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Abstract

Goose is a tool for importing programs written in a subset of Go into Coq. Proving
properties in Coq about a translated Go program implies that these properties hold
for the original Go program, assuming that Goose is correct. Testing the correctness
of Goose is challenging, however, because the Coq translation, called GooseLang, is
not an executable semantics.

This thesis presents Waddle, a testing framework for Goose. Waddle consists of
an interpreter for GooseLang, which makes GooseLang programs executable, a proof
that the interpreter implements GooseLang correctly, and a framework for running
GooseLang programs through the interpreter and checking that they return the same
result as their corresponding Goose program. This thesis evaluates Waddle as a test-
driven development framework and as a bug finding tool, and describes several bugs
that Waddle has found.
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Chapter 1

Introduction

One method for verifying a piece of software is to translate its implementation (e.g.,

a Go program) into an embedding of the execution language within a verification

framework. This method provides the developers with a high degree of performance

control since the software is implemented in its execution language, but requires a

testing strategy that gives high confidence that the translation process preserves the

semantics of the language in which the software is implemented. This thesis presents

Waddle, a solution for testing a translation from Goose, a large subset of the Go

programming language, into a nonexecutable model of this Go subset within the

Coq Automated Theorem Prover [29].

The Waddle framework is based around a proven interpreter for the Coq embed-

ding of Goose. Writing a proven interpreter in order to test a nonexecutable semantics

is not new. A recent mechanization of the WebAssembly semantics relies on a proven

interpreter, which is similar in structure to the one found in Waddle [30]. Waddle,

however, applies this method to a high-level imperative language, Goose, and is the

first system to use the interpreter as an iterative development tool for writing the
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semantics of a language.

The following sections in this chapter provide a description of the standard work-

flow for verifying programs in Coq, a description of the workflow for verifying pro-

grams using Goose, high-level description of Waddle and the contributions of this

thesis, and an outline for the remainder of this thesis.

1.1 Verification using the Standard Coq Workflow

Verified programs written in Coq typically rely on extraction to Haskell or OCaml,

paired with a trusted interpreter to produce executable code [22]. A developer first

writes a program in Gallina, the language used by the Coq framework,1 then ver-

ifies that the program meets its defined specification. Next, they use Coq’s native

extraction tool to extract the program to Haskell, at which point they may compile

and execute the verified program like any other Haskell program. We illustrate this

process in Figure 1-1.

Figure 1-1: A developer first writes a Gallina program in Coq, prog.v, then uses the Coq framework
to verify the code. Next, they extract the program to Haskell, at which point they may compile and
execute the verified program.

1From this point forward, we refer to these programs as ‘Coq programs,’ for simplicity and by
convention.
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One problem with this approach is that developing formally verified programs

directly in Coq can be tedious, especially without tailoring the code to be readily

compatible with pre-existing low-level proof libraries [5, 7, 10, 14, 18, 20]. Another

issue is that Coq extractions often result in performance overhead [8, 9, 19, 24].

Debugging Haskell code for performance is difficult in general, but even more so

when the running code is auto-generated [16, 17, 23, 27, 28].

1.2 Verification using Goose

An alternative verification approach is to write programs in Goose. Goose is a subset

of the Go programming language that can be translated into GooseLang, a seman-

tic model of the Goose semantics embedded within Coq. Figure 1-2 visualizes the

relationship between Go, Goose, and GooseLang.

Figure 1-2: Goose is a subset of the Go programming language that can be translated into Goose-
Lang. GooseLang is an embedding of Goose within Coq.

To verify a Goose program, a developer uses the Goose translator to translate

the program into a GooseLang program, then uses Coq to verify the GooseLang

program. After proving the desired theorems about the GooseLang program, the

developer can then run the original Goose program using the Go runtime. Figure 1-3

shows the workflow of a developer using Goose.
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Figure 1-3: A developer first writes a Go program, prog.go, then uses Goose to convert prog.go to
prog.v, a Coq program. The developer then uses Coq to prove that prog.v is correct. Once they
have finished the proof, they can execute prog.go, knowing that it has been verified.

The benefit to using Goose is that developers can use the standard Go tools to

compile and profile their code. The Go runtime is well-tuned to systems problems,

and writing directly in Goose gives a developer more control over what runs, which

allows for significantly easier performance analysis.

However, using Goose requires the developer to trust that proving properties

about a GooseLang program truly proves the same properties about the correspond-

ing Goose program. The Goose translator is not formally verified, and consequently,

using Goose can result in bugs because the translator translates a Goose program

into a GooseLang program that is not semantically equivalent to the original.

For example, consider the Goose program bitwiseOps shown in Figure 1-4, which

returns the result of a logical or and a logical and operation between unsigned

integers. Here are two ways one might expect this program to work:

1 func bitwiseOps() uint64 {

2 return 5|3&8

3 }

Figure 1-4: A Goose program that performs bitwise operations.
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1. If and and or are given the same precedence, then we have (5 | 3) & 8. Then,

5 | 3 = 7, and then 7 & 8 = 0, so we return 0.

2. If and is given higher precedence than or, then we have 5 | (3 & 8) = 5.

In fact, GooseLang programs behave the first way, and Goose programs behave

the second way. So, a straightforward transformation from Goose syntax to Goose-

Lang syntax results in a bug.2 In order to find such bugs, we need to compare the

behavior of Goose programs to the behavior of their GooseLang counterparts. The

approach one might expect is to run a Goose program, translate the Goose program

into GooseLang, run the GooseLang program, and compare the outputs. Unfortu-

nately, this approach does not work.

The GooseLang semantics are a nonexecutable transition system. This gives

GooseLang a natural way of capturing the possible behavior of concurrent programs,

but means that we cannot compare the result of running a Goose program and its

translated counterpart using the transition system alone.

1.3 Waddle

This thesis presents Waddle, a test framework for Goose. Waddle interprets Goose-

Lang programs into executable functions, enabling comparisons between return val-

ues of Goose and GooseLang programs. In order to ensure that the process of in-

terpretation does not introduce any new bugs or change the semantic meaning of a

GooseLang program, Waddle includes a proof that all interpreted programs follow

the GooseLang semantics.

The contributions of this thesis are the following:
2This example is a real bug we found in Goose, which we discuss in further detail in Chapter 7.
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1. Waddle, a test framework for Goose consisting of:

(a) An executable interpreter for a deterministic subset of GooseLang, a Coq

embedding of a subset of Go. The interpreter interprets GooseLang pro-

grams from their native relational semantics into an executable Coq func-

tion.

(b) A proof that all interpreted programs correspond to a sequence of transi-

tions within the GooseLang semantics, which ensures that the interpreter

does not introduce any semantic differences when interpreting GooseLang

programs.

(c) A test framework, which provides infrastructure to interpret a set of

GooseLang programs and check that these programs return the same re-

sult as their untranslated Goose counterparts.

2. A test suite consisting of Goose programs designed to compare the behaviors

of Goose and GooseLang.

3. An evaluation of the effectiveness of Waddle as a bug finding tool and as a

framework for test-driven development of Goose. This evaluation describes sev-

eral bugs found by Waddle, and several features added to Goose using Waddle

as a development tool. It also includes a discussion of Waddle’s performance.

The majority of Waddle is implemented within Perennial, found here: https:

//github.com/mit-pdos/perennial. The part of Waddle’s test framework that gen-

erates test files from the test suite of Goose programs exists within the Goose repos-

itory, found here: https://github.com/tchajed/goose. The Goose repository also

contains the test suite.
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1.4 Roadmap for this Thesis

Chapter 2 of this thesis provides more background on Goose, including a full descrip-

tion of the GooseLang semantics. Chapter 3 discusses the design and implementation

of Waddle. Chapter 4 explains the equivalence proof between Waddle’s interpreter

and the GooseLang semantics. Chapter 5 evaluates Waddle in terms of bugs found,

its effectiveness as a regression test suite, and its limitations. Chapter 6 discusses

related work, and Chapter 7 provides a conclusion and discussion of future work.
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Chapter 2

Background and Challenge

Goose is a significant subset of the Go programming language that allows users to

write idiomatic Go with only a few constraints. In particular:

1. Goose supports a limited number of control flow patterns that allow early

returns and loops.

2. Goose does not support Go channels. Programmers must write concurrent

programs in Goose using locks.

3. Goose does not support Go interfaces.

2.1 GooseLang Semantics

The Goose translator translates Goose programs into GooseLang, an effectful, un-

typed lambda calculus embedded within Coq. This translation defines the GooseLang

semantics. We give the GooseLang syntax in Figure 2-1, and the semantics in Figure

2-2.

17



Syntax

𝑥, 𝑦, 𝑓 ∈ Var
ℓ ∈ Loc
𝑛 ∈ 𝑈64 ∪ 𝑈32 ∪ 𝑈8
𝑠 ∈ String
} ::= + | − | * | = | < | · · ·
� ::= − |ToString |ToU64 | · · ·

Val 𝑣 ::= () | true | false |𝑛 | 𝑠 | ℓ | (𝑣, 𝑣) | inj1 𝑣 | inj2 𝑣 | rec 𝑓(𝑥) = 𝑒
Exp 𝑒 ::= 𝑥 | 𝑣 | 𝑒} 𝑒 | � 𝑒 | if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) |𝜋1 𝑒 |𝜋2 𝑒

| inj1 𝑒 | inj2 𝑒 | case 𝑒 of inj1 𝑥⇒ 𝑒 or inj2 𝑦 ⇒ 𝑒 end
| rec𝑓(𝑥) = 𝑒 | 𝑒 𝑒 |Panic 𝑠 |ArbitraryInt |CmpXChg(𝑒, 𝑒, 𝑒)
| Fork |AllocN 𝑒 𝑒 |PrepareWrite 𝑒 |FinishStore 𝑒 𝑒
| StartRead 𝑒 |FinishRead 𝑒 | Load 𝑒 | ⟨𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙⟩

ECtx 𝐸 ::= − |𝐸 } 𝑒 | 𝑣 } 𝐸 | � 𝐸 | if𝐸 then 𝑒 else 𝑒 |𝐸 𝑣 | 𝑒𝐸
| (𝐸, 𝑒) | (𝑣,𝐸) |𝜋1𝐸 |𝜋2𝐸 | inj1𝐸 | inj2𝐸 | · · ·

NonAtom 𝑧 ::= Reading𝑛 𝑣 |Writing 𝑣

Heap ℎ ∈ Loc
fin→ NonAtom

World 𝑤 ⟨𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙⟩
State 𝜎 ::= (ℎ,𝑤)
TPool ℰ ∈ List Exp
Config 𝜌 ::= (ℰ , 𝜎)

Figure 2-1: Syntax of GooseLang

In order to keep the GooseLang semantics simple, certain Goose features are

implemented in GooseLang as libraries built from simpler primitives. This includes

slices, which are built from raw pointers; maps, built from general sums; and locks,

built from compare-and-exchange operations.

2.1.1 External Operations

The GooseLang semantics contain a hole, which allows for extensions of the semantics

to be defined as “external operations.” Currently, GooseLang includes a set of external

operations that model an external disk of a fixed size. The external semantics give

18



Pure reduction

𝑣 } 𝑣′
pure
 𝑣′′ if 𝑣′′ = 𝑣 } 𝑣′

� 𝑣
pure
 𝑣′ if 𝑣′ = � 𝑣

if true then 𝑒1 else 𝑒2
pure
 𝑒1

if false then 𝑒1 else 𝑒2
pure
 𝑒2

𝜋𝑖(𝑣1, 𝑣2)
pure
 𝑣𝑖

case inj𝑖 𝑣 of inj1 𝑥1 ⇒ 𝑒1 or inj2 𝑥2 ⇒ 𝑒2 end
pure
 𝑒𝑖[𝑣/𝑥𝑖]

(rec 𝑓(𝑥) = 𝑒)𝑣
pure
 𝑒

[︀
(rec 𝑓(𝑥) = 𝑒)/𝑓, 𝑣/𝑥

]︀
ArbitraryInt

pure
 𝑛 ∀𝑛 ∈ 𝑈64

Per-thread one-step reduction

(𝜎, 𝑒)  (𝜎, 𝑒′) if 𝑒
pure
 𝑒′

((ℎ,𝑤),CmpXChg(ℓ, 𝑣1, 𝑣2))  ((ℎ
[︀
ℓ ↦→ 𝑣

]︀
, 𝑤), true) if ℎ(ℓ) = 𝑣1

((ℎ,𝑤),CmpXChg(ℓ, 𝑣1, 𝑣2))  ((ℎ,𝑤), false) if ℎ(ℓ) ̸= 𝑣1
((ℎ,𝑤),AllocN𝑛 𝑣)  ((ℎ[ℓ+ 𝑖 ↦→ 𝑣 ∀ 0 ≤ 𝑖 < 𝑛], 𝑤), ℓ) if ℓ+ 𝑖 /∈ dom(ℎ) ∀ 0 ≤ 𝑖 < 𝑛

((ℎ,𝑤),PrepareWrite ℓ)  ((ℎ[ℓ ↦→Writing 𝑣], 𝑤), ()) if ℎ[ℓ] = Reading 0 𝑣
((ℎ,𝑤),FinishStore ℓ 𝑣)  ((ℎ[ℓ ↦→ Reading 0 𝑣], 𝑤), ()) if ℎ[ℓ] = Writing 𝑣′

((ℎ,𝑤), StartRead ℓ)  ((ℎ[ℓ ↦→ Reading (𝑛+ 1) 𝑣], 𝑤), 𝑣) if ℎ[ℓ] = Reading𝑛 𝑣
((ℎ,𝑤),FinishRead ℓ)  ((ℎ[ℓ ↦→ Reading𝑛 𝑣], 𝑤), ()) if ℎ[ℓ] = Reading (𝑛+ 1) 𝑣

((ℎ,𝑤), Load ℓ)  ((ℎ,𝑤), 𝑣) if ℎ[ℓ] = Reading𝑛 𝑣

Context reduction

((ℎ,𝑤), 𝑒) ((ℎ′, 𝑤), 𝑒)

((ℎ,𝑤), ℰ [𝑖 ↦→ 𝐸[𝑒]])→ ((ℎ′, 𝑤), ℰ [𝑖 ↦→ 𝐸[𝑒′]])

𝑗 /∈ dom(ℰ) ∪ {𝑖}
(𝜎, ℰ [𝑖 ↦→ 𝐸[Fork {𝑒}]])→ (𝜎, ℰ [𝑖 ↦→ 𝐸[()][𝑗 ↦→ 𝑒]])

Figure 2-2: Operational Semantics of GooseLang
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External Disk Syntax

Block 𝑏 ∈ Vec 4096 𝑈8

World 𝑤 ∈ Loc
fin→ Block

External disk per-thread one-step reduction

∀ 0 ≤ 𝑖 < 4096, ℓ+ 𝑖 /∈ dom(ℎ) 𝑤[𝑛] = 𝑏

((ℎ,𝑤), Read𝑛) ((ℎ[ℓ+ 𝑖 ↦→ Reading 0 𝑏[𝑖] ∀ 0 ≤ 𝑖 < 4096], 𝑤), ℓ)

∀ 0 ≤ 𝑖 < 4096 ∃ 𝑘, (Reading 𝑘 𝑏[𝑖]) = ℎ[ℓ+ 𝑖]

((ℎ,𝑤), Write𝑛 ℓ) ((ℎ,𝑤[𝑛] ↦→ 𝑏), ℓ)

((ℎ,𝑤), Size) ((ℎ,𝑤), |dom(𝑤)|)

Figure 2-3: Syntax and Operational Semantics for an External Disk

rules for a reading from the disk, writing to the disk, and retrieving the size of the

disk. The rules for these disk operations are given in Figure 2-3.

2.2 The GooseLang Semantics by Example

To give an example of how the GooseLang semantics work, consider the function

shown in Figure 2-4. This function creates a byte slice x, and assigns the value 1 to

index 3 of the slice. It then makes a second byte slice y, and copies the entries from

x to y. It then returns the value in index 3 of y, which is 1. Running this function

through the Goose translator results in the GooseLang program shown in 2-5.

Now consider the expression App testCopySimple #() and the default starting

machine state (with an empty heap), which we will call Σ.1 These together comprise

a configuration 𝜌. We can ask what configurations 𝜌 can transition to under the

GooseLang semantics given in Figure 2-2.
1A # symbol is used to signify a GooseLang Val.
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1 func testCopySimple() byte {
2 x := make([]byte, 10)
3 x[3] = 1
4 y := make([]byte, 10)
5 copy(y, x)
6 return y[3]
7 }

Figure 2-4: A Go program called testCopySimple, which creates and partially populates a slice,
copies this slice to another slice, and returns one populated index from the copy.

1 Definition testCopySimple: val :=
2 rec: "testCopySimple" <> :=
3 let: "x" := NewSlice byteT #10 in
4 SliceSet byteT "x" #3 (#(U8 1));;
5 let: "y" := NewSlice byteT #10 in
6 SliceCopy byteT "y" "x";;
7 SliceGet byteT "y" #3.

Figure 2-5: The GooseLang translation of testCopySimple.

Since the expression in 𝜌 is an App of a Rec, we are allowed to perform a 𝛽-

reduction to replace the expression with the body of the Rec after performing sub-

stitution. This gives us a configuration that has the expression

let: "x" := NewSlice byteT #10 in

SliceSet byteT "x" #3 (#(U8 1));;

let: "y" := NewSlice byteT #10 in

SliceCopy byteT "y" "x";;

SliceGet byteT "y" #3.

and the same state (the starting one). Call this configuration 𝜌1.

A let is syntactic sugar for another App of a Rec, but we cannot perform another

𝛽-reduction because the argument of the App is NewSlice byteT #10, which is not

a Val. However, a context reduction does apply, using the context v E.
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First, we will figure out what the configuration (NewSlice byteT #10, Σ) would

transition to. Then, the first configuration reduction rule will tell us what transition

𝜌1 will take. The definition for NewSlice is shown in Figure 2-6.

1 Definition make_cap: val :=
2 𝜆: "sz",
3 let: "extra" := ArbitraryInt in
4 if: "sz" + "extra" > "sz"
5 then "sz" + "extra" else "sz".
6

7 Definition NewSlice (t: ty): val :=
8 rec: "NewSlice" "sz" :=
9 if: "sz" = #0 then slice.nil

10 else let: "cap" := make_cap "sz" in
11 let: "p" := AllocN "cap" (zero_val t) in
12 (Var "p", Var "sz", Var "cap").

Figure 2-6: Implementation of the NewSlice function.

We find that we keep applying the same reduction rules for several more steps

(in order to reduce lets and function calls). The first new transition we encounter

while reducing the NewSlice call is inside the make_cap procedure shown in Figure

2-6. In order to evaluate the expression ArbitraryInt, we apply the pure rule for

reducing an ArbitraryInt.

The next new transition we apply is the per-thread one-step rule for reducing

an AllocN instruction. This is also the first transition which has an effect on the

state. We transition to a Val holding the location of the allocated slice, and a heap

with the zero byte in every slot of the allocated slice. Finally, NewSlice is able to

reduce to a list of three values (implemented as nested pairs), which together form

the GooseLang representation of a slice.

One legal value for the arbitrary integer is 7, and a legal allocation location is

location 1. So for instance, 𝜌1 transitions to 𝜌2, where the expression is:
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SliceSet byteT (#(loc 1), #10, #17) #3 (#(U8 1));;

let: "y" := NewSlice byteT #10 in

SliceCopy byteT "y" (#(loc 1), #10, #17);;

SliceGet byteT "y" #3.

and the state contains a heap with seventeen zero bytes allocated contiguously start-

ing at location 1.

1 Definition SliceSet t: val :=
2 𝜆: "s" "i" "v",
3 (slice.ptr "s" +ℓ [t] "i") ← [t] "v".

Figure 2-7: Implementation of the sliceSet function.

Now the expression in 𝜌2 is a bind, which means it is another App of a Rec. During

the process of reducing SliceSet we encounter the new expression (slice.ptr "s"

+ℓ[t] "i")← [t] "v", shown in Figure 2-7. The← is notation for a PrepareWrite

and then a FinishStore operation, which we’ll perform in sequence. Note that writes

to the heap (and reads from the heap) are split into two operations in the GooseLang

semantics. Splitting these operations allows GooseLang to accurately model Goose

writes and reads, which are nonatomic.

Substituting the variables from the other reductions, the expression that we

need to reduce for the PrepareWrite is (PrepareWrite #(loc: 4)), which begins

a write to the third index of our slice. We apply the one-step reduction rule for

PrepareWrite, and because the heap in Σ at location 4 is in state Reading: 0, we

are able to transition to the expression LitV LitUnit and a heap where location 4

is in the Writing state.

Again substituting the variables from the other reductions, the expression that

we need to reduce for FinishStore is (FinishStore #(loc: 4) #1). We apply the
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one-step reduction rule for FinishStore, and because the heap in Σ at location 4 is

in state Writing, we are able to transition to the expression LitV LitUnit and a

heap where location 4 is in the Reading: 0 state with the value 1.

When we fully finish the SliceSet operation, we get 𝜌3 with the expression

let: "y" := NewSlice byteT #10 in

SliceCopy byteT "y" (#(loc: 1), #10, #17);;

SliceGet byteT "y" #3.

and a state with a heap containing the value 1 at location 4.

We next perform a series of reductions to allocate another slice. Suppose that we

allocated this slice at location 20, and that ArbitraryInt returns #9. Then, we end

this series of reductions with 𝜌4, which has the expression

SliceCopy byteT (#(loc: 20), #10, #19) (#(loc: 1), #10, #17);;

SliceGet byteT (#(loc: 20), #10, #19) #3.

and a state with a heap that now also contains nineteen zero bytes allocated con-

tiguously starting at location 20.

The SliceCopy implementation in Figure 2-8 shows is that we have yet another

function call and let. Transitioning through these steps leads to the if statement

in SliceCopy. We only have reduction rules for “if true” and “if false”, so there is no

immediate pure reduction available. Instead, we perform a context reduction using

the context if E then e else e. The expression

slice.len (#(loc: 20), #10, #19) < slice.len (#(loc: 0), #10, #17)

reduces to #false, and does not affect the state. Our expression now matches the
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pure reduction rule for an expression beginning with “if false”, so we process the

expression slice.len (#(loc: 1), #10, #17), and find that it reduces to #10.

1 Definition MemCpy_rec t: val :=
2 rec: "memcpy" "dst" "src" "n" :=
3 if: "n" = #0
4 then #()
5 else "dst" ←[t] (![t] "src");;
6 "memcpy" ("dst" +ℓ[t] #1) ("src" +l[t] #1) ("n" - #1).
7

8 Definition SliceCopy t : val :=
9 𝜆: "dst" "src",

10 let: "n" :=
11 (if: slice.len "dst" < slice.len "src"
12 then slice.len "dst" else slice.len "src") in
13 MemCpy_rec t (slice.ptr "dst") (slice.ptr "src") "n";;
14 "n".

Figure 2-8: The implementation of the sliceCopy function.

We now look at the expression MemCpy_rec t (slice.ptr #(loc: 20), #10,

#19)) (slice.ptr (#(loc: 1), #10, #17)) #10;; #10. The transitions for the

MemCpy_rec call are primarily ones we have already discussed, with the exception

of a Load, which is hidden by the notation "! e" := (Load e). We transition from

this load using the corresponding one-step reduction rule. We end with 𝜌5, which

contains the expression

SliceGet byteT (#(loc: 20), #10, #19) #3.

and a heap which now contains #1 at location 23.

Finally, we find that SliceGet is an App of a Load at location #23. This location

contains the value #1. So, the entire configuration 𝜌 transitions to the value #1 (and

the state from 𝜌5), and the program is finished.
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2.3 Challenge

The process of analyzing a possible execution of 𝜌 is quite different than running

the original Goose program, which runs natively using the Go runtime. It is unclear

whether the GooseLang semantics, which are abstracted from the realities of hard-

ware, accurately model the semantics of Goose. Further, errors in the implementation

of the GooseLang library functions (e.g., the slice library) could lead to discrepan-

cies in the behavior of the two systems. Waddle makes the GooseLang semantics

executable, which allows us to empirically confirm that the GooseLang model is ac-

curate. In a sense, Waddle automates the process of analyzing a possible execution

shown in Section 2.2, allowing us to compare complete executions on many programs.
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Chapter 3

Waddle

This chapter describes the design of Waddle. A diagram showing the components of

Waddle is shown in 3-1. Waddle consists of two main components:

1. A verified interpreter, which implements a deterministic, single-threaded subset

of the GooseLang semantics as an executable function.

2. A test framework consisting of a generator, which automatically generates Wad-

dle tests of the GooseLang semantics from a directory of Goose test programs,

as well as the necessary machinery to run Waddle tests.

The input to Waddle consists of a library of test programs written in Goose.

These test programs take no arguments, and are always expected to return true. We

discuss the structure of these test functions in greater depth in Section 3.2.

Before using Waddle, this library must be run through the Goose translator to

produce the corresponding set of GooseLang functions. The Waddle test generator

then produces two files. The first file consists of Go test functions that use the

Go testing package. This allows us to verify that our Goose tests produce the
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Figure 3-1: The figure above illustrates Waddle. The Waddle test generator produces a Waddle test
for each test program in the test suite, as well as a Go test to confirm the expected output. Each
Waddle test runs its corresponding GooseLang program through the interpreter, and checks the
interpreter output against the expected value.

expected result when run with the standard GoLang compiler. The second file is

a Coq file consisting of Waddle tests. Each Waddle test corresponds to a function

from the library of test functions. Executing coqc on one of these tests takes the

translated GooseLang function, runs it through the interpreter, and checks whether

the interpretation of the GooseLang function returned #true. If a test fails (i.e., the

interpreted programs returns #false), Coq fails to run and the Waddle test file will

not compile, calling the failed test to attention. Another possibility is that the call

to coqc will not terminate in a reasonable time frame. This case alerts us to a bug

caused by a GooseLang program containing a subexpression which cannot be fully

evaluated, such as a library function missing an argument (Section 5.1).

The following sections provide detailed descriptions of each of the Waddle com-

ponents.
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3.1 The Interpreter

The interpreter implements a deterministic, single-threaded, executable version of

the GooseLang semantics, as described in Chapter 2. Running the interpreter on a

GooseLang program results in a fully-evaluated expression (i.e., a GooseLang value)

or it results in an interpreter error. In order to ensure that the interpreter does not

introduce any semantic differences from the input GooseLang program, we prove that

every successfully interpreted program corresponds to a a valid sequence of steps in

the GooseLang semantics. The details of this proof are discussed in Chapter 4.

3.1.1 Deterministic Semantics

The majority of the GooseLang semantics is already sequential and deterministic.

The only instruction in the GooseLang semantics that the interpreter does not sup-

port is Fork. Support for forking would require the interpreter to handle concurrent

programs. Theoretically, this could be implemented by overhauling the design of

the interpreter to track a thread pool, with some deterministic scheduling procedure.

However, doing this would make the interpreter and its proof significantly more com-

plicated. Implementing a single scheduler would not match the scheduler in the Go

runtime, and attempting to evaluate all schedules would quickly result in performance

problems for even the smallest test programs.

The interpreter implements the remainder of the instructions in the GooseLang

semantics in their entirety, in some cases making deterministic choices about instruc-

tions which allow nondeterministic implementations. In particular, the interpreter

always returns #1 for ArbitraryInt, and always allocates at the next available lo-

cation on the heap for AllocN. The interpreter handles external operations on a

case-by-case basis. We discuss integrating external operations into the interpreter in
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Section 3.1.3.

3.1.2 Implementation

The interpreter is implemented as a single loop which incrementally constructs an

executable program from an input GooseLang expression. In order to guarantee ter-

mination, the interpreter also takes in an integer “fuel” value. This value decrements

at each recursive call to the interpreter, and the entire evaluation fails if this fuel

value reaches zero.

When evaluating an expression, we want to track the state of the system, such

as data allocated on the heap or on an external disk. We also want to halt the

interpreter when we discover that an expression is not semantically valid, so we must

fail on invalid programs. We want to prove that if the interpreter returns a particular

configuration 𝜌, consisting of a machine state Σ and a return value 𝑣, then GooseLang

semantics could return the same result.

These goals are easy to achieve using a type that returns the system state and

allows computations to fail with an error message. The interpreter returns a value

of type StateT Σ Error val, where Σ is the machine state and Error X is a tagged

union returning either a “success” tag and an X or a “failed” tag and an error message.1

The type signature and high-level structure for the interpreter is shown in Figure

3-2.

The Σ in our return type is shared with the transition semantics for GooseLang.

The implementation for Σ is shown in Figure 3-3. Unlike the GooseLang transition

system, the interpreter does not use every component of the state. The relevant

components of Σ for the interpreter are the heap and world fields. The world models
1The interpreter’s return type implementation is essentially the same as the StateT state

(Either String) monad in Haskell.
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1 Fixpoint interpret (fuel: nat) (e: expr) : StateT Σ Error val :=
2 match fuel with
3 | O => mfail "Fuel depleted"
4 | S n =>
5 match e with
6 | Val v => mret v
7 | Var y ...

Figure 3-2: The type signature for the Waddle interpreter.

the state for external operations; in our case, this is usually an external disk with

persistent memory, which we discuss in the following section.

Record Σ : Type := {
heap: gmap loc (nonAtomic val);
world: ffi_state;
trace: Trace;

}.

Figure 3-3: The implementation of the GooseLang Σ type.

3.1.3 External Operations

Just like the GooseLang semantics, the interpreter is extensible over a set of external

operations. External operations are added to the GooseLang semantics by defining

an instance of the ext_semantics class. This class is a foreign function interface that

requires a transition system defining the operations of the external semantics.

1 Class ext_interpretable :=
2 {
3 ext_interpret_step: external → val → StateT Σ Error expr;
4 ext_interpret_ok: . . .;
5 }.

Figure 3-4: Skeleton of the ext_interpretable class, which gives the conditions for a set of external
operations to be interpretable.
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In order to support external operations in Waddle, we define a class named

ext_interpretable, shown in Figure 3-4. The ext_interpret_step field contains

is an interpreter for a single transition within an external semantics, and takes an

external operation and a value as arguments. This single-step interpreter steps to an

expression rather than a value, allowing its result to be returned to the main inter-

preter. This design avoids the need to duplicate the code for reducing non-external

expressions into every implementation of ext_interpret_step. In other words, after

interpreting an ExternalOp, we just recursively interpret the result using the Goose-

Lang interpreter. The implementation for handling ExternalOps in the interpreter

is shown in Figure 3-5.

The ext_interpret_ok field contains a proof of semantic equivalence between

the external transition system and its corresponding ext_interpret_step instance.

| ExternalOp op e =>
v <- interpret n e;

e' <- ext_interpret_step op v;
interpret n e'

Figure 3-5: The Waddle interpreter implementation for external operations, which is dependent on
an external interpreter function.

In order to implement the external disk semantics specifically, we construct an

instance of ext_interpretable, which we call disk_interpretable. This instance

contains disk_interpret_step of type ext_interpret_step, which interprets the

per-thread one-step reductions for external disk operations shown in Figure 2-3 from

Chapter 2 as an executable function. It also contains disk_interpret_ok, a proof

that any expression interpreted by disk_interpret_step is equivalent to a valid

transition in the external disk semantics. We discuss the details of ext_interpret_ok

and disk_interpret_ok in Section 4.2.
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3.1.4 Error Handling

The interpreter provides a variety of error messages when it fails to interpret a

program, depending on the reason for the error. If the interpreter runs out of fuel, it

simply returns a “fuel depleted” message.

Failures resulting from interpreting a program that does not match any cases

in the interpreter print error messages with relevant information about the machine

state at time of failure. For example, if a program attempts to perform a Load from a

location ℓ that is not allocated on the heap, the interpreter will fail with the message

“Load failed at location ℓ.” We provide a small pretty printing library for GooseLang

instructions and GooseLang values in order to print relevant debugging information.

In addition to instruction-specific error messages, the interpreter also prints a

backtrace of functions called in the GooseLang program prior to its error, allowing

the developer to get a better understanding of the point at which the GooseLang

program failed to be interpretable. We implement backtrace support by creating an

augmented state type. We replace Σ in the interpreter with a record type containing

two fields, Σ and backtrace, where the backtrace type is a list of strings. Every time

the interpreter encounters an App instruction with a named function, the interpreter

prepends the function name to the backtrace list. Since the backtrace is stored in

the state, and the interpreter does not return the state when it fails, we provide a

wrapper function which serializes the backtrace to a string and returns it in the error

message for the failure.
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3.2 Test Framework

In order to streamline the process of testing using the interpreter, Waddle provides

a test framework, which generates a formatted file of Waddle tests from a directory

of Goose test programs, runs the corresponding GooseLang test programs through

the interpreter, and checks the result against an expected value.

1 func testBitwiseOps() bool {
2 return 5|3&8 == 5
3 }

Figure 3-6: A test for bitwise operations, structured for compatibility with the Waddle test gener-
ator.

The first component of this framework is a test generator. The test generator is

written in Go, and takes in a directory of Goose programs as input. The test programs

in this directory are required to be Goose functions that have names beginning in

test, and that take no inputs and produce Boolean outputs. All test programs

are expected to return true. Other functions within the directory can be called as

helper functions within the test programs, and have no name, input, or return value

restrictions. Figure 3-6 shows the bitwiseOps program from Section 1.2 reformatted

to comply with the test generator requirements.

1 func (suite *GoTestSuite) TestBitwiseOps() {
2 suite.Equal(true, testBitwiseOps())
3 }

Figure 3-7: A test for testBitwiseOps using the Go testing package, which ensures that the test
program behaves as desired under the Go runtime.

In addition, tests that perform reads and writes from an external disk using the

external disk semantics must initialize an empty logical disk. This disk is implemented

as an array of blocks, where each block is an array of bytes.
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The generator produces the two required test files for the Waddle workflow. The

first test file is a Go file that uses the Go testing package. This file runs the test pro-

grams using the Go runtime, allowing the Waddle user to check that their programs

run as expected. We show the test corresponding to testBitwiseOps in Figure 3-7.

Example testBitwiseOps_ok : testBitwiseOps #()  #true := t.

Figure 3-8: A Waddle test, corresponding to the testBitwiseOps Goose program.

The second test file is a Coq file consisting of a Coq Example for each test. We call

these Examples Waddle tests. The Waddle test corresponding to testBitwiseOps is

shown in Figure 3-8.

The second component of the Waddle framework is the Coq code required to run

Waddle tests. Waddle tests assume that the programs they were generated from have

also been run through the Goose translator to produce their GooseLang equivalents.

The framework runs the GooseLang program called in the Waddle test through the

interpreter with an initial starting Σ and a default fuel value. The framework then

checks whether the test successfully runs to #true. The coqc process will fail on

failing tests, as discussed in the following section.

3.3 Using Waddle

The step-by-step instructions for developing tests as follows:

1. Write a set of test programs that comply with the requirements of the Waddle

test generator.

2. Generate the Go test file using the test generator, and run go test to ensure

the tests successfully return true using the Go runtime.
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3. Run the Goose translator on the test programs to generate a Coq file with the

GooseLang translation of the test programs.

4. Generate the Coq test file, and compile the Waddle tests for the GooseLang

programs using coqc.

5. If the test file compiles, the tests have passed. The file might fail to compile

for four reasons:

(i) A Waddle test returned #false, indicating that a Boolean operation in the

test program evaluated oppositely of the behavior in its original Goose-

Lang program.

(ii) A Waddle test returned an error message indicating that the translated

program did not comply with the subset of GooseLang implemented by

the Waddle interpreter. This could be the result of a type error in the

GooseLang program, or the result of incompleteness in the interpreter.

(iii) A Waddle test returned an error indicating that the interpreter ran out

of fuel when interpreting the program. This could indicate that more fuel

should be added to interpret a specific GooseLang program, or that the

program contained an infinite loop not present in the original Goose pro-

gram.

(iv) A Waddle test failed to return in a reasonable time frame, requiring man-

ual cancellation of the compilation. This indicates that a subexpression

of a GooseLang program failed to fully evaluate, for example, because it

relied on a Coq Axiom, or on a library function missing one or more of its

arguments.
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The Goose developer must identify the cause of the compilation failure, and

then make alternations to Goose, to a GooseLang library, or to the test frame-

work (to adjust fuel values) to fix the error. The developer then rebuilds the

adjusted files, and returns to step (iii).

If a failing test in category (i), (ii), or (iii) cannot be fixed right away, the developer

can instead update the failing test program’s name to have failing_ as a prefix.

Re-running the test generator on tests with this pattern will cause the corresponding

Waddle tests to expect failure, allowing the test file to compile. Tests which expect

failure will then throw an error if the test begins to succeed, allowing for an alternative

mechanism for the developer to track when a bug is fixed. For failing tests in category

(iv), the developer can change the test program to begin with disabled_. This will

prevent the corresponding Waddle test from being generated, but will allow the test

program to remain alongside the other test programs (ideally, with documentation

about why the test is disabled).

We discuss the ways in which the debugging process could be improved in Section

7.1.
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Chapter 4

Interpreter Verification

In order to ensure that the interpreter doesn’t produce any additional bugs or doesn’t

mutate the meaning of GooseLang programs, we want to prove that the interpreter

does exactly the same thing as the transition system that defines the semantics of

GooseLang.

Ideally, we would prove the statement “machine configuration 𝐴 transitions to a

final machine configuration 𝐵 if and only if running the interpreter with machine

configuration 𝐴 returns machine configuration 𝐵”. However, the interpreter does not

implement concurrency, and uses a deterministic subset of the GooseLang’s nondeter-

ministic semantic rules. These differences between Waddle’s GooseLang interpreter

and the GooseLang semantics prevent us from proving the theorem above. We can

guarantee that any interpreted program corresponds to a valid series of GooseLang

transition rules, but we cannot guarantee that every GooseLang program can be

interpreted.

We work around the differences between the GooseLang semantics and the inter-

preter by proving a weaker theorem. This theorem states that if the interpreter in
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a machine configuration 𝐴 produces a result in a configuration 𝐵, then 𝐴 must be

allowed to step to 𝐵 in the GooseLang semantics (although 𝐵 may not be the only

possible result of the computation represented by 𝐴). The code for this theorem is

shown in Figure 4-1. The runStateT function is the “run” function for the interpreter

(i.e., it executes the interpret function on a starting configuration and returns the

ending configuration). This theorem ensures that all programs that are successfully

interpreted by the Waddle interpreter are guaranteed to be equivalent to a valid

series of transitions in the GooseLang semantics.

1 Theorem: interpret_ok : forall (n: nat) (e: expr) (𝜎:
2 Σ) (v: val) (𝜎': Σ),
3 (((runStateT (interpret n e) 𝜎)
4 = Works _ (v, 𝜎')) → exists m,
5 @nsteps goose_lang m ([e], 𝜎) ([Val v], 𝜎')).

Figure 4-1: The interpret_ok theorem, which states that for any natural number 𝑛, GooseLang
expression 𝑒, and starting state 𝜎 that interprets to a value 𝑣 and ending state 𝜎′, there is some
set of GooseLang transitions that take the starting configuration (𝑒, 𝜎) to the ending configuration
(𝑣, 𝜎′).

However, there are certain correctness guarantees that this theorem does not

provide. An interpreter that always fails would satisfy the interpret_ok property.

The Waddle interpreter could fail to interpret a specific program because the program

is wrong, but it could also fail because the interpreter runs out of fuel, or because the

interpreter is incomplete. In order to get confidence that our interpreter implements

all of the features we want without failing, we have a suite of example programs and

assert that they interpret to the correct results. There is no formal guarantee that

we have implemented every feature we want to test except for these examples.
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4.1 Proof Structure

At a high level, interpret_ok is an induction proof over the fuel value, which pro-

ceeds by cases depending on the top-level constructor of the expression being inter-

preted. The base case of the induction of the induction is when we have 0 fuel, which

causes the interpreter to fail and therefore the interpreter satisfies the interpret_ok

property.

For the inductive case, we assume that the interpreter satisfies the interpret_ok

property when it has 𝑛 fuel or less. Then we proceed in cases based on the instruction

at the head of the expr we are interpreting, assuming we have 𝑛+1 fuel, and proving

that interpreting that expression is equivalent to performing one or more steps in

the transition semantics.

For each expr constructor, we show that an expression containing this construc-

tor as the head can transition to the expression to which it interprets. This requires

some machinery for manipulating the interpreter code so that we can deduce needed

properties about configurations from a hypothesis that the code interprets to a par-

ticular result. The main thing that this machinery does is work backwards from a

hypothesis that an interpretation succeeded (or failed), and prove all of the proper-

ties about the configuration needed to create a certificate that the configuration can

take some series of transition steps to reach the the ending expression.

4.1.1 Example: Proving Equivalence for Binary Operations

The proof starts with the goal

(((runStateT (interpret n e) 𝜎) =
Works _ (v, 𝜎')) →
∃ m, @nsteps goose_lang m ([e], 𝜎) ([Val v], 𝜎'))
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where runStateT is the “run” function of the interpreter (i.e., it executes the inter-

pret function on a starting configuration and returns the ending configuration). The

nsteps relation must be witnessed by a sequence of steps that takes the starting

configuration to the ending configuration. Here, goose_lang refers to the type of the

individual steps (which are the GooseLang transitions).

We pick a configuration (e, 𝜎), interpret that configuration by doing runStateT

(interpret n e) 𝜎, and we get an output configuration (Val v, 𝜎’). Now we have

the hypothesis that the interpretation succeeded within our proof state, and we need

to show that there exists some number of steps 𝑚 such that the configuration (e,

𝜎) transitions to (v, 𝜎’). To illustrate the details of this proof, we walk through

the proof for the case where the head of the expression e is a binary operation. In

this case, we begin with the goal

∃ (m : nat), nsteps m ([BinOp op e1 e2], 𝜎) ([v], 𝜎'),

which says that there exists some number of steps 𝑚 such that a configuration

containing an expression with binary operation instruction at its head and a state 𝜎

can transition to a configuration (v, 𝜎’).

Our inductive hypothesis says that if we interpreted any configuration (e, 𝜎)

with 𝑛 fuel and stepped to an output configuration (v, 𝜎’), then (e, 𝜎) and (v,

𝜎’) are related under the nsteps relation. Given this inductive hypothesis, and

the fact that we know we are interpreting a BinOp instruction with 𝑛 + 1 fuel, we

unfold the definition of interpret to reveal the implementation for handling BinOp

instructions in the interpreter. Specifically, this takes us from the hypothesis

runStateT (interpret (S n) (BinOp op e1 e2)) 𝜎
= Works (val * Σ) (v, 𝜎')

to the unfolded hypothesis 𝐻:
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H : runStateT
(v1 ← interpret n e1;
v2 ← interpret n e2;
mlift (bin_op_eval op v1 v2)
("BinOp eval on invalid type:

" ++ pretty op ++ "(" ++ pretty v1 ++ ", "
++ pretty v2 ++ ")"))

𝜎 = Works (val * Σ) (v, 𝜎').

This unfolded hypothesis tells us that in order to evaluate a BinOp, we first

interpret the left expression e1, then the right expression e2. Then we call the partial

function bin_op_eval, which calculates the result of the binary operation op on input

values v1 and v2. The function mlift lifts bin_op_eval into a monadic action which

makes the interpreter fail if bin_op_eval returns None.

Notice that every interpret call in 𝐻 is a call to interpret with n fuel, meaning

that our inductive hypothesis will apply to each of these recursive calls. Now, we need

to take the sequence of computations in 𝐻, and for each one, apply our inductive

hypothesis to find a corresponding nsteps relation. For example, the first line of 𝐻

will lead to the hypothesis

runStateT (interpret n e1) 𝜎 = Works (val * Σ) (v1, s),

where (v1, s) is some intermediate configuration. Applying the inductive hypothesis

will give us the corresponding relation nsteps m ([e1], 𝜎) ([v1], s). We will

produce such a relation for each call to interpret, and then chain these relations

together to show we can reach (v, 𝜎′), the ending configuration from running the

interpreter on e, by repeatedly applying transitions from the constructor that encodes

the GooseLang semantics.

To begin this chaining process, we rely on an Ltac tactic called run_next_interpret,
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1 Ltac run_next_interpret IHn :=
2 match goal with
3 | [H : runStateT (mbind (fun x => @?F x)
4 (interpret ?n ?e)) ?𝜎 = _ |- _] =>
5 let interp_e := fresh "interp_e" in
6 let IHe := fresh "IHe" in
7 let e_to_v := fresh "nsteps_interp" in
8 let v0 := fresh "v" in
9 let m := fresh "m" in

10 let v := fresh "v" in
11 let s := fresh "s" in
12 destruct (runStateT (interpret n e) 𝜎) as
13 [v0|] eqn:interp_e; [|runStateT_bind];
14 destruct v0 as (v & s);
15 pose (IHn e 𝜎 v s interp_e) as IHe;
16 destruct IHe as (m & e_to_v);
17 runStateT_bind
18 | _ => fail
19 end.

Figure 4-2: The run_next_interpret tactic handles hypotheses where the first component of a
running computation is an interpret call. The tactic destructs the runStateT of a call to interpret
to determine whether the call works or fails. If it works, the tactic applies the inductive hypothesis,
which is passed to the tactic to avoid having to pattern-match on the context to find the correct
hypothesis, to produce an nsteps nsteps relation.

shown in Figure 4-2. This tactic handles hypotheses like 𝐻, where the first component

of a running computation is an interpret call. The tactic destructs the runStateT

of the call to interpret to determine whether the call works or fails. If it works,

the tactic applies the inductive hypothesis (passed to the tactic to avoid having to

pattern-match on the context to find the correct hypothesis) to produce an nsteps

relation.

We call run_next_interpret twice in the BinOp case, which runs the computa-

tions for the first two lines in 𝐻. Each time we call run_next_interpret, we get a

new hypothesis that relates our previous configuration to a new configuration. Note
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that this is where evaluation order can matter, because the second call to interpret

takes the state from the ending configuration of the first interpret call, not the

starting state 𝜎.

As previously stated, the first call to run_next_interpret gives us the relation

𝑟1:

nsteps m ([e1], 𝜎) l ([v1], s),

and the hypothesis 𝐻 becomes 𝐻 ′:

H' : runStateT
(v2 ← interpret n e2;

mlift (bin_op_eval op v1 v2)
("BinOp eval on invalid type: " ++ pretty op

++ "(" ++ pretty v1 ++ ", " ++ pretty v2 ++ ")"))
s = Works (val * Σ) (v, 𝜎').

The second call to run_next_interpret gives the relation 𝑟2:

nsteps m0 ([e2], s) ([v2], s0),

and transforms 𝐻 ′ into 𝐻 ′′:
H'' : runStateT

(mlift (bin_op_eval op v2 v1)
("BinOp eval on invalid type: " ++
pretty op ++ "(" ++ pretty v2 ++ ", " ++ pretty v1 ++ ")"))

s0 = Works (val * Σ) (v, 𝜎').

Next, we have to extract information from the rest of our hypothesis, which no

longer contains any recursive calls to interpret. We call the tactic runStateT_inv,

which is how we handle plain Gallina that isn’t recursive. Specifically, we apply in-

version to 𝐻 ′′ to extract information about the pure Gallina functions called, such as

bin_op_eval. This gives the hypothesis bin_op_eval op v2 v1 = Some v, which
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tells us that the bin_op_eval must have returned a particular value for the inter-

mediate step under consideration to have succeeded. It also tells us that s0 = 𝜎’

because none of the operations in 𝐻 ′′ change the state.

We now introduce an existential variable using the Coq eexists tactic, to avoid

having to specify the the exact number of steps we’re going to have to do (in this

case, the actual number is m + m0 + 1).

We next need to prove that there is a GooseLang transition corresponding to 𝑟1

which takes the starting configuration to some intermediate configuration, that 𝑟2

can take this intermediate configuration to yet another configuration, and so forth

until we reach our goal configuration ([v], 𝜎’).

Applying the context BinOpLCtx op e2 to 𝑟1 transforms the relation into

nsteps m ([BinOp op e1 e2], 𝜎) ([BinOp op v1 e2], s),

which starts at exactly our starting configuration. We do this context application

using the tactic ctx_step, shown in Figure 4-3. This tactic takes a context and

searches the hypotheses in our proof state for nsteps relations, which, when we

apply the context, would start at the current configuration.

The ctx_step tactic is able to prove goals like

nsteps m ([BinOp op e1 e2], 𝜎) ([BinOp op v1 e2], s).

Our goal in the proof at this point, however, is

nsteps ?m ([BinOp op e1 e2], 𝜎) ([v], 𝜎’).

They do not have the same end configuration, but we want to say that the context
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1 Ltac ctx_step ctx_expr :=
2 repeat match goal with
3 | [ nsteps_interp : nsteps _ ([?e], ?s) _ (_, _) |- _ ] =>
4 let r := eval simpl in (ctx_expr e) in
5 match goal with
6 | [ |- nsteps _ ([r], s) _ _ ] =>
7 let H := fresh "nsteps_interp_ctx" in
8 pose proof (@nsteps_ctx _ ctx_expr
9 _ _ _ _ _ _ _ nsteps_interp) as H;

10 simpl in H;
11 exact H
12 | _ => fail
13 end
14 | _ => fail
15 end.

Figure 4-3: Given a ctx_expr, the fill of some context, this tactic looks for hypotheses that an
expression 𝑒 steps to some value 𝑣, and a goal which states that 𝑒 steps to 𝑣 within ctx_expr.
This tactic relies on the nsteps_ctx lemma, which says that if we know a step is valid outside of
a context, then it is also a valid step within a context.

step is the first part of a chain of relations, which will eventually prove the goal.

To do this, we first apply the nsteps_transitive tactic, which takes our goal and

splits it apart into two goals. The first goal is to show that we can take our starting

configuration to some intermediate configuration, and the second goal is to show that

this intermediate configuration is related to the ending configuration. Then, applying

ctx_step with the context BinOpLCtx op e2 dispatches the first goal, and we are

left with the goal

nsteps ?m ([BinOp op v1 e2], s) ([v], 𝜎’).

We now repeat the same process of splitting the goal using nsteps_transitive

and applying ctx_step with the appropriate context, which is now BinOpRCtx op

46



v1. This time, the context application transforms 𝑟2 into

nsteps ?m ([BinOp op v1 e2], s) ([BinOp op v1 v2], 𝜎’),

which starts at exactly our previous intermediate configuration.

Our final goal is

nsteps ?m ([BinOp op v1 v2], 𝜎’) ([v], 𝜎’),

which we dispatch using the tactic single_step. This tactic allows us to directly

apply the transition rules encoded in the GooseLang semantics. In this case, we

have bin_op_eval op v1 v2 = Some v as a hypothesis in our proof context, so

single_step automatically applies the pure reduction rule for binary operations,

completing our example.

4.2 Proving External Operations

The proof of the ExternalOp case of the interpreter structurally resembles the other

cases, except that we must rely on an external interpreter with its own proof rather

than just our inductive hypothesis. As mentioned in Section 3.1.3, we define the

class ext_interpretable. We now show the complete implementation of this class

in Figure 4-4.

The class requires a single-step interpreter, which takes an external operation

(external) and a Val. It returns a GooseLang expression representing the state

changes caused by the evaluation, and the expression to which the starting ExternalOp

expression transitions. The class also requires a proof for this single-step interpreter,
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1 Class ext_interpretable :=
2 {
3 ext_interpret_step : external -> val -> StateT Σ Error expr;
4 ext_interpret_ok : ∀ (op : external) (v : val) (e' : expr) (𝜎 𝜎': Σ),
5 (runStateT (ext_interpret_step eop v) 𝜎 = Works _ (e', 𝜎')) →
6 ∃ m, @nsteps goose_lang m ([ExternalOp op (Val v)], 𝜎) ([e'], 𝜎');
7 }.

Figure 4-4: The ext_interpretable class defines the requirements for defining an external se-
mantics for integration with the Waddle interpreter. Similar to interpret_ok, ext_interpret_ok
requires a proof that if the interpreter successfully interprets some configuration 𝐴 to some config-
uration 𝐵, then there must be a step in the external semantics that reduces 𝐴 to 𝐵.

ext_interpret_ok. This proof says that, for any external operation op which all

take single value v as an argument, if running the external single-step interpreter

ext_interpret_step on a configuration (op v, 𝜎) results in a successful interpre-

tation to a configuration (e’, 𝜎’), then there exists a series of transitions in the

GooseLang semantics which takes the configuration (ExternalOp op v, 𝜎) to the

configuration (e’, 𝜎’). In other words, taking a single step in an interpreter of type

ext_interpret_step is equivalent to a transition in the GooseLang semantics which

starts at a configuration that contains an external operation at its head.

In order to implement the external disk semantics, we define and implement

disk_interpret_step of type ext_interpret_step and disk_interpret_ok of

type ext_interpret_ok, and use them to define an instance of the ext_interpretable

class. We give the signatures for these types in Figure 4-5.

The main interpreter uses ext_interpretable to prove the case for external

operations by letting ext_interpret_ok fill the role of the inductive hypothesis in

order to show the existence of a valid transition from a configuration with an expres-

sion beginning with an external operation. More explicitly, we prove the transition

(ExternalOp op e, 𝜎)  (v, 𝜎’) by first showing
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1 Fixpoint disk_interpret_step (op: DiskOp) (v: val) : StateT Σ Error expr.
2

3 Lemma disk_interpret_ok : ∀ (op : DiskOp) (v : val) (e' : expr) (𝜎 𝜎': Σ),
4 (runStateT (disk_interpret_step op v) 𝜎 = Works _ (e', 𝜎')) →
5 ∃ m, @nsteps goose_lang m ([ExternalOp op (Val v)], 𝜎) ([e'], 𝜎').

Figure 4-5: The disk_interpret_step function is an interpreter which interprets the equivalent
of a single step in the external disk semantics. The lemma disk_interpret_ok is equivalent to
interpret_ok, in that it proves that any successful interpreted step from one configuration to
another is also a valid transition in the external disk semantics.

(ExternalOp op e, 𝜎)  (ExternalOp op v’, s)

using the inductive hypothesis, then showing that

(ExternalOp op v’, s)  (e’, s’)

using the hypothesis from ext_interpret_ok, and finally that

(e’, s’)  (v, 𝜎’)

using the inductive hypothesis.
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Chapter 5

Evaluation

This chapter gives an evaluation of Waddle in terms of its effectiveness in finding

bugs, its value as a regression test suite, its ability to scale, and its ability to adapt

to future changes to Goose.

5.1 Bugs Found

In this section, we give a brief summary of some of the bugs found using Waddle and

our suite of Goose tests.

Encoding and Decoding Operations

Goose uses Go’s built-in support for handling conversions between integers and bytes.

GooseLang implements these encoding and decoding operations using library func-

tions. The encoding operation converts an integer to a slice of bytes, and stores each

byte of the slice on the heap in adjacent locations. To decode, the bytes are loaded

from the heap, converted to integers, left-shifted by the appropriate amounts, and
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then summed. Our Waddle test discovered that the implementation for decoding

bytes into unsigned 64-bit integers was missing a left-shift operation.

Infinite-precision Arithmetic

We discovered a bug in the way GooseLang handles untyped arithmetic. The Go

compiler handles an untyped expression like 1«32-1 at infinite precision, and then

appropriately truncates the resulting value. However, the Goose translator was trans-

lating arithmetic expressions with an element larger than 32 bits as an unsigned 64-bit

integer, resulting in different arithmetic precision.

GooseLang also failed to include a cast back to a 32-bit integer around the arith-

metic expression. This caused a type error when an expression like 1«32-1 was used

in an operation which expected an unsigned 32-bit value.

Comparison and Equality Operations

Testing the behavior of integer comparison operations revealed that the GooseLang

implementation for < and ≤ operations were identically implemented as <. We also

found that our equality comparison, rather than comparing a value 𝑣1 to another

value 𝑣2, was checking 𝑣2 against itself and always returning true.

Slice Copy

The implementation of the SliceCopy function, shown in Figure 2-8 in Chapter 2,

originally made a call to the helper function MemCpy_rec (also shown in Figure 2-8)

without its final argument.
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Overloaded Operation Notation

We found several Goose unit tests (visually-inspected tests for whether the trans-

lator was syntactically correct, which were used prior to Waddle), used ‖ (Unicode

character U+2225), also known as the parallel symbol, instead of two consecutive

| (vertical pipe) characters. These characters display identically under the Emacs

prettify-symbols-mode, which is a common extension used by Emacs users, but

mean different things. The parallel symbol is not a valid token in Goose or in Goose-

Lang, so neither the original program nor the translation held any semantic meaning.

After fixing this bug, we discovered that bitwise and logical and operations were

translated into the same GooseLang token, &&, resulting in code ambiguity. The same

was true for or operations, which translated into ||. We fixed this bug by adding in

separate GooseLang tokens for bitwise and logical operations, with & used for bitwise

and operations and | used for bitwise or operations.

Function Call Ordering

Function evaluation within struct fields was found to be out of order. In Go, a

struct can be initialized with its fields listed in any order, and the initial values of

those fields can be given as functions. The evaluation of functions within an initialized

struct follows the order listed in the initialization. In GooseLang, the evaluation

occurs in the order the fields are listed in the struct definition. For example, if we

have a struct

type Pair struct {
x uint64
y uint64

}

and initialize an instance p := Pair{y: f(0), x: g(0)} where f and g are func-

52



tions which take and return a single uint64, Goose evaluates f(0) before g(0).

GooseLang did the opposite.

Shortcircuiting

Waddle was able to confirm suspected errors in GooseLang’s shortcircuiting behavior.

While Goose performs shortcircuiting evaluation of logical expressions, the original

implementation of GooseLang did not.

Precedence Bugs

Waddle uncovered several bugs related to precedence ordering discrepancies between

Goose and GooseLang. In these bugs, Goose expressions which relied on Go opera-

tor precedence rules would be translated directly into GooseLang expressions which

looked identical, but parsed under Coq operator precedence rules which were dif-

ferent. These bugs are fixed by adding appropriate parenthesization rules to the

translator.

1. As discussed in Section 1.2, GooseLang bitwise operators for and and or

were given the same precedence, but Goose gives higher precedence to and

operations.

2. Precedence for division and modular arithmetic was incorrect. An expression

like x := 513 + 12%8 would be translated by Goose to

let: "x1" := (#513 + #12) ‘rem’ #8 in ...

instead of

let: "x1" := #513 + (#12 ‘rem’ #8) in ...,
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resulting in incorrect arithmetic evaluation.

3. The arguments of logical and and or operations were incorrectly parenthe-

sized, resulting in comparison operations having the same precedence as level

as logical operations. This caused statements like 4 > 3 || 2 < 3 to be trans-

lated to #4 > #3 || #3 > #2 and evaluated left-to-right, as opposed to the

correct translation, (#4 > #3) || (#3 > #2).

5.2 Other Bugs

Goose was under active development at the time Waddle was created, and during this

time several bugs were found during development without a Waddle test. In around

half of these cases, we were able to write a Waddle test which demonstrated the bug,

highlighting the importance of a comprehensive test suite for Waddle’s success. We

describe a few examples of these bugs below.

Loop Patterns

GooseLang was found to incorrectly handle loops that break within a conditional

expression unless the loop contains a continue statement after the end of the con-

ditional expression. For example,

for {
if true {

break
}

}

failed to break unless a continue is added after the final closing bracket. A test for

this behavior is now included in the test suite.
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Comparisons to Nil

We found that all instances of nil were being incorrectly translated to slice.nil

in GooseLang (i.e., the value representing the zero value of of a slice). In Goose, nil

also represents the zero value of multiple other types, such as maps and pointers.

This bug was fixed by adding a Waddle test for comparisons to nil, and using the

Waddle debugging process.

Pointer Type Annotations

The Goose translator was found to be annotating all stored pointers with the type of

the pointer, rather than the type of the element. For example, *x := y was translated

to x <-[t] y, where t was the type of x (a pointer) rather than the type of y (the

element). While this bug was not initially detected using a Waddle test, it was

debugged by adding a minimal Waddle test that captured the incorrect behavior.

Missing Dereferences when Storing Pointers

We found that GooseLang failed to dereference pointers when storing to a field of

[var ptr *T].

Argument Numbering in Printing Functions

Goose contains support for debugging level-based logging, which includes a printing

function that prints logged messages when a non-zero debugging flag is set. We show

the function below.

The function takes a variadic number of arguments, but the GooseLang imple-

mentation expects a single slice of arguments. This resulted in undefined behavior in
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1 func DPrintf(level uint64, format string, a ...interface{}) {
2 if level <= Debug {
3 log.Printf(format, a...)
4 }
5 }

Figure 5-1: Implementation of the util.DPrintf function.

GooseLang. This issue was fixed by opting to drop the []interface{} arguments in

GooseLang.

Pointer Capacity

GooseLang originally modeled pointers as a tuple containing the base pointer and

length, without any capacity tracking. However, a subslice in Goose may share capac-

ity with its original slice, allowing for the original slice to be modified by appending

to a subslice that shares its capacity.

5.3 Waddle as a Regression Test Suite

Waddle provides a method for ensuring that future changes to the Goose transla-

tor or to the GooseLang internals do not break previously-working test cases. We

recommend that the Waddle tests be generated and run after each change make to

Goose.

In addition to catching when tests fail, the Waddle tests will not compile if a

previously-failing test begins to pass. This brings to attention not only when a

previously-passing test begins to fail, but also when a previously-failing test be-

gins to pass unexpectedly. This behavior mandates that any changes in the behavior

of a Waddle test be acknowledged, and therefore prevents unintentional behavioral

changes in GooseLang code from going unnoticed.
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5.4 Test-Driven Development with Waddle

Waddle is most useful for test-driven development of Goose. To add a new feature

to Goose, the developer writes a semantic unit test demonstrating the behavior, and

adds a corresponding (failing) Waddle test. The developer can then check the result

of the Waddle test as they develop. Examples of features that have been added to

Goose using test-driven development with Waddle include casting functionality from

bytes to strings, fixing the bug for comparing pointers to nil described above, adding

support for additional control flow patterns, and adding support for nested struct

manipulation through pointers.

5.5 Performance

Our test suite currently contains just over 50 tests, which range in length from 8 to

over 100 lines of Goose. Running this test suite through the Goose translator, the

Waddle test generation script, and the Go test suite takes around 3 seconds in total.

Compiling the GooseLang programs and running the Waddle tests takes an additional

3 seconds. This means that executing the entire Waddle pipeline takes under 10

seconds. This performance makes Waddle worthwhile as an iterative development

tool for Goose.

Compiling the interpreter and the external disk interpreter each take just un-

der one minute. This compilation is only required if changes are made to the Coq-

implemented components of Waddle or one of its dependencies. It also is only needed

to re-check proofs, not to re-run the interpreter.
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Component Source lines of code

Interpreter and proof 870
Disk interpreter and proof 269
Testing framework 44
Coq code total 1,183

Test generator (Go) 136
Waddle total 1,319

Table 5.1: Source Lines of Code in Waddle Components

5.6 Implementation and Verification Effort

The implementation and verification of Waddle took place over the course of four

months, with an additional two months devoted to test writing and bug fixing. Table

5.1 gives a breakdown of the code line and proof line counts for the components of

Waddle. The interpreter and its proof, including all custom types, supporting lem-

mas, and tactics, was implemented in around 900 lines of Coq. The disk interpreter

and its proof consists of around an additional 250 lines. The framework for running

Waddle tests is under 50 lines. In addition, the test generator is implemented in

under 150 lines of Go.

The components of Waddle implemented in Coq exist within Perennial, an Iris-

based framework for verifying systems code [8, 18]. Perennial contains the imple-

mentation of GooseLang, as well as supporting libraries for proving properties about

GooseLang programs. The test generator and test suite are located within the Goose

project.
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5.7 Limitations

There are a few notable limitations to Waddle, which we discuss in the following

sections.

5.7.1 Concurrent Programs

Waddle can only test sequential programs. Waddle compares Goose programs with

their GooseLang counterparts by checking that they produce the same return value,

limiting Waddle to test functions with deterministic results. Further, the Waddle

interpreter only implements a deterministic subset of the GooseLang semantics.

5.7.2 Debugging Support

Although Waddle does support reporting of limited error messages and a backtrace of

called functions, Waddle provides little additional support for identifying the cause

of a bug. Debugging a Waddle test requires manual inspection of the GooseLang

program which caused the error. Further, a Waddle test which does not terminate

(in a reasonable amount of time) must be manually halted, and in this case Waddle

will not display any error messages.

5.7.3 Test Scalability

Waddle suffers from extreme performance hits as the number of allocations to the

heap and the size of the external disk increases. This means that Waddle does not

scale to tests with large numbers of loads, stores, reads, or writes. The heap and

the external disk for Waddle programs are each implemented with a Coq gmap.
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Operations on a gmap are increasingly costly as the number of entries in a gmap

grows.

As mentioned in Section 5.5, the existing Waddle test suite runs in fewer than 3

seconds in its entirety. Yet, a test which performs a single write to an external disk

with 30 blocks takes around 2 minutes to run. We address possible solutions to this

problem in Section 7.1.
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Chapter 6

Related Work

The following sections discuss prior work involving topics or methods similar to those

found in Waddle.

6.1 Verification Strategies

Constructing an interpreter for testing Goose reinforces our trust in the connection

between the code that we are verifying and the code that we are executing. All

verification projects need some method of converting between verification code in a

proof framework like Coq and executable code written in some other language. There

are many methods for doing so, each with some justification for why the conversion

is trusted to be correct.

A common approach, as explained in Section 1.1, and the standard approach

used in Coq, is extraction. Extraction translates code from a proof theorem’s native

language into a similarly functional language such as Haskell or OCaml, and erases

the proofs that were mixed in with the original code. Side effects are implemented in
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extracted code using an interpreter in the target language that runs the verified part,

and using the target language to handle interactions with the console, networking

stack, and other systems in the outside world.

Another option is to deeply embed a model of an efficient, imperative language

such as C or Go into a verification framework. The embedding must accurately

model the chosen syntax and semantics at a low-level. Variable bindings, pointers,

function calls, concurrency behaviors, and side effects in the model must all match

the behavior of the real language. There are many ways to do this: Cogent [26] allows

for coding in such a language directly, Fiat Cryptography [12] produces it as part of

proof-producing synthesis, and clightgen for VST [3, 4] imports it directly from C

source code.

Goose takes the approach of translating a stylized subset of Go into a deep embed-

ding of Go within Coq, and trusting that the translation process is correct. Directly

modeling a low-level, imperative language (and especially writing in it) gives a great

deal of control, which is good for performance. It also allows developers to rapidly

iterate a system in a familiar programming language, and to limit their interaction

with Coq to writing theorems and proofs.

Interpreting formal semantics of programming languages into an executable in-

terpreter has been done before, although not for an embedding of Go. The CompCert

compiler includes such an interpreter for its formal model of C, and uses this inter-

preter to catch when programs exhibit behaviors not covered by CompCert’s model

of C [21].

There has previous been some work on developing a model of (a subset of) Go in

Gallina, such as CoqGo [31]. However, the goal of CoqGo is to compile the Gallina

source code for the verified file system FSCQ into Go, and the subset of Go that it

models is tailored to the FSCQ code.
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6.2 Testing Strategies

There are multiple strategies for interpreting transition system-based models into

executable code. One approach is to use Coq’s tactic language to automatically

reify the steps of the model into an inductive structure, where the semantics of

each transition are captured in a corresponding constructor, and to then write an

interpreter for this reified syntax [15]. This approach was the subject of prior research,

where we attempted to use it to write an interpreter for a previous iteration of Goose

implemented as a shallow embedding [6]. While this approach provides simple proofs

of equivalence between model transitions and their reified counterparts, we found that

limitations in Coq’s pattern matching system prevents this approach from working

on code which uses certain dependent typing design patterns. Unfortunately, those

patterns were prevalent in Goose.

As the design of Goose was in flux at the time, and this testing approach would

have constrained it, we moved to a more independent interpreter design. By build-

ing a separate interpreter, the only coupling between Goose and the interpreter is

in the proof that the interpreter accurately models the system. This interpreter di-

rectly translates each transition into an executable function. While this strategy adds

complexity to proving semantic equivalence between modeled programs and their in-

terpretation, it is the most suitable approach for a system that was not necessarily

built with an interpreter in mind.

Building a verified, executable interpreter to test a relational semantics is not a

unique idea. A mechanization of the core WebAssembly in Isabelle relies on interpret-

ing the WebAssembly semantics to an executable Isabelle function [30]. Similar to

Waddle, the proof of their interpreter requires manually applying evaluation contexts

to construct a proof that the interpreter builds a function corresponding to a set of
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reduction steps. However, their interpreter does not model WebAssembly program

instantiation, and instead requires extraction to OCaml so that it can interface with

a trusted external instantiation procedure.

One alternative to writing an interpreter for a relational semantics is to write a

semantics that is natively executable. For example, the Netsem project used HOL4

to develop specifications for the TCP/IP protocols and Sockets API which were

executable as test oracles [2]. SibylFS produces executable test oracles for POSIX, OS

X, Linux, and FreeBSD file system behavior [25]. Sail supports executable semantic

models for the sequential behavior of ARMv8-A, RISC-V, MIPS, and CHERI-MIPS

architectures [1].
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Chapter 7

Conclusion

This thesis contributes Waddle, a testing framework for Goose. By implementing a

verified semantic interpreter for a deterministic subset of GooseLang, Waddle en-

ables direct comparisons between Goose and GooseLang programs. Waddle also im-

plements a test generator and framework for running test programs through the

interpreter. Waddle has successfully found multiple bugs within Goose, and has been

successfully used as a tool for test-driven development of Goose.

7.1 Future Work

There are several improvements to Waddle that would allow it to be an even more

effective testing framework. We describe some of these improvements below.

7.1.1 Proof Efficiency

The proof for the interpreter and for the disk interpreter could be rewritten for

efficiency. The current interpreter was implemented before the GooseLang semantics
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used its current transitions library, which is much more natively executable than its

predecessor. Some of the cases for various operations within the interpreter proof can

likely be collapsed into a single case that relies on the new transitions library, which

would likely decrease the proof’s compilation time.

Additionally, the current implementation of the external disk interpreter does not

have the same level of tactic support for automating repetitive components of the

proof as the main Waddle interpreter. Adding this automation would significantly

reduce the length of the disk_interpret_ok proof, and make it more robust to

future changes or additions to the external disk semantics.

7.1.2 Proof Robustness

The proof of the Waddle interpreter currently relies on tactics that are specific to

implementation details of the proof. The robustness of the interpreter proof could

be significantly improved through tactics that abstracted away from the structure of

the proof’s implementation and that could solve a wider range of goal types.

Additionally, the proof of the disk interpreter currently does not have the same

level of tactic support as the main interpreter. The robustness of the proof for external

operations (as well as its length and efficiency) could be improved by adding tactics

similar to the ones that currently exist for the main interpreter.

7.1.3 Additional Semantic Tests

The semantic test suite for Waddle is currently limited to a subset of Goose’s se-

mantics. The test suite could be expanded to include additional tests that stress the

Goose semantics, as well as test which use features that may be implemented in the

near future.
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7.1.4 Improvements to the Testing Infrastructure

Waddle currently requires Goose test programs to have a rigid structure: they must

take no inputs, and produce a Boolean output value that is expected to be true.

While most properties can be tested using a program with this structure, the testing

infrastructure could be expanded to allow for more flexibility when writing tests.

In particular, automating the process of executing Goose test programs parallel to

running their associated Waddle tests would allow for comparisons between any type

of return value.

Additionally, the test generation infrastructure could also be expanded to in-

clude property-based random testing by employing techniques from QuickCheck or

QuickChick [11, 13].

7.1.5 Concurrency and Nondeterminism Support

The Waddle interpreter could theoretically be extended to support multithreaded

programs. This would require implementing a deterministic scheduler (since the in-

terpreter cannot support non-deterministic behavior) and a thread pool. Proving

semantic validity of multithreaded programs would require changes to supporting

interpreter lemmas that assume an empty thread pool, as well as proving the Fork

case of the interpreter itself. While implementing this feature would allow the Wad-

dle interpreter to interpret multithreaded programs, it is unclear how multithreaded

programs could be meaningfully used to test Goose using the rest of the Waddle

framework.

Support for other nondeterministic features of the GooseLang semantics (such

as allocation or arbitrary integer retrieval) could be could be supported by using a

pseudo-random number generator instead of Waddle’s current deterministic process.
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7.1.6 Debugging Support

Running Waddle tests currently relies on Coq’s vm_compute evaluation mechanism.

This mechanism does not recognize opaque names, such as names declared using

Axiom or Parameter. It also does not quickly recognize when an evaluation will

be incomplete, such as when an argument is incorrectly missing from a function.

Running a Waddle test for a program which relies on an opaque name or which cannot

fully evaluate will seemingly run forever, eventually requiring manual intervention to

terminate the test.

Waddle could benefit from added support that caught these situations. This would

prevent Waddle tests that failed to terminate in a reasonable time, and would enable

Waddle to distinguish more easily between tests which interpreted to an incorrect

value, tests which interpreted to a semantically invalid program, and tests which

failed to reach either a complete interpretation or a failure case in the interpreter.
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