG, an I/O-efficient
logging system that implements performance-critical optimizations such as deferred
apply, group commit, log checksum and log bypass. These techniques, as we explained
in Section 3.2, reduce the number of writes and write barriers per transaction, while
still guaranteeing crash safety. These optimizations are standard to other file systems
but have never been formally specified or verified until now. The FSCQLOG implements
these optimizations internally, while providing the same synchronous disk abstraction as
in previous chapters.

6.1 Overview

Verifying a single optimization is challenging enough because most system optimizations
are based on a programmer’s assumptions, which are rarely formalized. Verifying many
together is even more challenging because of the number of simultaneously moving
parts. Each additional optimization requires not only a proof that the overall logging
specification still holds, but also a proof that all previous assumptions still hold. For
example, group commit assumes that metadata operations can be deferred as long as
their orders are preserved, and log bypass further allows deferring and re-ordering non-
metadata updates; combining the two to support a general deferred-write optimization
poses a new challenge: is it safe to re-order non-metadata updates against metadata
updates?

The key idea behind verifying a system with many optimizations is one familiar from
building the unverified equivalent: modularity. FSCQLOG is composed of four logical
layers: LogAPI, GroupCommit, Applier, and DiskLog, shown in Figure 6-1. Each layer has
a formal specification, along with a proof that its implementation meets its specification.
This modular design makes FSCQLOG amenable to formal verification because each

45

LogAPI

GroupCommit

Applier

DiskLog

, , ,

activeTxn

committedTxns

flushedTxns

disk data commit
block

log entries available
log space

commit()

flush()

append()
truncate()apply()

Figure 6-1: Illustration of FSCQLOG layers and the timeline of a transaction. Transactional
writes are added to an activeTxn map in the LogAPI layer. When the application calls
commit, activeTxn is buffered in a list of pending transactions in GroupCommit. When
flush is called on GroupCommit, all pending transactions are appended to disk together
as a single transaction in the DiskLog layer. At this point, the transactions are durable,
and Applier can lazily apply and truncate the log records.

layer only tackles a simple task or a single optimization. It also allows changing the
implementation of a layer without affecting the proofs in other layers.

LogAPI. The uppermost layer, LogAPI, exposes an interface with a single active transac-
tion and allows the higher-level code (i.e., the file system) to read and write disk blocks.
Writing blocks builds up an in-memory transaction, which is passed to the GroupCommit
layer once the higher-level code invokes log_commit. LogAPI exposes the size of the
transaction in its specification and guarantees that transactions below a certain size will
be able to commit. This is necessary for proving that some system calls that potentially
update many disk blocks (e.g., unlink might change all block-bitmap blocks when freeing
a large file) do not fail given sufficient log space.

GroupCommit. GroupCommit accepts committed transactions from LogAPI and buffers
them in an in-memory transaction list. GroupCommit exposes a flush function, which
combines all buffered transaction into a single transaction and then flushes it to the
on-disk log. flush allows the file system to implement the fsync system call by flushing all
metadata changes from GroupCommit to disk. GroupCommit’s specification also allows
it to flush transactions to disk on its own at any time. GroupCommit remembers bound-

46

aries of transactions it receives. In case the merged transaction exceeds the maximum
transaction size, GroupCommit falls back to committing individual transactions in turn.

Applier. Applier manages the data part of the disk (i.e., everything but the log) by
applying the log entries to the disk when the on-disk log fills up. By employing deferred
apply, Applier is able to absorb repeated writes to the same address in multiple transac-
tions. To do this, Applier keeps a copy of all flushed entries in memory when forwarding
flushing requests from GroupCommit to DiskLog.

DiskLog. Finally, DiskLog lays out the log on disk. It provides three functions: append,
truncate, and recover (which returns the on-disk log contents). It takes care of packing
and unpacking the commit block and log entries on disk. DiskLog also exposes the size
of the on-disk log to guarantee that transactions of a certain size will fit and thus be able
to commit. DiskLog uses log checksum to ensure that append and truncate are crash-safe
while using just one disk sync (to ensure that the entire transaction is flushed to disk,
rather than to order writes within the transaction). DiskLog’s recover function also uses
checksums to determine whether the last call to append fully made it to disk or not, and
returns the corresponding list of on-disk log entries to the caller.

Each layer (except for DiskLog) also caches copies of transaction updates in an in-
memory map to serve reads efficiently. As shown in Figure 6-1, LogAPI buffers the file
system’s single active transaction (activeTxn). GroupCommit merges each committed
transaction that it receives into a single in-memory transaction (committedTxns), which
is cleared at every flush. Similarly, Applier collapses all flushed transactions into an
in-memory map that is cleared every time the log is applied and truncated (flushedTxns).
When an application calls read, the log tries to find the requested address in each of
these layers, from highest to lowest, before reading from disk.

6.2 Representation invariants

As described in Section 4.3, FSCQLOG’s specifications use representation invariant to
relate the abstract state of a higher layer to the its lower-layer state. For example, DiskLog
defines disklog_rep, which describes how logical log entries (as a list of block address
and value pairs) are laid out on the log region of the disk. Applier, in turn, includes
disklog_rep as part of its own applier_rep, and combines it with other points-to facts that
relate the logical log entries to the data region of the disk. In its easiest form, where there
is no ongoing log-apply or log-flush, the definition of applier_rep is shown in Figure 6-2.

applier_rep states that the physical disk is divided into two disjoint regions: the log
region and the data region. disklog_rep describes the state of the log region, which

47

applier_rep (navail, flushed_disk) ::=

disklog_rep(Synced, navail, flushedTxns) ⋆

(∀a, unapplied_disk(a) = 〈v, vs〉 ⇒ a↣ 〈v, vs〉) ∧

flushed_disk= replay (unapplied_disk, flushedTxns)

Figure 6-2: Part of Applier’s representation invariant

contains all flushed but not-yet-applied transactions, represented by flushed_Txns; and
unapplied_disk is the on-disk state of the data region. By replaying flushed_Txns on
unapplied_disk, applier_rep exports a new logical disk flushed_disk in its argument, which
combines the on-disk data region with all flushed transactions to present a view of the
persisted disk state. The other argument of applier_rep, navail, is the number of available
log entries exported by DiskLog; it is useful for higher layers to reason about whether a
commit or a flush would succeed.

Similarly, as shown in Figure 6-3, GroupCommit’s representation invariant group_rep
uses applier_rep to describe the disk state which currently persists on disk. On top of it,
group_rep describes a sequence of logical disks, namely disk_seq, each representing the
end state of a committed but not-yet-flushed transaction. The definition in Figure 6-3
assumes the first disk (i.e., disk_seq[0]) is persisted on disk, and each subsequent disk
in disk_seq is derived from its predecessor by applying the corresponding committed
transaction from committedTxns. The abstraction exported by group_rep is called a disk
sequence. In Chapter 7 we further justify the choice of the disk sequence abstraction and
investigate how it helps to write a file system’s specifications.

group_rep (disk_seq) ::=

applier_rep(navail, disk_seq[0]) ∧

(∀i, 0< i < ∥disk_seq∥ ⇒

∥ committedTxns[i − 1]∥ ≤MaxLogLen ∧
disk_seq[i] = replay (disk_seq[i − 1], committedTxns[i − 1]))

Figure 6-3: Part of GroupCommit’s representation invariant

Figure 6-4 shows the top-level representation invariant log_rep, whose signature
looks almost identical to the one shown in Figure 4-5, except that it now uses a disk
sequence, as opposed to a single logical disk, to describe the transaction’s starting
state. “disk_seq.latest” denotes the last disk in the disk sequence; applying the active

48

transaction’s log entries (activeTxn) to the latest disk produces cur_state, the logical disk
that represents the transaction’s current view. If there is no active transaction, log_rep
requires activeTxn to be empty.

Note that most of the above representation invariants have more sophisticated forms
which show up only during crash and recovery. For simplicity we do not show them here
but will explain them as we encounter them.

log_rep (ActiveTxn, disk_seq, cur_state) ::=

group_rep(disk_seq) ∧

cur_state= replay (disk_seq.latest, activeTxn)

log_rep (NoTxn, disk_seq) ::=

group_rep(disk_seq) ∧ activeTxn=∅

Figure 6-4: Part of LogAPI’s representation invariant

6.3 Logging-system specifications

Given these representation invariants, we now demonstrate how to use them to write
FSCQLOG’s internal and external specifications. We consider an interesting scenario where
the user of FSCQLOG (i.e., the file system) uses log_commit to commit a transaction and
subsequently calls log_flush to make sure the change persists. The call graph used in this
section is shown in Figure 6-5.

LogAPI GroupCommit Applier DiskLog

log_commit group_commit

log_flush group_flush applier_flush

applier_apply

disklog_append

disklog_truncate

Figure 6-5: Call graph for log_commit and log_flush

Figure 6-6 shows the specification of log_commit. The spec says that log_commit
transits from “active transaction” state to “no transaction” state, and it can either succeed
(return true) or fail (return false). If it succeeds, the logical disk for the active transaction
cur_disk is appended to the disk sequence disk_seq; if it fails, the transaction is aborted,
and disk_seq will remain unchanged. In addition, the specification also says that if commit

49

fails, it must be the case that the size of the transaction (total number of log entries in
activeTxn) exceeds the logging system’s limit, denoted by constant MaxLogLen. This error
condition allows the caller to prove that certain operations (such as unlink) will always
succeed (by showing that ∥activeTxn∥ ≤MaxLogLen, thus proving that the failure case
in the postcondition cannot happen).

SPEC log_commit ()
PRE disk |= log_rep(ActiveTxn, disk_seq, cur_disk)
POST disk |= (ret= true ∧ log_rep(NoTxn, disk_seq++ {cur_disk})) ∨

(ret= false ∧ log_rep(NoTxn, disk_seq) ∧ ∥activeTxn∥>MaxLogLen)
CRASH disk |= log_rep(NoTxn, disk_seq)

Figure 6-6: Specification for LogAPI’s log_commit

Internally, log_commit calls GroupCommit’s group_commit(activeTxn), which buffers
the transaction in memory. The specification of group_commit is shown in Figure 6-7.
This specification looks similar to Figure 6-6, except that it expands cur_disk, using
the fact that directly derives from LogAPI’s representation invariant (Figure 6-4). As
group_commit only changes the in-memory state, its crash condition is the same as its
precondition.

SPEC group_commit (ents)
PRE disk |= group_rep(disk_seq)
POST disk |= (ret= true ∧ group_rep(disk_seq++ {replay (disk_seq.latest, ents)} ∨

(ret= false ∧ group_rep(disk_seq) ∧ ∥ ents∥>MaxLogLen)
CRASH disk |= group_rep(disk_seq)

Figure 6-7: Specification for GroupCommit’s group_commit

Next, the user calls the top-level log_flush, whose specification is shown in Figure 6-8.
The specification simply says that, after log_flush returns, the disk sequence contains
only the latest disk from before log_flush. This latest disk reflects all of the previously
committed transactions.

One interesting aspect of log_flush’s spec is the crash condition: “would_recover_any
(disk_seq)” says that if the system were to crash, the state on disk after the crash is the
state corresponding to one of the disks in disk_seq. This is because log_flush internally calls
GroupCommit’s flush procedure group_flush, which in turn calls Applier’s applier_flush,
with the merged transaction as the argument (i.e., applier_flush(merge(committedTxns))).
In this case, the logging system will recover into either the first or the last disk in disk_seq.
It is also possible that GroupCommit cannot merge the transactions (because the resulting
transaction is too large to fit into the log) and falls back to flush each transactions in

50

turn using applier_flush. If this is the case, the logging system can recover into any of the
disks in disk_seq. Both cases are captured by would_recover_any.

SPEC log_flush ()
PRE disk |= log_rep(NoTxn, disk_seq)
POST disk |= log_rep(NoTxn, {disk_seq.latest})
CRASH disk |= would_recover_any(disk_seq)

Figure 6-8: Specification for LogAPI’s log_flush

The specification of applier_flush is shown in Figure 6-9, which also contains a suc-
cess case and a failure case. However, the GroupCommit layer can conclude that the
failure case will never happen. This is because (1) the code of group_flush first checks if
the merged transaction is bigger than MaxLogLen and falls back to flushing individual
transactions in that case; and (2) group_commit will reject a transaction whose size is
bigger than MaxLogLen, so that every buffered transaction is within the size limit. The
second constraint is encoded in the representation invariant shown in Figure 6-3.

The crash condition of applier_flush is a “would_recover_either” predicate, which says
that the procedure will recover into either before or after the given transaction—the
usual behavior of basic write-ahead logging. The “would_recover_any” predicate we have
seen in Figure 6-8 is defined using would_recover_either by choosing pairwise disks from
disk_seq.

SPEC applier_flush (ents)
PRE disk |= applier_rep(navail, flushed_disk)
POST disk |= (ret= true ∧ applier_rep(navail′, replay (flushed_disk, ents))) ∨

(ret= false ∧ applier_rep(navail, flushed_disk) ∧
∥ ents∥>MaxLogLen)

CRASH disk |= would_recover_either(flushed_disk, replay(flushed_disk, ents))

Figure 6-9: Specification for Applier’s applier_flush

Inside applier_flush, if it sees the available log space navail is too small to fit the
passed-in transaction (ents), the code will first invoke applier_apply to make room for the
new transaction. applier_apply applies and truncates the on-disk log. Its specification is
shown in Figure 6-10. The postcondition of applier_apply resets the available log space
to its maximum value. Other than that, the specification exhibits a no-op-like behavior
such that Applier is free to invoke it anytime.

Also note that the crash condition in Figure 6-10 is different from its precondition.
This is because applier_apply will call disklog_truncate to clear the log, and disklog_truncate
might leave the log in an unsynced state, in which DiskLog just overwrites the commit

51

block but has not yet issued a write barrier to persist the change. The unsynced state
is not captured by the regular form of applier_rep shown in Figure 6-2. Nevertheless,
this does not invalidate the fact that applying the log is an idempotent operation and
will always recover to flushed_disk as in the precondition. The “would_recover_before”
predicate exactly captures this property.

SPEC applier_apply ()
PRE disk |= applier_rep(navail, flushed_disk)
POST disk |= applier_rep(MaxLogLen, flushed_disk)
CRASH disk |= would_recover_before(flushed_disk)

Figure 6-10: Specification for Applier’s applier_apply

Finally, applier_flush extends the log using DiskLog’s disklog_append, whose specifica-
tion is illustrated in Figure 6-11. Like before, FSCQLOG’s implementation guarantees that
the failure case in the postcondition cannot occur, because no transaction larger than
MaxLogLen will be appended, and applier_apply will reset the available log space back to
MaxLogLen when necessary.

The two branches in Figure 6-11’s crash condition corresponds to the two cases
defined by would_recover_either. In particular, the “Extended” case also describes an
unsynced log state: If the system crashes while updating the commit block, it will recover
to a state either before or after new_ents is appended. The evolution of crash conditions
in each logging layer further demonstrates that representation invariants can help in
hiding lower-level details from the higher layers.

One subtlety of disklog_append’s specification is that it includes a frame predicate
Fdisk. This is because disklog_rep only describes the log region and does not cover the
entire disk address space. This frame predicate allows DiskLog’s upper layer (Applier)
to carry its own predicate about the data region of the disk—another example of using
separation logic to achieve modularity.

SPEC disklog_append (new_ents)
PRE disk |= Fdisk ⋆ disklog_rep(Synced, navail, old_ents)
POST disk |= (ret= true ∧ Fdisk ⋆ disklog_rep(Synced, navail′, old_ents++new_ents)

(ret= false ∧ Fdisk ⋆ disklog_rep(Synced, navail, old_ents) ∧
∥new_ents∥> navail)

CRASH disk |= Fdisk ⋆ disklog_rep(Synced, navail, old_ents) ∨
Fdisk ⋆ disklog_rep(Extended, old_ents, new_ents)

Figure 6-11: Specification for DiskLog’s disklog_append

52

6.4 Logging with checksums

The previous section mostly introduced specifications above the DiskLog layer that
implement deferred apply and group commit. This section describes how to implement
and formalize the log-checksum optimization mentioned in Section 3.2. More details
about the design of FSCQ’s log-checksum optimization can be found in [68].

6.4.1 On-disk layout and protocol

DiskLog is responsible for managing on-disk state of transactions. The on-disk log that
DiskLog maintains internally is separated into three regions: the header (i.e., the commit
block), descriptor, and data regions, shown in Figure 6-12. The header stores the number
and checksum of valid blocks in the descriptor and data regions. To ensure durability
after a crash, the header also stores the number of blocks at the time of the previous
flush. The descriptor region stores disk-block addresses corresponding to block value
updates, which are stored in the data region in the same order. Disk-block addresses from
a single append call can be packed into a single descriptor block. DiskLog’s specifications
show that the packing and unpacking are sound.

 previous_len
len

checksum

log descriptor

...

log header

a0 a1 a2 a3

log data

v0 v1 v2 v3 ...

len

previous_len

len

previous_len

Figure 6-12: On-disk layout of FSCQLOG

To truncate the log, DiskLog simply sets the length equal to zero in the log header.
To append to the log, DiskLog writes log entries and the log header together. To do this,
DiskLog first writes each entry in the transaction to the descriptor and data regions.
Then, DiskLog updates the checksum, previous_len, and len fields in the log header.
The checksum is computed by hashing the stored checksum with the newly appended
descriptor and data blocks. For both appending and truncating, DiskLog also stores the
old length of the log in previous_len field. During recovery, DiskLog first tries to read the
log from the disk according to the length stored in the len field, compute the checksum,
and check it against the value stored in the checksum field. If they do not match, DiskLog
falls back to use the length stored in the previous_len field, computes the checksum again,

53

and updates the checksum and len fields to reflect the corrected state. The pseudocode
for the DiskLog protocol is shown in Figure 6-13.

Called by Applier layer after applying log to disk.
def disklog_truncate(txn):

header = disk_read(CommitBlock)
header.previous_len = header.len
header.len = 0
disk_write(CommitBlock, header)
disk_sync()

Called by Applier layer, which guarantees that there’s enough space.
def disklog_append(txn):

header = disk_read(CommitBlock)
write_packed_addresses(LogDescStart, header.len, txn)
pos = LogDataStart + header.len
for (a, v) in txn.iteritems():

disk_write(pos, v)
header.checksum = hash(header.checksum || a || v)
pos += 1

header.previous_len = header.len
header.len = header.len + len(txn)
disk_write(CommitBlock, header)
disk_sync()

def disklog_readlog(nr):
checksum = hash(0)
log = []
for i in range(0, nr):

a = read_packed_address(LogDescStart, i)
v = disk_read(LogDataStart + i)
checksum = hash(checksum || a || v)
log.append((a, v))

return (checksum, log)

def disklog_recover():
header = disk_read(CommitBlock)
(checksum, log) = disklog_readlog(header.len)
if checksum != header.checksum:

(checksum, log) = disklog_readlog(header.previous_len)
header.checksum = checksum
header.len = header.previous_len
disk_write(CommitBlock, header)
disk_sync()

return log

Figure 6-13: Pseudocode of DiskLog layer

54

6.4.2 Formalizing checksums

A challenge in formalizing and verifying the checksum-based protocol lies in the proba-
bilistic guarantee that it offers. In practice, using a strong collision-resistant hash function
(such as SHA-256) ensures that the probability of a collision is negligible. Although de-
velopers assume that there are no hash collisions in practice, formalizing this assumption
is difficult. Theoretically speaking, any hash function (including a collision-resistant
function like SHA-256) has collisions, and as a result, two different sets of log entries
may have the same checksum. Consequently, stating an axiom that a hash function has
no collisions is unsound and is equivalent to assuming that true is false. On the other
hand, stating an axiom that a hash function is collision-resistant requires reasoning
about probabilities and the computational power of some hypothetical adversary that is
attempting to find hash collisions.

An ideal hash model should allows FSCQ to state specifications in a natural way—the
way that a file system developer might assume—by completely ignoring the possibility of
hash collisions. Otherwise, All proofs would have to deal with probabilistic preamble like
“with high probability, unless there is a hash collision, ...”, and all specification would be
more complex (e.g., after recovery, if there weren’t hash collisions during past crashes,
one will have the correct data with high probability).

Approach. FSCQLOG has a solution that is both sound and avoids reasoning about
the probability of hash collisions. The key idea is to treat hash collisions as function
non-termination in the formal semantics of execution. Recall from Section 4.1 that
any procedure in CHL is composed of sequences of basic opcodes, such as disk_read,
disk_write, etc. CHL provides a formal semantics for how each of these opcodes should
execute; e.g., a disk read returns the last written value, and a crash non-deterministically
chooses some set of outstanding writes to apply.

FSCQLOG introduces a new opcode to CHL, called hash, which computes the hash
value of its input. CHL’s formal semantics keep track of all inputs ever hashed and their
corresponding hash values. If hash is presented with an input that hashes to the same
result as an earlier, different input, then the hash opcode enters an infinite loop and
never returns.

This formalization achieves our goals. First, it allows FSCQLOG to conclude that,
if hash returns the same hash value twice, the inputs must have been equal (because
otherwise hash would not have returned), without reasoning about probabilities. This
allows us to write specifications about entire file-system operations, such as rename,
saying that if the operation returns, then a transaction must have been committed. Second,
this formalization is sound, because it does not prohibit the possibility of hash collisions,
and instead, explicitly takes them into account (by entering an infinite loop on a collision).

55

At runtime, of course, the hash opcode is implemented using a collision-resistant hash
function (SHA-256 in our case). This hash function does not enter an infinite loop when
presented with a colliding input and, consequently, can differ from the formal semantics
of hash. However, since we know that our hash function is collision-resistant, we know
that the possibility of finding a collision is negligible, and thus the possibility that the
real execution semantics will differ from the formal one is also negligible. Consequently,
using a collision-resistant function for hash at runtime allows us to capture the standard
assumption made by developers (that hash collisions do not happen).

Crash safety. An additional challenge that arises in FSCQLOG compared to earlier work
on modeling hash collisions [6] is that the computer can crash at any point. This means
that, after a crash, the list of inputs ever hashed can be different from the list of hash
inputs in either the pre- or the post-condition of a procedure. However, the file-system
recovery code must still be able to reason about the list of hash inputs after a crash,
in order to prove that it recovers the contents of the on-disk log. FSCQLOG’s solution
is to prove that the list of hash inputs after a crash is a superset of the hash inputs
from a procedure’s precondition, which allows FSCQLOG’s write-ahead log to prove its
correctness.

6.5 Log bypass

Writes that bypass the log still interact with FSCQ’s write-ahead log. If the file system
issues a log-bypass write to block b, and there is an un-applied transaction that modified
block b, it is important that this transaction does not later overwrite b’s contents. Thus,
log-bypass writes in FSCQ go through the log abstraction (even though they are not
written to the write-ahead log).

The dwrite procedure, exposed by LogAPI, GroupCommit, and Applier, checks if
there was a previous logged write to the same address as the log-bypass write. In LogAPI,
previous logged writes to the same address are discarded (since they have not yet
committed). In GroupCommit, if there are any in-memory transaction writing to the
same address, all of them are flushed to disk. In Applier, if the address appears in the
on-disk log, the log is applied, so that a later log apply does not overwrite the block
modified through log bypass.

Another approach could have been to discard previously committed writes to any
block modified via log bypass, even in the lower layers (GroupCommit and Applier).
However, this approach leads to the same problem that ext4 experienced, where new
file blocks can contain data from previously deleted files after a crash [42]. By flushing
previously committed writes, FSCQLOG avoids this problem.

56

The specification of FSCQLOG’s top-level dwrite is shown in Figure 6-14. It differs
from the specification of logged write (see Figure 5-3) in three ways. First, log_dwrite
writes directly to the disk; therefore, it changes not only the state of the current logical
disk (old_state), but also all disks from the disk sequence of the transaction’s starting
state (old_disk_seq, as they all derive from the underlying disk state). Second, much like
the specification for writing to the physical disk, log_dwrite exposes an asynchronous
interface, leaving the updated block in an unsynced state (i.e., the block’s value-set
contains more than one value). Finally, the crash condition of log_dwrite says that it
could recover into any disk from either the original or the updated disk sequence. This is
because log_dwrite internally might invoke log_flush to flush buffered transactions.

SPEC log_dwrite (a, v)
PRE disk |= log_rep(ActiveTxn, old_disk_seq, old_state)

old_state |= F ⋆ a 7→ 〈v0, vs0〉
∀i, old_disk_seq[i] |= Fi ⋆ a 7→ 〈vi , vsi〉

POST disk |= log_rep(ActiveTxn, new_disk_seq, new_state)
new_state |= F ⋆ a 7→ 〈v, {v0} ∪ vs0〉
∀i, new_disk_seq[i] |= Fi ⋆ a 7→ 〈v, {vi} ∪ vsi〉

CRASH disk |= would_recover_any(old_disk_seq) ∨
would_recover_any(new_disk_seq)

Figure 6-14: Specification for LogAPI’s log_dwrite

The caller of log_dwrite is responsible for syncing the updated block at the appropriate
time. If the file system is built on top of a write-through cache, where writes immediately
go to the physical disk, the caller can simply use the disk write barrier (i.e., disk_sync) to
persist the change. However, FSCQ is built on top of a write-back cache (see Chapter 8),
where writes are buffered in memory until the updated block is evicted from the cache.

SPEC log_dsync (a)
PRE disk |= log_rep(ActiveTxn, old_disk_seq, old_state)

old_state |= F ⋆ a 7→ 〈v0, vs0〉
∀i, old_disk_seq[i] |= Fi ⋆ a 7→ 〈vi , vsi〉

POST disk |= log_rep(ActiveTxn, new_disk_seq, new_state)
new_state |= F ⋆ a 7→ 〈v0, ∅〉
∀i, new_disk_seq[i] |= Fi ⋆ a 7→ 〈vi , ∅〉

CRASH disk |= log_rep(ActiveTxn, old_disk_seq, old_state)

Figure 6-15: Specification for LogAPI’s log_dsync

To make sure that a block updated through log_dwrite is persisted on disk, the caller
must first evict the block from the buffer cache and then sync the physical disk. FSCQLOG

57

offers a log_dsync procedure that takes care of block syncing in the presence of deferred
writes. The specification of log_dsync is shown in Figure 6-15, which is very similar to
log_dwrite’s specification but has a simpler crash condition. To improve performance,
FSCQLOG also offers a few variants of log_dsync that allow a caller to evict a list of blocks
from the buffer cache but only issue a single disk sync at the end. FSCQ uses log_dsync
and its variants to implement fsync and fdatasync.

Because log-bypass writes interact subtly with logged writes, this poses challenges at
the file-system level, which uses logged writes to update the metadata and log-bypass
writes to change a file’s data. For example, to guarantee crash safety, bypassing the log
for file data requires that disk blocks are not reused until the log is flushed to disk. We
discuss how to address this challenge in the next chapter.

58

SEVEN

Specification for deferred writes

Recall that deferred-write optimization buffers recent file-system updates in memory (Sec-
tion 3.2) and allows the application to force file-system state to disk using fdatasync and
fsync. Deferred writes lead to many more possible crash states: when a computer crashes,
the state of the disk could reflect the changes of any system calls since the last fsync.
Because applications must use fsync to achieve their own crash safety, we need a way of
formalizing the deferred-write optimization at the file-system API level.

This chapter introduce a metadata-prefix specification that captures the properties of
fsync and fdatasync, based on Linux ext4’s behavior. We introduce two ideas to help in this
formalization: disk sequences enable the specification to describe all possible disks states
evolved from a sequence of deferred metadata operations, and disk relations allow the
specification to describe what invariants must hold across all disks in the disk sequence,
if we mix log-bypass writes with metadata operations.

7.1 Example application pattern

Achieving high performance and crash safety in a file-system application requires careful
use of fsync and fdatasync to ensure the file system writes data to the disk. To motivate the
metadata-prefix specification, we first consider a prototypical use of fsync and fdatasync.
We then explain why it is important to have a precise specification and argue for the
choice of our metadata-prefix specification.

Figure 7-1 shows the typical application pattern for using fsync and fdatasync, in
combination with other file-system APIs, to update a file in a crash-safe manner. This
pattern shows up in many real applications, such as a mail server, a text editor, a
database, etc. Of course, prior research has shown that file systems provide different
crash semantics [10, 57], so our example may not be crash-safe on some file systems
and crash-safe on others. Nonetheless, we will explain why a developer might expect it
to be crash-safe; this code also happens to be crash-safe on a file system that satisfies

59

tmpfile = "crashsafe.tmp"

def crash_safe_update(filename, data_blocks):
f = open(tmpfile, "w")
for block in data_blocks:
f.write(block)

f.close()

fdatasync(tmpfile)
rename(tmpfile, filename)
fsync(dirname(filename))

def crash_safe_recover():
unlink(tmpfile)

Figure 7-1: Pseudocode for an application pattern that updates the contents of a file in a
crash-safe manner.

our metadata-prefix specification. The pattern assumes that the application never runs
this function concurrently.

crash_safe_update(f , data) ensures that, after a crash, file f will have either its old
contents or the new data; it will not have a mixture of old and new data, or partial
new data, or any other intermediate state. To ensure this property, crash_safe_update first
writes the new data into a temporary file. We assume that the file system enables log
bypass and write-back caching, so that writing the new data to the file’s data blocks does
not go through the log, and the new data may not have been written to the file’s data
block yet.

Once crash_safe_update has finished writing data to the temporary file, it invokes
fdatasync to force the file system to flush any buffered changes to the temporary file’s
data blocks from the write-back cache out to disk (and to issue a disk-write barrier).

After fdatasync returns, crash_safe_update replaces the original file with the new
temporary file using rename. Since the file system’s rename is atomic with respect to
crashes, and the temporary file’s contents are already on disk, if the system crashes at
this point, the application will observe either the original contents (of the old file) or the
new contents (of the new file). Finally, crash_safe_update uses fsync to flush its change
to the directory, so that upon return, an application can be sure that the new data will
survive a crash.

If the system crashes while executing crash_safe_update, it must first execute the file
system’s recovery code (which may replay transactions that have been committed but
not applied), followed by its own recovery code. In our application pattern, the recovery
code crash_safe_recover simply deletes the temporary file if one exists. This is sufficient
for the pattern, since if the temporary file exists, we must have crashed in the middle of
crash_safe_update and thus the original file still has its old contents.

60

The pattern allows for high performance because all system-call invocations, except
for fsync and fdatasync, can be asynchronous. This allows the file system to defer writing
directory and file modifications to disk, and thus allows it to batch updates. As a result,
an efficient implementation of the file system could issue just two synchronous write
barriers to disk: one for the fdatasync call and one for the fsync.

From the point of view of specifications, a clean but naïve API may be one that allows
the application to encapsulate all write system calls into a single transaction, which is
written to the on-disk log. While this simplifies the job of the application developer, it
places a practical restriction on the amount of data that can be updated in a crash-safe
manner, because the entire transaction must fit in the on-disk log. File systems have
fixed-size logs that are typically small fractions of the total disk space. In fact, if the
application issues a single write() that cannot fit in the log, the file system must break
it up into multiple transactions. Thus, file systems in practice expose non-transactional
writes and fsync/fdatasync to applications.

7.2 What should the specification be?

The POSIX specification does not well specify the behavior of fsync and fdatasync [38].
In particular, one aspect that has been the subject of disagreement is the behavior of
fsync with respect to directories. To understand the challenges, consider the following
possible specifications.

Suppose an application calls rename("d1/f", "d2/f"), followed by fsync("d1"). For per-
formance reasons, a POSIX-compliant implementation might flush just the content of
the specific directory (i.e., d1), allowing the file system to parallelize fsync on different
files and directories. However, in our example, this would mean that the file f could be
lost after a crash: it would be gone from d1, because d1 was synced to disk, but it would
not yet appear in d2, because d2 was not yet synced. Thus, if the fsync specification
required that just the directory itself was flushed, the file system may be able to get good
performance, but it would be difficult for application developers to use such an API in
the presence of crashes.

To make it easier for application developers to build crash-safe applications, the file
system could provide a different specification, mirroring the traditional BSD semantics,
where all metadata operations are synchronous (written to disk immediately), but file
contents are asynchronous. This means that an application need not worry about calling
fsync on a directory; the rename operation from the above example would be persisted
to disk upon return. While this is simple to reason about, it achieves low performance
for metadata-heavy workloads (such as extracting a tar file).

As can be seen from these different specifications, coming up with a specification
for directory fsync requires striking a balance between achieving good performance and

61

enabling application developers to reason about application-level crash safety.
We address this challenge by proposing a practical specification that is both easy

to use at application level as well as allows for efficient file-system implementations.
Specifically, the metadata-prefix specification says:

1. fdatasync(f) on file f flushes just the data of f . This allows for log bypass for file
data blocks, which is important to avoid writing file data to disk twice. For example,
this allows a database server to write to the disk (through a large pre-allocated
file) without incurring file-system logging overheads.

2. fsync is a superset of fdatasync: it flushes both data and metadata. Furthermore,
fsync flushes all pending metadata changes; i.e., if fsync(d) is called on directory
d, it effectively ignores the argument and flushes changes to all other unrelated
directories.

3. Finally, the file system is always allowed to flush any file’s data, or all of the
metadata operations performed up to some point in time. This allows the file system
to re-order data and metadata writes to disk. After a crash, metadata updates will
be consistently ordered (i.e., if the file system performed two operations, a and b,
in that order, then after a crash, if b appears on disk, then so must a), but data
writes can appear out-of-order.

This specification provides a clear contract between applications and a file system.
Ensuring metadata ordering helps developers reason about the possible states of the
directory structure after a crash: If some operation survives a crash, then all preceding
operations must have also survived. For instance, in the crash_safe_update function from
Figure 7-1, the developer knows that all directory changes have been flushed to disk once
fsync(dirname(filename)) returns. Notably, this includes any possible pending changes
to parent directories as well: for instance, if the application had just created the parent
directory prior to calling crash_safe_update.

At the same time, the specification allows for high-performance file-system imple-
mentations: on the metadata side, it allows batching of metadata changes (until the next
fsync call), and on the data side, it allows for log bypass for file data writes and allows
for each file’s data to be flushed independently of other files and of the metadata. This
enables high performance for applications that perform in-place data modifications.

One limitation of the metadata-prefix specification is that it can flush unrelated
changes to disk when an application invokes fsync, since the specification requires all
metadata changes to be flushed together. In practice, the metadata-prefix specification
captures behavior similar to that provided by the ext4 implementation (in its default
configuration), largely as a side effect of ext4 having a system-wide log for all metadata.

62

As a result, we believe it is compatible with achieving sufficient performance for applica-
tions. Furthermore, we believe that FSCQ’s techniques would be equally applicable to
specifications that allow more aggressive performance optimizations as well.

In the rest of this chapter, we explore how to formalize the metadata-prefix specifica-
tion using CHL.

7.3 Disk sequences

FSCQ’s top-level file-system specifications also use a representation invariant to relate the
state of a disk to the corresponding abstract file-system tree. For instance, the specification
for the unlink system call might say that after unlink returns, the file is removed from the
tree, and if unlink crashes, the file might or might not have been removed.

In the presence of deferred writes, it is difficult to describe the tree that might be
on disk after a crash in the specification of unlink. Specifically, the on-disk state might
have little to do with unlink itself, and instead might reflect the operations that were
performed on the tree before unlink was called. For instance, the directory in which unlink
is called might not have even been created yet.

To describe these crash states succinctly, FSCQ’s insight is to avoid reasoning about
the contents of a single tree, and instead to represent the possible on-disk state as a
sequence of trees, with a designated latest tree. Each tree represents the state of the file
system after some system call, and each system call adds a new tree to the sequence
(and marks its tree as the latest).

tree_rep tree_rep tree_rep

Disk sequence

...

...

Write-ahead login-memory transactions

disk0

flushed state

...

latest

txn1 txn2 txnn

disk0 disk1 diskn

Figure 7-2: An illustration of FSCQ’s disk-sequence abstraction

Figure 7-2 shows an example disk sequence. In the bottom left, the on-disk state

63

represents the persistent state stored on disk. The list of transactions in the bottom row
corresponds to the system calls that have committed in memory but whose changes have
not been flushed to disk yet. Instead of reasoning about individual transactions, FSCQ
reasons about disk sequences, each of which is a logical disk that would arise if one
were to apply the in-memory transactions, in order, to the on-disk state. This sequence
of logical disks is shown in the middle row of Figure 7-2. The top row shows the logical
state of the file system (i.e., a directory tree structure) that corresponds to each of the
logical disks in the disk sequence.

Disk sequences simplify specifications. For instance, consider the specification of
the unlink system call, shown in Figure 7-3. The precondition describes the state of the
system before unlink is called, by saying that there is some sequence of disks, called
disk_seq, representing system calls that have been executed since the last fsync. log_rep,
as defined in Figure 6-4, is a representation invariant connecting the physical state of
the disk to its logical representation as a disk sequence. The postcondition adds a new
disk to this sequence and states that the new disk contains a tree where the unlinked file
is removed. The crash condition simply says that unlink can crash with any of the disks
from the original disk sequence (corresponding to earlier system calls) or with the new
disk that unlink added to this sequence.

SPEC unlink (cwd_ino, pathname)
PRE disk |= log_rep(NoTxn, disk_seq)

disk_seq.latest |= tree_rep(old_tree)
POST disk |= log_rep(NoTxn, disk_seq++ {new_state})

new_state |= tree_rep(new_tree) ∧
new_tree= tree_prune(old_tree, cwd_ino, pathname)

CRASH disk |= would_recover_any(disk_seq++ {new_state})

Figure 7-3: Specification for unlink

The specification shown in Figure 7-3 reasons about disk sequences with a separate
tree representation for each disk in the sequence. tree_rep is the representation invariant
that connects the abstract file-system tree to the content on a logical disk. Specifically,
tree_rep recursively maps the tree to a flat file address space, which in turn, maps to
the inode and block content on the logical disk. We will discuss details of file-system
construction in Chapter 8 but focus on the top-level specification for now.

Separating tree representation from disk sequences allows us to decouple the logging
subsystem, which reasons about a sequence of transactions that have been committed
but not flushed to disk, from the directory subsystem, which manages the file-system
tree inside of a single transaction. Furthermore, note that the specification of unlink says
nothing about earlier disks in the disk sequence. This is because unlink does not know,

64

and should not care, what operations came before it. Instead, it is up to the application
to keep track of what operations it invoked prior to unlink, if it wants to reason about
the different trees that can arise after a crash.

Disk sequences naturally capture the metadata-prefix property, because the disk
sequence is built up by applying the application’s system calls in order. As a result, we
can succinctly describe the metadata-prefix property by saying that a crash during a
system call can result in any of the disks from the disk sequence.

SPEC fsync (dir_ino)
PRE disk |= log_rep(NoTxn, disk_seq)

disk_seq.latest |= tree_rep(tree) ∧ IsDir(find_inum(tree, dir_ino))
POST disk |= log_rep(NoTxn, {disk_seq.latest})
CRASH disk |= would_recover_any(disk_seq)

Figure 7-4: Specification for fsync on directories

Disk sequences also allow for a concise specification of fsync for directories, as shown
in Figure 7-4. The specification directly derives from FSCQLOG’s log_flush specification as
we have seen in Figure 6-8. It simply says that, after fsync on a directory returns, the
disk sequence contains only the latest disk from before fsync. This latest tree reflects
all of the system calls issued by the application up to its call to fsync. Consequently, if
the application knows the corresponding tree for this latest disk, the application can
conclude that, after fsync returns, this is the only tree that can arise after a later crash.

7.4 Disk relations

Writes to file data that bypass the log can cause the state of the file system after a crash
to violate the order in which system calls were issued, since log-bypass writes are not
ordered with respect to other updates that use the write-ahead log. For instance, if an
application writes to an existing file and then renames the file, after a crash the file may
have the new name but the old contents. Conversely, if the application first renames
the file and then writes to it, after a crash the file may have the old name but the new
contents.

Log-bypass writes pose a challenge for our disk-sequence abstraction, because writes
made by an application in the latest state of the file system can affect earlier disks in
the disk sequence: after a crash, the file system may end up in an earlier disk from the
disk sequence, because the metadata changes might not have been fully flushed yet, but
the later log-bypass writes might already appear on disk. To formalize the behavior of
log-bypass writes, we need to describe how a write to a file affects not just the latest
state of the file system, but every previous state in the disk sequence as well.

65

Log-bypass writes also pose a challenge for file-system correctness, when a block that
belongs to a file in the current state of the file system used to belong to a different file,
or to a directory, in an earlier state. If that were the case, and the file system issued a
log-bypass write to this block, then after a crash that rolls back the log, the file system
would appear to have modified the contents of a different file, or even worse, corrupted
a directory. The typical approach for avoiding this problem is to ensure that data blocks
are not reused until after the metadata log is applied to disk.

...

tree_rep tree_rep tree_rep

disk0 disk1 diskn

dir_safe

latest

f

f

Figure 7-5: An illustration of how log-bypass writes interact with FSCQ’s disk sequences,
and the notion of disk relations. Dashed arrows represent the dir_safe relationship.

Figure 7-5 illustrates the problem with log-bypass writes in terms of a disk sequence.
A log-bypass write (shown by dark red shading in the figure) affects every disk in the disk
sequence, because under the covers, the disk sequence is simply a sequence of logical
disk states that would arise if one were to apply the recent transactions to the real on-disk
state. Thus, modifying the real disk state changes all of the disks in the disk sequence.
The figure illustrates two subtleties with log-bypass writes. If the file being modified
(f) was present elsewhere in the file-system hierarchy in a previous disk, it will also
be affected by a log-bypass write. However, if the file is nowhere to be found, then the
log-bypass write will have no effect on the file system’s abstract tree state.

FSCQ introduces the idea of disk relations to address both of these challenges. The
key idea is to relate two disks in a disk sequence to one another, to capture both the
connection between the file-system trees at the specification level (i.e., modifying a file
in the latest disk’s tree will have the same effect in an earlier disk’s tree) and to capture
the internal consistency of the file system (i.e., that data blocks are not reused).

For example, Figure 7-6 shows the FSCQ specification for the pwrite system call.
Here, pwrite’s precondition requires that all of the disks in the disk sequence satisfy the
dir_safe relation with respect to the latest disk state. This relation captures the internal
consistency of the file system. Specifically, dir_safe(d1, d2) says that, if a disk block b in

66

SPEC pwrite (ino, off , buf)
PRE disk |= log_rep(NoTxn, old_disk_seq) ∧

∀i,dir_safe(old_disk_seq[i], old_disk_seq.latest)
∀i, old_disk_seq[i] |= tree_rep(trees[i])
old_disk_seq.latest |= tree_rep(tree) ∧

f = find_inum(tree, ino) ∧
IsFile(f) ∧ off < ∥ f .data∥

POST disk |= log_rep(NoTxn, new_disk_seq) ∧
∀i,dir_safe(new_disk_seq[i], new_disk_seq.latest)

∀i, new_disk_seq[i] |= tree_rep(new_trees[i]) ∧
either ∃path, find_subtree(trees[i], path) = 〈ino, fi〉 ∧

new_trees[i] = tree_update(trees[i], ino, f ′i) ∧
f ′i = add_write(fi , off , buf)

or new_trees[i] = trees[i]
new_disk_seq.latest |= tree_rep(tree′) ∧

tree′ = tree_update(tree, ino, f ′) ∧
f ′ = add_write(f , off , buf)

CRASH disk |= would_recover_any(old_disk_seq) ∨
would_recover_any(new_disk_seq)

Figure 7-6: Specification for file write that bypasses the write-ahead log

disk d2 belongs to a file with inode number i at offset o, then b in d1 must either belong
to a file with the same inode number i and offset o (but possibly with a different path
name), or it must be in the free list. The bottom of Figure 7-5 shows the dir_safe relation
between all older disks and the latest disk in a disk sequence.

The dir_safe relation enables pwrite to prove its postcondition. The latest state in
the disk sequence simply says that the file now contains the new data. The add_write
function, applied to a file, adds a pending write to that offset in a file; this models the fact
that the underlying disk can now choose either this new value or some previously written
values, to be at this offset after a crash. The more interesting part is what happens to
earlier disks. The specification says that either a file with the same inode number will
be modified, at the same offset, or that the operation may have no effect, if there is no
such file. Note that the specification allows the file to have a different path name in a
previous disk, corresponding to our earlier rename-and-write example.

Disk relations are also helpful in capturing other properties between disks. For
instance, the pwrite specification shown in Figure 7-6 is simplified to avoid talking about
inode-number reuse. While the shown specification is correct, a stronger specification
(not shown) could use an inode-number-reuse relation to say that, even if an inode
number was reused from an earlier disk, the disk blocks of that earlier file with the same
inode number will not be affected.

67

One complication with log-bypass writes is the interaction between them and the
resizing of a file. For example, if a file was truncated and then re-grown, the file may
have the same inode number and the same length, but the underlying disk blocks are
different. Thus, pwrite might or might not modify the file’s blocks as they appear in an
earlier disk from the disk sequence. The “either . . . or” in the postcondition takes care of
this problem.

SPEC fdatasync (ino)
PRE disk |= log_rep(NoTxn, old_disk_seq) ∧

∀i,dir_safe(old_disk_seq[i], old_disk_seq.latest)
∀i, old_disk_seq[i] |= tree_rep(trees[i])
old_disk_seq.latest |= tree_rep(tree) ∧

f = find_inum(tree, ino) ∧ IsFile(f) ∧
∀b, b < ∥ f .data∥ ⇒ f .data[b] = 〈vb, vsb〉

POST disk |= log_rep(NoTxn, new_disk_seq) ∧
∀i,dir_safe(new_disk_seq[i], new_disk_seq.latest)

∀i, new_disk_seq[i] |= tree_rep(new_trees[i]) ∧
if ∃path, find_subtree(trees[i], path) = 〈ino, fi〉 then

new_trees[i] = tree_update(trees[i], ino, f ′i) ∧
∀b, if block_same(ino, b, old_disk_seq[i], old_disk_seq.latest)

then f ′i .data[b] = 〈vb, ∅〉 else f ′i .data[b] = fi .data[b]
else new_trees[i] = trees[i]

CRASH disk |= would_recover_any(old_disk_seq)

Figure 7-7: Specification for fdatasync

This interaction shows up more prominently in the fdatasync specification, shown
in Figure 7-7. Here, using an “or” is not sufficient, because the application wants to be
sure that the blocks of the file are definitely flushed to disk. To address this problem,
the fdatasync specification uses the block_same relation in its postcondition to say that,
as long as the file did not shrink and re-grow since an earlier disk in the disk sequence,
then the latest value of that block will be persistent on disk. Here, the precondition says
that vb was the last value written to each block b of the file (presumably using the file’s
add_write function, from pwrite’s postcondition) but that some previously written data
(corresponding to vsb) might still be stored on disk. The postcondition uses the same
notation to denote the fact that, if fdatasync succeeds, the disk cannot possibly contain
any previously written data (denoted by ∅).

Disk relations fit well with our earlier specification for fsync, which flushes the write-
ahead log to disk. Since fsync’s postcondition, shown in Figure 7-4, says that the new
disk sequence consists of just one disk, no additional safety relations are necessary, since
there are no earlier disks to consider. Other system calls that add a new disk to the

68

disk sequence, such as unlink, promise the dir_safe relation for the new disk in their
postcondition. This was not shown in our earlier example in Figure 7-3 for simplicity.

69

70

EIGHT

Building a file system

This chapter describes FSCQ, the file system built on top of FSCQLOG, specified and
certified using CHL. The implementation follows the organization shown in Figure 1-1
in Section 1.4. FSCQ’s design closely follows the xv6 file system [18] and extends it to
support log-bypass writes, fsync and fdatasync. The rest of this chapter describes FSCQ,
the challenges we encountered in proving FSCQ, and the design patterns that we came
up with for addressing them.

8.1 Overview

FSCQLOG

Buffer cache

Inode

Bitmap allocator

Block-level file

Directory

Directory tree

FSCQ system calls

Figure 8-1: FSCQ components. Arrows represent procedure calls.

Figure 8-1 shows the overall components that make up FSCQ, with arrows showing
the dependency among them. The buffer cache module at bottom provides a write-back
cache of disk blocks. All disk accesses in FSCQ (including FSCQLOG) go through the cache.

71

Components above FSCQLOG provide simple implementations of standard file-system
abstractions. Block allocator implements a bitmap allocator, used for both block and inode
allocation. Inode implements an inode layer; the most interesting logic here is combining
the direct and indirect blocks together into a single list of block addresses. Inode invokes
block allocator to allocate indirect blocks and file data blocks. Block-level file exposes
to higher levels an interface where each file is a list of blocks. Directory implements
directories on top of block-level files. Directory tree combines directories and block-
level files into a hierarchical directory-tree structure; it invokes the bitmap allocator to
allocate/deallocate inodes when creating/deleting files or subdirectories. Finally, the top
layer implements complete file-system calls in transactions.

Figure 8-2 shows FSCQ’s disk layout. The super block contains information about
where all other parts of the file system are located on disk and is initialized by mkfs. The
shaded region inside the bold box is managed by FSCQLOG.

super
block data blocks

inode
allocator

block
allocator

(1)

block
allocator

(2)
FSCQLOG

inode
blocks

Figure 8-2: FSCQ on-disk layout

8.2 End-to-end specification

FSCQ provides a POSIX-like interface at the top level; the main differences from POSIX
are (1) that FSCQ does not support hard links, (2) that FSCQ exposes a block-level file
interface, as opposed to byte-level, and (3) that FSCQ does not implement file descriptors
and instead requires naming open files by inode number. FSCQ relies on the FUSE driver
to maintain the mapping between open file descriptors and inode numbers.

FSCQ formally specifies the crash-safety behavior for all of its APIs. For each system
call, FSCQ provides two specifications: one with explicit crash conditions, and one
combined with the recovery execution semantics to show the end-to-end guarantee of
the system call. The former one is useful for applications built on top of FSCQ to prove
their own crash-safety properties. To do that, applications supply their own recovery
procedures (which usually call the file system’s recovery procedure first) to FSCQ’s
recovery execution semantics. We have shown many such specifications in Chapter 7,
including the specifications for unlink, fsync and fdatasync.

To write the end-to-end specification for a system call, we assume that the system
call starts with no pending transactions and flushes the current transaction immediately

72

SPEC rename (cwd_ino, oldpath, newpath) \ fs_recover ()
PRE disk |= log_rep(NoTxn, {start_state})

start_state |= tree_rep(old_tree) ∧
cwd_tree= find_ino(old_tree, cwd_ino) ∧ IsDir(cwd_tree)

POST disk |= ((status= 〈Completed, NoError〉 ∨ status= Recovered) ∧
log_rep(NoTxn, {new_state})) ∨

((status= 〈Completed, Error〉 ∨ status= Recovered) ∧
log_rep(NoTxn, {start_state}))

new_state |= tree_rep(new_tree) ∧
〈mover, ino〉= find_subtree(cwd_tree, oldpath) ∧
pruned= tree_prune(old_tree, cwd_ino, oldpath) ∧
new_tree= tree_graft(pruned, cwd_ino, newpath, mover)

Figure 8-3: Specification for rename with recovery

after commit; otherwise the recovered states might reveal an earlier logical disk that has
nothing to do the system call in question.

Figure 8-3 shows FSCQ’s end-to-end specification for its most complicated metadata
operation, rename, in combination with FSCQ’s recovery procedure fs_recover. rename’s
precondition requires that the directory tree is in a consistent state, matching the tree_rep
invariant, and that the caller’s current working directory inode, cwd_ino, corresponds to
some valid path in the tree. The postcondition asserts that rename will either return an
error, with the tree unchanged, or succeed, with the new tree being logically described
by the functions tree_prune, tree_graft, etc. These functions operate on a logical repre-
sentation of the directory-tree structure, rather than on low-level disk representations,
and are defined in a few lines of code each. In case of a crash, the state will either have
no effects of rename or will be as if rename had finished.

8.3 Using address spaces

Since transactions take care of crashes, the remaining challenge lies in specifying the
behavior of a file system and proving that the implementation meets its specification
on a reliable disk. As mentioned in Section 4.3, CHL’s address spaces help express
predicates about address spaces at different levels of abstraction. For example, consider
the specification shown in Figure 8-4 for file_block_write, which overwrites existing
blocks through the log. This specification uses separation logic in four different address
spaces: the physical disk (which implements asynchronous writes and matches the log_rep
predicate); the abstract disks inside the transaction, old_state and new_state (which have
synchronous writes and match the files_rep predicate); the address spaces of files indexed
by inode number, old_files and new_files; and finally the address spaces of file indexed by

73

block offset, old_f .data and new_f .data. The use of separation logic within each address
space allows us to concisely specify the behavior of file_block_write at all these levels of
abstraction. Furthermore, CHL applies its proof-automation machinery to separation logic
in every address space. This helps developers construct short proofs about higher-level
abstractions.

SPEC file_block_write (inum, off , block)
PRE disk |= log_rep(ActiveTxn, disk_seq, old_state)

old_state |= F ⋆ files_rep(old_files)
old_files |= Ffiles ⋆ inum 7→ old_f
old_f.data |= Fblocks ⋆ off 7→ 〈v0, vs0〉

POST disk |= log_rep(ActiveTxn, disk_seq, new_state)
new_state |= F ⋆ files_rep(new_files)
new_files |= Ffiles ⋆ inum 7→ new_f
new_f.data |= Fblocks ⋆ off 7→ 〈block, ∅〉 ∧ new_f .attr= old_f .attr

CRASH disk |= log_rep(ActiveTxn, disk_seq, any_state)

Figure 8-4: Specification for writing to a file through the log

8.4 Resource allocation

File systems must implement resource allocation at multiple levels of abstraction—in
particular, allocating disk blocks and allocating inodes. We built and proved correct a
common allocator in FSCQ. It works by storing a bitmap spanning several contiguous
blocks, with bit i corresponding to whether object i is available. FSCQ instantiates this
allocator for both disk-block and inode allocation, each with a separate bitmap.

Writing a naïve specification of the allocator is straightforward: freeing an object
adds it to a set of free objects, and allocating returns one of these objects. The allocator’s
representation invariant asserts that the free set is correctly encoded using “one” bits
in the on-disk bitmap. However, the caller of the allocator must prove more complex
statements—for example, that any object obtained from the allocator is not already in
use elsewhere. Reproving this property from first principles each time the allocator is
used is labor-intensive.

To address this problem, FSCQ’s allocator provides a free_objects_pred(obj_set) pred-
icate that can be applied to the address space whose resources are being allocated. This
predicate is defined as a set of (∃v, i 7→ v) predicates for each i in obj_set, combined
using the ⋆ operator. obj_set is typically the allocator’s set of free object IDs, so this
predicate states that every free object ID points to some value.

Using free_objects_pred simplifies reasoning about resource allocation, because it can

74

be combined with other predicates about the objects that are currently in use (e.g., disk
blocks used by files), to give a complete description of the address space in question.
The disjoint nature of the ⋆ operator precisely capture the idea that all objects are either
available (and managed by the allocator) or are in use (and match some other predicate
about the in-use objects).

files_rep(files) := ∃ free_blocks1 ∃ free_blocks2 ∃ inodes,

allocator_rep(free_blocks1) ⋆

allocator_rep(free_blocks2) ⋆

inode_rep(inodes) ⋆

files_inuse_rep(inodes, files) ⋆

free_objects_pred(free_blocks1) ⋆

free_objects_pred(free_blocks2)

Figure 8-5: Representation invariant for FSCQ’s file layer

For example, Figure 8-5 shows the representation invariant for FSCQ’s file layer,
which is typically applied to FSCQLOG’s abstract disk address space, as shown in Fig-
ure 8-4. The abstract disk, according to Figure 8-5, is split up into six disjoint parts:
two allocation bitmaps (represented by allocator_rep), the inode area (represented by
inode_rep), file data blocks (represented by files_inuse_rep), and two free-block regions
(described by free_objects_pred). The allocator’s representation invariant (allocator_rep)
connects the on-disk bitmap to the set of available blocks (free_blocks1 and free_blocks2).
The file_inuse_rep function combines the inode state in inodes (containing a list of block
addresses for each inode) and the logical file state files to produce a predicate describing
the blocks currently used by all files. Finally, free_objects_pred asserts that the free blocks
are disjoint from blocks used by the other predicates. By this definition, files_rep covers
all dark blue regions shown in Figure 8-2.

The reason that files_rep includes two separate block allocators (free_blocks1 and
free_blocks2) is to avoid undesired block reuse. As mentioned in Section 7.4, log bypass
for file-data writes requires that disk blocks are not reused until the log is flushed to disk.
To implement this, FSCQ uses two disk-block allocators. When a disk block is freed, it
goes into one of the allocators. When FSCQ needs a new disk block, it allocates from the
other one. When FSCQ flushes the log to disk, it swaps the roles of the two allocators,
since it is now safe to reuse blocks freed prior to the log flush. This trick simplified FSCQ’s
proofs since we did not need to implement and prove a separate list of pending blocks
that cannot yet be reused.

The same pattern applies to allocating inodes as well. The only difference is that,
in files_rep, the predicate describing the actual bitmap, allocator_rep, and the predicate

75

describing the available objects, free_objects_pred, were both applied to the same address
space (the abstract disk). In the case of inodes, the two predicates are applied to different
address spaces: the bitmap predicate is applied to the abstract disk, but free_objects_pred
is applied to the inode address space.

8.5 Buffer cache

FSCQ implements a write-back buffer cache: writes are buffered in memory until being
evicted. Eviction happens when reads and writes bring other blocks into the buffer cache.
The buffer cache exposes an asynchronous interface resembling that of the physical disk
and also uses the subset-points-to relation in its specifications. Both reads and writes
bring the accessed block into the cache and can cause another block to be evicted if the
cache is full. Similar to background disk syncs, implicit eviction does not change the
cache’s observable state, allowing concise specifications for reads and writes.

The buffer cache provides a cache_sync operation that allows the caller to explicitly
evict a block from the cache, and, if the evicted block is dirty, the buffer cache will write
the block to disk and issue a write barrier to persist the change. The postcondition of
cache_sync guarantees that the evicted block contains a single possible value. For better
performance, the buffer cache also offers a few variants of cache_sync that allow to evict
several blocks, but only issuing a single disk-write barriers (see Section 6.5).

There is another interesting aspect in the design of our buffer cache: how it im-
plements replacement policies. We wanted the flexibility to use different replacement
algorithms, but proving the correctness of each algorithm posed a nontrivial burden.
Instead, we borrowed the validation approach from CompCert [49]: rather than proving
that the replacement algorithm always works, FSCQ checks if the result is safe (i.e., is
a currently cached block) before evicting that block. If the replacement algorithm mal-
functions, FSCQ evicts the first block in the buffer cache. This allows FSCQ to implement
replacement algorithms in unverified code while still guaranteeing overall correctness.

8.6 On-disk data structures

Another common task in a file system is to lay out data structures in disk blocks. For
example, this shows up when storing several inodes in a block; storing directory entries
in a file; storing addresses in the indirect block; and even storing individual bits in the
allocator bitmap blocks. To factor out this pattern, we built the Rec library for packing
and unpacking data structures into bit-level representations. We often use this library
to pack multiple fields of a data structure into a single bit vector (e.g., the bit-level

76

Definition inode_type : Rec.type := Rec.RecF ([
("len", Rec.WordF 64); (* number of blocks *)
("attrs", iattr_type); (* file attributes, another record type *)
("indptr", Rec.WordF 64); (* indirect pointer *)
("blocks", Rec.ArrayF 9 (Rec.WordF 64))]). (* direct block pointers *)

Figure 8-6: FSCQ’s on-disk inode layout

representation of an inode) and then to pack several of these bit-vectors into one disk
block.

For example, Figure 8-6 shows FSCQ’s on-disk inode structure, in Coq syntax. The
first field is len, storing the number of blocks in the inode, as a 64-bit integer (Rec.WordF
indicates a word field). The other fields are the file’s attributes (such as the modification
time), the indirect-block pointer indptr, and a list of 9 direct block addresses, blocks.

The library proves basic theorems, such as the fact that accesses to different fields are
commutative, that reading a field returns the last write, and that packing and unpacking
are inverses of each other. As a result, code using these records does not have to prove
low-level facts about layout in general.

One additional pattern that shows up is the need to treat several contiguous blocks as
a single list of objects. For example, FSCQ has several contiguous blocks storing inodes.
It is helpful to reason about on-disk inodes in terms of a single list containing all inodes
in these blocks. A similar pattern shows up for log descriptors, directory entries and even
for the bits in the allocator bitmaps. FSCQ provides a RecArray library that captures this
common pattern.

8.7 Prototype implementation

The implementation follows the organization shown in Figure 1-1 in Section 1.4. FSCQ
and CHL are implemented using Coq, which provides a single programming language
for implementation, stating specifications, and proving them. Figure 8-7 breaks down
the source code of FSCQ and CHL. Because Coq provides a single language, proofs are
interleaved with source code and are difficult to separate. The development effort took
several researchers about two years; most of it was spent on proofs and specifications.
Checking the proofs takes about 8 hours on an Intel i7-980X 3.33 GHz CPU with 24 GB
DRAM. The proofs are complete; we used Coq’s Print Assumptions command to verify
that FSCQ did not introduce any unproven axioms or assumptions.

CHL. CHL is implemented as a domain-specific language inside of Coq, much like a
macro language (i.e., using a shallow embedding). We specified the semantics of this
language and proved that it is sound. For example, we proved the standard Hoare-logic

77

Component Lines of code

FSCQ and CHL infrastructure 21,360
Hashing semantics 459
General data structures 3,863
Buffer cache 2,362
Write-ahead log 10,391
Inodes and files 3,212
Directories 5,698
FSCQ’s top-level API 1,997

Total 49,342

Figure 8-7: Combined lines of code and proof for FSCQ components

specifications for the for and if combinators. We also proved the specifications of disk_read,
disk_write (whose specifications is in Figure 4-2 in Section 4.2), and disk_sync manually,
starting from CHL’s execution and disk model. Much of the automation (e.g., the chaining
of pre- and postconditions) is implemented using Ltac, Coq’s domain-specific language
for proof search.

FSCQ. We implemented FSCQ also inside of Coq, writing the specifications using
CHL. We proved that the implementation obeys the specifications, starting from the
basic operations in CHL. FSCQLOG simplified FSCQ’s specification and implementation
tremendously, because much of the detailed reasoning about crashes is localized in
FSCQLOG.

FSCQ file server. We produced running code by using Coq’s extraction mechanism
to generate equivalent Haskell code from our Coq implementation. We wrote a driver
program in Haskell (550 lines of code) along with an efficient Haskell reimplementation
of fixed-size words, disk-block operations, and a buffer-cache replacement policy (470
more lines of Haskell). The extracted code, together with this driver and word library,
allows us to efficiently execute our certified implementation.

To allow applications to use FSCQ, we exported FSCQ as a FUSE file system, using
the Haskell FUSE bindings [9] in our Haskell FSCQ driver. We mount this FUSE FSCQ
file system on Linux, allowing Linux applications to use FSCQ without any modifications.
Compiling the Coq and Haskell code to produce the FUSE executable, without checking
proofs, takes a little under two minutes.

Limitations. Although extraction to Haskell simplifies the process of generating exe-
cutable code from our Coq implementation, it incurs high CPU overhead and adds the

78

Haskell compiler and runtime into FSCQ’s trusted computing base. In other words, a
bug in the Haskell compiler or runtime could subvert any of the guarantees that we
prove about FSCQ. We believe this is a reasonable trade-off, since our goal is to certify
higher-level properties of the file system, and other projects have shown that it is possible
to extend certification all the way to assembly [13, 33, 47].

Another limitation of the FSCQ prototype lies in dealing with in-memory state in
Coq, which is a functional language. CHL’s execution model provides a mutable disk but
gives no primitives for accessing mutable memory. We address this by explicitly passing
an in-memory state variable through all FSCQ functions. This contains the current buffer-
cache state (a map from address to cached block value) as well as the current transaction
state in several FSCQLOG layers. In the future, we want to support multiprocessors where
several threads share a mutable buffer cache, and we will address this limitation.

79

80

NINE

Evaluation

This chapter answers the following questions about FSCQ:

• Is FSCQ complete enough for realistic applications, and can it achieve reasonable
performance? (Section 9.1)

• What kinds of bugs do FSCQ’s theorems preclude? (Section 9.2)

• Are FSCQ’s specifications correct and useful? Does FSCQ recover from crashes?
(Section 9.3)

• How difficult is it to build and evolve the code and proofs for FSCQ? (Section 9.4)

9.1 Application and I/O performance

FSCQ is complete enough that we can use FSCQ for software development, running a
mail server, etc. For example, we have used FSCQ with the GNU coreutils (ls, grep, etc.),
editors (vim and emacs), software development tools (git, gcc, make, and so on), and
running a qmail-like mail server. Applications that, for instance, use extended attributes
or create very large files do not work on FSCQ, but there is no fundamental reason why
they could not be made to work.

Experimental setup. To validate that FSCQ’s design indeed achieves usable perfor-
mance and its I/O efficiency goal, we run two benchmarks to stress both data and
metadata aspects of FSCQ. We run mailbench, a qmail-like mail server from the sv6 oper-
ating system [15]. This models a real mail server, where using FSCQ would ensure email
is not lost even in case of crashes. We also used a modified LFS largefile benchmark [60]
to evaluate FSCQ’s I/O performance. mailbench performs many metadata operations by
manipulating small files, and our modified largefile performs many data writes to an
existing large file followed by fdatasync calls.

We compare FSCQ’s performance to Linux ext4 file system in two configurations: the
default mode (async,data=ordered), which enables log-bypass writes for file data, but does

81

not use log checksum; and the logged mode (journal_async_commit,data=journal), which
uses write-ahead log for both file data and metadata, and uses checksums to commit
in one disk sync instead of two. We run ext4 in two modes because FSCQ implements
both log bypass and log checksum, while the two optimizations are incompatible in
ext4 [42]. To match the two configurations, we also run FSCQ in two similar modes: one
with log bypass and the other without log bypass. Log checksum is enabled for FSCQ in
both modes. To make fair comparison, we also run ext4 inside FUSE with a modified
fusexmp_fh driver, which serializes and forwards all file-system requests to a native ext4
partition.

We run all of these experiments on a quad-core Intel(R) Core(TM) i7-980X 3.33 GHz
CPU with 24 GB memory running Linux 3.11. Unless specified otherwise, the file system
was stored on a separate partition on a Hitachi HDS721010CLA332 hard disk drive. We
compiled FSCQ’s Haskell code using GHC 8.0.1.

0

5

10

15

20

25

30

largefile mailbench

R
un

ni
ng

ti
m

e
(s

ec
on

ds
) FSCQ-bypass

ext4-bypass
FSCQ-log

ext4-log

Figure 9-1: Running time for largefile and for delivering 200 messages in mailbench on a
hard disk drive. “ext4-bypass” runs ext4 in the default configuration (async,data=ordered);
“ext4-log” runs ext4 in logged configuration (journal_async_commit,data=journal)

Application performance. The results of running our experiments are shown in Fig-
ure 9-1. The first conclusion is that for largefile, the logged configuration is about 2×
slower than the bypass configuration; this is true for both FSCQ and ext4. This is because
without log bypass, every file data update will result in at least two disk writes. Therefore,
log bypass is an essential optimization for applications that frequently overwrite large
chunks of existing data.

Second, the result of mailbench shows the opposite: For ext4, the logged configura-
tion performs 2.3× better than the log-bypass configuration. This is because mailbench
manipulates many small files, and log-bypass writes have an adverse effect when run-
ning on a rotational hard disk drive due to the seek time. In contrast, updating small
files through the log turns most random accesses into sequential accesses, effectively

82

eliminates disk seeks [60]. In addition, ext4’s log-bypass configuration does not use
log checksum, requiring two write barriers to commit a transaction, while the logged
configuration needs only a single write barrier per metadata transaction.

Third, for largefile, FSCQ’s performance is close to that of the ext4 file system in both
configurations: FSCQ is about 20% slower than ext4 in the bypass mode and about 13%
slower in the logged mode, respectively. The small performance gap is due to the fact
that FSCQ’s Haskell implementation uses about 4× more CPU time than ext4’s. We hope
to adopt ideas for better generation of certified assembly code in future work.

Forth, for mailbench running in the log-bypass configuration, FSCQ is about 55%
slower than ext4. Besides FSCQ’s higher CPU overhead, this is because mailbench creates
many small files and appends to them. An appending operation requires writing to the
file’s data block twice: once from the logging system to initialize the newly allocated
block (which is turned into more disk writes) and once through the log-bypass write to
store the actual data. Due to FSCQ’s log-bypass design, this results in more writes and
syncs than ext4 running in the bypass configuration, as shown in Figure 9-3. We discuss
FSCQ’s I/O performance below.

Finally, for mailbench running in the logged configuration, FSCQ is about 2× slower
than ext4. This is also due to two reasons: 1) FSCQ has a higher CPU overhead; and
2) FSCQ’s log layout is not yet optimized for reducing the seek time. FSCQLOG’s header,
descriptor and data regions start at fixed disk locations (see Section 6.4.1), thus flushing
a transaction involves writing to several non-contiguous addresses. In contrast, ext4’s
log design ensures that flushing a transaction can be done using sequential disk writes.
In fact, FSCQ issues fewer number of disk I/Os than ext4 in this case, as shown in
Figure 9-3. We expect the performance difference would go away after reducing FSCQ’s
CPU overhead and running the same benchmark on an SSD.

0
0.5

1
1.5

2
2.5

3
3.5

4

largefile-ssd mailbench-ssd

R
un

ni
ng

ti
m

e
(s

ec
on

ds
) FSCQ-bypass

ext4-bypass
FSCQ-log

ext4-log

Figure 9-2: Application performance of FSCQ running on an SSD drive

We also run the same set of benchmarks on an OCZ-VERTEX3 SSD drive. The result

83

in shown in Figure 9-2. FSCQ’s performance is 2× to 4× slower than ext4 in each
configuration, although the absolute performance of both file systems is better than
running on a hard disk drive. This is because SSD drives have no seeks and exhibit lower
latency than a rotational hard disk drive. As the benchmark becomes CPU-bounded,
FSCQ suffers more performance penalty from Haskell’s CPU overhead.

I/O performance. A primary goal of FSCQ was to achieve good I/O performance by
supporting group commit, log bypass, log checksum, and other optimizations. To validate
that FSCQ’s design indeed achieves its I/O efficiency goal, and to further understand
the end-to-end performance results reported in Figure 9-1, we use the Linux blktrace
support to trace the disk operations performed by each file system.

Figure 9-3 shows the results for this experiment, reporting the number of disk writes
and disk write barriers (syncs) issued by each of the file systems per application-level
operation (delivering a mail message in mailbench and writing a 4KB block in a large file
for largefile). We draw several conclusions.

largefile mailbench
writes syncs writes syncs

FSCQ-bypass 1.0 1.0 50.0 9.8
ext4-bypass 1.0 1.0 38.0 7.5
FSCQ-log 4.0 1.0 28.8 3.5
ext4-log 5.0 1.0 38.3 3.7

Figure 9-3: I/O performance of FSCQ compared to Linux ext4. Each cell reports the
number of writes and barriers, respectively, per application-level operation.

First, FSCQ indeed achieves good I/O efficiency, issuing a similar number of write
barriers and disk writes to ext4 in both configurations. For largefile, FSCQ and ext4
have the same number of write barriers (1.0 per application-level block write) in both
configurations.

Second, for largefile, both FSCQ and ext4’s log-bypass configurations write each block
to disk just once, whereas the logged configurations perform 4 to 5 disk writes for each
application-level block write. This is because every application-level write turns into an
on-disk transaction, which later must be applied separately. For logged configurations,
FSCQ requires fewer number of disk writes to complete each operation because FSCQ
supports fewer features than ext4 and consequently performs less bookkeeping for
metadata. For example, when writing to a file, ext4 also updates the modification time
in the file’s inode, while FSCQ does not do so for simplicity.

Third, for mailbench running on FSCQ and ext4, the number of disk barriers issued
in the logged configurations is about half of that in the bypass configurations. This is

84

because both FSCQ and ext4’s logged configuration enables log checksum, which commits
each transaction with a single write barrier. In contrast, ext4’s default configuration
(ext4-bypass) does not use log checksum, requiring two write barriers to commit a
transaction. The effect of log-checksum optimization is more prominent here because
mailbench’s operations are metadata-intensive, thus committing more transactions than
largefile does.

Finally, for mailbench under log-bypass configurations, FSCQ requires 30% more
writes and syncs than ext4. This is because every time mailbench writes to a newly
created file, FSCQ has to flush all cached transactions to disk. More specifically, when
growing a file, FSCQ first issues a transactional write to initialize the newly allocated
block, commits the file-grow transaction and then issues another log-bypass write to
the same block to store the actual data. Because the second write hits the previously
cached transactional write, GroupCommit has to flush all cached transactions to preserve
the ordering (see Section 6.5). In contrast, ext4 optimizes this scenario by discarding
previously committed write from the transaction cache. This optimization is incompatible
with log checksum [42], which is always enabled in our FSCQ prototype.

To summarize, FSCQ indeed achieves usable application performance, and its I/O
performance is on par with Linux ext4. The evaluation also indicates that there is still
room for further optimizations, such as reducing the CPU overhead, adopting a better
log layout to minimize seek time and optimizing for file-grow operations.

9.2 Bug discussion

We answer the question of whether FSCQ’s theorems prevent real bugs in two ways.
First, we present a case study of different kinds of bugs that have been discovered in
the Linux ext4 file system and argue that FSCQ prevents them. Second, we describe our
own experience in developing FSCQ and point out specific bugs that were caught in the
process of proving its correctness.

Bug category and example
Possible Prevented
in FSCQ? by FSCQ?

Logging logic; write/barrier ordering [19, 42, 65] Yes Yes
Misuse of logging API [61, 66] Yes Yes
Bugs in recovery protocol [37, 52] Yes Yes
Improper corner-case handling [73] Yes Yes
Low-level bugs [42, 53, 72] Some (memory safe) Yes
Concurrency [43, 64] No —

Figure 9-4: Representative bugs found in Linux ext4 and whether FSCQ’s specifications
preclude them

85

ext4 bugs case study. We looked through the git logs for the Linux ext4 file system
starting from 2013 and categorized the bugs fixed in those commits. Figure 9-4 shows
the resulting categories along with representative bugs from each category. For instance,
this table includes the bug that was mentioned in Chapter 1, where ext4 would disclose
previously deleted file data after a crash [42]. The figure also shows whether each
bug category could have occurred in the implementation of FSCQ; for instance, some
bugs arise due to concurrent execution of system calls, which is impossible in FSCQ by
design (i.e., FSCQ is not sophisticated enough to have such a bug). The figure also shows
whether the theorems of FSCQ prevent those bugs.

We draw three conclusions from this case study. First, FSCQ is sophisticated enough
that its implementation could have had many of the bugs that were fixed in ext4, making
verification important. Second, FSCQ’s theorems preclude every bug category that was
possible in its implementation. This suggests that FSCQ’s theorems are effective at
preventing real bugs. Finally, the one category where FSCQ is not sophisticated enough
to have bugs is concurrency: FSCQ is a single-threaded file system. Verifying a concurrent
file system is an open problem and is future work.

Development experience. While proving the correctness of FSCQ, we ran into several
cases where we were unable to prove a correctness theorem and discovered an underlying
implementation issue as a result. For instance, when mknod was invoked on an existing
pathname, it would delete the old file. This was allowed by the specification (which in
itself could have arguably been a bug), but more importantly, it failed to de-allocate
the old file’s blocks. This violated the dir_safe relation, and we were unable to prove
that log bypass would be safe after mknod. The previous example is also related to log
bypass: while trying to prove that it is safe to bypass the log for modifying a file data
block, we realized that there could be a pending non-bypass write to that same block in
the write-ahead log. This forced us to change the system’s design for handling log-bypass
writes, as described in Section 6.5. These examples show that proofs are good at bringing
out corner cases that are easy to overlook during development and testing.

9.3 Specification correctness

To demonstrate that FSCQ’s specifications for its system calls are meaningful, we per-
formed the following experiments.

fsstress. We ran fsstress from the Linux Test Project to check if it finds any bugs in
FSCQ. When we first ran fsstress, it caused our FUSE file server to crash. However,
after some investigation, we discovered that this was due to a bug in our Haskell FUSE
bindings that sit between FSCQ and the Linux FUSE interface. The bug was due to the

86

developer thinking that some corner case could not be triggered and calling the error
function in Haskell to panic if that case ever executed. As it turns out, fsstress found a
way to trigger that corner case. After fixing this bug, fsstress ran without problems and
did not discover any bugs in FSCQ’s proven code.

Enumerating crash states. We implemented the crash_safe_update pattern whose pseu-
docode was shown in Figure 7-1. Our specific implementation writes and syncs some
data to a temporary file using fdatasync, then performs an atomic rename of the tempo-
rary file to a destination file using fsync on the directory. We ran the pattern on FSCQ
while monitoring all of the disk writes and barriers issued by FSCQ. We then computed
all possible subsets and re-orderings of FSCQ’s disk writes, subject to its barriers, to
produce every possible state in which FSCQ could have crashed. Finally, we re-mounted
the resulting disk with FSCQ and examined the file-system state after FSCQ performed
its recovery. This experiment produced 182 possible disks after a crash but only three
distinct file-system states after FSCQ executed its recovery code: neither file existed, the
temporary file existed with no contents, or the destination file existed with the written
contents. All of these states are safe, since either the destination file didn’t exist or it
contained the correct data (the empty temporary file could be removed during recovery).

Certifying an application. The above experiments suggest that FSCQ specifications
capture the right properties, because the implementation appears not to have bugs.
However, to increase our confidence that the specifications themselves are correct (and
not just the implementation), we wrote a formal specification for the crash_safe_update
pattern and proved its correctness based on the specification of FSCQ.

Proving the correctness of crash_safe_update led us to discover several cases where
the FSCQ specification was too weak. For example, the read specification originally
forgot to mention that the data returned by the system call is related to the contents
of the file. Another example is the fsync system call, which forgot to promise that the
dir_safe relation holds on the new disk sequence. This also uncovered many cases where
the specification was not as convenient to use as it could have been. None of these
issues required changing the FSCQ implementation, and we were able to re-prove the
correctness of FSCQ after fixing the specification.

Proving crash_safe_update also led us to discover a number of corner cases in its
code. For example, we discovered that crash_safe_update cannot perform a safe update
on a file with the same file name as the temporary file that it uses. After fixing the
specification to take into account these corner cases, we were able to prove the correctness
of crash_safe_update when running on top of FSCQ.

87

Specification conciseness. Generally speaking, a shorter specification is easier to
inspect and understand and thus less likely to have flaws. FSCQ’s specification allows the
file system to perform many complex optimizations that are visible to the application,
especially after a crash. One concern might be that the specification for such a complex
interface is also complicated. To understand whether FSCQ’s formalization techniques
are effective at succinctly describing FSCQ’s allowed behavior, we look at the lines of
code needed to specify the pre, post, and crash conditions of each system call.

PRE POST CRASH Total

read 4 3 2 9
write 5 13 4 22
create 4 11 2 17
unlink 4 11 2 17
rename 4 16 2 22
stat 3 3 2 8
truncate 4 10 7 21
open 5 4 2 11
fdatasync 4 11 2 17
fsync 3 3 2 8

Total 42 89 29 160

Figure 9-5: Lines of specification code for FSCQ system calls

The result in Figure 9-5 shows that FSCQ’s top-level specification has 160 lines in
total. The average number of lines for each system call is about 15. The most complicated
specifications are rename and write, whose easier-to-read version are shown in Figure 8-3
and Figure 7-6, respectively. This is unsurprising because rename is the most complicated
system call that manipulates the metadata; and the specification for log-bypass write has
to reason about disk relations. Nevertheless, their specifications consist of 22 lines each.
This suggests that FSCQ’s specifications are concise and amenable to human inspection.

9.4 Development effort

The final question is, how much effort is involved in developing FSCQ? One metric is
the size of the FSCQ code base, reported in Figure 8-7; FSCQ consists of about 50,000
lines of code, which includes specifications, proofs and a significant amount of CHL
infrastructure, including libraries and proof machinery, which is not FSCQ-specific. In
comparison, Linux ext4 has about 60,000 lines of unverified C code.

Although the code footprint of FSCQ and ext4 are similar, ext4 offers many features
that are absent in FSCQ, such as permissions, extended attributes and sparse files.
Therefore, a more interesting question is how much effort is required to modify FSCQ,

88

after an initial version has been developed and certified. Does adding a new feature to
FSCQ require reproving everything, or is the work commensurate with the scale of the
modifications required to support the new feature? To answer this question, the rest of
this section presents several case studies, where we had to add a significant feature to
FSCQ after the initial design was already complete.

Asynchronous disk writes. We initially developed FSCQ and FSCQLOG to operate with
synchronous disk writes. Implementing asynchronous disk writes required changing
about 1,000 lines of code in the CHL infrastructure and changing over half of the
implementations and proofs for FSCQLOG. However, layers above FSCQLOG did not
require any changes, since FSCQLOG provided the same synchronous disk operations in
both cases.

Indirect blocks. Initially, FSCQ supported only direct blocks. Adding indirect blocks
required changing about 1,500 lines of code and proof in the Inode layer, including
infrastructure changes for reasoning about on-disk objects that span multiple disk blocks
(the inode and its indirect block). We made almost no changes to code above the inode
layer; the only exception was block-level files, in which we had to fix about 50 lines of
proof due to a hard-coded constant bound for the maximum number of blocks per file.

Buffer cache. We added a buffer cache to FSCQ after we had already built FSCQLOG

and several layers above it. Since Coq is a pure functional language, keeping buffer-
cache state required passing the current buffer-cache object to and from all functions.
Incorporating the buffer cache required changing about 300 lines of code and proof
in FSCQLOG, to pass around the buffer-cache state, to access disk via the buffer cache
and to reason about disk state in terms of buffer-cache invariants. We also had to make
similar straightforward changes to about 600 lines of code and proof for components
above FSCQLOG.

Optimizing log layout. FSCQLOG’s initial design used one disk block to store the length
of the on-disk log and another block to store a commit bit, indicating whether log recovery
should replay the log contents after a crash. Once we introduced asynchronous writes,
storing these fields separately necessitated an additional disk sync between writing the
length field and writing the commit bit. To avoid this sync, we modified the logging
protocol slightly: the length field was now also the commit bit, and the log is applied on
recovery iff the length is nonzero. Implementing this change required modifying about
50 lines of code and about 100 lines of proof.

89

Log checksum. We developed the log-checksum optimization in parallel with other
logging-system optimizations. This involved about 1300 lines of change to the CHL
infrastructure to reason about the new hash opcode and its crash semantics. Integrating
checksums into FSCQLOG changed about 800 lines of code and proof in DiskLog to handle
the new commit block layout and about 800 lines of proofs in DiskLog and Applier to
reason about checksum-based recovery. We also had to mechanically change about 500
lines above FSCQLOG to include the notion of hash state in all internal specifications.

Group commit. We added group commit to FSCQLOG after the entire file system was
proven. We realized that GroupCommit could be implemented as an intermediate layer
between LogAPI and Applier. Originally, LogAPI called Applier’s applier_flush upon com-
mit. We changed it to call GroupCommit’s group_commit instead, which buffers the
transaction in memory and calls applier_flush with a single combined transaction when
possible. GroupCommit itself contains about 1800 lines of code. Because of the layering,
there was little change to both LogAPI and Applier. We also modified about 100 lines
of specifications above FSCQLOG to adapt to the new disk-sequence abstraction; these
changes were mechanical.

90

TEN

Conclusion and future directions

Sophisticated file systems have a long history of subtle bugs that lead to data loss or unin-
tended data disclosure. FSCQ is the first file system that achieves high I/O performance
(on par with Linux ext4) and has a machine-checked proof that its implementation meets
a formal specification, under any sequence of crashes.

To achieve this goal, this dissertation contributes Crash Hoare Logic (CHL), a logic
framework that allows us to concisely and precisely specify the expected behavior of
FSCQ. Because of CHL’s proof automation, the burden of proving that FSCQ meets its
specification is manageable. FSCQ also provides the first precise specification of fsync and
fdatasync, called the metadata-prefix specification. To help formalize the specification
and certify optimizations, this dissertation introduces several specification techniques,
such as disk sequences, disk relations, and a hash model. The benefit of the verification
approach is that FSCQ provably avoids bugs that have a long history of causing data loss
in previous file systems, while achieving good I/O performance. FSCQ’s specification
also enables applications built on top of it to prove their own crash-safety. We hope that
others will find FSCQ, CHL and our specification techniques useful for certifying other
crash-safe storage systems.

FSCQ provides strong properties, but it is not a finished product. Fruitful areas of
future research include:

Extracting to native code. Although FSCQ achieves good I/O performance, the ex-
tracted Haskell code incurs significant CPU overhead and adds the Haskell compiler and
runtime into FSCQ’s trusted computing base (TCB). We would like to generate certified
executable code for FSCQ, which would enable FSCQ to implement efficient low-level
optimizations, such as utilizing fast machine-level bit-operations as well as eliminate
the Haskell runtime from the TCB. Some recent work such as COGENT [2] is working
towards this direction. We hope to incorporate similar ideas to improve FSCQ’s CPU
performance.

91

Certifying crash-safe applications. The example application pattern used in our eval-
uation, the crash-safe file update, is simple; but proving it correct on top of FSCQ still
requires non-trivial effort. One problem is that FSCQ’s current tree-based top-level specifi-
cation is not amenable to proof automation. We would like to investigate how to certify a
complete application, such as a mail server or a key-value store, using better specification
and proof-automation techniques.

Supporting concurrency. All practical file systems run in multi-user environments and
exploit concurrency to achieve good performance. FSCQ currently does not support
concurrent system calls and does not model any shared in-memory state. We need to
reason about two main forms of concurrency: (1) I/O concurrency, where computation
of one process overlaps with the I/O of another process; and (2) parallelism, where
computations run on different cores and access shared in-memory state truly concurrently
(e.g., reading and writing to a shared buffer cache). Verification of concurrent programs
is an open problem in general. Certifying a file system with limited concurrency might
be a good concrete problem to advance the state of the art of concurrent verification.

92

Bibliography

[1] Ramnatthan Alagappan, Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Beyond storage
APIs: Provable semantics for storage stacks. In Proceedings of the 15th Workshop
on Hot Topics in Operating Systems (HotOS), Kartause Ittingen, Switzerland, May
2015.

[2] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam
O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph
Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. COGENT:
Verifying high-assurance file system implementations. In Proceedings of the 21th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 175–188, Atlanta, GA, April 2016.

[3] June Andronick. Formally proved anti-tearing properties of embedded C code. In
Proceedings of the 2nd IEEE International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, pages 129–136, Paphos, Cyprus,
November 2006.

[4] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Rinard. Verifying a
file system implementation. In Proceedings of the 6th International Conference on
Formal Engineering Methods, Seattle, WA, November 2004.

[5] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three
Easy Pieces. Arpaci-Dusseau Books, May 2014.

[6] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy,
and Santiago Zanella-Béguelin. Probabilistic relational verification for crypto-
graphic implementations. In Proceedings of the 41st ACM Symposium on Principles
of Programming Languages (POPL), San Diego, CA, January 2014.

[7] William R. Bevier and Richard M. Cohen. An executable model of the Synergy file
system. Technical Report 121, Computational Logic, Inc., October 1996.

[8] William R. Bevier, Richard M. Cohen, and Jeff Turner. A specification for the Synergy
file system. Technical Report 120, Computational Logic, Inc., September 1995.

[9] J. Bobbio et al. Haskell bindings for the FUSE library, 2014. https://github.com/
m15k/hfuse.

93

https://github.com/m15k/hfuse
https://github.com/m15k/hfuse

[10] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak,
and Xi Wang. Specifying and checking file system crash-consistency models. In
Proceedings of the 21th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 83–98, Atlanta, GA,
April 2016.

[11] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative
reliability for programs that execute on unreliable hardware. In Proceedings of the
2013 Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications, Indianapolis, IN, October 2013.

[12] Haogang Chen, Daniel Ziegler, Adam Chlipala, M. Frans Kaashoek, Eddie Kohler,
and Nickolai Zeldovich. Specifying crash safety for storage systems. In Proceedings
of the 15th Workshop on Hot Topics in Operating Systems (HotOS), Kartause Ittingen,
Switzerland, May 2015.

[13] Adam Chlipala. Mostly-automated verification of low-level programs in compu-
tational separation logic. In Proceedings of the 2011 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 234–245, San
Jose, CA, June 2011.

[14] Adam Chlipala. The Bedrock structured programming system: Combining gen-
erative metaprogramming and Hoare logic in an extensible program verifier. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), pages 391–402, Boston, MA, September 2013.

[15] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and
Eddie Kohler. The scalable commutativity rule: Designing scalable software for
multicore processors. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pages 1–17, Farmington, PA, November 2013.

[16] Coq development team. The Coq Proof Assistant Reference Manual, Version 8.5pl1.
INRIA, April 2016. http://coq.inria.fr/distrib/current/refman/.

[17] Jonathan Corbet. ext4 and data loss. http://lwn.net/Articles/322823/, March 2009.

[18] Russ Cox, M. Frans Kaashoek, and Robert T. Morris. Xv6, a simple Unix-like teaching
operating system, 2014. http://pdos.csail.mit.edu/6.828/2014/xv6.html.

[19] Lukas Czerner. [PATCH] ext4: Fix data corruption caused by unwritten and delayed
extents. https://lwn.net/Articles/645722, April 2015.

[20] Brian Demsky and Martin Rinard. Automatic detection and repair of errors in data
structures. In Proceedings of the 18th Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 78–95, Vancouver, Canada,
October 2003.

94

http://coq.inria.fr/distrib/current/refman/
http://lwn.net/Articles/322823/
http://pdos.csail.mit.edu/6.828/2014/xv6.html
https://lwn.net/Articles/645722

[21] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and
Hongseok Yang. Views: Compositional reasoning for concurrent programs. In Pro-
ceedings of the 40th ACM Symposium on Principles of Programming Languages (POPL),
pages 287–300, Rome, Italy, January 2013.

[22] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a verified flash file system:
Transactions & garbage collection. In Proceedings of the 7th Working Conference on
Verified Software: Theories, Tools and Experiments, San Francisco, CA, July 2015.

[23] Gidon Ernst, Gerhard Schellhorn, Dominik Haneberg, Jorg Pfähler, and Wolfgang
Reif. Verification of a virtual filesystem switch. In Proceedings of the 5th Working
Conference on Verified Software: Theories, Tools and Experiments, Menlo Park, CA,
May 2013.

[24] Robert Escriva. Claiming Bitcoin’s bug bounty, November 2013. http://
hackingdistributed.com/2013/11/27/bitcoin-leveldb/.

[25] Miguel Alexandre Ferreira and Jose Nuno Oliveira. An integrated formal methods
tool-chain and its application to verifying a file system model. In Proceedings of the
12th Brazilian Symposium on Formal Methods, August 2009.

[26] Leo Freitas, Jim Woodcock, and Andrew Butterfield. POSIX and the verification
grand challenge: A roadmap. In Proceedings of 13th IEEE International Conference
on Engineering of Complex Computer Systems, pages 153–162, March–April 2008.

[27] FUSE: Filesystem in userspace, 2013. http://fuse.sourceforge.net/.
[28] Philippa Gardner, Gian Ntzik, and Adam Wright. Local reasoning for the POSIX file

system. In Proceedings of the 23rd European Symposium on Programming, pages
169–188, Grenoble, France, 2014.

[29] Roxana Geambasu, Andrew Birrell, and John MacCormick. Experiences with formal
specification of fault-tolerant storage systems. In Proceedings of the 38th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Anchorage, AK, June 2008.

[30] Bogdan Gribincea et al. Ext4 data loss. https://bugs.launchpad.net/ubuntu/+source/
linux/+bug/317781, January 2009.

[31] Ronghui Gu, Jeremie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan Wu,
Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and certified
abstraction layers. In Proceedings of the 42nd ACM Symposium on Principles of
Programming Languages (POPL), Mumbai, India, January 2015.

[32] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. SQCK: A declarative file system checker. In Proceedings of the
8th Symposium on Operating Systems Design and Implementation (OSDI), pages
131–146, San Diego, CA, December 2008.

95

http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://hackingdistributed.com/2013/11/27/bitcoin-leveldb/
http://fuse.sourceforge.net/
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781

[33] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng
Zhang, and Brian Zill. Ironclad Apps: End-to-end security via automated full-system
verification. In Proceedings of the 11th Symposium on Operating Systems Design and
Implementation (OSDI), pages 165–181, Broomfield, CO, October 2014.

[34] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming Languages Systems,
12(3):463–492, 1990.

[35] Wim H. Hesselink and M.I. Lali. Formalizing a hierarchical file system. In Proceedings
of the 14th BCS-FACS Refinement Workshop, pages 67–85, December 2009.

[36] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, October 1969.

[37] Ben Hutchings. [PATCH 3.2 027/115] jbd2: fix fs corruption possibility in
jbd2_journal_destroy() on umount path. https://lkml.org/lkml/2016/4/26/1230,
April 2016.

[38] IEEE (The Institute of Electrical and Electronics Engineers) and The Open Group.
The Open Group base specifications issue 7, 2013 edition (POSIX.1-2008/Cor
1-2013), April 2013.

[39] Dave Jones. Trinity: A Linux system call fuzz tester, 2014. http://codemonkey.org.
uk/projects/trinity/.

[40] Rajeev Joshi and Gerard J. Holzmann. A mini challenge: Build a verifiable filesystem.
Formal Aspects of Computing, 19(2):269–272, June 2007.

[41] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis of a Flash filesystem
in Alloy. In Proceedings of the 1st Int’l Conference of Abstract State Machines, B and
Z, pages 294–308, London, UK, September 2008.

[42] Jan Kara. [PATCH] ext4: Forbid journal_async_commit in data=ordered mode.
http://permalink.gmane.org/gmane.comp.file-systems.ext4/46977, November 2014.

[43] Jan Kara. ext4: fix crashes in dioread_nolock mode. http://permalink.gmane.org/
gmane.linux.kernel.commits.head/575311, February 2016.

[44] Gabi Keller. Trustworthy file systems, 2014. http://www.ssrg.nicta.com.au/projects/
TS/filesystems.pml.

[45] Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor, Zilin Chen, Leonid
Ryzhyk, Gerwin Klein, and Gernot Heiser. File systems deserve verification too. In
Proceedings of the 7th Workshop on Programming Languages and Operating Systems,
Farmington, PA, November 2013.

[46] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS
microkernel. ACM Transactions on Computer Systems, 32(1):2:1–70, February 2014.

96

https://lkml.org/lkml/2016/4/26/1230
http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
http://permalink.gmane.org/gmane.comp.file-systems.ext4/46977
http://permalink.gmane.org/gmane.linux.kernel.commits.head/575311
http://permalink.gmane.org/gmane.linux.kernel.commits.head/575311
http://www.ssrg.nicta.com.au/projects/TS/filesystems.pml
http://www.ssrg.nicta.com.au/projects/TS/filesystems.pml

[47] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Michael Norrish, Rafal Kolanski,
Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of
an OS kernel. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 207–220, Big Sky, MT, October 2009.

[48] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, May 1994.

[49] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, July 2009.

[50] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. A
study of Linux file system evolution. In Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST), pages 31–44, San Jose, CA, February 2013.

[51] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. ARIES:
A transaction recovery method supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transactions on Database Systems, 17(1):94–
162, March 1992.

[52] Kamal Mostafa. [PATCH 3.13 075/103] jbd2: fix descriptor block size handling
errors with journal_csum. https://lkml.org/lkml/2014/9/30/747, September 2014.

[53] Kamal Mostafa. ext4: fix null pointer dereference when journal restart
fails. https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=
9d506594069355d1fb2de3f9104667312ff08ed3, June 2016.

[54] Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. Fault-tolerant resource
reasoning. In Proceedings of the 13th Asian Symposium on Programming Languages
and Systems (APLAS), Pohang, South Korea, November–December 2015.

[55] Frances Perry, Lester Mackey, George A. Reis, Jay Ligatti, David I. August, and David
Walker. Fault-tolerant typed assembly language. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
San Diego, CA, June 2007.

[56] J. Pfähler, G. Ernst, G. Schellhorn, D. Haneberg, and W. Reif. Crash-safe refinement
for a verified flash file system. Technical Report 2014-02, University of Augsburg,
2014.

[57] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagap-
pan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
All file systems are not created equal: On the complexity of crafting crash-consistent
applications. In Proceedings of the 11th Symposium on Operating Systems Design
and Implementation (OSDI), pages 433–448, Broomfield, CO, October 2014.

[58] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pages
55–74, Copenhagen, Denmark, July 2002.

97

https://lkml.org/lkml/2014/9/30/747
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9d506594069355d1fb2de3f9104667312ff08ed3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=9d506594069355d1fb2de3f9104667312ff08ed3

[59] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy,
and Peter Sewell. SibylFS: formal specification and oracle-based testing for POSIX
and real-world file systems. In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP), Monterey, CA, October 2015.

[60] M. Rosenblum and J. Ousterhout. The design and implementation of a log-
structured file system. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP), pages 1–15, Pacific Grove, CA, October 1991.

[61] Eric Sandeen. [PATCH] ext4: fix unjournaled inode bitmap modification. http:
//permalink.gmane.org/gmane.comp.file-systems.ext4/35119, October 2012.

[62] Gerhard Schellhorn, Gidon Ernst, Jorg Pfähler, Dominik Haneberg, and Wolfgang
Reif. Development of a verified flash file system. In Proceedings of the ABZ Conference,
June 2014.

[63] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems, 1(3):222–238, 1983.

[64] Theodore Ts’o. ext4: fix race between truncate and __ext4_journalled_writepage().
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=
bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e, June 2015.

[65] Theodore Ts’o. [PATCH] ext4, jbd2: add req_fua flag when recording an error flag.
http://permalink.gmane.org/gmane.comp.file-systems.ext4/49323, July 2015.

[66] Theodore Ts’o. [PATCH] ext4: use private version of page_zero_new_buffers() for
data=journal mode. https://lkml.org/lkml/2015/10/9/1, October 2015.

[67] David Walker, Lester Mackey, Jay Ligatti, George A. Reis, and David I. August. Static
typing for a faulty Lambda calculus. In Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP), Portland, OR, September
2006.

[68] Stephanie Wang. Certifying checksum-based logging in the RapidFSCQ crash-safe
filesystem. Master’s thesis, Massachusetts Institute of Technology, June 2016.

[69] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and Zachary Tatlock.
Jitk: A trustworthy in-kernel interpreter infrastructure. In Proceedings of the 11th
Symposium on Operating Systems Design and Implementation (OSDI), pages 33–47,
Broomfield, CO, October 2014.

[70] Markus Wenzel. Some aspects of Unix file-system security, August 2014. http:
//isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html.

[71] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas Anderson. Verdi: A framework for implementing and formally
verifying distributed systems. In Proceedings of the 2015 ACM SIGPLAN Conference

98

http://permalink.gmane.org/gmane.comp.file-systems.ext4/35119
http://permalink.gmane.org/gmane.comp.file-systems.ext4/35119
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=bdf96838aea6a265f2ae6cbcfb12a778c84a0b8e
http://permalink.gmane.org/gmane.comp.file-systems.ext4/49323
https://lkml.org/lkml/2015/10/9/1
http://isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html
http://isabelle.in.tum.de/library/HOL/HOL-Unix/Unix.html

on Programming Language Design and Implementation (PLDI), pages 357–368,
Portland, OR, June 2015.

[72] Darrick J. Wong. jbd2: Fix endian mixing problems in the checksumming code.
http://lists.openwall.net/linux-ext4/2013/07/17/1, July 2013.

[73] Darrick J. Wong. [PATCH] ext4: fix same-dir rename when inline data directory
overflows. http://permalink.gmane.org/gmane.comp.file-systems.ext4/45594, August
2014.

[74] Jean Yang and Chris Hawblitzel. Safe to the last instruction: Automated verifi-
cation of a type-safe operating system. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
99–110, Toronto, Canada, June 2010.

[75] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson Engler. Automati-
cally generating malicious disks using symbolic execution. In Proceedings of the
27th IEEE Symposium on Security and Privacy, pages 243–257, Oakland, CA, May
2006.

[76] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using model
checking to find serious file system errors. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI), pages 273–287, San
Francisco, CA, December 2004.

[77] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. EXPLODE: A
lightweight, general system for finding serious storage system errors. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation (OSDI),
pages 131–146, Seattle, WA, November 2006.

[78] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge, Elizabeth S.
Yang, Bill W. Zhao, and Shashank Singh. Torturing databases for fun and profit. In
Proceedings of the 11th Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 449–464, Broomfield, CO, October 2014.

99

http://lists.openwall.net/linux-ext4/2013/07/17/1
http://permalink.gmane.org/gmane.comp.file-systems.ext4/45594

	Introduction
	Crash safety
	Specification framework for crash safety
	Specifying file-system behavior
	Building the file system
	Contributions
	Outline

	Related Work
	Finding and fixing bugs in file systems
	Formal reasoning about file systems
	Certified systems software
	Reasoning about failures

	Background
	File-system basics
	Logging protocol and optimizations
	Program correctness

	Crash Hoare Logic
	Disk model
	Crash conditions
	Logical address spaces
	Recovery execution semantics

	Proving specifications
	Overview
	Proving without recovery
	Proving recovery specifications

	Certifying FSCQ's logging system
	Overview
	Representation invariants
	Logging-system specifications
	Logging with checksums
	On-disk layout and protocol
	Formalizing checksums

	Log bypass

	Specification for deferred writes
	Example application pattern
	What should the specification be?
	Disk sequences
	Disk relations

	Building a file system
	Overview
	End-to-end specification
	Using address spaces
	Resource allocation
	Buffer cache
	On-disk data structures
	Prototype implementation

	Evaluation
	Application and I/O performance
	Bug discussion
	Specification correctness
	Development effort

	Conclusion and future directions

