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Abstract
A content distribution network (CDN) makes a publisher’s content highly available to readers
through replication on remote computers. Content stored on untrusted servers is susceptible to
attack, but a reader should have confidence that content originated from the publisher and that
the content is unmodified. This thesis presents the SFS read-only file system (SFSRO) and key
regression in the Chefs file system for secure, efficient content distribution using untrusted servers
for public and private content respectively.

SFSRO ensures integrity, authenticity, and freshness of single-writer, many-reader content.
A publisher creates a digitally-signed database representing the contents of a source file system.
Untrusted servers replicate the database for high availability. Chefs extends SFSRO with key
regression to support decentralized access control of private content protected by encryption. Key
regression allows a client to derive past versions of a key, reducing the number of keys a client must
fetch from the publisher. Thus, key regression reduces the bandwidth requirements of publisher to
make keys available to many clients.

Contributions of this thesis include the design and implementation of SFSRO and Chefs; a
concrete definition of security, provably-secure constructions, and an implementation of key re-
gression; and a performance evaluation of SFSRO and Chefs confirming that latency for individual
clients remains low, and a single server can support many simultaneous clients.
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Chapter 1

Introduction

Nullius boni sine socio iucunda possessio est.

(No good thing is pleasing to possess without a friend to share it.)

– Lucius Annaeus Seneca,

Epistulae Morales Liber I §VI (4)

A content distribution network (CDN) reduces the bandwidth requirements of a publisher

to make single-writer content available to many readers. For instance, one could pay a service

provider or enlist volunteers to replicate and serve content. While such a model achieves the goal

of making content widely available, it does not guarantee secure distribution of content. Volun-

teers could damage integrity by maliciously modifying content. A compromised service provider

could leak confidential, access-controlled content to unauthorized parties. Thus, secure content

distribution can fail when the trusted computing base no longer includes the servers replicating

content.

Responding to these security shortfalls, this thesis explores how to ensure integrity protection

of public content and access control of private content using untrusted servers as depicted by

Figure 1-1.
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Figure 1-1: Overview of content distribution using untrusted storage. Content publishers produce
content, which is replicated on untrusted servers. Users on client machines then query untrusted
servers for content.

1.1 Challenges

Two challenges motivated the research of this thesis in secure content distribution. First, clients

must be able to verify integrity of content. The content must appear as the content publisher

intended. Second, content publishers should be able to control access to content replicated on

untrusted servers.

1.1.1 How to guarantee integrity in untrusted storage?

Users and content publishers desire two basic properties for secure content distribution. First,

users want to ensure that collections of file content appear as the content publisher intended. For

instance, signed software packages guarantee integrity of individual packages, but do not guarantee

the integrity of an operating system composed of several thousand packages. Second, content

publishers do not want to sacrifice performance for security. If a publisher were to sign an entire

collection of files in the same way as signing individual packages, then a single change to a package

would require the resigning and redistribution of the entire collection.

System designers have introduced a number of ad hoc mechanisms for dealing with the security
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of public content, but these mechanisms often prove incomplete and of limited utility to other

applications. For instance, binary distributions of Linux software packages in RPM [100] format

can contain PGP signatures. However, few people actually check these signatures, and packages

cannot be revoked. In addition, when packages depend on other packages being installed first,

the dependencies are not secure (e.g., one package cannot explicitly require another package to be

signed by the same author).

The approach of the SFS read-only file system (SFSRO)1 maps a Merkle hash tree [76] over

the directory structure of a file system. By preserving the integrity of an entire file system rather

than of individual files, a user can be sure that not only does a file have integrity, but also that a file

appears in the context the content publisher intended. A user can detect the misrepresentation or

absence of a file.

An administrator creates a database of a file system’s contents and digitally signs it offline

using the file system’s private key. The administrator then replicates the database on untrusted

machines. There a simple and efficient program serves the contents of the database to clients,

without needing access to the file system’s private key. DNS round-robin scheduling or more

advanced techniques [59] can be used to distribute the load among multiple servers. A trusted

program on the client machine checks the authenticity of content before returning it to the user.

SFSRO avoids performing any cryptographic operations on servers and keeps the overhead of

cryptography low on clients. SFSRO achieves this performance improvement by using two simple

techniques. First, file system structures are named by handles, which are collision-resistant cryp-

tographic hashes of their contents. Second, groups of handles are hashed recursively, producing a

tree of hashes [76]. Using the root handle of a file system, a client can verify the contents of any

directory subtree by recursively checking hashes.

The SFSRO protocol allows the content producer to replicate a database at many servers, sup-

ports frequent updates to the database, and enables clients to check the freshness of the content

retrieved from a server. Since the protocol does not need access to the private key that signed the

1The SFS read-only file system (SFSRO) was named as such because it uses SFS’s naming scheme and fits into the
SFS framework. However, the system does support updates. More accurately, the file system provides single-writer,
many-reader access. Despite the misnomer, we continue with the shorthand “SFSRO” to name our system.
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database, the database can be replicated at many servers without compromising security. To allow

for efficient updates, servers incrementally update their copies. Clients check the freshness of the

content using time stamps.

1.1.2 How to control access in untrusted storage?

Already a large quantity of access controlled content exists on the Internet. For instance, the

Wall Street Journal online edition boasts of having 701,000 paid subscribers [117]. Publishers

cannot use untrusted servers to enforce access control in content distribution. Traditional access

control uses a reference monitor for complete mediation of access to a protected resource [104].

When a CDN is untrusted and the content publisher cannot rely on the network to enforce proper

access control, the content publisher can achieve decentralized access control by encrypting the

content and distributing the cryptographic keys to legitimate users [46, 54, 58, 79, 90]. Using lazy

revocation [43, 58] after evicting a member, the content publisher encrypts new content with a new

cryptographic key distributed to remaining members. The content publisher does not re-encrypt

existing content since the evicted member could have already cached that content.

Lazy revocation delays the re-encryption of files until absolutely necessary. This approach,

however, can result in the proliferation of many keys. As evictions and updates occur, subsets of

files in a single database become encrypted with different group keys. A straightforward approach

makes users query the publisher for every key. This quickly becomes infeasible as the number of

keys and number of users can easily overwhelm the bandwidth of a publisher’s network connection.

This thesis proposes key regression to reduce the bandwidth requirements of such key distribution.

Key regression coalesces many different versions of a key into a compact form.

To demonstrate the practical benefits of key regression, this thesis presents the Chefs file system

for decentralized access control of private content served by untrusted servers. Chefs extends SF-

SRO by additionally encrypting content for confidentiality. Clients with the proper decryption key

can then access the content. Chefs uses key regression to enable a publisher on a low-bandwidth

connection to efficiently distribute keys to clients.
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1.2 Applications

Practical applications motivated the design and implementation of SFSRO and Chefs. This chapter

highlights a few of the specific applications this thesis envisions. Some of these applications are

used to demonstrate the performance benefits of SFSRO and Chefs.

1.2.1 Integrity-protected public content

Certificate authorities and software distribution are two applications that require integrity protec-

tion of content, and distribution that scales well with the number of clients.

Certificate authorities. Certificate Authorities (CAs) [61] for the Internet are servers that pub-

lish signed certificates binding hostnames to public keys. Three goals guide the design of CAs:

high availability, integrity, and freshness of certificates. High availability ensures that a client can

easily access a certificate. Integrity ensures that a certificate is valid and properly signed by a CA.

Freshness ensures that a client will be made aware of revoked certificates.

Using SFSRO is one way to build a CA for high availability, integrity, and freshness. A CA

could replicate an SFSRO database containing unsigned certificates, which could be implemented

as unsigned X.509 certificates [39] or symbolic links to self-certifying paths [73]. Unlike tra-

ditional certificate authorities, SFS certificate authorities get queried interactively. This design

simplifies certificate revocation, since revoking a key amounts to removing a file or symbolic link.

Instead of signing each certificate individually, SFSRO signs a database containing a collection

of unsigned certificates [83]. The database signature provides for the authenticity and integrity

of all the certificates. SFSRO improves performance by making the amount of cryptographic

computation proportional to the file system’s size and rate of change, rather than to the number of

clients connecting. SFSRO also improves integrity by freeing SFS certificate authorities from the

need to keep any online copies of their private keys. Finally, SFS read-only improves availability

because it can be replicated on untrusted machines.
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Software distribution. Sites distributing popular software have high availability, integrity, and

performance needs. Open source software is often replicated at several mirrors to support a high

number of concurrent downloads. If users download a distribution with anonymous FTP, they have

low content integrity: a user cannot tell whether it is downloading a trojan-horse version instead

of the correct one. If users connect through the Secure Shell (SSH) [127] or secure HTTP, then the

server’s throughput is low because of cryptographic operations it must perform. Furthermore, that

solution does not protect against attacks where the server is compromised and the attacker replaces

a program on the server’s disk with a trojan horse.

By distributing software through SFS read-only servers, one can provide integrity, perfor-

mance, and high availability. Users with an SFSRO client can even browse the distribution as

a regular file system and compile the software directly from the sources stored on the SFS file

system. The SFSRO client will transparently check the authenticity of content, and raise an error

if it detects unauthorized modification of content. To distribute new versions of the software, the

administrator simply updates the database. Users with only a browser could get all the benefits by

connecting through a Web-to-SFS proxy to the SFS file system.

1.2.2 Access-controlled private content

The concept of using untrusted storage to replicate private content is somewhat counterintuitive.

After all, what server would want to replicate content that the server itself cannot read? Neverthe-

less, there are signs that such a sharing infrastructure may become a reality, as demonstrated by

the example applications in this section.

Subscriptions. We target key regression at publishers of popular content who have limited band-

width to their trusted servers, or who may not always be online, but who can use an untrusted CDN

to distribute encrypted content at high throughput. Our experimental results show that a publisher

using key regression on a low-bandwidth connection can serve more clients than the strawman

approach of having the publisher distribute all keys directly to members.

Such a publisher might be an individual, startup, or cooperative with popular content but with
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few network resources. The possibilities for such content ranges from blogs, photo galleries, and

amateur press to mature content and operating systems. To elaborate on one such form of content:

Mandriva Linux [71] currently uses the BitTorrent [30] CDN to distribute its latest Linux distri-

butions to its paid members. Mandriva controls access to these distributions by only releasing the

.torrent files to its members. Using key regression, Mandriva could exercise finer-grained ac-

cess control over its distributions, allowing members through time period i to access all versions of

the operating system including patches, minor revisions and new applications added through time

period i, but no additions to the operating system after time period i. To grant universal access to

security-critical patches, Mandriva could encrypt security-critical patches with the key for the time

period to which the patch is first applicable.

Time-delayed release. In the financial world, making sure every party can receive public finan-

cial statements at the same time ensures fairness. Otherwise, a party who opens the statement

earlier would have an advantage. Perhaps that party would sell its shares of stock ahead of the

tide. A content distribution network can preposition content so that content is readily available to

all users. However, the prepositioning may finish on servers at different times. Therefore, users of

early servers will have an advantage.

Chefs can enable time-delayed release of content by publishing the group key at the release

time. The distribution of sealed content can happen asynchronously. Once all the prepositioning

finishes, the content owner can distribute the group key from a well-known location. Because the

group key is usually much smaller than the content (16 bytes versus hundreds or thousands of

gigabytes), Chefs enables fairness of time-delayed release of content.

This application is particularly well-suited to the semantics provided by Chefs because no evic-

tions ever happen in time-delayed release. Instead, content begins private, but ends up completely

public.

Versioning file systems The semantics of Chefs work best when a system never revokes a mem-

ber’s access to old content, such as in the case of versioning file systems that never forget [89, 102].

In a versioning file system, saving modifications to a file results in a new version of a file. Yet the
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old file remains accessible through filenames based on time. The old data never disappears.

1.3 Contributions

This thesis makes three primary contributions:

• Efficient integrity protection of public content distributed by untrusted servers

SFSRO system makes the security of published content independent from that of the distri-

bution infrastructure. In a secure area, a publisher creates a digitally-signed database out of a

file system’s contents. The private key of the file system does not have to be online, allowing

the database to be replicated on many untrusted machines. The publisher then replicates the

database on untrusted content distribution servers, allowing for high availability.

SFSRO is one of the first systems to demonstrate the full potential of the Merkle hash

tree [76] in secure storage. First, the Merkle tree provides efficient integrity protection in

a block-store-based file system. The network round-trip time overshadows the cost of veri-

fying a hash, making the Merkle tree verification a zero cost operation. Second, the Merkle

tree serves as a block naming mechanism. The naming scheme allows for efficient incre-

mental updates because an untrusted server replicating content can immediately prune out

unmodified subtrees of the file system. Third, the Merkle tree allows SFSRO to use a simple

client-server protocol consisting of only two remote procedure calls: one for mounting a file

system and one for fetching blocks of content.

• Key regression for efficient key distribution

The Plutus file system [58] introduced the notion of key rotation as a means to derive a

sequence of temporally-related keys from the most recent key. This thesis shows that, despite

natural intuition to the contrary, key rotation schemes cannot generically be used to key other

cryptographic objects; in fact, keying an encryption scheme with the output of a key rotation

scheme can yield a composite system that is insecure.
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To address the shortcomings of key rotation, a new cryptographic object called a key regres-

sion scheme is introduced. Proofs demonstrate that key regression based on SHA1, AES, and

RSA are secure in the reduction-based provable security approach pioneered by Goldwasser

and Micali [50] and lifted to the concrete setting by Bellare, Kilian, and Rogaway [12].

• Implementation and evaluation of SFSRO and Chefs

The read-only file system avoids performing any cryptographic operations on servers and

keeps the overhead of cryptography low on clients, allowing servers to scale to a large num-

ber of clients. Measurements of an implementation show that an individual server running

on a 550 MHz Pentium III with FreeBSD can support 1,012 connections per second and 300

concurrent clients compiling a large software package.

Chefs extends SFSRO by encrypting content for confidentiality using key regression. Mea-

surements of users downloading keys to search encrypted content show that key regression

can significantly reduce the bandwidth requirements of a publisher distributing keys to mem-

bers. On a 3.06 GHz Intel Xeon CPU with a simulated cable modem, a publisher using key

regression can make 1,000 keys available to 181 clients per second whereas without key

regression the cable modem limits the publisher to 20 clients per second. The significant

gain in throughput conservation comes at no measurable cost to client latency, even though

key regression requires more client-side computation. Furthermore, key regression reduces

client latency in cases of highly dynamic group membership.

1.4 Roadmap

The rest of this thesis is organized into seven additional chapters.

Chapter 2 presents the design of SFSRO, a scalable content distribution system for clients to

securely access public content replicated on untrusted servers. The chapter enumerates the goals,

components, protocol, data structures, and incremental update mechanism of SFSRO.

Chapter 3 explains decentralized access control and the design of the Chefs file system. Chefs

extends SFSRO to ensure that only authorized members may access the protected content. Even
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the servers replicating the content do not have access to the protected content.

Lazy revocation in encrypted storage causes a proliferation of group keys. Different files in

the collection may be encrypted with different versions of the same group key. Chapter 4 explains

how key regression allows group members with a current group key to easily derive old versions

of the group key. Yet only the group owner should be able to generate the future versions of the

group key, preventing evicted members from discovering future keys. The chapter also explains

the cryptographic theory of key regression.

Chapter 5 presents the implementations of SFSRO and Chefs so that Chapter 6 may evaluate

the performance of SFSRO and Chefs under selected workloads.

Chapter 7 compares SFSRO and Chefs to related work in secure file systems, content distribu-

tion networks, and cryptography.

Finally, Chapter 8 closes this thesis with conclusions and suggestions for future work.
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Chapter 2

Integrity in the SFS read-only file system

Dover��, no prover��

(Trust, but verify)

– Russian proverb

This chapter explains the design of the SFS read-only file system, beginning with a discussion

of the goals that guided the design of SFSRO. Section 2.2 presents an overview of the file system’s

architecture and the cryptographic primitives it employs. Section 2.3 describes the read-only file

system protocol. Section 2.4 describes the data structures that comprise the file system. Section 2.5

describes the process of updating the file system.

SFSRO consists of three programs: a database generator, a server, and a client. In a trusted

area the database generator creates a signed database from a file system’s contents. The database is

replicated on untrusted machines. In response to requests from clients, the server looks up content

from its copy of the database and returns it to the client. The client verifies the retrieved content

for authenticity and recentness, and interprets it as a file system.

Each read-only file system has a public key associated with it. SFSRO uses the naming scheme

of SFS [73], in which file names contain public keys. Thus, users can employ any of SFS’s various

key management techniques to obtain the public keys of file systems.

The protocol between the client and server consists of only two remote procedure calls: one
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to fetch the signed handle for the root inode of a file system, and one to fetch the data (inode or

file content) for a given handle. Since the server does not have to understand what it is serving, its

implementation is both trivial and highly efficient: it simply looks up handles in the database and

sends them back to the client.

2.1 Goals

Single-writer, many-reader content can have high performance, availability, and security needs.

Some examples include executable binaries, software distribution, bindings from hostnames to

addresses or public keys, and popular Web pages. In many cases, people widely replicate and

cache such content to improve performance and availability—for instance, volunteers often set

up mirrors of popular operating system distributions. Unfortunately, replication generally comes

at the cost of security. Each server adds a new opportunity for attackers and server operators to

tamper with content. Therefore, SFSRO aims to satisfy a number of performance and security

goals.

Scalability to many clients. A scalable infrastructure is desired for distribution of public con-

tent. Publishers should be able to reach a wide audience without needing a high-bandwidth con-

nection. Furthermore, each server replicating content should provide high throughput to support as

many clients as possible. A server should not have to perform any complex operations that would

decrease throughput. The use of untrusted servers leads to the next goal.

Integrity and freshness of content. The SFS read-only file system assumes that an attacker

may compromise and assume control of any read-only server machine. It therefore cannot prevent

denial-of-service from an attacker penetrating and shutting down every server for a given file sys-

tem. However, the client does ensure that any data retrieved from a server is authentic, no older

than a file system-configurable consistency period, and also no older than any previously retrieved

data from the same file system.
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Figure 2-1: The SFS read-only file system. Dashed boxes indicate the trusted computing base.

Denial of service. A large number of servers may help to withstand the impact of denial of

service. An attacker would have to disable all servers to completely shutdown content distribution.

An attacker could delay a targeted client from accessing content, but integrity verification makes

sure that the client will not accept unauthentic content from an attacker.

No confidentiality. SFSRO provides no confidentiality of content. All content distributed through

SFSRO is public. Confusion in the past resulted in a number of papers describing SFSRO as confi-

dential content distribution. This is not true. Rather, this thesis addresses the problem of providing

confidentiality in the Chefs file system, described in Chapter 3.

2.2 Overview

Figure 2-1 shows the overall architecture of the SFS read-only file system. In a secure area, a

content publisher runs the SFS database generator, passing as arguments a directory of files to

export and a file containing a private key. The directory represents the origin file system. The

SFSRO database will incorporate the entire contents of the given directory tree. The publisher

replicates this database on a number of untrusted servers, each of which runs the SFS read-only

server daemon.
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The server is a simple program that looks up and returns blocks of data from the database at the

request of clients. The following two sections describe the database generator and client daemon.

2.2.1 Database generation

To export a file system, a system administrator produces a signed database from a source directory

in an existing file system. The database generator reads content from the directory tree, inserting

the content into a database. The database contains the file data blocks and inodes indexed by their

hash values as shown in Figure 2-3. In essence, it is analogous to a file system in which inode and

block numbers have been replaced by cryptographic hashes.

The database generator utility traverses the given file system depth-first to build the database.

The leaves of the file system tree are files or symbolic links. For each regular file in a directory, the

database generator creates a read-only inode structure and fills in the metadata. Then, it reads the

blocks of the file. For each block, the database generator hashes the data in that block to compute

its handle, and then inserts the block into the database under the handle (i.e., a lookup on the handle

will return the block). The hash value is also stored in an inode. When all file blocks of a file are

inserted into the database, the filled-out inode is inserted into the database under its hash value.

Inodes for symbolic links are slightly different from the one depicted in Figure 2-3. Instead of

containing handles of blocks, the inode directly contains the destination path for the symbolic link.

After the whole directory tree has been inserted into the database, the generator utility fills

out an FSINFO structure and signs it with the private key of the file system. For simplicity,

the database generator stores the signed FSINFO structure in the database under a well-known,

reserved handle.

The database of file system structures stored under their content hashes serves two purposes.

First, the content hash provides a naming mechanism to locate content. Second, the resulting

Merkle hash tree provides integrity protection [76]. The next section explains how a client travers-

ing the directory tree can efficiently verify integrity.

We chose the Rabin public key cryptosystem [121] for database authentication because of its

fast signature verification time. SFS also uses the SHA1 [84] cryptographic hash function. SHA1
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is a collision-resistant hash function that produces a 20-byte output from an arbitrary-length input.

Finding any two inputs of SHA1 that produce the same output is believed to be computationally

intractable. Modern machines can typically compute SHA1 at a rate greater than the local area net-

work bandwidth. Thus, a client can reasonably verify integrity by hashing all the content resulting

from RPC calls of an SFSRO server.

2.2.2 Client daemon

The most challenging part of the file system is implemented by the client. The client handles

all file system requests for read-only file systems. It requests blocks of data from an appropriate

server and interprets the data as file system structures (e.g., inodes and directories). The client is

responsible for parsing pathnames, searching directories, looking up blocks of files, and so forth.

To locate a server for a given file system, the client can use DNS round-robin scheduling or more

advanced techniques such as consistent hashing [59]. Since the server is untrusted, the client must

verify that any data received from the server was indeed signed by the database generator using the

appropriate private key.

SFSRO provides integrity by way of a hash tree and digital signature. To verify that a particular

block at a leaf node of the tree has integrity, the client hashes the block’s content and verifies that

the resulting hash matches the handle of the block (itself a hash). This process is recursive. The

client hashes content up the tree, eventually reaching the root that has a digital signature.

The digital signature provides a link from the integrity of the file system to the authenticity of

the publisher. The collision resistance property of the hash function ensures that no adversary can

feasibly substitute false content. The hash tree also allows efficient operation. To verify integrity

of a block, a client must only fetch a set of nodes on the directory path to block. The client does

not have to download the entire database of blocks.

Our design can also in principle be used to provide non-repudiation of file system contents.

An administrator of a server could commit to keeping every file system ever signed. Then, clients

could just record the signed root handle. The server would be required to prove what the file system

contained on any previous day. In this way, an administrator could never falsely deny that a file
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struct FSINFO {
sfs_time start;
unsigned duration;
opaque iv[16];
sfs_hash rootfh;
sfs_hash fhdb;

};

Figure 2-2: Contents of the digitally signed root of an SFS read-only file system.

previously existed.

2.3 SFS read-only protocol

The read-only protocol consists of one new RPC: getdata. The read-only server also implements

two RPCs specified by the general SFS framework: connect and getfsinfo. connect names a par-

ticular service by way of a self-certifying pathname. This RPC allows a single server to multiplex

several read-only file systems. getfsinfo takes no arguments and returns a digitally signed FSINFO

structure, depicted in Figure 2-2. The SFS client verifies the signature using the public key embed-

ded in the server’s name. As long as the user received the key from a trusted source, the signature

guarantees the integrity of the structure.

The getdata RPC takes a 20-byte argument and returns a data block whose collision-resistant

cryptographic hash should match the 20-byte argument. The client uses getdata to retrieve parts

of the file system requested by the user. It hashes every response to check it against the requested

hash. The collision-resistant property of the hash function ensures that an attacker cannot construct

a different data block with the same hash as a chunk of file system data. Thus, as long as the

requested hash itself is authentic, the response will be, too.

Because read-only file systems reside on untrusted servers, the protocol relies on time to en-

force consistency loosely but securely. The start field of FSINFO indicates the time (in seconds

since 1970) at which a file system was signed. Clients cache the highest value they have seen to

prevent an attacker from rolling back the file system to a previous state. The duration field
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signifies the length of time for which the data structure should be considered valid. It represents

a commitment on the part of a file system’s owner to issue a signature within a certain period of

time. Clients reject an FSINFO structure when the current time exceeds start + duration.

An attacker who skews a client’s clock may delay the time it takes for the client to see an update

beyond the old version’s expiration time. However, once a client has seen a particular version of

the file system, it will never accept an older version with a lower start time.

The read-only file system references arbitrary-length blocks of data using fixed-size cryp-

tographic hashes known as handles. The handle for a data item x is computed using SHA1:

H(x) = SHA1(iv, x). iv, the initialization vector, is chosen randomly by the database gener-

ator the first time it publishes a file system. Currently the value chosen is just a hash of the file

system’s name and public key. The initialization vector ensures that simply knowing one partic-

ular collision of SHA1 will not immediately give attackers collisions of functions in use by SFS

read-only file systems.

rootfh is the handle of the file system’s root directory. It is a hash of the root directory’s

inode structure, which through recursive use of H specifies the contents of the entire file system,

as described below. fhdb is the hash of the root of a tree that contains every handle reachable

from the root directory. fhdb lets clients securely verify that a particular handle does not exist, so

that they can return stale file handle errors when file systems change. The latest version of SFSRO

deprecates fhdb in favor of an internal file handle naming scheme described in Section 2.5.

2.4 SFS read-only data structures

Each data block a client retrieves from a server contains a file system data structure. The primary

read-only data structure clients interpret is the read-only inode structure, which specifies the entire

contents of a file. However, data blocks can also contain file or directory data, or index structures

for large files.

The database stores these file system data structures in XDR marshaled form [112]. Using XDR

has three advantages. First, it simplifies the client implementation, as the client can use the SFS

RPC and crypto libraries to parse file system data. Second, the XDR representation clearly defines
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Figure 2-3: Format of a read-only file system inode.

what the database contains, which simplifies writing programs that process the database (e.g., a

debugging program). Finally, it improves performance of the server by saving it from doing any

marshaling—anything retrieved from the database can be directly transmitted to a client.

2.4.1 Read-only inode

Figure 2-3 shows the format of an inode in the read-only file system. The inode begins with

some metadata, including the file’s type (regular file, executable file, directory, opaque directory,

or symbolic link), size, and modification time. Permissions are not included because they can be

synthesized on the client. The inode then contains handles of successive 8 Kbyte blocks of file

data. If the file contains more than eight blocks, the inode contains the handle of an indirect block,

which in turn contains handles of file blocks. Similarly, for larger files, an inode can also contain

the handles of double- and triple-indirect blocks. In this way, the blocks of small files can be

verified directly from the inode, while inodes can also indirectly verify large files—an approach

similar to the on-disk data structures of the Unix File System [93].

Inodes for symbolic links differ slightly from the depiction in Figure 2-3. Instead of containing

handles of blocks, the inode directly contains the destination path of the symbolic link.

2.4.2 Directories

An SFS read-only directory is simply an inode of type directory or opaque directory. The inode

specifies data blocks and possibly indirect blocks, just as for a regular file. However, the data blocks
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of a directory have a fixed format known to the client. They consist of lists of 〈name, handle〉 pairs

binding file names to the hashes of those files’ inodes. Thus, the directory inode lets clients verify

directory data blocks, and directory data blocks in turn let clients verify the inodes of files or

subdirectories.

Directory entries are sorted lexicographically by name. Thus, clients can avoid traversing the

entire directory by performing a binary search when looking up files in large directories. This

property also allows clients to inexpensively verify whether a file name exists or not, without

having to read the whole directory.

To avoid inconveniencing users with large directories, server administrators can set the type

field in an inode to “opaque directory.” When users list an opaque directory, they see only entries

they have already referenced—somewhat like Unix “automounter” directories [23]. Opaque direc-

tories are well-suited to giant directories containing, for instance, all names in the .com domain

or all name-to-key bindings issued by a particular certificate authority. If one used non-opaque

directories for these applications, users could inadvertently download hundreds of megabytes of

directory data by typing ls or using file name completion in the wrong directory.

2.5 File system updates

The SFS read-only file system allows a publisher to update the contents of a file system. When a

file system changes, the administrator generates a new database and pushes it out to the untrusted

servers replicating content. Files that persist across file system versions will keep the same handles.

However, when a file is removed or modified, clients can end up requesting handles no longer in

the database. In this case, the read-only server replies with an error.

Unfortunately, since read-only servers (and the network) are not trusted, clients cannot neces-

sarily believe “handle not found” errors they receive. Though a compromised server can hang a

client by refusing to answer RPCs, it must not be able to make programs spuriously abort with stale

file handle errors. Otherwise, for instance, an application looking up a key revocation certificate in

a read-only file system might falsely believe that the certificate did not exist.

We have two schemes to let clients securely determine whether a given file handle exists. The
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old scheme uses the fhdb field of the FSINFO structure to verify that a handle no longer exists.

The new scheme is based on the pathnames of files.

2.5.1 Using fhdb in updates

fhdb is the root of a hash tree, the leaf nodes of which contain a sorted list of every handle in the

file system. Thus, clients can easily walk the hash tree (using getdata) to see whether the database

contains a given file handle.

The fhdb scheme has advantages. It allows files to persist in the database even after they have

been deleted, as not every handle in the database needs to be reachable from the root directory.

Thus, by keeping handles of deleted files in a few subsequent revisions of a database, a system

administrator can support the traditional Unix semantics that one can continue to access an open

file even after it has been deleted.

Unfortunately, fhdb has several drawbacks. Even small changes to the file system cause most

of the hash tree under fhdb to change—making incremental database updates unnecessarily ex-

pensive. Furthermore, there is no distinction between modifying a file and deleting then recreating

it because handles are based on file contents in the read-only file system. In some situations, one

does not want to have to close and reopen a file to see changes. (This is always the case for direc-

tories, which therefore need a different mechanism anyway.) Finally, under the fhdb scheme, a

server cannot change its iv without causing all open files to become stale on all clients.

2.5.2 Pathname-based approach to updates

To avoid the problems associated with fhdb, the latest version of the software introduces a level

of indirection between NFS and SFSRO file handles. In the new scheme, the client tracks the

pathnames of all files accessed in read-only file systems. It chooses NFS file handles that are bound

to the pathnames of files, rather than to hashes of the read-only inodes. When a server FSINFO

structure is updated, the client walks the file namespace to find the new inode corresponding to the

name of each open file.

Those who really want an open file never to change can still emulate the old semantics (albeit
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somewhat inelegantly) by using a symbolic link to switch between the old and new version of a

file while allowing both to exist simultaneously.

2.5.3 Incremental update and transfer

Untrusted servers can be updated without transferring the entire contents of the file system over

the network. We built a simple utility program, pulldb, that incrementally transfers a newer

version of a database from a primary server to a server. The program fetches FSINFO from the

source server, and checks if the local copy of the database is out of date. If so, the program

recursively traverses the entire file system, starting from the new root file handle, building on the

side a list of all active handles. For each handle encountered, if the handle does not already exist

in the local database, pulldb fetches the corresponding data with a getdata RPC and stores it

in database. After the traversal, pulldb swaps the FSINFO structure in the database and then

deletes all handles no longer in the file system. If a failure appears before the transfer is completed,

the program can just be restarted, since the whole operation is idempotent.

The read-only inode structure contains the modification and “inode change” times of a file.

Thus, sfsrodb could potentially update the database incrementally after changes are made to the

file system, recomputing only the hashes from changed files up to the root handle and the signature

on the FSINFO structure. Our current implementation of sfsrodb creates a completely new

database for each version of the file system, but we plan to support incremental updates in a future

release.

2.6 Discussion

File system abstraction. One of the benefits of the file system abstraction is the ease with which

one can refer to the file namespace in almost any context—from shell scripts to C code to a Web

browser’s location field. Moreover, because of its security and scalability, SFSRO can support a

wide range of applications, such as certificate authorities, that one could not ordinarily implement

using a network file system.
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Optimizations. The design of SFSRO opts for simplicity over performance. All data structures

are stored in separate blocks in the database, for instance. Grouping inodes into a single block

as does the UNIX Fast File System (FFS) [75], embedding inodes in directories [44], or using a

B-tree instead of indirect data pointers would likely increase the throughput capabilities of servers.

Hash collisions. SFSRO relies on the security of a collision-resistant hash function. Information

theory tells us that a hash function will not withstand an adversary with infinite computing power.

However, realistic adversaries are computationally limited. Modern cryptography uses this notion

to reduce the security of one system to the difficulty of a well-known, hard problem. In the case of

SFSRO, we reduce the correctness and security to the difficulty of finding particular collisions in

SHA1.

The research in this thesis was performed under the assumption that SHA1 was effectively

“ideal.” In particular, it was presumed that finding a collision for SHA1 would take time approx-

imately 280. Because of the recent work of Wang et al. [119, 120], SHA1 has become a disap-

pointment; SHA1 collisions can be found in time 269 (and believed to be only 263 according to a

CRYPTO 2005 rump session announcement of Wang et al.).

Nonetheless, the problems with SHA1 are likely repairable with reasonable cost. This thesis

therefore leaves the references to SHA1 in this thesis untouched, and asks for the reader’s indul-

gence to interpret a reference to SHA1 as a reference to a generic SHA1-like hash function with

difficulty 280 of finding collisions. Of course, the implementation timings are based on the use of

the “standard” SHA1.
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Chapter 3

Decentralized access control in Chefs

Faite simple

(Make it simple)

– Georges-Auguste Escoffier, legendary French chef

Chefs1 is a read-only file system that adds access control to the SFSRO design. Because Chefs

caters to private content, we use the term member to describe a client who is part of the access

group.

As in SFSRO, the content publisher is the writer while the members are strictly readers. In

addition to managing a database of content, the content publisher manages key distribution for

access control. Chefs provides access control at the granularity of a database. Each database is

associated with one group key, shared with all the group members. Possession of the group key

enables a member to access content. Because the group of members is dynamic (members come

and go), the group key changes after various membership events. Chefs uses key regression to

provide efficient access control in such a dynamic environment.

The Chefs file system addresses three problems in secure content distribution.

1Hold a finger to your lips and breath through your teeth to properly pronounce the name of this file system. We
leave the secret expansion of the acronym to the imagination of reader.
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Confidentiality. Chefs must ensure that only those authorized members possessing the appropri-

ate group key may access the protected content. Even the servers replicating the content may not

have access to the protected content.

Scalability to many members. Chefs must preserve the scalability of SFSRO content distribu-

tion and also support scalable access control for large groups. Content publishers should be able

to reach a large membership without needing a high-bandwidth network connection. The amount

of direct communication between the content publisher and members should be independent of the

amount of content and rate of membership turnover. Furthermore, each untrusted server should

provide high throughput to support as many members as possible. An untrusted server should not

have to perform any complex operations that would decrease throughput.

Decentralized access control. A content publisher must manage group membership, but may

not directly mediate access to content. If the content publisher were involved in mediation, Chefs

could not satisfy the scalability requirement. Thus, the process of mediating access to content

must be decentralized and not involve online communication with the content publisher. For in-

stance, group members should be able to access content even if the content publisher is offline or

positioned behind a low-bandwidth network connection.

3.1 Security model

To protect a resource, traditional access control often uses a physical barrier, modeled as a guard.

For instance, a guard may verify a principal’s capability before granting access to an object. In

Chefs, no physical barrier separates content from principals (here, called members). Instead, Chefs

adopts a model of decentralized access control to protect content.

3.1.1 Decentralized access control.

One of the benefits of SFSRO is that content distribution scales independent of the publisher’s

resources. The publisher takes advantage of untrusted servers to make content highly available.
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Clients may continue to fetch content from servers, even if the publisher is offline. For Chefs to

provide the same scalable distribution of private content, it must also have scalable access control.

One approach for access control is for group members to contact the content publisher every

time a member references content. This approach limits availability to the publisher’s direct re-

sources and violates our goal of scalability. A member would lose access to content if the content

publisher is offline, for instance.

To achieve scalable access control, Chefs separates content publishing from mediation. Chefs

could enlist the help of servers to mediate access. Alas, servers are untrusted and cannot properly

mediate access to private content. A malicious server could simply ignore an access control list.

Consequently, Chefs encrypts all content for confidentiality before distributing content to servers.

Only those members with the proper key can decrypt the content. This form of storage protection

is called decentralized access control.

Mediation in decentralized access control takes place in a client’s local environment rather

than on a server. If a client possesses the proper key, the client can decrypt and access the content.

Decentralized access control has the same advantages and disadvantages as capabilities. The key

can be delegated to others and revocation is difficult.

A number of secure storage systems have used semantics similar to decentralized access con-

trol. In particular, Gifford [46] calls the model of decentralized access control by using encryption

“passive protection.” Chapter 7 discusses such related work in more detail.

3.1.2 Lazy revocation

A relaxation of security semantics, lazy revocation posits that immediately protecting old content

from an evicted member is not worth the computational trouble [43, 58]. Lazy revocation is an

explicit way of noting that an eviction does not result in immediate revocation of access to content.

A member is evicted, preventing access to future content. Yet the evicted member may continue to

have access to already cached content. Lazy revocation weakens the security semantics of content

protection in return for having efficient, incremental re-encryption of content.

Two events may cause a content publisher to re-encrypt content. A compromise of a key
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would necessitate immediate re-encryption of all content. More often, re-encryption results from

an eviction of a group member. Chefs was designed for this common case [67], while still allowing

a content publisher to re-encrypt content as a result of events other than eviction.

Eviction prevents a former member from accessing future content. Eviction makes sense in a

model where a content publisher has no control over a resource once granted. Revocation prevents

a member from accessing both future and past content. Revocation results in the reversal of a

privilege. Revocation makes sense in a model where a member must demonstrate authorization for

every reference to a resource.

With decentralized access control, the content publisher cannot recall content already granted

to a member. The member could easily cache a copy prior to revocation, and thus revocation is not

a design option.

3.2 Keys

Two types of keys guard the confidentiality of content in Chefs:

Group key. After a membership event (e.g., an eviction), the content publisher distributes a new

group key. The remaining group members request this new group key on-demand through a secure,

out-of-band channel.

A group key protects content at the granularity of a whole database. Chefs does not support

access to selected portions of a database. We imagine that a database will contain a collection

of related documents, such as a directory tree of Web pages. Separate databases are required for

content having different sets of members.

Content key. A group key does not directly encrypt content. Instead, Chefs uses a content key to

encrypt content. A member obtains a content key by opening a lockbox that is encrypted with the

group key. The separation of content keys from group keys helps to isolate the long-term effects

of leaking secrets. The more a single key is used to encrypt content, the more secret information

leaks.
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struct sfsro_sealed {
unsigned gk_vers;
sfsro_lockboxtype lt;
opaque lockbox<SFSRO_MAX_PRIVATE_KEYSIZE>;
opaque pkcs7<>; /* Encryption of PKCS-7 encoded plaintext */

};

Figure 3-1: A data structure in Chefs to hold encrypted content. The PKCS#7-encoded plaintext
contains a marshaled SFSRO structure.

Figure 3-1 shows the structure in Chefs for encrypted content. After marshaling an SFSRO

structure, Chefs formats the content with PKCS#7 [57]. PKCS#7 provides secure padding of plain-

text to ensure that the decryption process later returns an unambiguous plaintext. Chefs encrypts

the PKCS#7-formatted content with a content key and stores the resulting ciphertext in the pkcs7

field. The lockbox field serves as a level of indirection. The lockbox contains the content

key encrypted with the group key. gk vers indicates which version of the group key to use for

encrypting and decrypting the lockbox. lt enables future expansion for alternative cryptosystems.

3.2.1 Key regression

Chefs uses key regression, described in Chapter 4, to reduce the amount of out-of-band commu-

nication necessary for group key distribution. Key regression conserves the publisher’s network

resources necessary to give group members continued access to content. After an eviction and

modification of content, the content is re-encrypted with a new content key. With key regression,

the new content key is related to the old content key. Given the new content key, it is easy to derive

the old content key. Yet given the old content key, it is infeasible to derive the new content key.

In Chefs, a content publisher issues a new group key for encrypting new content after evicting

a group member. Old, encrypted content remains unmodified. An evicted member may continue

to have access to the unmodified content; immediately re-encrypting all data would have limited

benefit, because the evicted member may have cached the content locally. A content publisher may

choose to re-encrypt old content lazily, when convenient.
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Figure 3-2: The Chefs file system. Dashed boxes indicate the trusted computing base.

3.3 Components of Chefs

Chefs consists of two major components. The SFS read-only file system provides the file system

environment. Key regression generates new group keys as group members come and go. Figure 3-2

illustrates how components in the file system interact.

Chefs requires few changes to the base SFSRO system. In fact, the untrusted server is com-

pletely unaware that it is serving encrypted content. Only the database generator and client daemon

require significant modification. Both programs use a shared, symmetric group key to enable con-

fidentiality. The server requires one new remote procedure call, getkey, to enable a default key

distribution mechanism.

3.3.1 Database generator

Chefs uses the same database generator program as SFSRO, but with a few additional features.

First, the database generator takes two extra arguments: a self-certifying path to the publisher’s

key distriubtion server, and the version of the key to protect new content. For a new database, the

database generator stores a new key regression publisher state in an auxiliary file.
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When traversing the origin file system, the Chefs database generator encrypts content with a

symmetric cipher, 128-bit AES in CBC mode. To store a block of content, the database generator

first generates a random, 128-bit AES content key. After encrypting the content with this key,

Chefs stores the content key in a lockbox that is itself encrypted with AES in CBC mode using

the group key. The database generator now creates a structure consisting of three components:

the encrypted lockbox, the encrypted content, and the version of the group key that encrypted

the lockbox. The entire structure is hashed with SHA1 and an initialization vector to obtain the

familiar SFSRO handle. Finally, the structure is stored in the database under the newly computed

handle.

3.3.2 Client daemon

The Chefs client daemon works exactly as the SFSRO client daemon, except that it decrypts content

after verifying integrity of the ciphertext.

To read a file, Chefs first mounts a remote Chefs file system by connecting to a server using a

self-certifying path [73]. The server responds with a digitally signed sfsro private structure

as shown in Figure 3-3. Chefs verifies the digital signature on the sfsro sealed structure. The

ct field contains an encrypted, marshaled FSINFO structure as shown earlier by Figure 3-1. Chefs

looks up the group key by the name given in the gk id field of the sfsro sealed structure.

If the appropriate version of the group key is not available via key regression, Chefs contacts the

publisher to securely download the latest key with the getkey RPC.

3.3.3 Server daemon

The content publisher controls the distribution of group keys that provide the decentralized access

control. To evict a group member, the publisher winds the group key to the next version using key

regression. Remaining group members contact the publisher on-demand for the latest group key

using the getkey RPC. The publisher first verifies that the user is authorized to receive the key. If

so, the publisher responds to a getkey RPC by encrypting the latest key regression member state

with the requesting user’s public RSA key. A user with the corresponding private RSA key may
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struct sfsro_private {
filename3 keymgr_sname;
sfs_hash keymgr_hash;
unsigned gk_id;
sfsro_sealed ct;

};

Figure 3-3: An FSINFO data structure in Chefs to help clients mount a file system.
keymgr sname and keymgr hash represent a self-certifying path to a publisher’s key distribu-
tion service. gk id is the version of the group key necessary to decrypt ct which itself contains
an SFSRO-style FSINFO structure.

decrypt the response.

3.4 Updates

Chefs starts with the same basic algorithm as SFSRO to update a database. The update program

traverses the origin file system and generates a new database. In addition, Chefs includes extra

routines necessary to maintain lazy revocation and incremental distribution of updates.

To understand why Chefs has a more complicated task for updates than SFSRO, let us first

recall how SFSRO updates a public database. The content publisher creates a new database of

the updated origin file system. This process is not incremental. Rather, SFSRO servers provide

incremental distribution of updates by downloading only the changes between the old and new

databases. If a server encounters an unchanged handle, it halts the traversal. In this way, an update

to a database requires a server to only download the structures on the path from the update to the

root, resulting in a logarithmic number of content fetches with respect to the depth of the directory

tree.

The database generator in SFSRO is deterministic. Regenerating a database of a particular

origin file system results in the exact same SFSRO database. This is not the case in Chefs because

the encrypting introduces non-determinism. Each content key is randomly generated. If a database

were regenerated, the entire contents would require redistribution. Even if no changes occur, the

old and new databases would be different.
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The Chefs database generator includes extra logic to maintain the semantics of lazy revocation,

thus ensuring incremental distribution of updates. When generating a database, Chefs traverses

both the origin file system and the original, encrypted database. Instead of encrypting old content

with new content keys, Chefs reuses the old content key for unchanged content. A new content

key will encrypt new or changed content. The resulting database contains ciphertext that matches

the previous database, except for changed content and the path from the content to the root.

Lazy revocation prevents evicted group members from accessing new content. However, an

evicted member is not prevented from continued access to old, unchanged data. This relaxation in

security semantics allows for efficient distribution of updates.

Content publishers must decide if the performance benefit of lazy revocation is worth the risk

of less resistance to traffic analysis. Because of lazy revocation, an attacker can determine which

content remains unchanged. A content publisher who wants better security against traffic analysis

should disable lazy revocation.

3.5 Discussion

3.5.1 Intialization vectors

The Chefs prototype uses an initialization vector of zero with AES in CBC mode. Fortunately,

each block has its own unique, random content key that contributes entropy to the encryption.

The content key is never reused for encrypting new blocks. Alternatively, we could use the same

content key for encrypting all blocks within a database and incorporate a random initialization

vector per block. Another alternative would generate a random content key for the FSINFO but

then generate all other content keys by using a pseudorandom function seeded with the content

key of the FSINFO. Chefs uses a random content key for each block because of its simplicity of

implementation.
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3.5.2 Sliding window

Key regression ensures that the size of the encrypted content is independent of the number of

evictions. Only one lockbox is necessary to allow members with various versions of the group

key to access the content. To implement lazy revocation without key regression, encrypted content

could include a list of all lockboxes. Each lockbox would contain the same content key, but each

lockbox would be encrypted with a different version of the group key—one for each version of the

group key since the last modification to the content.

The long list of lockboxes is a result of the content publisher not wanting to re-encrypt the

content with a new content key. Instead of an indefinitely long list of lockboxes, one could use a

sliding window of lockboxes [115]. The assumption is that re-encryption, while slow, can usually

finish within a reasonable amount of time, and thus only a constant number of lockboxes will exist.

One side effect of this design is that a legitimate group member with a group key version older

than the sliding window may unnecessarily communicate with the content publisher. Recall that

one goal of Chefs is to reduce the amount of direct communication between the content publisher

and members. In the sliding window method, group members may have to contact the content

publisher for an updated group key even if the plaintext content remains unchanged, which is why

Chefs does not use sliding windows.
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Chapter 4

Key regression

Definitions, when they are first proposed, will often encompass poor

decisions or errors. For a good definition, these don’t greatly diminish the

value of the contribution.

Definitions can be worthwhile even in the absence of theorems and proofs.

– Phillip Rogaway [97]

Key regression1 enables a content publisher to efficiently share a contiguous sequence of group

keys with a dynamic set of members. A publisher produces new group keys after a membership

event (e.g., an eviction). Group members can independently compute old versions of the group key

by unwinding the current group key.

To prevent key distribution from becoming a bottleneck, the Plutus file system [58] introduced

a new cryptographic object called a key rotation scheme. Plutus uses the symmetric key Ki to

encrypt stored content during the i-th time period, e.g., before the i-th eviction. If a user becomes

a member during the i-th time period, then Plutus gives that member the i-th key Ki.

1This chapter comes from the paper “Key regression: Enabling efficient key distribution for secure distributed
storage” by Kevin Fu, Seny Kamara, Tadayoshi Kohno. Manuscript, August 2005.
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From the Plutus paper [58], the desired properties of a key rotation scheme are that:

1. given the i-th key Ki it is easy to compute the keys Kj for all previous time periods j < i,

2. but for any time period l > i after i, it should be computationally infeasible to compute the

keys Kl for time period l given only Ki.

Property (1) enables the content publisher to transfer only a single small key Ki to new mem-

bers wishing to access all current and past content, rather than the potentially large set of keys

{K1,K2, . . . ,Ki}; this property reduces the bandwidth requirements on the content publisher.

Property (2) is intended to prevent a member evicted during the i-th time period from accessing

(learning the contents of) content encrypted during the l-th time period, l > i.

We begin by presenting a design flaw with the definition of key rotation: for any realistic

key rotation scheme, even though a member evicted during the i-th time period cannot predict

subsequent keys Kl, l > i, the evicted member can distinguish subsequent keys Kl from random.

The lack of pseudorandomness follows from the fact that if an evicted member is given the real

key Kl, then by definition (i.e., by property (2)) the evicted member can recover the real key Ki;

but given a random key instead of Kl, the evicted member will with high probability recover a key

K ′
i �= Ki.

The difference between unpredictability and lack of pseudorandomness can have severe con-

sequences in practice. To illustrate the seriousness of this design flaw, we describe a key rotation

scheme and a symmetric encryption scheme that individually meet their desired security proper-

ties (property (2) for key rotation and IND-CPA privacy for symmetric encryption [9]), but when

combined (e.g, when a content publisher uses the keys from the key rotation scheme to key the

symmetric encryption scheme) result in a system that fails to provide even a weak form of pri-

vacy.2

While the above counter example does not imply that all systems employing key rotation will

fail just as drastically, it does motivate finding a key rotation-like object that still achieves the spirit

2We stress that the novelty here is in identifying the design flaw with key rotation, not in presenting a specific
counter example. Indeed, the counter example follows naturally from our observation that a key rotation scheme does
not produce pseudorandom keys.
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Figure 4-1: Key regression overview; stpi and stmi respectively represent the i-th publisher and
member states.

of property (1) but (a new property 2′) produces future keys that are pseudorandom to evicted mem-

bers — as opposed to just unpredictable. Assuming the new object achieves pseudorandomness,

one could use it as a black box to key other cryptographic constructs without worrying about the

resulting system failing as drastically as the one described above. A key regression scheme is such

a key rotation-like object.

In key regression, rather than give a new member the i-th key Ki directly, the content publisher

gives the member a member state stmi. From the member state, the member could derive the

encryption key Ki for the i-th time period, as well as for all previous member states stmj , j < i.

By transitivity, a member given the i-th member state could also derive all previous keys Kj . By

separating the member states from the keys, we can build key regression schemes where the keys

Kl, l > i, are pseudorandom to evicted members possessing only the i-th member state stmi.

Intuitively, the trick used in the constructions to make the keys Kl pseudorandom is to ensure that

given both Kl and stmi, it is still computationally infeasible for the evicted member to compute

the l-th member state stml. Viewed another way, there is no path from Kl to stmi in Figure 4-1 and

vice-versa.

The newly constructed key regression schemes are referred to as KR-SHA1, KR-AES, and

KR-RSA. Rather than rely solely on potentially error-prone heuristic methods for analyzing the

security of our constructions, we prove that all three are secure key regression schemes. Our

security proofs use the reduction-based provable security approach pioneered by Goldwasser and
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Micali [50] and lifted to the concrete setting by Bellare, Kilian, and Rogaway [12]. For KR-RSA,

our proof is based on the assumption that RSA is one-way. For the proof of both KR-RSA and

KR-SHA1, we assume that SHA1 is a random oracle [10].

Section 4.1 explains the notation to describe key regression. Section 4.2 discusses problems

with the Plutus-style [58] key rotation. Section 4.3 presents a definition of security for key regres-

sion, followed by several provably-secure constructions in Section 4.4.

4.1 Notation

If x and y are strings, then |x| denotes the length of x in bits and x‖y denotes their concatenation.

If x and y are two variables, we use x ← y to denote the assignment of the value of y to x. If Y

is a set, we denote the selection of a random element in Y and its assignment to x as x
R← Y . If

f is a deterministic (respectively, randomized) function, then x ← f(y) (respectively, x
R← f(y))

denotes the process of running f on input y and assigning the result to x. We use the special

symbol ⊥ to denote an error.

We use AESK(M) to denote the process of running the AES block cipher with key K and input

block M . An RSA [95] key generator for some security parameter k is a randomized algorithm Krsa

that returns a triple (N, e, d). The modulus N is the product of two distinct odd primes p, q such

that 2k−1 ≤ N < 2k; the encryption exponent e ∈ Z
∗
ϕ(N) and the decryption exponent d ∈ Z

∗
ϕ(N)

are such that ed ≡ 1 mod ϕ(N), where ϕ(N) = (p − 1)(q − 1). Section 4.4 describes what it

means for an RSA key generator to be one-way.

4.2 Problems with key rotation

A key rotation scheme [58] consists of three algorithms: setup, windkey, and unwindkey. Figure 4-2

shows the original (RSA-based) Plutus key rotation scheme. Following Plutus, one familiar with

hash chains [66] and S/KEY [52] might design the key rotation scheme in Figure 4-3, which is

more efficient than the scheme in Figure 4-2, but which is limited because it can only produce

MaxWind (“max wind”) keys, where MaxWind is a parameter chosen by the implementor. A
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Alg. setup

(N, e, d)
R← Krsa ; K

R← Z
∗
N

pk ← 〈N, e〉 ; sk ← 〈K,N, d〉
Return (pk, sk)

Alg. windkey(sk = 〈K,N, d〉)
K ′ ← Kd mod N
sk′ ← 〈K ′, N, d〉
Return (K, sk′)

Alg. unwindkey(K, pk = 〈N, e〉)
Return Ke mod N

Figure 4-2: The Plutus key rotation scheme; Krsa is an RSA key generator.

Alg. setup

KMaxWind
R← {0, 1}160 ; pk ← ε

For i = MaxWind downto 2 do
Ki−1 ← SHA1(Ki)

sk ← 〈1,K1, . . . ,KMaxWind〉
Return (pk, sk)

Alg. windkey(sk = 〈i,K1, . . . ,KMaxWind〉)
If i > MaxWind return (⊥, sk)
sk′ ← 〈i + 1,K1, . . . ,KMaxWind〉
Return (Ki, sk

′)

Alg. unwindkey(K, pk)
// ignore pk
K ′ ← SHA1(K)
Return K ′

Figure 4-3: A hash chain-based key rotation scheme.
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content publisher runs the setup algorithm to initialize a key rotation scheme; the result is public

information pk for all users and a secret sk1 for the content publisher. The content publisher in-

vokes windkey(ski) to obtain the key Ki and a new secret ski+1. Any user in possession of Ki,

i > 1, and pk can invoke unwindkey(Ki, pk) to obtain Ki−1. Informally, the desired security prop-

erty of a key rotation scheme is that, given only Ki and pk, it should be computationally infeasible

for an evicted member (the adversary) to compute Kl, for any l > i. The Plutus construction in

Figure 4-2 has this property under the RSA one-wayness assumption (defined in Section 4.4), and

the construction in Figure 4-3 has this property assuming that SHA1 is one-way.

The scheme in Figure 4-3 is reasonable in practice, even though it has a limit on the number of

windings. A publisher could precompute a chain long enough for most applications. For instance,

our client in Table 6.4 can perform 687,720 unwindings per second. A user willing to spend a

week (604,800 seconds) precomputing keys could produce a chain of length 415,933,056,000. We

imagine most groups will not ever have to worry about exceeding 415,933,056,000 membership

events.

In Section 1.1.2 we observed that the l-th key output by a key rotation scheme cannot be pseu-

dorandom, i.e., will be distinguishable from a random string, to an evicted member in possession

of the key Ki for some previous time period i < l.3 We consider the following example to empha-

size how this lack of pseudorandomness might impact the security of a real system that combines

a key rotation scheme and a symmetric encryption scheme as a black boxes.

For our example, we first present a key rotation scheme WS and an encryption scheme SE

that individually both satisfy their respective security goals (unpredictability for the key rotation

scheme and IND-CPA privacy [9] for the symmetric encryption scheme). To build WS , we start

with a secure key rotation scheme WS; WS outputs keys twice as long as WS . The WS winding

algorithm windkey invokes WS’s winding algorithm to obtain a key K; windkey then returns K‖K

as its key. On input a key K‖K, unwindkey invokes WS’s unwinding algorithm with input K to

3Technically, there may be pathological examples where the l-th key is pseudorandom to a member given the i-th
key, but these examples seem to have other problems of their own. For example, consider a key rotation scheme like
the one in Figure 4-3, but where SHA1 is replaced with a function mapping all inputs to some constant string C,
e.g., the all 0 key. Now set MaxWind = 2, i = 1, and l = 2. In this pathological example K2 is random to the
evicted member, meaning (better than) pseudorandom. But this construction still lacks our desired pseudorandomness
property: the key K1 is always the constant string C.
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obtain a key K ′; unwindkey then returns K ′‖K ′ as its key. If the keys output by windkey are

unpredictable to evicted members, then so must the keys output by windkey. To build SE , we start

with a secure symmetric encryption scheme SE ; SE uses keys that are twice as long as SE . The

SE encryption and decryption algorithms take the key K, split it into two halves K = L1‖L2, and

run SE with key L1⊕L2. If the key K is random, then the key L1⊕L2 is random and SE runs the

SE encryption algorithm with a uniformly selected random key. This means that SE satisfies the

standard IND-CPA security goal if SE does.

Despite the individual security of both WS and SE , when the keys output by WS are used

to key SE , SE will always run SE with the all-zero key; i.e., the content publisher will encrypt

all content under the same constant key. An adversary can thus trivially compromise the privacy

of all encrypted data, including data encrypted during time periods l > i after being evicted.

Although the construction of WS and SE may seem somewhat contrived, this example shows that

combining a key rotation scheme and an encryption scheme may have undesirable consequences

and, therefore, that it is not wise to use (even a secure) key rotation scheme as a black box to

directly key other cryptographic objects.

Figure 4-1 might suggest an alternative approach for fixing the problems with key rotation. In-

stead of using the keys Ki from a key rotation scheme to directly key other cryptographic objects,

use a function of Ki, like SHA1(Ki), instead. If one models SHA1 as a random oracle and if the

key rotation scheme produces unpredictable future keys Kl, then it might seem reasonable to con-

clude that an evicted member given Ki should not be able to distinguish future values SHA1(Kl),

l > i, from random. While this reasoning may be sound for some specific key rotation schemes

(this reasoning actually serves as the basis for our derivative of the construction in Figure 4-2,

KR-RSA in Construction 4.4.12) we dislike this approach for several reasons. First, we believe

that it is unreasonable to assume that every engineer will know to or remember to use the hash

function. Further, even if the engineer knew to hash the keys, the engineer might not realize that

simply computing SHA1(Kl) may not work with all key rotation schemes, which means that the

engineer cannot use a key rotation scheme as a black box. For example, while SHA1(Kl) would

work for the scheme in Figure 4-2, it would cause problems for the scheme in Figure 4-3. We
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choose to consider a new cryptographic object, key regression, because we desire a cryptographic

object that is not as prone to accidental misuse.

4.3 Key regression

The negative result in Section 4.2 motivates our quest to find a new cryptographic object, similar

to key rotation, but for which the keys generated at time periods l > i are pseudorandom to any

adversary evicted at time i. Here we formalize such an object: a key regression scheme. Fol-

lowing the reduction-based practice-oriented provable security approach [12, 50], our formalisms

involve carefully defining the syntax, correctness requirements, and security goal of a key regres-

sion scheme. These formalisms enable us to, in Section 4.4, prove that our preferred constructions

are secure under reasonable assumptions. We desire provable security over solely ad hoc analyses

since, under ad hoc methods alone, one can never be completely convinced that a cryptographic

construction is secure even if one assumes that the underlying components (e.g., block ciphers,

hash functions, RSA) are secure.

Figure 4-1 gives an abstract overview of a key regression scheme. The content publisher has

content publisher states stpi from which it derives future publisher and member states. When using

a key regression scheme, instead of giving a new member the i-th key Ki, the content publisher

would give the member the i-th member state stmi. As the arrows in Figure 4-1 suggest, given stmi,

a member can efficiently compute all previous member states and the keys K1, . . . ,Ki. Although

it would be possible for an evicted member to distinguish future member states stml, l > i, from

random (the evicted member would extend our observation on the lack of pseudorandomness in

key rotation schemes), because there is no efficient path between the future keys Kl and the evicted

member’s last member state stmi, it is possible for a key regression scheme to produce future keys

Kl that are pseudorandom (indistinguishable from random). We present some such constructions

in Section 4.4.
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4.3.1 Syntax and correctness requirements

Syntax. Here we formally define the syntax of a key regression scheme KR = (setup,wind,

unwind, keyder). Let H be a random oracle; all four algorithms are given access to the random

oracle, though they may not use the random oracle in their computations. Via stp
R← setupH , the

randomized setup algorithm returns a publisher state. Via (stp′, stm)
R← windH(stp), the random-

ized winding algorithm takes a publisher state stp and returns a pair of publisher and member states

or the error code (⊥,⊥). Via stm′ ← unwindH(stm) the deterministic unwinding algorithm takes a

member state stm and returns a member state or the error code ⊥. Via K
R← keyderH(stm) the de-

terministic key derivation algorithm takes a member state stm and returns a key K ∈ DerKeysKR,

where DerKeysKR is the derived key space for KR. Let MaxWind ∈ {1, 2, . . .} ∪ {∞} denote the

maximum number of derived keys that KR is designed to produce. We do not define the behavior

of the algorithms when input the error code ⊥. A construction may use multiple random oracles,

but since one can always obtain multiple random oracles from a single random oracle [10], our

definitions assume just one.

Correctness. Our first correctness criterion for a key regression scheme is that the first MaxWind

times that wind is invoked, it always outputs valid member states, i.e., the outputs are never ⊥. Our

second correctness requirement ensures that if stmi is the i-th member state output by wind, and

if i > 1, then from stmi, one can derive all previous member states stmj , 0 < j < i. Formally,

let stp0
R← setup and, for i = 1, 2, . . ., let (stpi, stmi)

R← windH(stpi−1). We require that for each

i ∈ {1, 2, . . . ,MaxWind}, that stmi �= ⊥ and that, for i ≥ 2, unwindH(stmi) = stmi−1.

Remarks on syntax. Although we allow wind to be randomized, the wind algorithms in all of

our constructions are deterministic. We allow wind to return (⊥,⊥) since we only require that

wind return non-error states for its first MaxWind invocations. We use the pair (⊥,⊥), rather than

simply ⊥, to denote an error from wind since doing so makes our pseudocode cleaner. We allow

unwind to return ⊥ since the behavior of unwind may be undefined when input the first member

state.
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4.3.2 Security goal

For security, we desire that if a member (adversary) is evicted during the i-th time period, then

the adversary will not be able to distinguish the keys derived from any subsequent member state

stml, l > i, from randomly selected keys. Definition 4.3.1 captures this goal as follows. We allow

the adversary to obtain as many member states as it wishes (via a WindO oracle). Note that the

WindO oracle returns only a member state rather than both a member and publisher state. Once the

adversary is evicted, its goal is to break the pseudorandomness of subsequently derived keys. To

model this, we allow the adversary to query a key derivation oracle KeyderO. The key derivation

oracle will either return real derived keys (via internal calls to wind and keyder) or random keys.

The adversary’s goal is to guess whether the KeyderO oracle’s responses are real derived keys or

random keys. Since the publisher is in charge of winding and will not invoke the winding algorithm

more than the prescribed maximum number of times, MaxWind, the WindO and KeyderO oracles

in our security definition will respond only to the first MaxWind queries from the adversary.

Definition 4.3.1 [Security for key regression schemes.] Let KR = (setup,wind, unwind, keyder)

be a key regression scheme. Let A be an adversary. Consider the experiments Expkr-b
KR,A, b ∈

{0, 1}, and the oracles WindO and KeyderO in Figure 4-4. The oracles WindO and KeyderO and

the experiment Expkr-b
KR,A share global variables i (an integer) and stp (publisher state). The adver-

sary runs in two stages, member and non-member, and returns a bit. The KR-advantage of A in

breaking the security of KR is defined as

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

.

Note that Advkr
KR,A could be negative. But for every adversary with a negative advantage, there is

one adversary (obtained by switching outputs) that has the corresponding positive advantage.

Under the concrete security approach [12], we say that the scheme KR is KR-secure if for any

adversary A attacking KR with resources (running time, size of code, number of oracle queries)

limited to “practical” amounts, the KR-advantage of A is “small.” Formal results are stated with

concrete bounds.
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Experiment Expkr-b
KR,A

Pick random oracle H
i ← 0

stp
R← setupH

st
R← AWindO,H(member)

b′
R← AKeyderOb,H(non-member, st)

Return b′

Oracle WindO

i ← i + 1
If i > MaxWind then

return ⊥
(stp, stm)

R← windH(stp)
Return stm

Oracle KeyderOb

i ← i + 1
If i > MaxWind then return ⊥
(stp, stm)

R← windH(stp)
If b = 1 then

K ← keyderH(stm)
If b = 0 then

K
R← DerKeysKR

Return K

Figure 4-4: The experiment and oracles used in the definition of security for key regression.

KR-SHA1 KR-AES KR-RSA
MaxWind = ∞ No No Yes
setup cost MaxWind SHA1 ops MaxWind AES ops 1 RSA key generation
wind cost no crypto no crypto 1 RSA decryption
unwind cost 1 SHA1 op 1 AES op 1 RSA encryption
keyder cost 1 SHA1 op 1 AES op 1 SHA1 op

Table 4.1: Our preferred constructions. There are ways of implementing these constructions with
different wind costs.
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4.4 Constructions

We are now in a position to describe our three preferred key regression schemes, KR-SHA1,

KR-AES, and KR-RSA. Table 4.1 summarizes some of their main properties. KR-SHA1 is a deriva-

tive of the key rotation scheme in Figure 4-3 and KR-RSA is a derivative of the Plutus key rotation

scheme in Figure 4-2. The primary differences between the new key regression schemes and the

original key rotation schemes are the addition of the new, SHA1-based keyder algorithms, and the

adjusting of terminology (e.g., member states in these key regression schemes correspond to keys

in the original key rotation schemes).

We begin by defining KR-SHA1. In the construction of KR-SHA1, we prepend the string 08 to

the input to SHA1 in keyder to ensure that the inputs to SHA1 never collide between the keyder

and unwind algorithms.

4.4.1 Hash-based key regression

Construction 4.4.1 [KR-SHA1] The key regression scheme KR-SHA1 = (setup,wind, unwind, keyder)

is defined in Figure 4-5. MaxWind is a positive integer and a parameter of the construction. There

are no shared global variables in KR-SHA1. The derived key space for KR-SHA1 is DerKeysKR =

{0, 1}160.

The following theorem states that KR-SHA1 is secure in the random oracle model for adversaries

that make a reasonable number of queries to their random oracles. Here we view the application of

SHA1(·) in unwind as one random oracle and the application of SHA1(08‖·) in keyder as another

random oracle. The proof of Theorem 4.4.2 is in the random oracle model [10].

Theorem 4.4.2 Let KR be a generalization of KR-SHA1 (Construction 4.4.1) in which SHA1(·)

in unwind is replaced by a random oracle H1: {0, 1}160 → {0, 1}160 and in which SHA1(08‖·) in

keyder is replaced by another random oracle H2: {0, 1}160 → {0, 1}160. Then KR is KR-secure

in the random oracle model. Concretely, for any adversary A we have

Advkr
KR,A ≤ (MaxWind)2

2k+1
+

q · MaxWind

2k − MaxWind − q
,

60



Alg. setup

stmMaxWind
R← {0, 1}160

For i = MaxWind downto 2 do
stmi−1 ← unwind(stmi)

stp ← 〈1, stm1, . . . , stmMaxWind〉
Return stp

Alg. unwind(stm)
stm′ ← SHA1(stm)
Return stm′

Alg. wind(stp)
If stp = ⊥ then return (⊥,⊥)
Parse stp as 〈i, stm1, . . . , stmMaxWind〉
If i > MaxWind return (⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMaxWind〉
Return (stp′, stmi)

Alg. keyder(stm)
out ← SHA1(08‖stm)
Return out

Figure 4-5: The algorithms of KR-SHA1.

where q is the maximum number of queries that A makes to its random oracles.

Proof of Theorem 4.4.2: Theorem 4.4.2 follows immediately from Theorem 4.4.4 in the next

section since the latter makes a more general statement.

4.4.2 Generalization of KR-SHA1 and proof of Theorem 4.4.2.

Construction 4.4.3 below shows a generalization of KR-SHA1 in which SHA1(·) and SHA1(08‖·)

are respectively replaced by two random oracles, H1 and H2. For Construction 4.4.3, in order for

setup and wind to be “efficient,” we assume that MaxWind has some “reasonable” value like 220; in

the asymptotic setting we would require that MaxWind be polynomial in some security parameter.

Besides KR-SHA1, one can envision a number of other natural instantiations of Construction 4.4.3.

Construction 4.4.3 Let H1: {0, 1}k → {0, 1}k and H2: {0, 1}k → {0, 1}l be random oracles.

Figure 4-6 shows how to construct a key regression scheme KR = (setup,wind, unwind, keyder)

from H1 and H2; MaxWind is a positive integer and a parameter of the construction. The derived

key space for KR is DerKeysKR = {0, 1}l.

The following theorem states that Construction 4.4.3 is secure in the random oracle model for

adversaries that make a reasonable number of queries to their random oracles.
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Alg. setupH1,H2

stmMaxWind
R← {0, 1}k

For i = MaxWind downto 2 do
stmi−1 ← unwindH1,H2(stmi)

stp ← 〈1, stm1, . . . , stmMaxWind〉
Return stp

Alg. windH1,H2(stp)
If stp = ⊥ then return (⊥,⊥)
Parse stp as
〈i, stm1, . . . , stmMaxWind〉

If i > MaxWind return (⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMaxWind〉
Return (stp′, stmi)

Alg. unwindH1,H2(stm)
stm′ ← H1(stm)
Return stm′

Alg. keyderH1,H2(stm)
out ← H2(stm)
Return out

Figure 4-6: Hash chains-based algorithms for Construction 4.4.3. H1 and H2 are random oracles.
The setup algorithm uses the unwind algorithm defined in the second column.

Theorem 4.4.4 The key regression scheme in Construction 4.4.3 is secure in the random oracle

model. Formally, let H1: {0, 1}k → {0, 1}k and H2: {0, 1}k → {0, 1}l be random oracles and let

KR be the key regression scheme built from H1, H2 via Construction 4.4.3. Then for any adversary

A we have that

Advkr
KR,A ≤ (MaxWind)2

2k+1
+

q · MaxWind

2k − MaxWind − q
,

where q is the maximum number of queries total that adversary A makes to its H1 and H2 random

oracles.

Proof of Theorem 4.4.4: Consider the experiments Expkr-1
KR,A and Expkr-0

KR,A. Let stm1, stm2, . . . ,

stmMaxWind denote the member states as computed by setup, and let w′ denote the variable number

of WindO oracle queries that A made in its member stage. Let E1 be the event in Expkr-1
KR,A that

w′ ≤ MaxWind − 1 and that A queries either its H1 or H2 random oracles with some string

x ∈ {stmw′+1, . . . , stmMaxWind}. Let E0 be the event in Expkr-0
KR,A that w′ ≤ MaxWind − 1 and that

A queries either its H1 or H2 random oracles with some string x ∈ {stmw′+1, . . . , stmMaxWind}.

Let F1 be the event in Expkr-1
KR,A that there exist two distinct indices i, j ∈ {1, . . . ,MaxWind}

such that stmi = stmj and let F0 be the event in Expkr-0
KR,A that there exist two distinct indices

i, j ∈ {1, . . . ,MaxWind} such that stmi = stmj .

62



We claim that

Advkr
KR,A ≤ Pr

[
Expkr-1

KR,A = 1 ∧ F1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
, (4.1)

that

Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
≤ (MaxWind)2

2k+1
, (4.2)

and that

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
≤ q · MaxWind

2k − MaxWind − q
, (4.3)

from which the inequality in the theorem statement follows.

To justify Equation (4.1), let Pr1 [ · ] and Pr0 [ · ] denote the probabilities over Expkr-1
KR,A and Expkr-0

KR,A,

respectively. From Definition 4.3.1, we have

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]

+Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
− Pr

[
Expkr-0

KR,A = 1 ∧ F0

]

−Pr
[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]

≤ Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]

+Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
. (4.4)

By conditioning,

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
= Pr

[
Expkr-1

KR,A = 1 | E1 ∧ F1

]
· Pr1

[
E1 ∧ F1

]

and

Pr
[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
= Pr

[
Expkr-0

KR,A = 1 | E0 ∧ F0

]
· Pr0

[
E0 ∧ F0

]
.

Prior to the adversary causing the events E1∨F1 and E0∨F0 to occur in their respective experiments,

A’s view is identical in both experiments, meaning that

Pr1

[
E1 ∧ F1

]
= Pr0

[
E0 ∧ F0

]
.
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Similarly, if the events do not occur, then the outcome of Expkr-1
KR,A and Expkr-0

KR,A will be the same

since the output of a random oracle is random if the input is unknown; i.e., the response to A’s key

derivation oracle query in the non-member stage will be random in both cases and therefore

Pr
[
Expkr-1

KR,A = 1 | E1 ∧ F1

]
= Pr

[
Expkr-0

KR,A = 1 | E0 ∧ F0

]
.

Consequently,

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
= Pr

[
Expkr-0

KR,A = 1 ∧ E0 ∧ F0

]
.

Combining the above equation with Equation (4.4) gives Equation (4.1).

Returning to Equation (4.2), we first note that

Pr
[
Expkr-1

KR,A = 1 ∧ F1

]
≤ Pr1 [F1 ] .

If we consider the event F1, we note that the setup algorithm selects the points stmMaxWind,

stmMaxWind−1, stmMaxWind−2, and so on, uniformly at random from {0, 1}k until a collision occurs.

Since this is exactly the standard birthday paradox [12], we can upper bound Pr1 [F1 ] as

Pr1 [F1 ] ≤ (MaxWind)2

2k+1
.

Equation (4.2) follows.

To justify Equation (4.3), we begin by noting that

Pr
[
Expkr-1

KR,A = 1 ∧ E1 ∧ F1

]
≤ Pr1

[
E1 | F1

]
· Pr1

[
F1

]
≤ Pr1

[
E1 | F1

]
.

Consider the adversary A in Expkr-1
KR,A and assume that F1 does not occur. Consider any snapshot

of the entire state of Expkr-1
KR,A before A causes E1 to occur, and let q′ denote the number of H1

and H2 oracle queries that A has made prior to the snapshot being taken. Then the member states

stmw′+1, . . . , stmMaxWind are restricted only in that they are distinct strings from {0, 1}k and that

none of the strings are from {stm1, . . . , stmw′} or the set of A’s q′ queries to its random oracles;

i.e., the member states that A obtained in its member stage and the responses from the KeyderO

oracle do not reveal additional information to the adversary. This means that if the adversary’s next

oracle query after this snapshot is to one of its random oracles, and if that input for that oracle query

is some string x, then the probability that x ∈ {stmw′+1, . . . , stmMaxWind}, i.e., the probability
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Alg. setup

stmMaxWind
R← {0, 1}128

For i = MaxWind downto 2 do
stmi−1 ← unwind(stmi)

stp ← 〈1, stm1, . . . , stmMaxWind〉
Return stp

Alg. unwind(stm)
stm′ ← AESstm(0128)
Return stm′

Alg. wind(stp)
If stp = ⊥ then return (⊥,⊥)
Parse stp as 〈i, stm1, . . . , stmMaxWind〉
If i > MaxWind return (⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMaxWind〉
Return (stp′, stmi)

Alg. keyder(stm)
out ← AESstm(1128)
Return out

Figure 4-7: AES-based algorithms for key regression.

that A’s oracle query would cause E1 to occur, is at most (MaxWind − w′)/(2k − (w′ + q′)) ≤

MaxWind/(2k − MaxWind − q′). Summing over all of A’s q random oracle queries and taking an

upper bound, we have

Pr1

[
E1 | F1

]
≤ q · MaxWind

2k − MaxWind − q
,

which completes the proof.

4.4.3 AES-based key regression

Our next hash-based construction, KR-AES, uses AES in a construction similar to KR-SHA1. One

can view KR-AES as using two hash functions:

H1(x) = AESx(0
128)

H2(x) = AESx(1
128)

Using the hash function input as a block cipher key produces a one-way function for fixed

plaintext [33, 37]. The following construction is four times faster at unwinding than KR-SHA1

(see Table 6.4).
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Algorithm unwind(stm)
x ← G(stm)
stm′ ← first k bits of x
Return stm′

Algorithm keyder(stm)
x ← G(stm)
out ← last l bits of x
Return out

Figure 4-8: The unwind and keyder algorithms for Construction 4.4.6. G: {0, 1}k → {0, 1}k+l is
a function. The setup and wind algorithms are as in Figure 4-6 except that setup and wind do not
receive access to any random oracles.

Construction 4.4.5 [KR-AES] The key regression scheme KR-AES = (setup,wind, unwind, keyder)

is defined in Figure 4-7. MaxWind is a positive integer and a parameter of the construction. There

are no shared global variables in KR-AES. The derived key space for KR-AES is DerKeysKR =

{0, 1}128.

4.4.4 Key regression using forward-secure pseudorandom bit generators

Construction 4.4.6 below generalizes KR-AES, and is essentially one of Bellare and Yee’s [17]

forward secure PRGs in reverse. Construction 4.4.6 uses a pseudorandom bit generator, which

is a function G: {0, 1}k → {0, 1}k+l that takes as input a k-bit seed and returns a string that is

longer than the seed by l bits, k, l ≥ 1. Pseudorandom bit generators were defined first in [21] and

lifted to the concrete setting in [32]. As with Construction 4.4.3, in order for setup and wind to

be “efficient,” we assume that MaxWind has some “reasonable” value like 220; in the asymptotic

setting we would require that MaxWind be polynomial in some security parameter. To instantiate

KR-AES from Construction 4.4.6, we set k = l = 128 and, for any X ∈ {0, 1}128, we define G

as G(X) = AESX(0128)‖AESX(1128). Numerous other instantiations exist. The security proof for

Construction 4.4.6 is in the standard, as opposed to the random oracle, model.

Construction 4.4.6 Let G: {0, 1}k → {0, 1}k+l be a pseudorandom bit generator. Figure 4-8

shows how to construct a key regression scheme KR = (setup,wind, unwind, keyder) from G;

MaxWind is a positive integer and a parameter of the construction. The derived key space for the

scheme KR is DerKeysKR = {0, 1}l.
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Toward proving the security of Construction 4.4.6, we begin by defining our security assumptions

on the base PRG [17, 21, 126]. If A is an adversary, we let

Advprg
F,A = Pr

[
K

R← {0, 1}k ; x ← G(K) : A(x) = 1
]
−Pr

[
x

R← {0, 1}k+l : A(x) = 1
]

denote the prg-advantage of A in attacking G. Under the concrete security approach [12], there is

no formal definition of what it means for G to be a “secure PRG,” but in discussions this phrase

should be taken to mean that, for any A attacking G with resources (running time, size of code)

limited to “practical” amounts, the prg-advantage of A is “small.” Formal results are stated with

concrete bounds.

Theorem 4.4.7 If G: {0, 1}k → {0, 1}k+l is a secure PRG, then the key regression scheme KR

built from G via Construction 4.4.6 is KR-secure. Concretely, given an adversary A attacking KR,

we can construct an adversary B attacking G such that

Advkr
KR,A ≤ 2 · (q + 1)2 · Advprg

G,B

where q is the minimum of MaxWind and the maximum number of queries A makes to its WindO

and KeyderO oracles. Adversary B uses within a small constant factor of the resources of A, plus

the time to compute setup and G MaxWind times.

For our proof of Theorem 4.4.7, we remark that the internal structure of the member states and de-

rived keys in Construction 4.4.6 is very similar to the internal structure of the states and output bits

in a forward-secure pseudorandom bit generator, as defined in [17] and recalled below. Our proof

therefore proceeds first by showing how to build a secure key regression scheme from any forward-

secure pseudorandom bit generator, essentially by running the forward-secure pseudorandom bit

generator in reverse during the key regression scheme’s setup algorithm (Construction 4.4.8). This

intermediate result suggests that future work in forward-secure pseudorandom bit generators could

have useful applications to key regression schemes. To prove Theorem 4.4.7, we then combine this

intermediate result with a lemma in [17] that shows how to create a forward-secure pseudorandom

bit generator from a conventional pseudorandom bit generator.
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Algorithm seed

stg0
R← {0, 1}k

return stg0

Algorithm next(stgi)

r
R← G(stgi)

stgi+1 ← first k bits of r
out ← last l bits of r
return (stgi+1, out)

Figure 4-9: Algorithms for Construction 4.4.10.

Forward-secure pseudorandom generators. In [17], Bellare and Yee define stateful pseudo-

random bit generators and describe what it means for a stateful pseudorandom bit generator to be

forward-secure. Intuitively a stateful PRG is forward-secure if even adversaries that are given the

generator’s current state cannot distinguish previous outputs from random.

SYNTAX. A stateful PRG consists of two algorithms: SBG = (seed, next) as shown in Figure 4-

9. The randomized setup algorithm returns an initial state; we write this as stg
R← seed. The

deterministic next step algorithm takes a state as input and returns a new state and an output from

OutSpSBG , or the pair (⊥,⊥); we write this as (stg′, out) ← next(stg). We require that the set

OutSpSBG is efficiently samplable. MaxLenSBG ∈ {1, 2, . . .}∪{∞} denotes the maximum number

of output blocks that SBG is designed to produce.

CORRECTNESS. The correctness requirement for stateful PRGs is as follows: let stg0
R← seed

and, for i = 1, 2, . . ., let (stgi, outi)
R← next(stgi−1). We require that for i ≤ MaxLenSBG ,

(stgi, outi) �= (⊥,⊥).

SECURITY. Let SBG = (seed, next) be a stateful bit generator. Let A be an adversary. Consider

the experiments Expfsprg-b
SBG,A, b ∈ {0, 1}, and the oracle NextO below with shared global variable

stg. The adversary runs in two stages: find and guess.

Experiment Expfsprg-b
SBG,A

stg
R← seed

st
R← ANextOb(find)

b′
R← A(guess, stg, st)

Return b′

Oracle NextOb

(stg, out) ← next(stg)

If b = 0 then out
R← OutSpSBG

Return out
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Algorithm setup

stgMaxWind
R← seed

For i = MaxWind downto 2 do
(stgi−1, outi−1) ← next(stgi)

stp ← 〈1, stg1, . . . , stgMaxWind〉
Return stp

Algorithm unwind(stm)
(stm′, out) ← next(stm)
Return stm′

Algorithm wind(stp)
If stp = ⊥ then

return (⊥,⊥)
Parse stp as

〈i, stg1, . . . , stgMaxWind〉
If i > MaxWind return (⊥,⊥)
stp′ ←

〈i + 1, stg1, . . . , stgMaxWind〉
Return (stp′, stmi)

Algorithm keyder(stm)
(stm′, out) ← next(stm)
Return out

Figure 4-10: Algorithms for KR-SBG (Construction 4.4.8). Construction KR-SBG demonstrates
how to build a KR-secure key regression scheme from any FSPRG-secure stateful bit generator
SBG = (seed, next). There are no shared global variables in KR-SBG.

The FSPRG-advantage of A in breaking the security of SBG is defined as

Advfsprg
SBG,A = Pr

[
Expfsprg-1

SBG,A = 1
]
− Pr

[
Expfsprg-0

SBG,A = 1
]

.

Note that Advfsprg
SBG,A could be negative. But for every adversary with a negative advantage, there

is one adversary (obtained by switching outputs) that has the corresponding positive advantage.

Under the concrete security approach, the scheme SBG is said to be FSPRG-secure if the

FSPRG-advantage of all adversaries A using reasonable resources is “small.”

Key regression from forward-secure pseudorandom bit generators.

Construction 4.4.8 [KR-SBG] Given a stateful generator SBG = (seed, next), we can construct

a key regression scheme KR-SBG = (setup,wind, unwind, keyder) as follows. For the construc-

tion, we set MaxWind to a positive integer at most MaxLenSBG; MaxWind is a parameter of our

construction. The derived key space for KR-SBG is DerKeysKR = OutSpSBG . The algorithms for

KR-SBG are shown in Figure 4-10.
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Lemma 4.4.9 If SBG is FSPRG-secure, then KR built from SBG via Construction KR-SBG is

KR-secure. Concretely, given an adversary A attacking KR, we can construct an adversary B

attacking SBG such that

Advkr
KR,A ≤ (q + 1) · Advfsprg

SBG,B

where q is the minimum of MaxWind and the maximum number of wind and key derivation oracle

queries that A makes. Adversary B makes up to MaxWind queries to its oracle and uses within a

small constant factor of the other resources of A plus the time to run the setup algorithm.

Proof of Lemma 4.4.9: The adversary B is shown in Figure 4-11. The main idea is that if B

correctly guesses the number of WindO queries that A will make, then B’s simulation is perfect

for either choice of bit b. If B does not correctly guess the bit the number of WindO oracle queries,

then it always returns 0, regardless of the value of the bit b. We restrict q to the minimum of

MaxWind and the maximum number of wind and key derivation oracle queries that A makes since

wind is defined to return (⊥,⊥) after MaxWind invocations.

Formally, we claim that

Pr
[
Expkr-1

KR,A = 1
]

= (q + 1) · Pr
[
Expfsprg-1

SBG,B = 1
]

(4.5)

Pr
[
Expkr-0

KR,A = 1
]

= (q + 1) · Pr
[
Expfsprg-0

SBG,A = 1
]

, (4.6)

from which it follows that

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= (q + 1) ·
(
Pr

[
Expfsprg-1

SBG,B = 1
]
− Pr

[
Expfsprg-0

SBG,A = 1
])

≤ (q + 1) · Advfsprg
SBG,B

as desired.

It remains to justify Equation (4.5), Equation (4.6), and the resources of B. Let E1 and E0 respec-

tively denote the events that B sets bad to true in the experiments Expfsprg-1
SBG,B and Expfsprg-0

SBG,A , i.e.,
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Adversary BNextOb(find)

q′
R← {0, 1, . . . , q}

For i = MaxWind downto q′ + 1 do
outi−1 ← NextOb

Return 〈q′, outq′, . . . , outMaxWind−1〉

Adversary B(guess, stg, st)
Parse st as 〈q′, outq′ , . . . , outMaxWind−1〉
stgq′ ← stg
For i = q′ downto 2 do

(stgi−1, outi−1) ← next(stgi)
i ← 0
bad ← false

stA
R← ASimWindO(member)

If i �= q′ then bad ← true
If bad = true then return 0
b′

R← ASimKeyderO(non-member, stA)
Return b′

Oracle SimWindO
If i ≥ q′ then bad ← true
If i ≥ MaxWind or bad = true

then return ⊥
Else i ← i + 1
return stgi

Oracle SimKeyderO
If i ≥ MaxWind then return ⊥
i ← i + 1
Return outi−1

Figure 4-11: The adversary B in the proof of Theorem 4.4.9. Note that bad is a shared boolean
global variable.
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when B fails to correctly guess the number of wind oracle queries that A makes. Let Pr1 [ · ] and

Pr0 [ · ] respectively denote probabilities over Expfsprg-1
SBG,B and Expfsprg-0

SBG,A . We now claim that

Pr
[
Expkr-1

KR,A = 1
]

(4.7)

= Pr
[
Expfsprg-1

SBG,B = 1 | E1

]
(4.8)

= Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1

]
· 1

Pr1

[
E1

] (4.9)

= (q + 1) · Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1

]
(4.10)

= (q + 1) ·
(
Pr

[
Expfsprg-1

SBG,B = 1 ∧ E1

]
+ Pr

[
Expfsprg-1

SBG,B = 1 ∧ E1

])
(4.11)

= (q + 1) · Pr
[
Expfsprg-1

SBG,B = 1
]

.

Equation (4.8) is true because when the event E1 does not occur, i.e., when B correctly guesses the

number of wind oracle queries that A will make, then B in Expfsprg-1
SBG,B runs A exactly as A would

be run in Expkr-1
KR,A. Equation (4.9) follows from conditioning off Pr1

[
E1

]
and Equation (4.10) is

true because B chooses q′ from q+1 possible values and therefore Pr1

[
E1

]
= 1/(q+1). To justify

Equation (4.11), note that Pr
[
Expfsprg-1

SBG,B = 1 ∧ E1

]
= 0 since B always returns 0 whenever it fails

to correctly guess the number of wind oracle queries that A will make. This justifies Equation (4.5).

To justify Equation (4.6), note that

Pr
[
Expkr-0

KR,A = 1
]

= Pr
[
Expfsprg-0

SBG,B = 1 | E0

]

since when the event E0 does not occur, B in Expfsprg-0
SBG,B runs A exactly as A would be run

in Expkr-0
KR,A. The remaining justification for Equation (4.6) is analogous to our justification of

Equation (4.5) above.

The resources for B is within a small constant factor of the resources for A except that B must

execute the setup algorithm itself, which involves querying its oracle up to MaxWind times.
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Forward-secure pseudorandom bit generators from standard PRGs.

Construction 4.4.10 [Construction 2.2 of [17].] Given a PRG G : {0, 1}k → {0, 1}k+l we can

construct a FSPRG SBG = (seed, next) as described in Figure 4-9. The output space of SBG is

OutSpSBG = {0, 1}l and MaxLenSBG = ∞.

The following theorem comes from Bellare and Yee [17] except that we treat q as a parameter of

the adversary and we allow the trivial case that q = 0.

Lemma 4.4.11 [Theorem 2.3 of [17].] Let G : {0, 1}k → {0, 1}k+l be a PRG, and let SBG be

the FSPRG built using G according to Construction 4.4.10. Given an adversary A attacking SBG

that makes at most q queries to its oracle, we can construct an adversary B such that

Advfsprg
SBG,A ≤ 2q · Advprg

G,B

where B uses within a small constant factor of the resources of adversary A and computes G up to

q times.

Proof of Theorem 4.4.7. Proof: Construction 4.4.6 is exactly Construction 4.4.8 built from the

forward secure pseudorandom bit generator defined by Construction 4.4.10. The theorem state-

ment therefore follows from Lemma 4.4.9 and Lemma 4.4.11.

4.4.5 RSA-based key regression

Our final construction, KR-RSA derives from the key rotation scheme in Figure 4-2; KR-RSA

differs from KR-SHA1 and KR-AES in that MaxWind = ∞, meaning that there is no specific

limit to the number of times the content publisher can invoke the KR-RSA winding algorithm.

Given the finite number of outputs, the member states produced by winding will eventually cycle.

Fortunately, the difficulty of finding a cycle is usually as hard as factoring the RSA modulus for

most choices of RSA parameters [42]. Since factoring is considered hard, the number of times

one can safely run the KR-RSA winding algorithm is proportional to the strength of the underlying

RSA construction — practically infinite for a reasonably sized modulus (today, at least 1,024 bits).
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Alg. setupH(k)

(N, e, d)
R← Krsa(k)

S
R← Z

∗
N

stp ← 〈N, e, d, S〉
Return stp

Alg. unwindH(stm)
Parse stm as 〈N, e, S〉
S ′ ← Se mod N
stm′ ← 〈N, e, S ′〉
Return stm′

Alg. windH(stp)
Parse stp as 〈N, e, d, S〉
S ′ ← Sd mod N
stp′ ← 〈N, e, d, S ′〉
stm ← 〈N, e, S〉
Return (stp′, stm)

Alg. keyderH(stm)
Parse stm as 〈N, e, S〉
out ← H(S)
Return out

Figure 4-12: Algorithms for Construction 4.4.12. H is a random oracle, but we substitute SHA1
for H in our implementation.

Construction 4.4.12 [KR-RSA] The key regression scheme KR-RSA = (setup,wind, unwind,

keyder) is defined as follows. Given an RSA key generator Krsa for some security parameter k,

and a random oracle H: Z2k → {0, 1}l, Figure 4-12 shows how to construct a key regression

scheme KR = (setup,wind, unwind, keyder). Let m: Z2k → {0, 1}k denote the standard big-

endian encoding of the integers in Z2k to k-bit strings. There are no shared global variables in

KR-RSA. The derived key space for KR-RSA is DerKeysKR = {0, 1}l. In our experiments, we set

l = 160, k =1,024, and Krsa(k) returns e = 3 as the RSA public exponent.

Before presenting Theorem 4.4.13, we first recall the standard notion of one-wayness for RSA.

Let Krsa be an RSA key generator with security parameter k. If A is an adversary, we let

Advrsa-ow
Krsa,A = Pr

[
(N, e, d)

R← Krsa(k) ; x
R← Z

∗
N ; y ← xe mod N : A(y, e,N) = x

]

denote the RSA one-way advantage of A in inverting RSA with the key generator Krsa. Under

the concrete security approach [12], there is no formal definition of what it means for Krsa to be

“one-way.” In discussions this phrase should be taken to mean that for any A attacking Krsa with

resources (running time, size of code, number of oracle queries) limited to “practical” amounts, the

RSA one-way advantage of A is “small.” The formal result below is stated with concrete bounds.

The proof is in the random oracle model.
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Theorem 4.4.13 If Krsa is an RSA key generator with security parameter k, then KR-RSA is

KR-secure under the RSA one-wayness assumption. Concretely, given an adversary A attacking

KR-RSA, we can construct an adversary B attacking Krsa such that

Advkr
KR,A ≤ 2q2 · Advrsa-ow

Krsa,B ,

where q is the maximum number of winding and key derivation oracle queries that A makes.

Adversary B uses resources within a constant factor of A’s resources plus the time to perform q

RSA encryption operations.

The proof of Theorem 4.4.13 uses the two following Lemmas.

Lemma 4.4.14 If a key regression scheme is secure when an adversary is limited to one KeyderO

oracle query, then the key regression scheme is secure when an adversary is allowed multiple

KeyderO oracle queries. Concretely, let KR be a key regression scheme. Given an adversary A

attacking KR that makes at most q1 queries to WindO and q2 queries to KeyderO, we can construct

an adversary B attacking KR such that

Advkr
KR,A ≤ q2 · Advkr

KR,B , (4.12)

B makes at most q1 + q2 − 1 queries to WindO (or 0 queries if q1 + q2 = 0), B makes at most

one query to KeyderO, and B has other resource requirements within a small constant factor of the

resource requirements of A.

Lemma 4.4.15 If Krsa is an RSA key generator with security parameter k, then the key regression

scheme KR built from Krsa via Construction 4.4.12 is KR-secure assuming that Krsa is one-way.

Concretely, given an adversary A attacking KR that makes at most one key derivation oracle query,

we can construct an adversary B attacking Krsa such that

Advkr
KR,A ≤ (q + 1) · Advrsa-ow

Krsa,B , (4.13)

where q is the maximum number of winding oracle queries that A makes. Adversary B uses within

a small constant factor of the resources as A plus performs up to q RSA encryption operations.

Proof of Theorem 4.4.13: The proof of Theorem 4.4.13 follows from Lemma 4.4.14 and Lemma 4.4.15.

Note that for the application of Lemma 4.4.14 we set q1 = q and q2 = q, meaning the adversary B

75



from Lemma 4.4.14 may make up to 2q − 1 queries to its WindO oracle, or 2q if q = 0.

Proof of Lemma 4.4.14. Proof: We consider the case where q2 = 0 separately. If q2 = 0 then

Pr
[
Expkr-1

KR,A = 1
]

= Pr
[
Expkr-0

KR,A = 1
]

since the adversary A’s view in the experiments Expkr-1
KR,A and Expkr-0

KR,A is identical. Therefore,

when q2 = 0,

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= 0

= q2 · Advkr
KR,B

for all adversaries B.

We now restrict our analysis to the case where q2 ≥ 1. Consider the experiments ExpHKR,A,i

in Figure 4-13, i ∈ {0, . . . , q2}. When i = q2, ExpHKR,A,i uses keyder to reply to all of A’s

HKeyderO oracle queries, which means that

Pr
[
Expkr-1

KR,A = 1
]

= Pr
[
ExpHKR,A,q2

= 1
]

.

On the other hand, when i = 0, ExpHKR,A,i replies to all of A’s HKeyderO oracle queries with

random values from DerKeysKR, which means that

Pr
[
Expkr-0

KR,A = 1
]

= Pr
[
ExpHKR,A,0 = 1

]
.

From these two equations we conclude that

Advkr
KR,A = Pr

[
ExpHKR,A,q2

= 1
]
− Pr

[
ExpHKR,A,0 = 1

]
. (4.14)

Note that Advkr
KR,A could be negative. But for every adversary with a negative advantage, there is

one adversary (obtained by switching outputs) that has the corresponding positive advantage.

76



Experiment ExpHKR,A,i

Pick random oracle H
l ← 0

stp
R← setupH

st
R← AHWindO,H(member)

j ← 0

b′
R←
AHKeyderOi,H(non-member, st)

Return b′

Oracle HWindO

l ← l + 1
If l > MaxWind then

return ⊥
(stp, stm)

R← windH(stp)
Return stm

Oracle HKeyderOi

l ← l + 1
If l > MaxWind then

return ⊥
(stp, stm)

R← windH(stp)
If j < i then

K ← keyderH(stm)
Else

K
R← DerKeysKR

j ← j + 1
Return K

Figure 4-13: Hybrid experiments for the proof of Lemma 4.4.14. The algorithms share the global
variables l and j.
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Adversary BWindO,H(member)

i
R← {0, . . . , q2 − 1}

l ← 0

Run AWindO′,H(member),
replying to A’s oracle queries as follows:

For each query to WindO′ do
stm

R← WindO
l ← l + 1
If l > MaxWind then stm ← ⊥
Return stm to A

Until A halts outputting a state st′

For j = 0 to i − 1 do
stm

R← WindO
Kj ← keyderH(stm)

st ← (st′, i, l,K0, . . . ,Ki−1)
Return st

Adversary BKeyderOb,H(non-member, st)

Parse st as (st′, i, l,K0, . . . ,Ki−1)
j ← 0

Run AKeyderO′,H(non-member, st′),
replying to A’s oracle queries as follows:

For each query to KeyderO′ do
If j < i then K ← Kj

Else if j = i then K ← KeyderOb

Else K
R← DerKeysKR

j ← j + 1 ; l ← l + 1

If l > MaxWind then K
R← ⊥

Return K to A
Until A halts outputting a bit b
Return b

Figure 4-14: Adversary B for the proof of Lemma 4.4.14. We describe in the body an alternate
description with reduced resource requirements.

Consider now the adversary B in Figure 4-14. We claim that

Pr
[
Expkr-1

KR,B = 1
]

=
1

q2

·
q2−1∑
i=0

Pr
[
ExpHKR,A,i+1 = 1

]
(4.15)

and

Pr
[
Expkr-0

KR,B = 1
]

=
1

q2

·
q2−1∑
i=0

Pr
[
ExpHKR,A,i = 1

]
. (4.16)

Subtracting Equation (4.16) from Equation (4.15) and using Definition 4.3.1, we get

Advkr
KR,B = Pr

[
Expkr-1

KR,B = 1
]
− Pr

[
Expkr-0

KR,B = 1
]

=
1

q2

·
(
Pr

[
ExpHKR,A,q2

= 1
]
− Pr

[
ExpHKR,A,0 = 1

])
. (4.17)

Equation (4.12) follows from combining Equation (4.14) with Equation (4.17).

It remains to justify Equation (4.15), Equation (4.16), and the resources ofB. To justify Equation (4.15),

note that in the experiment Expkr-1
KR,B, when B picks some value for i, the view of A becomes equiv-
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alent to A’s view in ExpHKR,A,i+1; namely, A’s first i + 1 queries to its KeyderO oracle will be

computed using keyder, and the remaining KeyderO oracle queries will return random values from

DerKeysKR. More formally, if I denotes the random variable for the B’s selection for the variable

i ∈ {0, . . . , q2 − 1}, then

Pr
[
Expkr-1

KR,B = 1 | I = i
]

= Pr
[
ExpHKR,A,i+1 = 1

]

for each i ∈ {0, . . . , q2 − 1}. Letting Pr1 [ · ] denote the probability over Expkr-1
KR,B, we then derive

Equation (4.15) by conditioning off the choice of i:

Pr
[
Expkr-1

KR,B = 1
]

=

q2−1∑
i=0

Pr
[
Expkr-1

KR,B = 1 | I = i
]
· Pr1 [ I = i ]

=
1

q2

·
q2−1∑
i=0

Pr
[
Expkr-1

KR,B = 1 | I = i
]

=
1

q2
·

q2−1∑
i=0

Pr
[
ExpHKR,A,i+1 = 1

]

The justification for Equation (4.16) is similar. When B picks some value for i in Expkr-0
KR,B, the

view of A in Expkr-0
KR,B becomes equivalent to A’s view in ExpHKR,A,i since in both cases the

responses to A’s first i (not i + 1 this time) queries to its KeyderO oracle will be computed using

keyder, and the remaining KeyderO oracle queries will return random values from DerKeysKR.

We now turn to the resource requirements of B. The pseudocode for B in Figure 4-14 suggests

that B might invoke WindO and keyder up to q2 times more than A (since the last for loop of B’s

member stage runs for up to q2 interactions even though A may not make that many KeyderO

oracle queries). We describe B this way since we feel that Figure 4-14 better captures the main

idea behind our proof and what B does. Equivalently, B could split A’s non-member stage between

its (B’s) own member and non-member stages and invoke WindO and keyder only the number of

times that it needs to simulate i of A’s KeyderOi oracle queries. When viewed this way, B uses

resources equivalent, within a constant factor, to the resources of A.
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Adversary B(y, e,N)
bad ← false
α ← ⊥
j ← 0

w
R← {0, 1, 2, . . . , q}

stmw ← y
For i = w − 1 downto 1 do

stmi ← (stmi+1)
e mod N

st
R← ASimWindO,SimH(member)

If j �= w then
bad ← true
Return ⊥

b
R← ASimKeyderO,SimH(non-member, st)

Return α

Oracle SimWindO
j ← j + 1
If j ≤ w then return stmj

Else return ⊥

Oracle SimKeyderO

K
R← DerKeysKR

Return K

Oracle SimH(x)
If xe = y mod n then α ← x
If H[x] undefined then

H[x]
R← DerKeysKR

Return H[x]

Figure 4-15: The adversary B in the proof of Lemma 4.4.15.

Proof of Lemma 4.4.15. Proof: Consider the experiments Expkr-1
KR,A and Expkr-0

KR,A; let (N, e, S1),

(N, e, S2), . . . , (N, e, Sw′) denote the responses to A’s wind oracle queries when A is in the member

stage, w′ ∈ {0, 1, . . . , q}. Let E1 and E0 respectively be the events in Expkr-1
KR,A and Expkr-0

KR,A that

A queries its wind oracle with a value S such that Se ≡ Sw′ mod N . We claim that

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1 ∧ E1

]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0

]
. (4.18)

Consider now the adversary B in Figure 4-15. We additionally claim that

Pr
[
Expkr-1

KR,A = 1 ∧ E1

]
≤ (q + 1) · Pr

[
Exprsa-ow

Krsa,B = 1
]

. (4.19)

Combining these two equations and the definition of security for Krsa gives Equation (4.13).

It remains to justify Equation (4.18), Equation (4.19), and the resource requirements for B. We

first justify Equation (4.18). Let Pr1 [ · ] and Pr0 [ · ] denote the probabilities over Expkr-1
KR,A and
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Expkr-0
KR,A, respectively. From Definition 4.3.1, we have

Advkr
KR,A = Pr

[
Expkr-1

KR,A = 1
]
− Pr

[
Expkr-0

KR,A = 1
]

= Pr
[
Expkr-1

KR,A = 1 ∧ E1

]
+ Pr

[
Expkr-1

KR,A = 1 ∧ E1

]

−Pr
[
Expkr-0

KR,A = 1 ∧ E0

]
− Pr

[
Expkr-0

KR,A = 1 ∧ E0

]
. (4.20)

By conditioning,

Pr
[
Expkr-1

KR,A = 1 ∧ E1

]
= Pr

[
Expkr-1

KR,A = 1 | E1

]
· Pr1

[
E1

]

and

Pr
[
Expkr-0

KR,A = 1 ∧ E0

]
= Pr

[
Expkr-0

KR,A = 1 | E0

]
· Pr0

[
E0

]
.

Prior to E1 and E0, A’s view is identical in both experiments, meaning that

Pr1

[
E1

]
= Pr0

[
E0

]
.

Further, if the events do not occur, then the outcome of Expkr-1
KR,A and Expkr-0

KR,A will be the same

since the output of a random oracle is random if the input is unknown; i.e., the response to A’s key

derivation oracle query in the non-member stage will be random in both cases and therefore

Pr
[
Expkr-1

KR,A = 1 | E1

]
= Pr

[
Expkr-0

KR,A = 1 | E0

]
.

Consequently,

Pr
[
Expkr-1

KR,A = 1 ∧ E1

]
= Pr

[
Expkr-0

KR,A = 1 ∧ E0

]
.

Combining the above equation with Equation (4.20) gives Equation (4.18).

We now turn to Equation (4.19). Note that B runs A exactly as in Expkr-1
KR,A assuming that B

correctly guesses the number of wind oracle queries that A will make in its member stage; i.e.,

if B does not set bad to true. Here we use the fact that RSA encryption and decryption is a

permutation and therefore B is justified in unwinding a starting state from its input (y, e,N). Also

observe that if E1 in Expkr-1
KR,A occurs and if B does not set bad to true, then B will succeed in
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inverting RSA. Letting BAD denote the event that B sets bad to true, it follows that

Pr
[
Expkr-1

KR,A = 1 ∧ E1

]
≤ Pr

[
Exprsa-ow

Krsa,B = 1 | BAD
]

and, by conditioning, that

Pr
[
Expkr-1

KR,A = 1 ∧ E1

]
≤ Pr

[
Exprsa-ow

Krsa,B = 1 ∧ BAD
]
· 1

Pr2

[
BAD

]

where Pr2 [ · ] denotes the probability over Exprsa-ow
Krsa,B . Equation (4.19) follows from the above

equation and the fact that Pr2

[
BAD

]
= 1/(q + 1).

Turning to the resource requirements of B, note that the for loop in B is not present A (nor in

the algorithm setup nor the experiment Expkr-b
KR,A). This means that B may perform q more RSA

encryption operations than in the Expkr-b
KR,A experiment running A; B does not, however, invoke

any RSA decryption operations.
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Chapter 5

Implementation

Plan to throw one away.

– Frederick P. Brooks, Jr.

cd build

rm -rf sfs1

cd /disk/ex0/sfscvs

��←↩

– Kevin Fu

SFSRO and Chefs are two file systems that demonstrate the practical applications of integrity

protection and access control for content distribution using untrusted servers. We describe the

implementation of both prototypes.

5.1 SFSRO

As illustrated in Figure 5-1, the read-only file system is implemented as two daemons (sfsrocd

and sfsrosd) in the SFS system [73]. sfsrodb is a stand-alone program.
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sfsrosd

Read-Write Client
NFS 3
Client

NFS Mounter

SFS Client

User Program

[NFS 3]

Client Master
Kernel

Server Master
[SFS read-only protocol]

TCP Connection

Server Master

Read-Write ServerTCP Connection
MACed, Encrypted

[SFS read-write protocol]

SFS Server

SFS Server

[System

sfsrocd

Call]

Figure 5-1: Implementation overview of the read-only file system in the SFS framework.

sfsrocd and sfsrosd communicate with Sun RPC over a TCP connection. (The exact

message formats are described in the XDR protocol description language [112].) We also use

XDR to define cryptographic operations. Any content that the read-only file system hashes or

signs is defined as an XDR data structure; SFSRO computes the hash or signature on the raw,

marshaled bytes.

sfsrocd, sfsrosd, and sfsrodb are written in C++. To handle many connections simul-

taneously, the client and server use SFS’s asynchronous RPC library. Both programs are single-

threaded, but the RPC library allows the client to have many outstanding RPCs.

Because of SFS’s support for developing new servers and the read-only server’s simplicity,

the implementation of sfsrosd measured by Chapter 6 is trivial—only 400 lines of C++. It

gets requests for content blocks by file handle, looks up pre-formatted responses in a B-tree, and

responds to the client. The current implementation uses the synchronous version of Sleepycat

database’s B-tree [108].

The implementations of the other two programs (sfsrodb and sfsrocd) are more interest-

ing; we discuss them in more detail.

5.1.1 Database generator

The database generator is a 1,500-line, stand-alone C++ program. To publish a file system, a sys-

tem administrator runs sfsrodb to produce a signed database from a private key and a directory

in an existing file system. The database generator computes every content block, indirect block,

inode, and directory block required for the file system, and stores these structures in the database,
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indexed by hash value.

The database generator utility traverses the given file system depth-first to build the database.

The leaves of the file system tree are files or symbolic links. For each regular file in a directory,

the database generator creates a read-only inode structure and fills in the metadata. Then, it reads

the blocks of the file. For each block, sfsrodb hashes the content in that block to compute its

handle, and then inserts the block into the database under the handle (i.e., a lookup on the handle

will return the block). The hash value is also stored in an inode. When all file blocks of a file are

inserted into the database, the filled-out inode is inserted into the database under its hash value.

When all files in a given directory have been inserted into the database, the generator utility

inserts a file corresponding to the directory itself—it hashes blocks of 〈name, handle〉 pairs into an

inode data structure. After the root directory tree has been inserted into the database, the generator

utility fills out an FSINFO structure and signs it with the private key of the file system. For

simplicity, sfsrodb stores the signed FSINFO structure in the database under a well-known,

reserved key.

As motivated in Section 2.4, the database contains data structures in XDR marshaled form.

One disadvantage of this is that physical representation of the content is slightly larger than the

actual content. For instance, an 8 Kbyte file block is slightly larger than 8 Kbyte.

A benefit of storing blocks under their hash is that blocks from different files that have the

same hash will only be stored once in the database. If a file system contains blocks with identical

content among multiple files, then sfsrodb stores just one block under the hash. In the RedHat

6.2 distribution, 5,253 out of 80,508 file content blocks share their hash with another block. The

overlap is much greater if one makes the same content available in two different formats (for

instance, the contents of the RedHat 6.2 distribution, and the image of a CD-ROM containing that

distribution).

5.1.2 Client daemon

The client constitutes the bulk of the code in the read-only file system (1,500 lines of C++). The

read-only client behaves like an NFS3 [24] server, allowing it to communicate with the operating
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system through ordinary networking system calls. The read-only client resolves pathnames for file

name lookups and handles reads of files, directories, and symbolic links. It relies on the server

only for serving blocks of content, not for interpreting or verifying those blocks. The client checks

the validity of all blocks it receives against the hashes by which it requested them.

The client implements four caches with LRU replacement policies to improve performance by

avoiding RPCs to sfsrosd. It maintains an inode cache, an indirect-block cache, a small file-

block cache, and a cache for directory entries. The client also maintains a file handle translation

table, mapping NFS file handles to SFSRO handles as described by Section 2.5.2.

sfsrocd’s small file-block cache primarily optimizes the case of the same block appearing

in multiple files. In general, sfsrocd relies on the local operating system’s buffer cache to cache

the file content. Thus, any additional caching of file content will tend to waste memory unless the

content in appears multiple files. The small block cache optimizes common cases—such as a file

containing many blocks of all zeros—without dedicating too much memory to redundant caching.

Indirect blocks are cached so that sfsrocd can quickly fetch and verify multiple blocks from

a large file without refetching the indirect blocks. sfsrocd does not prefetch because most

operating systems already implement prefetching locally.

Whenever the client must return an NFS file handle to the kernel, it computes a hash of the file’s

pathname and adds a mapping from the new NFS file handle to the corresponding SFSRO handle.

For instance, SFSRO directory entries map filenames to SFSRO handles. When responding to a

directory lookup, the client must translate each SFSRO handle into an NFS file handle.

When receiving a kernel’s request containing an NFS file handle, the client first translates the

NFS file handle to an SFSRO handle. Because NFSv3 does not keep track of which files are

actively opened, the SFSRO client will not know when it can safely remove a table entry. As a

result, the table will continue to grow as more files are accessed. To keep the table to a reasonable

size in the client’s working memory, we added an NFS CLOSE RPC such that a modified kernel

can simulate the closing of a file.
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5.1.3 Example

We demonstrate how the client works by example. Consider a user reading the file /sfs/@sfs.

fs.net,uzwadtctbjb3dg596waiyru8cx5kb4an/README, where uzwadtctbjb3dg

596waiyru8cx5kb4an is the representation of the public key of the server storing the file

README. (In practice, symbolic links save users from ever having to see or type pathnames like

this.)

The local operating system’s NFS client will call into the protocol-independent SFS client

software, asking for the directory /sfs/@sfs.fs.net,uzwadtctbjb3dg596waiyru8c

x5kb4an/. The client will contact sfs.fs.net, which will respond that it implements the

read-only file system protocol. At that point, the protocol-independent SFS client daemon will

pass the connection off to the read-only client, which will subsequently be asked by the kernel to

interpret the file named README.

The client makes a getfsinfo RPC to the server to get the file system’s signed FSINFO structure.

It verifies the signature on the structure, ensures that the start field is no older than its previous

value if the client has seen this file system before, and ensures that start + duration is in the

future. Checking the start and duration fields ensures that content is fresh.

The client then obtains the root directory’s inode by doing a getdata RPC on the rootfh field

of FSINFO. Given that inode, it looks up the file README by doing a binary search among the

blocks of the directory, which it retrieves through getdata calls on the block handles in the direc-

tory’s inode (and possibly indirect blocks). When the client has the directory entry 〈README, handle〉,

it calls getdata on handle to obtain README’s inode. Finally, the client can retrieve the contents of

README by calling getdata on the block handles in its inode.

5.2 Chefs

Chefs is a confidentiality-enabled version of SFSRO. Chefs consists of three programs: a database

generator, a client, and a server. During creation of a new database, the publisher may specify

a group key for access control of the entire database. Our level of granularity is the database.
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Each file block is encrypted with a randomly generated 128-bit AES key. A lockbox in the inode

contains this random AES key, itself encrypted with the group key. To read a file, a client contacts

a content publisher (or a designated proxy) for the appropriate group key. The client decrypts the

lockbox to obtain the file key, which provides access to the plaintext.

Chefs implements the SHA1-based version of key regression. Each user of a Chefs client

daemon has an RSA key pair. To obtain new key regression member state, the client makes a

getkey RPC of the publisher’s key distribution service. The publisher then responds with the latest

key regression member state encrypted in the requesting user’s RSA public key. The client decrypts

this message, then uses key regression to compute the version of the group key that protects the

database. The SFSRO client daemon includes a single convenient location to decrypt all content.

Chefs adds code to the callback that unmarshals responses from getdata.

The demands of Chefs revealed many latent bugs in the SFSRO client daemon. In particular, a

race condition existed because several asynchronous callbacks shared a common cache of content

blocks. The encryption in Chefs affected the timings of callbacks, making the race condition

apparent. In the worst case, the race would cause the Chefs client daemon to fetch each block

twice. The race happens when one callback fetches a content block that a second callback has

started to fetch. This occurs when the NFS client in the kernel fetches content that crosses block

boundaries. Chefs and SFSRO now use a locking protocol to prevent this performance-dehancing

race condition.

5.2.1 Example

To illustrate how to use Chefs, we give an example scenario. Alice is a content publisher. Bob is

a member of the group that has access to the content. Alice runs the database generator and an

untrusted server. Bob runs a Chefs client.

Generating a group key and database. Alice uses sfsrodb to create a database and group

key. If sfsrodb does not find an existing group key, it creates a new one with the maxwind

parameter set by Alice. The database is encrypted block by block.
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Reading a file. Bob wishes to read a file from Alice’s database. Bob attempts to mount the re-

mote file system. This causes Bob’s client daemon to automatically call getkey to the Alice’s server.

Alice’s key management server responds with the latest key regression member state, encrypted in

Bob’s well-known RSA public key. Once Bob’s client daemon has decrypted the key regression

member state, the client daemon can unwind and derive group keys suitable to decrypt a lockbox.

A decrypted lockbox produces a content key that finally decrypts the sought-after content. This

entire process is transparent to the users.

Evicting a group member. Alice evicts Bob from the group by disallowing him access to new

keys. Alice winds the key regression publisher state forward and makes new member state available

to remaining members via getkey.

Updating a database. Alice modifies a file after evicting Bob. This event requires that Alice

re-run the database generator to update and re-encrypt changes in the database. Bob will continue

to have access to unchanged content, but will not have access to newly encrypted content.
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Chapter 6

Performance

Bread, like so many of life’s formulas, relies on the 80/20 principle,

in this instance, 80 percent technique and 20 percent equipment.

– Peter Reinhart

This chapter presents microbenchmarks and application-level benchmarks to demonstrate that

(1) SFSRO keeps the overhead of cryptography low on clients, allowing servers to scale to a large

number of clients, and that (2) key regression in Chefs can significantly reduce the bandwidth

requirements of a publisher distributing keys to clients.

A performance evaluation of SFSRO on a 550 MHz Pentium III with 256 Mbyte of memory

running FreeBSD shows that the server can support 1,012 short-lived connections per second,

which is 26 times better than a standard read-write SFS file server and 92 times better than a

secure Web server. The performance of the read-only server is limited mostly by the number of

TCP connections per second, not by the overhead of cryptography, which is offloaded to clients.

For applications such as sustained downloads that require longer-lived connections, the server can

support 300 concurrent sessions while still saturating a fast Ethernet.

The measurements of an encrypted search workload show that key regression can significantly

reduce the bandwidth requirements of a publisher distributing keys to clients. On a simulated

cable modem, a publisher using key regression can distribute 1,000 keys to 181 clients per second

whereas without key regression the cable modem limits the publisher to 20 clients per second.

91



The significant gain in throughput conservation comes at no cost to client latency, even though

key regression requires more client-side computation. The measurements show that key regression

actually reduces client latency in cases of highly dynamic group membership. Even though hash

functions normally have higher throughput than block ciphers, the efficient KR-AES construction

performs more than four times faster than KR-SHA1.

6.1 Measurements of SFS read-only

This section presents the results of measurements to support the claims that (1) SFS read-only

provides acceptable application performance for individual clients and (2) SFS read-only scales

well with the number of clients.

To support the first claim, this thesis presents microbenchmarks and performance measure-

ments of a large software compilation. The performance of SFS read-only is compared with the

performance of the local file system, insecure NFS, and the secure SFS read-write file system

(SFSRW).

To support the second claim, the maximum number of connections per server and the through-

put of software downloads with an increasing number of clients are measured.

The main factors expected to affect SFS read-only performance are the user-level implementa-

tion of the client, hash verification in the client, and database lookups on the server.

6.1.1 Experimental setup and methodology

The historical results in this section were measured several years before the results in Section 6.2.

Although the experimental environment is no longer modern, the conclusions are still justified by

the measurements.

Measurements were conducted on 550 MHz Pentium IIIs running FreeBSD 3.3. The client and

server were connected by 100 Mbit, full-duplex, switched Ethernet. Each machine had a 100 Mbit

Tulip Ethernet card, 256 Mbyte of memory, and an IBM 18ES 9 Gigabyte SCSI disk. The client

maintains inode, indirect-block, and directory entry caches that each have a maximum of 512
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Operation Cost (μsec)
Sign 68 byte fsinfo 24,400
Verify 68 byte fsinfo 82
SHA1 256 byte iv+inode 17
SHA1 8,208 byte iv+block 406

Table 6.1: Performance of base primitives on a 550 MHz Pentium III. Signing and verification use
1,024-bit Rabin-Williams keys.

entries, while the file-block cache has maximum of 64 entries. It suffices for the client to use small

caches because the in-kernel NFS client already caches file and directory content. Maximum TCP

throughput between client and server, as measured by ttcp [116], was 11.31 Mbyte/sec.

Because the certificate authority benchmark in Section 6.1.4 requires many CPU cycles on the

client, two 700 MHz Athlons running OpenBSD 2.7 were added as clients to produce a workload

saturating the server. Each Athlon had a 100 Mbit Tulip Ethernet card and 128 Mbyte of memory.

Maximum TCP throughput between an Athlon and the FreeBSD server, as measured by ttcp,

was 11.04 Mbyte/sec. The Athlon machines generated the client SSL and SFSRW requests; this

thesis reports the sum of the performance measured on the two machines.

For some workloads, traces of the RPC traffic between a client and a server were collected. A

simple client program replays these traces to evaluate the performance of the server itself and to

determine how many clients a single server can support.

For all experiments this thesis reports the average of five runs. To demonstrate the consistency

of measurements, this thesis reports the percentage at which the minimum and maximum samples

are within the average.

6.1.2 Microbenchmarks

Small and large file microbenchmarks help to evaluate the performance of the SFS read-only sys-

tem. Table 6.1 lists the cost of cryptographic primitives used in the read-only file system. The

implementation is secure against chosen-message attacks, using the redundancy function proposed

by Bellare and Rogaway [16]. Table 6.1 shows that computing digital signatures is somewhat

expensive, but verifying takes only 82 μsec—far cheaper than a typical network round-trip time.
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Figure 6-1: Time to sequentially read 1,000 files each 1 Kbyte. Local is FreeBSD’s local FFS file
system on the server. The local file system was tested with a cold cache. The network tests were
applied to warm server caches, but cold client caches. RW, RO, and RONV denote respectively the
read-write protocol, the read-only protocol, and the read-only protocol with integrity verification
disabled.

Small file benchmark. The read phases of the LFS benchmarks [99] provide a basic under-

standing of single-client, single-server performance. Figure 6-1 shows the latency of sequentially

reading 1,000 files each 1 Kbyte on the different file systems. The files contain random content and

are distributed evenly across ten directories. For the read-only and NFS experiments, all samples

were within 0.4% of the average. For the read-write experiment, all samples were within 2.7% of

the average. For the local file system, all samples were within 6.9% of the average.

Breakdown Cost (sec) Percent
NFS loopback 0.661 26%
Computation in client 1.386 54%
Communication with server 0.507 20%
Total 2.55 100%

Table 6.2: Breakdown of SFS read-only performance as reported in Figure 6-1. The actual mea-
sured latency is 2.43 sec, whereas the estimated total is 2.55 sec. This overestimate is attributed
to a small amount of double counting of cycles between the NFS lookback measurement and the
computation in the client.
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As expected, the SFS read-only server performs better than the SFS read-write server (2.43 vs.

3.27 seconds). The read-only file server performs worse than NFSv3 over TCP (2.43 vs. 1.14 sec-

onds). Table 6.2 and the following paragraphs analyze in more detail the 2.43 seconds spent in the

read-only client.

To determine the cost of the user-level implementation, the time spent in the NFS loopback

is measured. The fchown operation used against a file in a read-only file system effectively

measures the time spent in the user-level NFS loopback file system. This operation generates NFS

RPCs from the kernel to the read-only client, but no traffic between the client and the server. The

average over 1,000 fchown operations is 167 μsec. By contrast, the average for attempting an

fchown of a local file with permission denied is 2.4 μsec. The small file benchmark generates

4,015 NFS loopback RPCs. Hence, the overhead of the client’s user-level implementation is at

least (167 μsec - 2.4 μsec) ∗ 4,015 = 0.661 seconds.

The CPU time spent during the small file benchmark in the read-only client is 1.386 seconds.

With integrity verification disabled, this drops to 1.300 seconds, indicating that for this workload,

file handle verification consumes little CPU time.

To measure the time spent communicating with the read-only server, a trace of the 2,101 get-

data RPCs of the benchmark were played back to the read-only server. This took 0.507 seconds.

These three measurements total to 2.55 seconds. With an error margin of 5%, this accounts

for the 2.43 seconds to run the benchmark. This error is attributed to a small amount of double

counting of cycles between the NFS loopback measurement and the computation in the client.

In summary, the cryptography accounts for little of the time in the SFS read-only file system.

The CPU time spent on verification is only 0.086 seconds. Moreover, end-to-end measurements

show that content verification has little impact on performance. RONV performs slightly better

than RO (2.31 vs. 2.43 seconds). Any optimization will have to focus on the non-cryptographic

portions of the system.

Large file benchmark Figure 6-2 shows the performance of sequentially and randomly reading

a 40 Mbyte file containing random content. Blocks are read in 8-Kbyte chunks. In the network

experiments, the file is in the server’s cache, but not in the client’s cache. Thus, the experiment
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Figure 6-2: Throughput of sequential and random reads of a 40 Mbyte file. The experimental
conditions are the same as in Figure 6-1 where the server has a warm cache and the client has a
cold cache.

does not measure the server’s disk. This experiment isolates the software overhead of cryptography

from SFS’s user-level design.

For the local file system, all samples were within 1.4% of the average. For NFSv3 over UDP

and the read-write experiments, all samples were within 1% of the average. For NFSv3 over TCP

and the read-only experiments, all samples were within 4.3% of the average. This variability and

the poor NFSv3 over TCP random read performance appears to be due to a pathology of FreeBSD.

The SFS read-only server performs better than the read-write server because the read-only

server performs no online cryptographic operations. On the sequential workload, verification costs

1.4 Mbyte/s in throughput. NFSv3 over TCP performs substantially better for sequential reads

(9.8 vs. 6.5 Mbyte/s) than the read-only file system without verification, even though both run over

TCP and do similar amounts of work; the main difference is that NFS is implemented in the kernel.

In SFSRO, the random read has a slight 0.1 Mbyte/s advantage over the sequential read. The

random read is faster than the sequential read because of interactions between caches and cryptog-

raphy. The random read test consists of reading 5,120 8 Kbyte blocks at random locations from

the 40 Mbyte file. Thus, it is expected to re-read some blocks and to not read other blocks at all.
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Figure 6-3: Compiling the Emacs 20.6 source. Local is FreeBSD’s local FFS file system on the
server. The local file system was tested with a cold cache. The network tests were applied to warm
server caches, but cold client caches. RW, RO, RONV, and RONC denote respectively the read-
write protocol, the read-only protocol, the read-only protocol with integrity verification disabled,
and the read-only protocol with caching disabled.

Because no cryptography re-verification is necessary on an already cached block, it makes sense

that random reads in SFSRO would slightly outperform sequential reads.

If the large file contains only blocks of zeros, SFS read-only obtains a throughput of 17 Mbyte/s

since all blocks hash to the same handle. In this case, the measurement is dominated by the

throughput of loopback NFSv3 over UDP within the client machine.

6.1.3 Software distribution

To evaluate how well the read-only file system performs on a larger application benchmark, Emacs

20.6 was compiled (with optimization and debugging disabled) with a local build directory and a

remote source directory. The results are shown in Figure 6-3. The RO experiment performs 1%

worse (1 second) than NFSv3 over UDP and 4% better (3 seconds) than NFSv3 over TCP. Dis-
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Figure 6-4: The aggregate throughput delivered by the read-only server for an increasing number
of clients simultaneously compiling the Emacs 20.6 source. The number of clients is plotted on a
log scale.

abling integrity checks in the read-only file system (RONV) does not speed up the compile because

the caches absorb the cost of hash verification. However, disabling caching does decrease perfor-

mance (RONC). During a single Emacs compilation, the read-only server consumes less than 1%

of its CPU while the read-only client consumes less than 2% of its CPU. This benchmark demon-

strates that the read-only protocol introduces negligible performance degradation in an application

benchmark.

To evaluate how well the server scales, a trace of a single client compiling the Emacs 20.6

source tree was repeatedly played back to the server from an increasing number of simulated,

concurrent clients. Figure 6-4 plots the aggregate throughput delivered by the server. Each sample

represents the throughput of playing traces for 100 seconds. Each trace consists of 1,428 getdata

RPCs. With 300 simultaneous clients, the server consumes 96% of the CPU.

With more than 300 clients, FreeBSD reboots because of a bug in its TCP implementation. In

an experiment replacing FreeBSD with OpenBSD, the server maintains a rate of 10 Mbyte/s of file

system content for up to 600 simultaneous clients.
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6.1.4 Certificate authority

To evaluate whether the read-only file system performs well enough to function as an online cer-

tificate authority, the number of connections a single read-only file server can sustain is compared

with the number of connections to the SFS read-write server, the number of SSL connections to an

Apache Web server, and the number of HTTP connections to an Apache server.

The SFS servers use 1,024-bit keys. The SFS read-write server performs one Rabin-Williams

decryption per connection while the SFS read-only server performs no online cryptographic oper-

ations. The Web server was Apache 1.3.12 with OpenSSL 0.9.5a and ModSSL 2.6.3-1.3.12. The

SSL ServerID certificate and Verisign certificate use 1,024-bit RSA keys. All the SSL connections

use the TLSv1 cipher suite consisting of Ephemeral Diffie-Hellman key exchange, DES-CBC3 for

confidentiality, and SHA1 HMAC for integrity.

To generate enough load to saturate the servers, a simple client program sets up connections,

reads a small file containing a self-certifying path, and terminates the connection as fast as it can.

This client program runs simultaneously on the two OpenBSD machines. In all experiments, the

certificate is in the main memory of the server, limiting the experiment by software performance,

not by disk performance. This scenario is realistic since this thesis envisions that important online

certificate authorities would have large enough memories to avoid frequent disk accesses.

The SFS read-only protocol performs client-side name resolution, unlike the Web server which

performs server-side name resolution. Both single-component and multi-component lookups are

measured. (For instance, http://host/a.html causes a single-component lookup while

http://host/a/b/c/d.html causes a multi-component lookup.) The read-only client makes

a linear number of getdata RPCs with respect to the number of components in a lookup. On the

other hand, the HTTP client makes only one HTTP request regardless of the number of components

in the URL path.

The HTTP and SSL single- and multi-component tests consist of a GET /symlink.txt

and GET /one/two/three/symlink.txt respectively, where symlink.txt contains the

string /sfs/new-york.lcs.mit.edu:bzcc5hder7cuc86kf6qswyx6yuemnw69/.

The SFS read-only and read-write tests consist of comparable operations. A trace is played back

99



HTTP SSL SFSRO SFSRW
0

500

1000

1500

C
er

ti
fi

ca
te

s/
s

single
multi

1493

11

1012

 38

1448

11

526

 38

Figure 6-5: Maximum sustained certificate downloads per second. HTTP is an insecure Web
server, SSL is a secure Web server, SFSRW is the secure SFS read-write file system, and SFSRO
is the secure read-only file system. Light bars represent single-component lookups while dark bars
represent multi-component lookups.

of reading a symlink that points to the above self-certifying path. The single-component trace of

the read-only file system consists of 5 getdata RPCs to read a symlink in the top-level directory.

The multi-component trace consists of 11 getdata RPCs to read a symlink in a directory three

levels deep. The single-component SFSRW trace consists of 6 RPCs while the multi-component

trace consists of 12 RPCs. Measuring the performance of an actual client would not measure the

server throughput; the client overhead would distort the measurement of the server. Thus, the trace

is necessary to measure the aggregate throughput of many simulated clients accessing a single

server.

The benchmark uses a trace rather than an actual client in order to isolate the measurement of

server performance.

Figure 6-5 shows that the read-only server scales well. For single-component lookups, the SFS

read-only server can process 26 times more certificate downloads than the SFS read-write server

because the read-only server performs no online cryptographic operations. The read-write server

is bottlenecked by public key decryptions, which each take 24 msec. Hence, the read-write server
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can at best achieve 38 (= 1,000/24) connections per second.

By comparing the read-only server with an insecure Apache server, this thesis concludes that

the read-only server is a good platform for serving read-only content to many clients; the number

of connections per second is only 32% lower than that of the insecure Apache server. In fact, the

performance of SFS read-only is within an order of magnitude of the performance of a DNS root

server, which according to Network Solutions can sustain about 4,000 lookups per second (DNS

uses UDP instead of TCP). Since the DNS root servers can support online name resolution for

the Internet, this comparison suggests that it is reasonable to build a distributed online certificate

authority using SFS read-only servers.

A multi-component lookup is faster with HTTP than with the SFS read-only file system. The

SFS read-only client must make two getdata RPCs per component. Hence, there is a slowdown for

deep directories. In practice, the impact on performance will depend on whether clients do multi-

component lookups once, and then never look at the same directory again, or rather, amortize the

cost of walking the file system over multiple lookups. In any situation in which a single read-only

client does multiple lookups in the same directory, the client should have performance similar to

the single-component case because it will cache the components along the path.

In the case of the certificate authority benchmark, it is realistic to expect all files to reside in

the root directory. Thus, this usage scenario minimizes people’s true multi-component needs. On

the other hand, if the root directory is huge, then SFS read-only will require a logarithmic number

of round-trips for a lookup. However, SFS read-only will still outperform HTTP on a typical file

system because Unix normally performs directory lookups in time linear in the number of directory

entries; SFS read-only performs a lookup in logarithmic time in the number of directory entries.

6.2 Measurements of Chefs

Performance measurements validate that (1) key regression allows a publisher to serve many keys

per second to clients effectively independent of the publisher’s network throughput and the rate

of membership turnover, and (2) key regression does not degrade client latency. To test these hy-

potheses, this thesis compares the performance of Chefs to Sous-Chefs, a version of Chefs without
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key regression.

Microbenchmarks of Chefs in a static environment ensure confidence that the basic file system

performs in a reasonable manner. The microbenchmarks help to explain the consumption of time

Chefs. Application-level measurements show that a publisher can serve many keys per second to

clients when using key regression — even on a low-bandwidth connection.

6.2.1 Experimental setup and methodology

The results in this section were measured several years after the results in Section 6.1. Over

time the test equipment and software evolved significantly. Thus, the reader should not to draw

comparisons between measurements in this section with measurements from Section 6.1. This

thesis therefore provides benchmarks of SFSRO on the new equipment to make a fair comparison

to Chefs.

Three machines were used to benchmark Chefs:

1. a client accessing the file system and performing key regression;

2. a server to distribute encrypted content; and

3. a publisher to serve keys to clients.

The client and server contained the same hardware: a 2.8 GHz Intel Pentium 4 with 512 MB

RAM. Each machine used a 100 Mbit/sec full-duplex Intel PRO/1000 Ethernet card and a Maxtor

250 GB, Serial ATA 7200 RPM hard drive with an 8 MB buffer size, 150 MB/sec transfer rate,

and less than 9.0 msec average seek time. The publisher was a 3.06 GHz Intel Xeon with 2 GB

RAM, a Broadcom BCM5704C Dual Gigabit Ethernet card, and a Hitachi 320 GB SCSI-3 hard

drive with a 320 MB/sec transfer rate.

The machines were connected on a 100 Mbit/sec local area network and all used FreeBSD 4.9.

NetPipe [109] measured the round-trip latency between the pairs of machines at 249 μsec, and the

maximum sustained TCP throughput of the connection at 88 Mbit/sec when writing data in 4 MB

chunks and using TCP send and receive buffers of size 69,632 KB. When writing in 8 KB chunks

(the block size in Chefs), the peak TCP throughput was 66 Mbit/sec.
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Small file Large file Emacs compilation
SFSRO 1.38 sec 8.21 Mbyte/sec 50.78 sec
Chefs 1.52 sec 5.13 Mbyte/sec 51.43 sec

Table 6.3: Small-file, large-file, and emacs-compilation microbenchmarks of Chefs versus SFSRO.
In all tests the server has a warm cache, and the client has a cold cache.

The dummynet [96] driver in FreeBSD was used to simulate cable modem and analog modem

network conditions. For the cable modem on the publisher machine, the round-trip delay was set

to 20 msec and the download and upload bandwidth to 4 Mbit/sec and 384 Kbit/sec respectively.

For the analog modem, the round-trip delay was set to 200 msec and the upload and download

bandwidth each to 56 Kbit/sec.

In the Chefs measurements, the inode cache has 16,384 entries, a directory block cache has

512 entries, an indirect block cache has 512 entries, and a file block cache has 64 entries. A large

file block cache is unnecessary because the NFS loopback server performs most of the file data

caching.

For each measurement, the median result of five samples are reported. Error bars indicate

minimum and maximum samples.

6.2.2 Microbenchmarks

Table 6.3 presents the same small-file, large-file, and emacs-compilation benchmarks described

in Section 6.1 on the new experimental environment. SFSRO is compared to Chefs to evaluate

the cost of adding confidentiality. Measurements of key regression algorithms show the relative

performance of KR-SHA1, KR-AES, and KR-RSA.

The SFSRO and Chefs small-file benchmarks each generate 2,022 RPCs to fetch and decrypt

content from a server (1,000 files, 10 directories, and one root directory — each generating two

RPCs: one for the inode, one for the content). The measurements below show that there is a

performance cost to adding confidentiality in Chefs for I/O-intensive workloads, but that the cost

is not noticeable in application-level benchmarks.

The SFSRO and Chefs small file benchmarks finish in 1.38 seconds and 1.52 seconds respec-
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Key regression protocol Winds/sec Unwinds/sec
KR-SHA1 Not applicable 687,720
KR-AES Not applicable 3,303,900
KR-RSA 158 35,236

Table 6.4: Microbenchmarks of KR-SHA1,KR-AES,KR-RSA key regression.

tively. The small overhead in Chefs comes as a result of decrypting content with 128-bit AES

in CBC mode, downloading a 20-byte key regression member state from the publisher, and de-

crypting the member state with 1,024-bit RSA. In this local area network, the network latency

accounts for nearly 30% of the overall latency; 2,022 RPCs with a 249 μsec round-trip time yields

503 msec. Content distribution networks are more commonly found in wide-area networks, where

longer round-trip times would absorb the cost of the cryptography in Chefs.

The large-file benchmark generates 5,124 RPCs to fetch 40 Mbytes of content from the server

(two RPCs for the root directory, two for the file, and 5,120 for the file content). The cost of

cryptography in Chefs comes at a cost of 3.08 MByte/sec in throughput. The Chefs client takes

approximately 32% of the client CPU, whereas the SFSRO client takes only 14% of the CPU.

The software distribution benchmark consists of an Emacs version 21.3 compilation as de-

scribed by Section 6.1.3. The source code is stored in the file system, while the resulting binaries

are written to a local disk. The experiment mounts the remote file system, runs configure, then

compiles with make. This CPU-intensive workload requires access to approximately 300 files.

The cost of cryptography is no longer noticeable. The Chefs client program consumes less than

1% of the CPU while the compiler takes nearly 90% of the CPU.

Table 6.4 displays the performance of basic key regression operations. The internal block size

of the hash function matters significantly for the throughput of KR-SHA1 key regression. Because

SHA1 uses an internal 512-bit block size, hashing values smaller than 512 bits results in poorer

throughput than one would expect from SHA1 hashing longer inputs. Contrary to conventional

wisdom, KR-AES can perform more than four times as many unwinds/sec than KR-SHA1.
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6.2.3 Secure content distribution on untrusted storage

The large-file, small-file, and emacs compilation microbenchmarks evaluate Chefs in a static en-

vironment. Because files and membership do not change, the cost of unwinding in key regression

does not appear. A standard benchmark is not available for measuring the effects of group mem-

bership dynamics. Therefore, this thesis evaluates Chefs based on how a client might search for

content in a subscription-based newspaper.

Searching encrypted content. The benchmarks were inspired by the membership dynamics re-

ported at Salon.com, a subscription-based online journal1. Salon announced that in the year 2003,

they added 31,000 paid subscribers (for a total of 73,000) and maintained a 71% renewal rate.

Thus, a 29% eviction rate would generate an expected 21,170 evictions in one year. This suggests

that the total number of membership events would reach 52,170.

To represent a workload of searching newspaper content, the experiment tests a file system

containing 10,000 8 KB encrypted files and the associated content keys. The experiment consists

of mounting the file system and reading all the files. This causes the client machine to fetch all the

content keys.

While there is promising research in how to search encrypted content [111], the untrusted server

cannot perform the search because a client could not believe in the response. For instance, an

untrusted server could respond, “No results found.” Moreover, the server is not able to selectively

return ciphertexts that would match the search. The server would still have to prove to the client

that no other matching ciphertexts exist. Because Chefs extends the SFS read-only file system, it

inherits the property that the client can verify when it has received all intended content (i.e., the

whole truth) from the server. Therefore, the Chefs client downloads all the encrypted content and

keys to perform the search itself.

Sous-Chefs. To determine the cost of key regression, Chefs is compared to a version of Chefs

with key regression disabled. This strawman file system is called Sous-Chefs2. Chefs and Sous-

1http://www.salon.com/press/release/
2Pronounced “sioux chefs,” a sous-chef is an assistant to the chef.
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Figure 6-6: Aggregate publisher throughput for key distribution plotted on a log-log graph. A
client-session consists of fetching key material sufficient to generate all the keys to decrypt the
published content. Key regression enables a publisher to support many client-sessions per second.
Chefs always performs better than Sous-Chefs because key regression performance is effectively
independent of the rate of membership turnover.

Chefs differ only in how they fetch group keys from the publisher. When using KR-SHA1 for key

regression, Chefs fetches a 20-byte member state, encrypted in the client’s public 1,024-bit RSA

key with low exponent e = 3. Chefs then uses key regression to unwind and derive all past versions

of the group key. Sous-Chefs fetches all the derived group keys at once (each 16 bytes). The group

keys themselves are encrypted with 128-bit AES in CBC mode. The AES key is encrypted with

the client’s RSA public key. A Sous-Chefs client is allowed to request a single bulk transfer of

every version of a group key to fairly amortize the cost of the transfer.

Reduced throughput requirements. The log-log graph in Figure 6-6 shows that a publisher can

serve many more clients in Chefs than Sous-Chefs in low-bandwidth, high-latency conditions. The

CPU utilization for Chefs under no bandwidth limitation is negligible, indicating that the cost of

RSA encryptions on the publisher is not the bottleneck.

The benchmark measured in Figure 6-6 effectively simulates the effect of 20 clients applying

the same key distribution workload to the server. After all traces have completed, the effective
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Figure 6-7: A log-log chart of single client latency to read 10,000 8 KB encrypted files and the as-
sociated content keys. Key regression maintains a constant client latency regardless of the number
of keys. Under low-bandwidth, high-latency conditions, Sous-Chefs latency is dominated my the
transfer time of keys after reaching 10,000 keys. Key regression enables much better latency in
Chefs.

number of trace playbacks per second is recorded. Each test runs for 1–2 seconds, asynchronously

playing back 20 traces of a single client fetching the keys for the search workload.

A Chefs trace consists of a TCP connection setup, followed by a getkey RPC. Chefs always

generates a single getkey remote procedure call, regardless of the number of key versions.

A Sous-Chefs trace consists of a TCP connection setup, followed by a read of an encrypted

file containing a set of keys. The file read is further composed of an sfsconnect RPC, a getfsinfo

RPC, a getkey RPC, and a number of getdata RPCs sufficient to download the file of keys. The

Sous-Chefs traces of fetching 1, 10, 102, 103, 104, 105, and 106 keys generate 4, 4, 4, 5, 24, 200,

and 1,966 asynchronous RPCs respectively.

Over fast network connections, the cost of transferring the 10,000 8 KB files dominates the

client latency. A new trend appears after 100 transferred keys in the measurements of Sous-Chefs

in Figure 6-6. The network bandwidth and latency of the publisher begin to dominate the client
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latency. For instance, Sous-Chefs running on the simulated cable modem with 100 keys results

in a publisher having 13 client-sessions/sec. This measurement meets the expectations. With

a 384 Kbit/sec upload bandwidth, 20 ms round-trip delay, and the transfer of 100 keys each of

size 16 bytes using 4 RPCs, one would expect a single client to take at least 50 msec simply to

download the keys. This translates to at most 20 client-sessions/sec under perfectly asynchronous

RPC conditions—confirming the measurements as reasonable.

Improved client latency. The client latency experiment measures the time for a single client to

execute the search workload. The untrusted server and publisher have warm caches while the client

has a cold cache.

The log-log chart in Figure 6-7 shows that Chefs outperforms Sous-Chefs for the search work-

load under several network conditions. In Sous-Chefs, the network transfer time dominates client

latency because of the sheer volume of keys transferred from the publisher to the client. There is

no measurement for Sous-Chefs downloading 1,000,000 keys because the kernel assumes that the

mount failed after waiting 1,000 seconds. On a 56 Kbit/sec network, Sous-Chefs is expected to

take over 2,232 seconds to download 1,000,000 keys each 16 bytes. Key regression itself is a small

component of the Chefs benchmark. With 106 keys, key regression on the client takes less than

1.5 sec with CPU utilization never exceeding of 42%.
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Chapter 7

Related work

What does that have to do with operating systems?

– Andrew Tanenbaum, during Q/A at the ACM Symposium on

Operating Systems Principles (SOSP), St. Malo, France, 1997

SFSRO and Chefs extend research in both computer systems and cryptography. Section 7.1 be-

gins with a discussion of related work in secure file systems. SFSRO and Chefs support sharing of

single-writer, many-reader content. This style of sharing lends itself conveniently to the application

of content distribution. Section 7.2 examines the properties of already deployed content distribu-

tion systems, and draws comparisons with SFSRO and Chefs. Finally, Section 7.3 explains the

cryptographic fundamentals that SFSRO and key regression rely upon, and other secure systems

that use these fundamentals in a similar manner.

7.1 Secure file systems

Several file systems provide secure sharing, using various notions of untrusted storage. The follow-

ing sections discuss file systems that use encrypted storage to protect local storage or networked

storage.
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7.1.1 Local cryptographic storage

Cryptographic storage can provide confidentiality for personal storage. For instance, a user may

encrypt an entire file system so that an intruder who gains access to the hard drive cannot read

any content. This section reviews file systems that provide confidentiality of local storage by

encrypting.

Cryptographic File System (CFS). Blaze’s CFS implements cryptography inside a file sys-

tem [19]. As a user-level process, CFS encrypts content at the file system level, rather than at

the level of individual files. A user sets a password to protect each directory’s content. A user

would worry less if a hard drive is compromised, because an adversary without the password is

unable to make sense of the encrypted hard drive. CFS provides protection of personal storage in a

single-writer, single-reader model, but does not address the problem of how to securely share files

over a network. Chefs combines cryptographic storage with key regression and lazy revocation to

provide efficient sharing of single-writer, many-reader content.

Transparent cryptographic file system (TCFS). TCFS extends CFS for transparent group shar-

ing within cryptographic storage [28]. If a threshold number of users are logged into a given ma-

chine, then those users can access encrypted files. Chefs adopts the traditional notion of group shar-

ing where a group member can access any file designated to the group—independent of whether

other group members are logged in.

NCryptfs. NCryptfs [124] provides confidentiality by layering an encrypted file system on top

of any existing file system. The in-kernel implementation of NCryptfs allows for better client

performance than user mode file systems such as SFSRO and Chefs.

Users of NCryptfs inherit the sharing semantics of the underlying file system. Layered above a

local file system, NCryptfs lets local users share files encrypted on disk. Layered above the client

side of a network file system, NCryptfs lets users share files across the network. Key management

is not part of the NCryptfs design.

110



7.1.2 Networked cryptographic storage

SFSRO and Chefs are network file systems that provide security for single-writer, many-reader

content. Several other network file systems provide various notions of security for many-reader

and either single-writer or many-writer content. To support single-writer, many-reader content,

SFSRO and Chefs use separate mechanisms for reading and writing. Clients read content from a

replicated file system, but publishers write content by using a command-line database generator.

General purpose file systems for trusted storage. Some file systems provide high security (e.g.,

the SFS read-write file system [73] or Echo [18]), but compared to the SFS read-only file system

these servers do not scale well with the number of clients because their servers perform expensive

cryptographic operations in the critical path. For instance, the SFS read-write server performs one

private-key operation per client connection, which takes about 24 msec on a 550 MHz Pentium III.

Secure Untrusted Data Repository (SUNDR). SUNDR [68, 72, 74] enables integrity protec-

tion of shared read-write content even when malicious parties control the network storage. SUNDR

and Chefs have several architectural similarities because the initial implementation of Chefs1 was

built on SUNDR instead of SFSRO. The Chefs implementation switched to using SFSRO because

single-writer content is sufficient to demonstrate the benefits of key regression. Both systems im-

plement a client daemon and block store (called an untrusted server in Chefs). The block store

provides an extremely simple, disk-like interface for the client to store and fetch data blocks. The

client presents a file system interface for users to store and retrieve files.

SUNDR does not provide confidentiality or read-access control. SUNDR’s objectives are to

protect the integrity and freshness of content. In particular, SUNDR provides the notion of fork

consistency, whereby clients can detect any integrity or consistency failures as long as they see

each other’s file modifications. SUNDR includes a consistency server that maintains versioning

information to detect forking attacks and damage to integrity. SFSRO and Chefs do not consider

fork consistency because they are single-writer file systems.

1At the time called SUNDRIED.
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Plutus. Plutus also introduced the notion of key rotation, the precursor to key regression. The

key regression protocols in Chapter 4 evolved from the protocol originally proposed by Plutus.

While the design of Plutus explains key rotation, the Plutus implementation itself did not use key

rotation. Chefs provides an implementation of cryptographic storage that uses key regression.

Like Chefs, Plutus uses lazy revocation [43] to reduce the cost of file re-encryption following a

member eviction. We chose SFSRO instead of Plutus to implement key regression because SFSRO

offered a code base free of intellectual property restrictions.

Decentralized access control. Several systems already use encryption to provide access control.

For instance, one could consider PGP-encrypted email as form of decentralized access control.

Only those in possession of the decryption key can determine the plaintext message. The en-

crypted message travels through untrusted mail servers, similar to the untrusted servers in SFSRO.

The same technique works for sending secure messages over radio and USENET newsgroups.

However, these are all examples of secure communication over untrusted networks. This thesis

focuses on secure storage on untrusted servers.

The Swallow [90] read-write object store suggests the use of encryption to provide what this

thesis calls decentralized access control. Svobodova and Reed envisioned an access control system

based on encrypting files. Only parties with the proper decryption key could access the objects.

Swallow uses encryption to both protect against unauthorized modification and unauthorized ac-

cess to data. In our file systems, we have split these goals into SFSRO and Chefs respectively.

Unfortunately, Swallow was never completed because of funding constraints.

Gifford [46] calls the model of decentralized access control by encryption “passive protection”

and discusses the problem of revoking access to encrypted content — the same problem that moti-

vated lazy revocation and thus key regression. Miklau and Suciu [79] propose a similar mechanism

to protect access to XML documents using encryption.

Harrington and Jensen revive the goals of Swallow and explain how Cryptographic NFS (CNFS)

uses “cryptographic access control” to protect access to shared read-write content [54]. Like the

SFSRO server, a CNFS server provides an immutable block store. Rather than use reference mon-

itors to mediate access, CNFS encrypts content for confidentiality. In Chefs, we call this type of
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mediation decentralized access control.

Block-level security. SFS read-only utilizes a block store and protects content both at the block

level and as a file system unit. Several other file systems add security at the block-level. Oprea

et al. [85] present methods to add block-level integrity without changing the block size. Aguilera

et al. [4] propose a scheme for adding security to network-attached disks without changing disk

layout. SFS read-only changes the disk layout, but uses an NFS loopback server to localize the

changes.

Versioning file systems. The ext3cow file system extends the Linux ext3 file system to support

individual file versioning [87]. A modification to ext3cow stores all content encrypted on disk to

support access control and secure deletion [88]. The ext3cow file system efficiently deletes the

entire plaintext of a file by removing only a small “stub” of the ciphertext2. Without the ciphertext

stub, an adversary given the remaining ciphertext is unable to retrieve the plaintext. The stub

approach is closely related to authenticated encryption [15] and all-or-nothing transforms [22]

where decryption cannot begin until after receiving all ciphertext.

A stub-enabled version of Chefs could provide revocation rather than eviction of members. A

content publisher would distribute both group keys and ciphertext stubs. The untrusted servers

would replicate all ciphertext except the stubs. To revoke a member, the content publisher would

replace the stub with a new stub—effectively making the ciphertext on the untrusted servers useless

to revoked members.

Venti [89] provides an immutable block store similar in spirit to the SFSRO server, but Venti

focuses on archival storage and not security. Versioning file systems could use Venti as a building

block. The Cedar file system [47] provides a system of immutable files. Like the SFS read-only

file system, Cedar communicates block requests over the network and has the client synthesize file

system structures from these blocks.

2The “stub” was privately revealed as a tongue-and-cheek gesture to Adam Stubblefield.
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Cepheus. Cepheus [43] is a read-write file system that provides group sharing of files by en-

crypting file keys in lockboxes. A lockbox contains a public-key encryption of the file key. A file

will have a lockbox for each member. This method does not scale well for large groups. More-

over, the owner must compute one public-key encryption for each remaining member following an

eviction. Chefs uses both lockboxes and lazy revocation, originally proposed by Cepheus under

the deprecated term “delayed re-encryption.”

SiRiUS. The SiRiUS file system [49] enables read-write group sharing of encrypted files on

untrusted storage. Like Cepheus, each file in SiRiUS includes a list of key lockboxes—one for

each group member. To cope with large groups, the SiRiUS-NNL dialect uses the NNL [81] group

key distribution protocol. The dialect allows SiRiUS to keep the number of lockboxes independent

of the group size, but the number of lockboxes will grow linearly with respect to the cumulative

number of evictions. Chefs desires to keep lockboxes constant in size, independent of both the

group size and the rate of membership turnover. As a result, Chefs uses key regression instead of

NNL.

In addition to confidentiality, SiRiUS provides integrity protection and freshness of data by

using a Merkle hash tree and time stamps respectively. SFSRO uses the same techniques to provide

integrity and freshness.

OceanStore. Pond, the OceanStore prototype, provides read-write sharing of collections of im-

mutable objects replicated on semi-trusted servers [63, 92]. To provide confidentiality, the OceanStore

design encrypts content before replication. Users with the decryption key can read the content. To

provide integrity, Pond uses proactive threshold signatures. As long as the majority of a set of

semi-trusted servers remain honest, a threshold signature provides for authenticity and integrity of

content. SFSRO and Chefs use similar methods to provide authenticity, integrity, and confiden-

tiality, but OceanStore does not use key regression to manage group keys as members come and

go.
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Andrew File System (AFS) read-only volumes. Many sites use a separate file system to repli-

cate and export read-only binaries, providing high availability and high performance. AFS supports

read-only volumes to achieve replication [103]. However, in all these cases replicated content is

stored on trusted servers. SFSRO and Chefs are designed to operate on untrusted storage.

Secure replication. Reiter and Birman [91] describe methods to securely replicate services even

if several servers and clients are compromised. Similarly, Herlihy and Tygar [55] discuss ways to

make replicated data secure — including a method of re-encryption. SFS read-only takes a differ-

ent approach in that a compromise will not damage security because it already assumes untrusted

servers replicate content. Clients will never accept unauthentic content and will at worst be denied

service if too many servers behave maliciously. By encrypting content with convergent encryption,

Farsite [3] functions as a centralized file server even though it is replicated on untrusted hosts.

7.2 Content distribution networks

SFSRO and Chefs are content distribution networks because they support replication of single-

writer, many-reader content. The following paragraphs describe how other content distribution

systems relate to SFSRO and Chefs.

Web content distribution. Content distribution networks deployed by companies such as Aka-

mai [5] and research initiatives such as Coral [40] are an efficient and highly-available way of

distributing static Web content. Content stored on these networks are dynamically replicated on

trusted servers scattered around the Internet. Web browsers then connect to a cache that provides

high performance. The approach of SFSRO allows for secure replication of Web content on un-

trusted servers. Users without an SFSRO client could configure a proxy Web server on an SFSRO

client to serve the /sfs directory, trivially creating a Web-to-SFSRO gateway for any Web clients

that trust the proxy.
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Software distribution. Signed software distributions are common in the open-source commu-

nity. In the Linux community, for example, a creator or distributor of a software package can sign

RPM [100] files with PGP or GNU GPG. RPM also supports MD5 hashes. A person downloading

the software can optionally check the signature or hash. RedHat Software, for example, publishes

their PGP public key on their Web site and signs all of their software distributions with the corre-

sponding private key. This arrangement provides some integrity and authenticity guarantees to the

person who checks the signature on the RPM file and who makes sure that the public key indeed

belongs to RedHat. However, RPMs do not provide an expiration time or revocation support. If

RPMs were distributed on SFSRO servers, users were running an SFSRO client could transparently

verify the RPMs for integrity, authenticity, and freshness.

Distributing popular content with BitTorrent. A peer-to-peer file sharing system, BitTorrent

is a decentralized content distribution system for individual, public files [30]. Clients and servers

are not distinguishable. All clients are servers, and all servers are clients. In SFSRO, a client can

access content without having to also serve the content. Moreover, a server can replicate content

without running a client.

Both SFSRO and BitTorrent implement scalable replication of public content on untrusted

servers. Whereas BitTorrent concentrates on replication of popular content, SFSRO and Chefs

focus on secure distribution of files. SFSRO addresses problems of storage, file system integrity,

incremental updates of dynamic content, and distribution of large collections of files. BitTorrent

addresses the problems of distributed caching of content, file integrity, on-demand replication of

static content, and distribution of large individual files.

Secure Web servers. Secure Web servers are another example of servers that provide access

to mostly single-writer, many-reader data. These servers are difficult to replicate on untrusted

machines, however, since their private keys have to be online to prove their identity to clients.

Furthermore, private-key operations are expensive and are in the critical path: every SSL connec-

tion requires the server to compute modular exponentiations as part of the public-key cryptogra-

phy [41]. As a result, software-only secure Web servers achieve low throughput. For instance, our
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Apache SSL server in Chapter 6 accepted only 11 new connections per second.

SSL splitting. SSL splitting [65] is a technique to provide integrity and freshness of public Web

content distributed by untrusted servers. The technique allows a publisher on a low-bandwidth

connection to reach a large audience without compromising integrity or freshness. Clients down-

loading content are limited by the aggregate bandwidth made available by servers, rather than by

the bandwidth of the publisher’s server.

Key regression in Chefs is motivated by the same goal as SSL splitting. Namely, key regression

allows a content publisher on a low-bandwidth connection to make content available to many

clients. Unlike SSL splitting, Chefs provides decentralized access control of private content rather

than public content.

Secure DNS. Secure DNS [36] is an example of a read-only data service that provides security,

high availability, and high performance. In secure DNS, each individual resource record is signed.

This approach would not work for distributed file systems. If each inode and 8 Kbyte-block of

a moderate file system—for instance, the 635 Mbyte RedHat 6.2 i386 distribution—were signed

individually with a 1,024-bit Rabin-Williams key, the signing alone would take about 36 minutes

(90, 000× 24 msec) on a 550 MHz Pentium III. A number of read-only data services, such as FTP

archives, are 100 times larger, making individual block signing impractical—particularly since we

want to allow frequent updates of the database and rapid expiration of old signatures.

7.3 Cryptography

SFSRO and key regression rely on cryptography for integrity protection, confidentiality, and the

security of key regression. The first section reviews fundamental notions of security from theory of

cryptography—central to the design of SFSRO and key regression. The following section discusses

related applications of cryptography that share in the goals of SFSRO and key regression.
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7.3.1 Fundamental cryptographic notions

Related-key attacks. Extending the notion of secure symmetric encryption, Bellare and Kohno

investigate Related-Key Attacks (RKAs) against block ciphers [13]. In an RKA, the adversary

has access to a related-key oracle that takes not only a plaintext message, but also a related-key-

deriving function. The adversary can encrypt messages not with chosen keys, but with chosen

functions of a hidden key.

Because key regression produces a set of related encryption keys, the notion of security for

RKAs may help to craft a better definition of security for key regression. Key regression could be

viewed as a particular related-key-deriving function.

Re-keying. Re-keyed symmetric encryption allows for two parties to derive a sequence of keys

from one shared master key, effectively extending the lifetime of the master key. Examples of such

systems (discussed in this chapter) include Micali’s key trees for key escrow, Snoeren’s session

keys, and several multicast key agreement protocols. The definition of security for key regression

is modeled after the notion of security for re-keyed symmetric encryption [1] in that key regression

substitutes for a key generation algorithm. Whereas Abdalla and Bellare propose a tree-based

scheme for deriving keys from a master key [1], key regression could be thought of as producing a

chain of keys, each derived from other elements in the chain.

On-line ciphers. An on-line cipher takes as input an arbitrary length plaintext, and will output

the ith block of ciphertext after having only processed the first i blocks of plaintext [11]. On-line

ciphers share with key regression the security notion of “behaving as randomly as possible.”

The designers of on-line ciphers found that no on-line cipher could satisfy the existing security

definition based on pseudorandomness. Namely, an adversary can trivially distinguish between the

output of an on-line cipher and a pseudorandom function. For this reason, on-line ciphers use a

weaker notion of security.

Key rotation [58] suffers from the same problem. The correctness requirement (that unwinding

undoes winding) makes any key rotation protocol insecure in the pseudorandom sense. Consider

the task of distinguishing between a random sequence of keys and a sequence generated by key
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rotation. Given a challenge sequence, an adversary simply unwinds a key from the sequence. If

the previous key matches the unwound key, then key regression generated the sequence. Thus, key

regression communicates member states rather than keys. Clients run a key derivation algorithm

on a member state to compute the actual key.

In a similar spirit, Shamir [105] explains how to securely generate a sequence of pseudorandom

values by using RSA. The security goal is to prevent an adversary given some sequence of keys

from deriving other keys in the sequence. In key regression, we require a stronger notion. Namely,

it should be infeasible for an adversary given a new value to guess whether that value is a real key

or random bit string with probability greater than 50%.

7.3.2 Cryptographic applications

Many systems use cryptography to accomplish the similar goals shared by SFSRO and key regres-

sion.

One-time passwords and hash chains. Key regression borrows from the techniques used in

one-time passwords [66]. Namely, the publisher precomputes a hash chain of group keys. Just as

with one-time passwords, the hash function limits the number of times a publisher can wind the

key forward. Recent efforts have shown how to more efficiently traverse such hash chains [31].

These techniques may improve the efficiency of hash-based key regression for both owners and

members.

One-way functions can generate a sequence of keys in a hierarchy [6, 69], but do not necessar-

ily provide for computational indistinguishability. Gudes [51] uses one-way functions to protect

content in a file system by repeatedly encrypting data with keys derived from a hash chain.

Key derivation in key escrow. Micali introduces a key derivation construction for time-bounded

key escrow with fair public key cryptosystems [78]. Similar to key regression, time-bounded

escrow uses a single key to effectively grant access to a sequence of keys. An escrow agent can

give authorities a small piece of information to allow derivation (and therefore eavesdropping) of a

set of keys in use during a given time period. With a secure hash function h : {0, 1}k → {0, 1}2k,
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one can create a d-level binary hash tree rooted with a k-bit master key. Each of the 2d leaves

represents a key. A parent node can derive its children keys. This technique of handing out one

key to cover a set of subkeys is similar in spirit to the NNL protocol [81]. By giving out only d

nodes in the tree (logarithmic in size with respect to the number of keys, 2d), a publisher can give

access to any contiguous sequence of keys in the leaves of the tree.

Chefs does not use Micali’s scheme because the publisher must be able to function with a

low-bandwidth connection. Key regression makes the bandwidth consumption of key distribution

effectively independent of the number of evictions, at the cost of increasing the computational

demands on a member’s machine.

Forward security. Anderson describes the notion of forward security [7] for signatures [2, 14,

62] and encryption [25]. An extension of perfect forward secrecy [34], forward security, ensures

that exposure of a key will not cause exposure of messages encrypted with past keys. This property

limits the damage resulting from key compromise. For instance, the compromise of a session key

should not expose the contents of past communication.

Key regression provides effectively the opposite property of forward-secure encryption. A sin-

gle key allows derivation of all past keys, but not future keys. In fact, Anderson describes a simple

hash chain for forward-secure encryption [7]. To compute a future key, one hashes the current key.

A version of hash-based key rotation uses the same construction, but hashing backwards instead of

forwards. Old keys are hashes of new keys.

Merkle hash tree. SFSRO makes extensive use of Merkle hash trees, which have appeared

in numerous other systems. Merkle used a hierarchy of hashes for an efficient digital signature

scheme [77]. In the context of file systems, the Byzantine-fault-tolerant file system uses hierar-

chical hashes for efficient state transfers between clients and servers [26, 27]. Cepheus [43] uses

cryptographic hashes in a similar fashion to SFSRO, except that the Cepheus guarantees integrity

for individual files rather than a complete file system. Duchamp uses hierarchical hashes to effi-

ciently compare two file systems in a toolkit for partially-connected operation [35]. TDB [70] uses

hash trees combined with a small amount of trusted storage to construct a trusted database system
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on untrusted storage. A version of Network-Attached Secure Disks (NASD) uses an incremental

“Hash and MAC” scheme to reduce the cost of protecting the integrity of read traffic in storage

devices that are unable to generate a MAC at full data transfer rates [48].

A number of proposals have been developed to make digital signatures cheaper to compute [45,

98], some involving hash trees [122]. These proposals enable signing hundreds of packets per sec-

ond in applications such as multicast streams. However, if applied to file systems, these techniques

would introduce complications such as increased signature size. Moreover, because SFSRO was

designed to avoid trusting servers, read-only servers must function without access to a file system’s

private key. This prevents any use of dynamically computed digital signatures, regardless of the

computational cost.

Multicast security. There are several ways to improve the performance of access control using

untrusted servers when key distribution is on the critical path. For instance, multicast security and

broadcast encryption often make the key distribution process itself efficient. The approach in key

regression is simply to reduce the number of keys that need to be distributed in the first place.

Group key distribution is often discussed in the context of multicast security [106, 107]. These

protocols wish to efficiently distribute a new group key to remaining group members after an

eviction — as in tree-based group key agreement [60]. The NNL revocation protocol [81] uses

a hash tree for key updates. Each group member has a leaf in the tree. The parent nodes are

computed by hashing children. Initially, the group key is the root node. Messages are encrypted

with this group key. After an eviction, the evicted member must not know the new group key.

NNL splits the tree in two pieces, such that remaining group members can compute at least of

the two roots. Each message requires two encryptions: one for each root. Consequently, a key

update message is linear in the number of evicted members. However, the NNL protocol becomes

impractical as members leave. The key tree becomes fragmented by evictions, and the size of the

ciphertext grows linearly with the number of evictions. The NNL protocol works best in large

groups expecting few evictions relative to the number of users. One of the goals of key regression

is to keep all operations constant in space and time. The NNL protocol does not satisfy this goal.
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Broadcast encryption. In broadcast encryption [38], a group owner can efficiently evict a subset

of the group members without explicitly distributing a new set of keys to individual, remaining

group members.

Similar to broadcast encryption, a non-interactive group key distribution protocol does not

require a group owner to communicate with each group member individually after an eviction.

Instead, the owner distributes a new group key by either contacting a small subset of the members

or by broadcasting a message. ELK [86], based on LKH [53, 118, 123], is one protocol that

provides non-interactive group key distribution.

The author of this thesis developed the first (yet unpublished) key rotation construction in

Java together with non-interactive group key distribution by adapting the Naor-Pinkas traitor trac-

ing protocol [82]. Because the non-interactivity added significant complexity to the protocol and

proofs, the author decided to separate the key distribution mechanism from key rotation.

Self-healing key distribution. Self-healing key distribution with revocation [80, 113] protocols

are resilient even when broadcasts are lost on the network. A user who misses a small number of

key update messages can reconstruct the lost key. In this manner, one can view key regression as

having the self-healing property. The self-healing protocols are resistant to collusion. Because all

group members in key regression have the same secret information, there is no reason to collude.

Self-healing protocols run in time linear in the number of colluding users. Key regression requires

that basic operations run in constant time and space.

A second feature of self-healing is that group members can recover missing keys within a given

window of time. Kurnio et al. [64] and Yang et al. [125] propose mechanisms for similarly coping

with key update messages over a lossy network. Key regression protocols can effectively self-heal

in perpetuity.

Evolving session keys. Snoeren uses SHA1 hashing to compute a sequence of session keys that

protect migrated TCP connections [110, p. 111]. Two parties securely negotiate an initial symmet-

ric key. To generate a session key for a new connection, each party computes a one-way function

of the symmetric key and two public sequence numbers that change for each new connection. Sno-
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eren argues that the one-wayness property makes it difficult for an adversary who sees the public

sequence numbers (but not the symmetric key) to compute session keys.

Master keys. In key regression, we impose a linear order on group keys with respect to time for

a single service. That is, access to a service at one time implies access to the same service at an

earlier time, but not necessarily future times.

Master key systems and several group key establishment protocols impose a partial order on

group keys with respect to subordinate services or group members. That is, some members are

deemed to have more authority than other members. A member at the top of a tree of authority can

derive the key of any member within the tree. For instance, Chick and Tavares show how to create

a tree-based master key scheme to control access to a hierarchy of services [29]. A node in the tree

represents a one-way function of its children. Thus, the root key allows the possessor to derive any

key in the tree. Inner nodes give access only to keys beneath the node in the tree.

Key distribution. Blaze [20] and Saltzer [101] describe the challenges specific to storage secu-

rity that often do not appear in communications security. We keep the support of key management

in Chefs as simple as possible by using key regression and simple access control policies (e.g.,

access to all the files or none of the files).
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Chapter 8

Conclusion

It’s Hard To Finish Papers.

– Ira Haverson & Tiffany Fulton-Pearson

This thesis presented the design, implementation, and measurements of the SFS read-only file

system and provably-secure key regression in the Chefs file system.

The SFS read-only file system is a distributed file system that makes extensive use of Merkle

hash trees [76] to allow a high number of clients to securely access public, read-only content.

The content of the file system is stored in an integrity-protected database, which is signed offline

with the private key of the file system. The private key of the file system does not have to be

online, allowing the database to be replicated on many untrusted machines. To allow for frequent

updates, the database can be replicated incrementally. The read-only file system pushes the cost of

cryptographic operations from the server to the clients, allowing read-only servers to be simple and

to support many clients. Measurements of an implementation confirm that the read-only file system

can support a large number of clients downloading integrity-protected content, while providing

individual clients with acceptable application performance.

Chefs extends the SFS read-only file system with key regression to enable decentralized access

control of private content replicated on untrusted servers. Key regression allows a client to derive a

sequence of past keys from the most recent key. Only the publisher can compute future keys, which
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are distributed to clients on-demand. This thesis presented provably-secure constructions for key

regression using SHA1, AES, and RSA. Measurements of client latency and server throughput

in Chefs demonstrate that key regression enables efficient key distribution for publishers on low-

bandwidth, high-latency connections. Using key regression, a publisher can efficiently control

access to content effectively independent of group membership dynamics and without needing a

fast network connection.

8.1 Future work

This thesis leaves a number of topics for future work:

Windowing in key regression. It may be desirable to limit how far back in time a member can

unwind a key. For instance, a group member may only be able to derive keys as far back in time as

when the member first joined. A publisher may want to prevent a new member from reading deleted

files left on tape backups or from reading not-yet declassified files. A key regression protocol could

achieve this goal by establishing a different window for each group member. One straightforward

approach uses two hash chains of member state flowing in opposite directions. One chain is easy to

compute backwards (traditional member state in key regression), and one chain is easy to compute

forward (proposed windowing). A member could receive an element from the forward windowing

chain at join time. Only where the chains overlap could the member derive content keys.

Windowing itself presents additional challenges. For instance, collusion now becomes a prob-

lem. Two members with disjoint access to the set of key versions could combine their hash chains

to derive keys to which neither should have access. Moreover, it is not clear what semantics are de-

sirable when a member joins a group, gets evicted, and later rejoins the group. Should the member

have access to key versions that protect content created during the period of exile?

Improvements to key regression. The performance of the key regression algorithms in Chap-

ter 4 could be improved with a batch key unwinding function. For instance, the unwinding algo-

rithms are tailored to sequential access patterns. When a member wants to derive a single key in
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the past, data structures other than a simple hash chain may be more desirable [31, 56].

Proxy re-encryption. After a publisher evicts a member, files encrypted with the old group key

are still available to the evicted member. Chefs uses lazy revocation such that the evicted member

cannot see future updates. One could re-encrypt files in a new key to expedite the eviction. With

proxy re-encryption [8], the work of re-encrypting can be offloaded from the publisher to untrusted

proxy machines; the proxy translates ciphertexts into new ciphertexts without seeing the underlying

plaintext or knowing any private keys.

Workloads. Many surveys characterize file system workloads in terms of the number, size, and

distribution of files. There is little work on how such workloads interact with access control list

dynamics. Gathering data on group dynamics would help to determine the most appropriate work-

loads for key regression.

We had great difficultly obtaining statistics on group dynamics from Web site operators. We

contacted online newspapers and a content network distribution company, but were unable to obtain

any meaningful statistics without first signing a non-disclosure agreement. We tried analyzing

SEC financial statements, records from the Audit Bureau of Circulations, and public relations

newswires to estimate basic workload characteristics. At best we could determine the growth of

subscribership. Companies deem group dynamics as competitive information.

We recently received nearly a terabyte of logs containing four years worth of downloads from

an adult entertainment Web site. We hope to convert the logs into a meaningful benchmark. If a

few more companies donate anonymous Web logs of access-controlled content, we could develop

a much better picture of how group dynamics would affect the performance of key regression and

lazy revocation.

Economics of decentralized access control. One of the barriers to practical deployment of

Chefs is an incentive system to convince volunteers to replicate encrypted content. After all, what

server would want to replicate content that the server itself cannot read?

One way to construct an incentive is to bind popular content to unpopular content, forcing
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volunteers to replicate the unpopular content before access is granted to the popular content. The

all-or-nothing (AON) transform [94] is one method to help implement such semantics. The AON

transform guarantees in an information theoretic sense that someone decrypting a message can-

not obtain a single bit of the plaintext without first possessing every bit of the ciphertext. This

effectively disables random access. Therefore, one could apply the AON transform to popular and

unpopular content before encrypting for confidentiality. For the volunteer to access the popular

content (e.g., music), it would first have to download the ciphertext of the unpopular content (e.g.,

encrypted photo galleries).

8.2 Code availability

Chefs and SFSRO are available from anonymous CVS on http://www.fs.net/. Feedback

and improvements to the open-source software are welcomed.
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