
Cer$fying a  
Crash-safe File System 

Haogang Chen

Thesis Advisors 
Frans Kaashoek and Nickolai Zeldovich



File systems should not lose data

• People use file systems to 
store permanent data



File systems should not lose data

• People use file systems to 
store permanent data

• Computers can crash any$me 
• power failures 

• hardware failures (unplug USB drive) 

• soIware bugs



File systems should not lose data

• People use file systems to 
store permanent data

• Computers can crash any$me 
• power failures 

• hardware failures (unplug USB drive) 

• soIware bugs

• File systems should not lose or 
corrupt data in case of crashes



File systems are complex and have bugs

• Linux ext4: ~60,000 lines of code



File systems are complex and have bugs

• Linux ext4: ~60,000 lines of code

Cumula&ve number of bug patches in Linux file systems [Lu et al., FAST’13]

# 
of

 p
at

ch
es

 fo
r b

ug
s

0

150

300

450

600

Dec-03 Apr-04 Dec-04 Jan-06 Feb-07 Apr-08 Jun-09 Aug-10 May-11

ext3
xfs
jfs
reiserfs
ext4
btrfs



File systems are complex and have bugs

• Linux ext4: ~60,000 lines of code

• Some bugs are serious: data loss, security exploits, etc. 

Cumula&ve number of bug patches in Linux file systems [Lu et al., FAST’13]

# 
of

 p
at

ch
es

 fo
r b

ug
s

0

150

300

450

600

Dec-03 Apr-04 Dec-04 Jan-06 Feb-07 Apr-08 Jun-09 Aug-10 May-11

ext3
xfs
jfs
reiserfs
ext4
btrfs



Researches in avoiding bugs in file systems 

• Most research is on finding bugs 
• Crash injec$on (e.g., EXPLODE [OSDI’06]) 

• Symbolic execu$on (e.g., EXE [Oakland’06]) 

• Design modeling (e.g., in Alloy [ABZ’08])  

• Some elimina$on of bugs by proving: 
• FS without directories [Arkoudas et al. 2004] 

• BilbyFS [Keller 2014] 

• UBIFS [Ernst et al. 2013] 



reduce 
# of bugs

Researches in avoiding bugs in file systems 

• Most research is on finding bugs 
• Crash injec$on (e.g., EXPLODE [OSDI’06]) 

• Symbolic execu$on (e.g., EXE [Oakland’06]) 

• Design modeling (e.g., in Alloy [ABZ’08])  

• Some elimina$on of bugs by proving: 
• FS without directories [Arkoudas et al. 2004] 

• BilbyFS [Keller 2014] 

• UBIFS [Ernst et al. 2013] 



incomplete 
+ no crashes

reduce 
# of bugs

Researches in avoiding bugs in file systems 

• Most research is on finding bugs 
• Crash injec$on (e.g., EXPLODE [OSDI’06]) 

• Symbolic execu$on (e.g., EXE [Oakland’06]) 

• Design modeling (e.g., in Alloy [ABZ’08])  

• Some elimina$on of bugs by proving: 
• FS without directories [Arkoudas et al. 2004] 

• BilbyFS [Keller 2014] 

• UBIFS [Ernst et al. 2013] 



Dealing with crashes is hard

• Crashes expose many par$ally-updated states 
• Reasoning about all failure cases is hard



Dealing with crashes is hard

• Crashes expose many par$ally-updated states 
• Reasoning about all failure cases is hard

• Performance op$miza$ons lead to more tricky 
par$al states 
• Disk I/O is expensive 

• Buffer updates in memory



Dealing with crashes is hard

• Crashes expose 
many par$ally-
updated states 
• Reasoning about all 

failure cases is hard 

• Performance 
op$miza$ons lead 
to more tricky 
par$al states 
• Disk I/O is expensive 

• Buffer updates in 
memory

commit	353b67d8ced4dc53281c88150ad295e24bc4b4c5	
Author:	Jan	Kara	<jack@suse.cz>	
Date:			Sat	Nov	26	00:35:39	2011	+0100	
Title:		jbd:	Issue	cache	flush	after	checkpointing	

---	a/fs/jbd/checkpoint.c	
+++	b/fs/jbd/checkpoint.c	
@@	-504,7	+503,25	@@	int	cleanup_journal_tail(journal_t	*journal)	
													spin_unlock(&journal->j_state_lock);	
													return	1;	
					}	
+				spin_unlock(&journal->j_state_lock);	
+	
+				/*	
+					*	We	need	to	make	sure	that	any	blocks	that	were	recently	written	out	
+					*	---	perhaps	by	log_do_checkpoint()	---	are	flushed	out	before	we	
+					*	drop	the	transactions	from	the	journal.	It's	unlikely	this	will	be	
+					*	necessary,	especially	with	an	appropriately	sized	journal,	but	we	
+					*	need	this	to	guarantee	correctness.		Fortunately	
+					*	cleanup_journal_tail()	doesn't	get	called	all	that	often.	
+					*/	
+				if	(journal->j_flags	&	JFS_BARRIER)	
+												blkdev_issue_flush(journal->j_fs_dev,	GFP_KERNEL,	NULL);	
		
+				spin_lock(&journal->j_state_lock);	
+				if	(!tid_gt(first_tid,	journal->j_tail_sequence))	{	
+												spin_unlock(&journal->j_state_lock);	
+												/*	Someone	else	cleaned	up	journal	so	return	0	*/	
+												return	0;	
+				}

A patch for Linux’s write-ahead logging (jbd) in 2012: 
“Is it safe to omit a disk write barrier here?”

It's unlikely this will be necessary, … but we 
need this to guarantee correctness.  
Fortunately this func;on doesn't get called all 
that o<en.



Goal: cer$fy a file system under crashes



Goal: cer$fy a file system under crashes

• FSCQ: first cer$fied crash-safe file system 

A complete file system with a machine-checkable 
proof that its implementa$on meets its specifica$on, 
both under normal execuDon and under any sequence 
of crashes, including crashes during recovery.



Contribu$ons

• CHL: Crash Hoare Logic 
• Specifica$on framework for crash-safety of storage 

• Crash condi$on and recovery seman$cs  

• Automa$on to reduce proof effort 

• FSCQ: the first cer$fied crash-safe file system 
• Basic Unix-like file system (no hard-links, no concurrency) 

• Precise specifica$on for the core subset of POSIX  

• I/O performance on par with Linux ext4 

• CPU overhead is high



FSCQ runs standard Unix programs

Crash Hoare Logic (CHL) 
Top-level specifica;on 
Internal specifica;ons 

Program 
Proof

FSCQ (wriKen in Coq)

Program



FSCQ runs standard Unix programs

Coq proof checker

Crash Hoare Logic (CHL) 
Top-level specifica;on 
Internal specifica;ons 

Program 
Proof

FSCQ (wriKen in Coq)

OK

Program



FSCQ runs standard Unix programs

Coq proof checker

Crash Hoare Logic (CHL) 
Top-level specifica;on 
Internal specifica;ons 

Program 
Proof

FSCQ (wriKen in Coq)

FSCQ’s Haskell code

FSCQ’s FUSE server
OK

Code extrac$on

Haskell compiler



FSCQ runs standard Unix programs

Coq proof checker

Crash Hoare Logic (CHL) 
Top-level specifica;on 
Internal specifica;ons 

Program 
Proof

FSCQ (wriKen in Coq)

FSCQ’s Haskell code

FSCQ’s FUSE server

Haskell libraries 
& FUSE driver

OK

Linux kernel /dev/sda

Code extrac$on

Haskell compiler



FSCQ runs standard Unix programs

Coq proof checker

Crash Hoare Logic (CHL) 
Top-level specifica;on 
Internal specifica;ons 

Program 
Proof

FSCQ (wriKen in Coq)

FSCQ’s Haskell code

FSCQ’s FUSE server

Haskell libraries 
& FUSE driver

OK

Linux kernel /dev/sda

Code extrac$on

Haskell compiler

syscalls FUSE upcalls disk read(),  
write(), sync()

$	mv	src	dest	
$	git	clone	repo…	
$	make



FSCQ’s Trusted CompuDng Base

Coq proof checker

Crash Hoare Logic (CHL) 
Top-level specificaDon 
Internal specifica;ons 

Program 
Proof

FSCQ (wriKen in Coq)

FSCQ’s Haskell code

FSCQ’s FUSE server

Haskell libraries 
& FUSE driver

OK

Linux kernel /dev/sda

Code extracDon

Haskell compiler

syscalls FUSE upcalls disk read(),  
write(), sync()

$	mv	src	dest	
$	git	clone	repo…	
$	make



Outline

• Crash safety 
• What is the correct behavior aIer a crash? 

• Challenge 1: formalizing crashes 
• Crash Hoare Logic (CHL) 

• Challenge 2: incorpora$ng performance op$miza$ons 
• Disk sequences 

• Building a complete file system 

• Evalua$on



What is crash safety?

• What guarantee should file system provide when it 
crashes and reboot? 

• Look it up in the POSIX standard?



POSIX is vague about crash behavior 

[...] a power failure [...] can cause data to be lost. The data 
may be associated with a file that is s:ll open, with one 
that has been closed, with a directory, or with any other 
internal system data structures associated with 
permanent storage. This data can be lost, in whole or part, 
so that only careful inspec:on of file contents could 
determine that an update did not occur.  

IEEE Std 1003.1, 2013 Edi$on 



POSIX is vague about crash behavior 

• POSIX’s goal was to specify “common-denominator” behavior 

• Gives freedom to file systems to implement their own op$miza$ons

[...] a power failure [...] can cause data to be lost. The data 
may be associated with a file that is s:ll open, with one 
that has been closed, with a directory, or with any other 
internal system data structures associated with 
permanent storage. This data can be lost, in whole or part, 
so that only careful inspec:on of file contents could 
determine that an update did not occur.  

IEEE Std 1003.1, 2013 Edi$on 



What is crash safety?

• What guarantee should file system provide when it 
crashes and reboot?

• Look it up in the POSIX standard?  (Too Vague)



What is crash safety?

• What guarantee should file system provide when it 
crashes and reboot?

• Look it up in the POSIX standard?  (Too Vague)

• A simple and useful defini$on is transacDonal 
• Atomicity: every file-system call is all-or-nothing 

• Durability: every call persists on disk when it returns



What is crash safety?

• What guarantee should file system provide when it 
crashes and reboot?

• Look it up in the POSIX standard?  (Too Vague)

• A simple and useful defini$on is transacDonal 
• Atomicity: every file-system call is all-or-nothing 

• Durability: every call persists on disk when it returns

• Run every file-system call inside a transac$on, using 
write-ahead logging.



Write-ahead logging

Disk



Write-ahead logging

Log0

➡ log_begin()

Disk



Write-ahead logging

Log0 2 
a

8 
b

5 
c

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)

Disk

1. Append writes to the log



Write-ahead logging

Log0 2 
a

8 
b

5 
c3

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)
➡ log_commit()

Disk

1. Append writes to the log
2. Set commit record



Write-ahead logging

a c b Log0 2 
a

8 
b

5 
c3

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)
➡ log_commit()

Disk

1. Append writes to the log
2. Set commit record
3. Apply the log to disk loca$ons



Write-ahead logging

a c b Log0

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)
➡ log_commit()

Disk

1. Append writes to the log
2. Set commit record
3. Apply the log to disk loca$ons
4. Truncate the log



Write-ahead logging

• Recovery: aIer crash, replay (apply) any commiRed transac$on in the log

a c b Log0

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)
➡ log_commit()

Disk

1. Append writes to the log
2. Set commit record
3. Apply the log to disk loca$ons
4. Truncate the log



Write-ahead logging

• Recovery: aIer crash, replay (apply) any commiRed transac$on in the log

• Atomicity: either all writes appear on disk or none do

a c b Log0

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)
➡ log_commit()

Disk

1. Append writes to the log
2. Set commit record
3. Apply the log to disk loca$ons
4. Truncate the log



Write-ahead logging

• Recovery: aIer crash, replay (apply) any commiRed transac$on in the log

• Atomicity: either all writes appear on disk or none do

• Durability: all changes are persisted on disk when log_commit() returns

a c b Log0

➡ log_begin()
➡ log_write(2,	‘a’)
➡ log_write(8,	‘b’)
➡ log_write(5,	‘c’)
➡ log_commit()

Disk

1. Append writes to the log
2. Set commit record
3. Apply the log to disk loca$ons
4. Truncate the log



Example: transac$onal crash safety

def	create(dir,	name):	
log_begin()		
newfile	=	allocate_inode()	
newfile.init()	
dir.add(name,	newfile)	
log_commit()



Example: transac$onal crash safety

def	create(dir,	name):	
log_begin()		
newfile	=	allocate_inode()	
newfile.init()	
dir.add(name,	newfile)	
log_commit()

def	log_recover():	
if	committed:	

log_apply()	
log_truncate()

… aTer crash …



Example: transac$onal crash safety

• Q: How to formally define what happens when the computer crashes?

def	create(dir,	name):	
log_begin()		
newfile	=	allocate_inode()	
newfile.init()	
dir.add(name,	newfile)	
log_commit()

def	log_recover():	
if	committed:	

log_apply()	
log_truncate()

… aTer crash …



Example: transac$onal crash safety

• Q: How to formally define what happens when the computer crashes?

• Q: How to formally specify the behavior of “create” in presence of 
crash and recovery?

def	create(dir,	name):	
log_begin()		
newfile	=	allocate_inode()	
newfile.init()	
dir.add(name,	newfile)	
log_commit()

def	log_recover():	
if	committed:	

log_apply()	
log_truncate()

… aTer crash …



Approach: Crash Hoare Logic
{pre} code {post}

SPEC disk write (a, v)
PRE a 7! v0
POST a 7! v



Approach: Crash Hoare Logic

• Crash condiDon: all intermediate disk states (plus two end-states)

{pre} code {post}

SPEC disk write (a, v)
PRE a 7! v0
POST a 7! v
CRASH a 7! v0 _ a 7! v

{crash}



Approach: Crash Hoare Logic

• Crash condiDon: all intermediate disk states (plus two end-states)

• CHL’s disk model matches what most other file systems assume:  

• Wri$ng a single block is an atomic opera$on, no data corrup$on

{pre} code {post}

SPEC disk write (a, v)
PRE a 7! v0
POST a 7! v
CRASH a 7! v0 _ a 7! v

{crash}



Asynchronous disk I/O 



Asynchronous disk I/O 
• For performance, hard drive caches 

writes in its internal vola$le buffer 
• Writes do not persist immediately



Asynchronous disk I/O 
• For performance, hard drive caches 

writes in its internal vola$le buffer 
• Writes do not persist immediately

• Disk flushes the buffer to media in 
background 
• Writes might be reordered



Asynchronous disk I/O 
• For performance, hard drive caches 

writes in its internal vola$le buffer 
• Writes do not persist immediately

• Disk flushes the buffer to media in 
background 
• Writes might be reordered

• Use write barrier (disk_sync) to 
force flushing the buffer 
• Make data persistent & enforce ordering 

• Disk syncs are expensive!



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 
a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 
a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?

A: 6 cases: a ⟼ 0 or 1 or 3,  b ⟼ 0 or 2



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 

• Idea: use value-sets: 
• Read returns the latest value: 

• Write adds a value to the set: 

• Sync discards previous values: 

• Reboot chooses a random value:

a 7! hv0, vsi

a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?

A: 6 cases: a ⟼ 0 or 1 or 3,  b ⟼ 0 or 2



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 

• Idea: use value-sets: 
• Read returns the latest value: 

• Write adds a value to the set: 

• Sync discards previous values: 

• Reboot chooses a random value:

a 7! hv0, vsi
v0

a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?

A: 6 cases: a ⟼ 0 or 1 or 3,  b ⟼ 0 or 2



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 

• Idea: use value-sets: 
• Read returns the latest value: 

• Write adds a value to the set: 

• Sync discards previous values: 

• Reboot chooses a random value:

a 7! hv0, vsi

a 7! hv, {v0} [ vsi
v0

a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?

A: 6 cases: a ⟼ 0 or 1 or 3,  b ⟼ 0 or 2



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 

• Idea: use value-sets: 
• Read returns the latest value: 

• Write adds a value to the set: 

• Sync discards previous values: 

• Reboot chooses a random value:

a 7! hv0, vsi

a 7! hv, {v0} [ vsi
a 7! hv0, ?i

v0

a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?

A: 6 cases: a ⟼ 0 or 1 or 3,  b ⟼ 0 or 2



Formalizing asynchronous disk I/O 
• Challenge: when crashes, the disk might lose some of 

the recent writes 

• Idea: use value-sets: 
• Read returns the latest value: 

• Write adds a value to the set: 

• Sync discards previous values: 

• Reboot chooses a random value:

a 7! hv0, vsi

a 7! hv, {v0} [ vsi
a 7! hv0, ?i
a 7! hv0, ?i, v0 2 {v0} [ vs

v0

a	⟼	0,	b	⟼	0	
disk_write(a,	1)	
disk_write(b,	2)	
disk_write(a,	3)

Q: What are the possible disk states if 
crashing aIer the 3 writes?

A: 6 cases: a ⟼ 0 or 1 or 3,  b ⟼ 0 or 2



CHL asynchronous disk model

SPEC disk write (a, v)
PRE disk |= a 7! hv0, vsi
POST disk |= a 7! hv, {v0} [ vsi
CRASH disk |= a 7! hv0, vsi _

a 7! hv, {v0} [ vsi



CHL asynchronous disk model

• Specifica$ons for disk_write, disk_read, and disk_sync are axioms

SPEC disk write (a, v)
PRE disk |= a 7! hv0, vsi
POST disk |= a 7! hv, {v0} [ vsi
CRASH disk |= a 7! hv0, vsi _

a 7! hv, {v0} [ vsi



CHL asynchronous disk model

• Specifica$ons for disk_write, disk_read, and disk_sync are axioms

• “disk |= …” means the disk address space entails the predicate

SPEC disk write (a, v)
PRE disk |= a 7! hv0, vsi
POST disk |= a 7! hv, {v0} [ vsi
CRASH disk |= a 7! hv0, vsi _

a 7! hv, {v0} [ vsi



Abstrac$on layers
• Each abstrac$on layer forms an address space



Abstrac$on layers
• Each abstrac$on layer forms an address space

Physical disk log a 7! hv0, vsi



Abstrac$on layers
• Each abstrac$on layer forms an address space

Physical disk log a 7! hv0, vsi

Logical disk a 7! v



Abstrac$on layers
• Each abstrac$on layer forms an address space

Physical disk log a 7! hv0, vsi

Logical disk a 7! v

Files inum 7! filefile0 file1 file2 filen



Abstrac$on layers
• Each abstrac$on layer forms an address space

Physical disk log a 7! hv0, vsi

Logical disk a 7! v

Files inum 7! filefile0 file1 file2 filen

Directory tree



Abstrac$on layers
• Each abstrac$on layer forms an address space

• RepresentaDon invariants connect logical states between layers

Physical disk log a 7! hv0, vsi

Logical disk a 7! v

Files inum 7! filefile0 file1 file2 filen

Directory tree
dir_rep

files_rep

log_rep



Example: representa$on invariant 
SPEC log write (a, v)
PRE

old state |= a 7! v0
POST

new state |= a 7! v

• old_state and new_state are “logical disks” exposed by the logging 
system



Example: representa$on invariant 

• old_state and new_state are “logical disks” exposed by the logging 
system 

• log_rep connects transac$on state to an on-disk representa$on 

• Describes the log’s on-disk layout using many ⟼ primi$ves 

SPEC log write (a, v)
PRE disk |= log rep (ActiveTxn, start state, old state)

old state |= a 7! v0
POST disk |= log rep (ActiveTxn, start state, new state)

new state |= a 7! v
CRASH disk |= log rep (ActiveTxn, start state, any state)



Cer$fying procedures

• bmap: return the block address at a given offset for an inode

def	bmap(inode,	bnum):	
				if	bnum	>=	NDIRECT:	
								indirect	=	log_read(inode.blocks[NDIRECT])	
								return	indirect[bnum	-	NDIRECT]	
				else:	
								return	inode.blocks[bnum]



Cer$fying procedures

• bmap: return the block address at a given offset for an inode

PRE POST

CRASH

def	bmap(inode,	bnum):	
				if	bnum	>=	NDIRECT:	
								indirect	=	log_read(inode.blocks[NDIRECT])	
								return	indirect[bnum	-	NDIRECT]	
				else:	
								return	inode.blocks[bnum]



Cer$fying procedures
• Follow the control flow graph

PRE POST

CRASH

if

return

log_read return
procedure bmap()



Cer$fying procedures
• Follow the control flow graph

• Need pre/post/crash condi$ons for each called procedure

PRE POST

CRASH

if

return

log_read return
procedure bmap()



Cer$fying procedures
• Follow the control flow graph

• Need pre/post/crash condi$ons for each called procedure

• Chain pre- and postcondi$ons, forming proof obligaIons

PRE POST

CRASH

if

return

log_read return
procedure bmap()



Cer$fying procedures
• Follow the control flow graph

• Need pre/post/crash condi$ons for each called procedure

• Chain pre- and postcondi$ons, forming proof obligaIons

• CHL: combines crash condi$ons, get more proof obligaDons

PRE POST

CRASH

if

return

log_read return
procedure bmap()



Proof automa$on
• CHL follows the CFG, and generates proof obliga$ons

PRE POST

CRASH

if

return

log_read return
procedure bmap()



Proof automa$on
• CHL follows the CFG, and generates proof obliga$ons

• CHL solves trivial obliga$ons automa$cally (common case)

PRE POST

CRASH

if

return

log_read return
procedure bmap()



Proof automa$on
• CHL follows the CFG, and generates proof obliga$ons

• CHL solves trivial obliga$ons automa$cally (common case)

• Remaining proof effort: changing representaIon invariants 

• Show that rep invariant holds at entry and exit

PRE POST

CRASH

if

return

log_read return
procedure bmap()

inodes_rep

inodes_rep

inodes_rep



Specifying an en$re system call (simplified) 

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]



Specifying an en$re system call (simplified) 

POST disk |= log rep(NoTxn, new state)
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]



Specifying an en$re system call (simplified) 

POST disk |= log rep(NoTxn, new state)
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)

CRASH disk |= log rep(NoTxn, start state) _
log rep(NoTxn, new state) _
log rep(ActiveTxn, start state, any state) _
log rep(CommittingTxn, start state, new state)

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]



Specifying an en$re system call (simplified) 

POST disk |= log rep(NoTxn, new state)
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)

CRASH disk |= log rep(NoTxn, start state) _
log rep(NoTxn, new state) _
log rep(ActiveTxn, start state, any state) _
log rep(CommittingTxn, start state, new state)

would_recover_either (start_state, new_state)

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]



CRASH disk |= would recover either (start state, new state)

Specifying an en$re system call (simplified) 

POST disk |= log rep(NoTxn, new state)
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]



Specifying log recovery

SPEC log recover ()
PRE disk |= would recover either (last state, committed state)
POST disk |= log rep(NoTxn, last state) _

log rep(NoTxn, committed state)
CRASH disk |= would recover either (last state, committed state)



Specifying log recovery

• log_recover() is idempotent: 

• Crash condi$on implies its own precondi$on 

• OK to run log_recover() again aIer a crash in itself

SPEC log recover ()
PRE disk |= would recover either (last state, committed state)
POST disk |= log rep(NoTxn, last state) _

log rep(NoTxn, committed state)
CRASH disk |= would recover either (last state, committed state)



procedure bmap()

Recovery execu$on seman$cs

PRE POST

CRASH

if

return

log_read return

log_recover



procedure bmap()

Recovery execu$on seman$cs

PRE POST

CRASH

if

return

log_read return

log_recover



procedure bmap()

Recovery execu$on seman$cs

PRE POST

CRASH

if

return

log_read return

log_recover RECOVER



Joint execu$on of two procedures 
bmap ⨝ log_recover

Recovery execu$on seman$cs

• Whenever bmap (or log_recover) crashes, run log_recover aIer reboot

PRE POST

CRASH

if

return

log_read return

log_recover RECOVER



End-to-end specifica$on

• create() is atomic, if log_recover() runs aIer every crash 

• POST is stronger than RECOVER

SPEC create (drum, fn) on log recover ()
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = drum^
fn /2 tree[path]

POST disk |= log rep(NoTxn, new state)
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)
RECOVER disk |= log rep(NoTxn, start state) _

log rep(NoTxn, new state)



CHL summary

• Key ideas: crash condiDons and recovery semanDcs  

• CHL benefit: enables precise failure specifica$ons 
• Allows for automa$c chaining of pre/post/crash condi$ons 

• Reduces proof burden 

• CHL cost: must write crash condi$on for every 
func$on, loop, etc. 
• Crash condi$ons are oIen simple (above logging layer) 



Outline

• Crash safety 
• What is the correct behavior aIer a crash? 

• Challenge 1: formalizing crashes 
• Crash Hoare Logic (CHL) 

• Challenge 2: incorpora$ng performance op$miza$ons 
• Disk sequences 

• Building a complete file system 

• Evalua$on

✔



FSCQ implements many op$miza$ons

• Group commit 
• Buffer transac$ons in memory, and flush them in a single batch 

• Relax durability guarantee 

• Log-bypass writes 
• File data writes go to the disk (buffer cache) directly 

• Log checksums 
• Checksum log entries to reduce write barriers 

• Deferred apply 
• Apply the log only when the log is full



disk

Example: group commit

logdata



disk

Example: group commit

transac;on 
cache

logdata

1. Each file-system call forms a 
transac$on, and are buffered in the 
transacIon cache



disk

Example: group commit

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ rename(‘d/a’,	‘d/b’)

, ,transac;on 
cache

logdata

1. Each file-system call forms a 
transac$on, and are buffered in the 
transacIon cache



disk

Example: group commit

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ rename(‘d/a’,	‘d/b’)
➡ fsync(‘d’)

transac;on 
cache

logdata

1. Each file-system call forms a 
transac$on, and are buffered in the 
transacIon cache

2. fsync() flushes cached transac$ons 
to the on-disk log in a batch 
• Preserve order



➡ mkdir(‘d’)	
➡ create(‘d/a’)

Challenge: formalizing group commit
• Many more crash states (e.g., before or aIer mkdir() )  

• On-disk state can be irrelevant to create() itself, but to some 
previous opera$ons

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, start state)

start state |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]

POST disk |= log rep(NoTxn, new state)
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)
CRASH disk |= would recover either (start state, new state)



Specifica$on idea: disk sequences



Specifica$on idea: disk sequences

flushed state

disk0

in-memory transac;ons write-ahead log

txn1 txn2 txnn



disk sequence

Specifica$on idea: disk sequences

disk0

flushed state

disk0

in-memory transac;ons write-ahead log

txn1 txn2 txnn



disk sequence

Specifica$on idea: disk sequences
• Each (cached) system call adds a new logical disk to the sequence

disk0

flushed state

disk1 diskn

disk0

in-memory transac;ons

latest

write-ahead log

txn1 txn2 txnn



disk sequence

Specifica$on idea: disk sequences
• Each (cached) system call adds a new logical disk to the sequence

• Each logical disk has a corresponding tree

disk0

flushed state

disk1 diskn

disk0

in-memory transac;ons

latest

write-ahead log

tree_rep tree_reptree_rep

txn1 txn2 txnn



disk sequence

Specifica$on idea: disk sequences
• Each (cached) system call adds a new logical disk to the sequence

• Each logical disk has a corresponding tree

• Capture the idea that metadata updates must be ordered

disk0

flushed state

disk1 diskn

disk0

in-memory transac;ons

latest

write-ahead log

tree_rep tree_reptree_rep

txn1 txn2 txnn



New specifica$on with disk sequence

• Specifica$on isn’t more complicated

SPEC create (dnum, fn)
PRE disk |= log rep(NoTxn, disk seq)

disk seq.latest |= dir rep(tree) ^
9 path, tree[path].node = dnum^
fn /2 tree[path]

POST disk |= log rep(NoTxn, disk seq ++ {new state})
new state |= dir rep(new tree) ^

new tree = tree.update(path, fn, EmptyFile)
CRASH disk |= would recover any (disk seq ++ {new state})



Specifica$on for fsync on directories

• AIer fsync(), there is only one possible on-disk state (the latest one)

SPEC fsync (dir inum)
PRE disk |= log rep(NoTxn, disk seq)

disk seq.latest |= tree rep(tree) ^
IsDir(find inum(tree, dir inum))

POST disk |= log rep(NoTxn, {disk seq.latest})
CRASH disk |= would recover any(disk seq)



Formaliza$on techniques for op$miza$ons

• Group commit 
• Disk sequences: captures ordered metadata updates 

• Log-bypass writes 
• Disk relaDons: enforces safety w.r.t. metadata updates 

• Log checksums 
• Checksum model: soundly reasons about hash collision

✔



Outline

• Crash safety 
• What is the correct behavior aIer a crash? 

• Challenge 1: formalizing crashes 
• Crash Hoare Logic (CHL) 

• Challenge 2: incorpora$ng performance op$miza$ons 
• Disk sequences 

• Building a complete file system 

• Evalua$on



FSCQ: building a complete file system 
• File system design is close 

to v6 Unix (+ logging)
FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log



FSCQ: building a complete file system 
• File system design is close 

to v6 Unix (+ logging)

• Implementa$on aims to 
reduce proof effort

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log



FSCQ: building a complete file system 
• File system design is close 

to v6 Unix (+ logging)

• Implementa$on aims to 
reduce proof effort
• Many precise internal 

abstrac$on layers

• e.g., split File and Inode

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log

Block-level file

Inode



FSCQ: building a complete file system 
• File system design is close 

to v6 Unix (+ logging)

• Implementa$on aims to 
reduce proof effort
• Many precise internal 

abstrac$on layers

• e.g., split File and Inode

• Reuse proven components 

• e.g., general bitmap allocator

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log

Bitmap allocator

Directory tree

Inode



FSCQ: building a complete file system 
• File system design is close 

to v6 Unix (+ logging)

• Implementa$on aims to 
reduce proof effort
• Many precise internal 

abstrac$on layers

• e.g., split File and Inode

• Reuse proven components 

• e.g., general bitmap allocator

• Simpler specifica$ons

• e.g., no hard link ⇒ tree spec

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log

Directory tree



Evalua$on

• What bugs do FSCQ’s theorems eliminate? 

• How much development effort is required for FSCQ?  

• How well does FSCQ perform? 



Does FSCQ eliminate bugs?

• One data point: once theorems proven, no 
implementa$on bugs in proven code 
• Did find some mistakes in spec, as a result of end-to-end checks  

• E.g., forgot to specify that extending a file should zero-fill 



Does FSCQ eliminate bugs?

• One data point: once theorems proven, no 
implementa$on bugs in proven code 
• Did find some mistakes in spec, as a result of end-to-end checks  

• E.g., forgot to specify that extending a file should zero-fill 

• Systema$c study 
• Categorize bugs from Linux kernel’s patch history 

• Manually examine if FSCQ can eliminate bugs in each category



FSCQ’s theorems eliminate many bugs 
Bug category Prevented?

Mistakes in logging logic 
e.g., combining incompa:ble op:miza:ons ✔

Misuse of logging API 
e.g., releasing indirect block in two transac:ons ✔

Mistakes in recovery protocol 
e.g., issuing write barrier in the wrong order ✔

Improper corner-case handling 
e.g., running out of blocks during rename ✔



FSCQ’s theorems eliminate many bugs 
Bug category Prevented?

Mistakes in logging logic 
e.g., combining incompa:ble op:miza:ons ✔

Misuse of logging API 
e.g., releasing indirect block in two transac:ons ✔

Mistakes in recovery protocol 
e.g., issuing write barrier in the wrong order ✔

Improper corner-case handling 
e.g., running out of blocks during rename ✔

Low-level bugs 
e.g., double free, integer overflow Some (memory safe)

Returning incorrect error code Some



FSCQ’s theorems eliminate many bugs 
Bug category Prevented?

Mistakes in logging logic 
e.g., combining incompa:ble op:miza:ons ✔

Misuse of logging API 
e.g., releasing indirect block in two transac:ons ✔

Mistakes in recovery protocol 
e.g., issuing write barrier in the wrong order ✔

Improper corner-case handling 
e.g., running out of blocks during rename ✔

Low-level bugs 
e.g., double free, integer overflow Some (memory safe)

Returning incorrect error code Some

Concurrency Not supported

Security Not supported



Development effort
• Total of ~50,000 lines of verified code, specs, and proofs in Coq 

• > 50% reusable infrastructure

4%
12%

7%
5%

21%
8%

44%

CHL infrastructure
General data structures
Write-ahead log
Buffer cache
Inodes and files
Directories
Top-level API



Development effort
• Total of ~50,000 lines of verified code, specs, and proofs in Coq 

• > 50% reusable infrastructure

• Comparison: ext4 has ~60,000 lines of C code (many more features)

4%
12%

7%
5%

21%
8%

44%

CHL infrastructure
General data structures
Write-ahead log
Buffer cache
Inodes and files
Directories
Top-level API



Development effort
• Total of ~50,000 lines of verified code, specs, and proofs in Coq 

• > 50% reusable infrastructure

• Comparison: ext4 has ~60,000 lines of C code (many more features)

• What’s the cost of adding new features to FSCQ?

4%
12%

7%
5%

21%
8%

44%

CHL infrastructure
General data structures
Write-ahead log
Buffer cache
Inodes and files
Directories
Top-level API



Change effort propor$onal to scope of change 

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log



Change effort propor$onal to scope of change 

• Indirect blocks: 
• + 1,500 lines in Inode

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log

Inode



Change effort propor$onal to scope of change 

• Indirect blocks: 
• + 1,500 lines in Inode

• Write-back buffer cache: 
• + 2300 lines beneath log 

~ 600 lines in rest of FSCQ

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log

Buffer cache



Change effort propor$onal to scope of change 

• Indirect blocks: 
• + 1,500 lines in Inode

• Write-back buffer cache: 
• + 2300 lines beneath log 

~ 600 lines in rest of FSCQ

• Group commit: 
• + 1800 lines in Log 

~ 100 lines in rest of FSCQ

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead logWrite-ahead log



Change effort propor$onal to scope of change 

• Indirect blocks: 
• + 1,500 lines in Inode

• Write-back buffer cache: 
• + 2300 lines beneath log 

~ 600 lines in rest of FSCQ

• Group commit: 
• + 1800 lines in Log 

~ 100 lines in rest of FSCQ

• Changed lines include 
code, specs and proofs

FSCQ system calls

Directory

Directory tree

Block-level file

Inode

Bitmap allocator

Buffer cache

Write-ahead log



Performance comparison

• File-system-intensive workload  
• LFS “largefile” benchmark 

• mailbench, a qmail-like mail server  

• Compare with ext4 (non-cer$fied) in default mode 
• Mount op$on: async,data=ordered 

• Use FUSE to forward and serialize requests (disable concurrency) 

• Running on an hard disk on a desktop 
• Quad-core Intel i7-980X 3.33 GHz / 24 GB / Hitachi HDS721010CLA332 

• Linux 3.11 / GHC 8.0.1 / all file systems run on a separate par$$on



FSCQ Performance

• FSCQ’s CPU overhead is high 

• FSCQ’s I/O performance is on par with ext4

Ru
nn

in
g 

Ti
m

e 
(s

ec
on

ds
)

0

5

10

15

20

25

30

largefile mailbench

FSCQ ext4



FSCQ Performance

• FSCQ’s CPU overhead is high 

• FSCQ’s I/O performance is on par with ext4

Ru
nn

in
g 

Ti
m

e 
(s

ec
on

ds
)

0

5

10

15

20

25

30

largefile mailbench

FSCQ ext4 Number of disk I/Os per opera;on

largefile mailbench

write sync write sync

FSCQ 1.0 1.0 50.0 9.8

ext4 1.0 1.0 38.0 12.3



Future direc$ons

• Extrac$ng to na$ve code 
• Reduce both CPU overhead and TCB 

• Cer$fying crash-safe applica$ons 
• Use FSCQ’s top-level spec to cer$fy a mail server or a KV store 

• Suppor$ng concurrency 
• Run FSCQ in a mul$-user environment 

• Exploit both I/O concurrency and parallelism



Conclusion

• CHL helps specify and prove crash safety 
• Crash condi$ons 

• Recovery execu$on seman$cs  

• FSCQ: first cer$fied crash-safe file system 
• Precise specifica$on in presence of crashes 

• I/O performance on par with Linux ext4 

• Moderate development effort



Conclusion

• CHL helps specify and prove crash safety 
• Crash condi$ons 

• Recovery execu$on seman$cs  

• FSCQ: first cer$fied crash-safe file system 
• Precise specifica$on in presence of crashes 

• I/O performance on par with Linux ext4 

• Moderate development effort

h|ps://github.com/mit-pdos/fscq-impl


