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ABSTRACT

This paper proposes a new storage modeVice transparencgyin
which users view and manage their entire data collectiom oy
of their devices, even from disconnected storage-limitedicds
holding only a subset of the entire collection.

1. INTRODUCTION

Users increasingly own multiple devices running various me
dia applications, but managing data objects across deréoesins
largely manual and error-prone. Collections easily becdiser-
ganized and drift out of sync.

To address this problem, we propose a hew princigiyice
transparency for the design of storage systems. We argue that all
of a user’'s devices should present a single coherent vieweof t
user’s data collection, even when each of those devices iign o
store a fraction of the objects.
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store partial replicas and propagate all updates via the fihis
model permits consistent access to replicated objectgdngrally
does not provide a unified view to the user: a mobile device can
only manage those objects which are stored locally. In amgit
a centralized system becomes unavailable when the hubedisvic
unreachable or if it runs out of space to store the entireectitin.
Adding only a few additional devices results in a much more
difficult task. Consider a user with a laptop, the mobile desi
mentioned above, a desktop computer at home and at work, and
perhaps a DVR, a networked storage device, and some space in a
highly-available cloud service. This set of devices no kmigas
an obvious master device that can store a single completeazap
mediate all updates. Any of the potential master devices aftay
be powered off, lie beyond slow network links, or have no esnv
nient object management interface.
Since a hub storage system won't suffice, the user is forced to
manage her collection in aad ho¢ manual way. As a result, the

We propose that device transparency can be achieved by dis-user sees a storage abstraction that looks like “ohjemn device

tributing all application metadata globally, so that eaebice knows
about all objects, including both those stored locally and frhis
“metadata-everywhere” technique enables a system togedtie
appearance of a unified collection which can be organizeausi
any device. When some devices are unavailable, becausarey
powered off or disconnected from the network, the systenmatsm
use the global metadata to inform the user where data olgeets
actually stored.

2. ACASE FORDEVICE TRANSPARENCY

Users often own many devices that combine storage, netagrki
and multiple applications managing different types of datech as
photos, music tracks, videos, and email messages. In tphisrpa
we focus on situations where some small devices, such adanobi
phones, pocket cameras, or media players, may not have enoug
storage for all of a user’s data objects. Generally, the msgually
partitions the collection across the devices, choosinglwbbjects
will be replicated where.

Many existing storage systems designate one more-powdsful
vice, such as a laptop or network server, as a central hubhwhic
stores master replicas of the complete collection. Mobéeiaks

z”, “object b on devicey,” etc.: it is up to the user to keep track
of where her objects live and whetheandb are different objects,
copies of the same object, or different versions of the sajext
Because her devices have limited resources, the user asethe
burden of organizing her object collection, larger thanngls de-
vice’s storage, into coherent groups that span all of théecdey

We believe that users would be better served by systems that
present a single storage collection across multiple devicspired
by location transparency [27] for network file systems, wiétbés
principle device transparencya user should be able to manage all
of her objects from any of her devices. As much as possiblega u
should be able to think of her data as a unified collectioreratian
as isolated fragments on various devices. For example, whepr
needs an object which is not stored on the local device, slddh
be able to explore the entire object collection (includibgeats not
stored locally) to find it. The system should tell her whatides
are responsible for the object’s contents, and should dmhb
local copy automatically.

At present we are unaware of any practical device-trangpare
storage system. A number of systems replicate and synaeroni
all data on all devices [11, 26], thus providing device tpaisncy
at the cost of requiring that all devices be large enough td alb
data. Other systems support partial replication for seagited
devices but do not provide device transparency [13, 15,3Hhe&-
cause disconnected devices do not present the user withvaofie
the entire data collection.

The ideal device transparent storage system would, atnadisti
and on all devices, present an identical, complete cotiraif ob-
jects to the user; changes would propagate instantly amaiceady.

Of course, the constraints imposed by the physical worldewicés
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Figure 1: Growth of one user’s photograph collection over 10
years. As digital cameras improved, the total storage consned
(top) increased exponentially, but the cumulative number 6
photographs taken (middle) grew more gradually. As a re-
sult, the average content size of a photograph in the collecn
(bottom) increased, while typical metadata per photograptre-
mained the same.

and networks make it impossible to achieve this ideal cotalyle
Some devices may be only intermittently connected, so they m
not know about recently created or modified objects, andpede
dent modifications on disconnected devices may lead to d¢ater
flicts. Devices may not have enough local storage to hold g 0bp
every object; if a device is temporarily disconnected, soirjects
may become inaccessible for the interim. Even subject teethe
fundamental limitations, we believe that it is possible aane sub-
stantially closer to the ideal of device transparency thestiag
systems do, and that a personal storage system built artisd t
goal will greatly improve a user’s ability to manage a cdilec of
devices and data.

3. METADATA EVERYWHERE

Each device in a device-transparent storage system must kno
about every object in the storage collection in order to sth@wser
the complete collection even when that device cannot contate
with the rest of the group. As such, each device must stet-
dataabout all objects in the collection: this metadata inclustes-
age system attributes describing which devices hold whigéobs,
as well as application-specific attributes such as namegl|igts,
and types, enabling the user to identify and search for thjethe
collection. The system should proactively pass infornmtibout
updates to these objects between devices such that theaeser s
the same up-to-date collection on each device as soon asnetw
connectivity permits.

object creation and manipulation:

(objectI D,versionl D) « create()

(objectI D,versionI D)[] < lookup(guery)

versionl D[] «— getVersionsgbjectI D)

(key,value)[] — getMetadatabjectI D, versionl D)

contentI D «— opengbject] D, versionl D)

contents « read¢ontentI D, of fset, length)

versionl D — newVersiongbjectI D, versionl D[],
metadata, contents)

versionl D «— deleteObjectfbjectI D)

placement rules:

rulel D «— addRulefame, query, devices, priority)

(rulel D, query, devices, priority) < getRuleame)

(ruleI D, query, devices, priority)[] < getAllRules()

removeRulefulel D)

event notifications:

watchI D «— addWatchfuery, watchFlags, callback)

removeWatchgatchl D)

callback(watchI D, event)

Figure 2: Device-transparent APl summary. None of these cid
block on network communication.

This distinction between object metadata and object comen
key mechanism that guides the design of a device-transpst@n
age system. Since every device knows about all objects, @it ap
cation running on a given device can inform the user that gectb
has a recent and possibly conflicting update, even if thaicdev
hasn't yet obtained (or will never obtain) the object’s @it Sim-
ilarly, when an application needs an object whose contenbis
on the same device, it can use the metadata to help the user find
a device that does have the content—even if the device gttan
object is currently offline (e.g., a backup device sittingainloset
or safe deposit box)—so the user can bring the right devitieeon
if necessary and synchronize the devices.

Storing all metadata everywhere may have once been impracti
cal, but portable devices’ capabilities have increaseidiiap/NVhile
this has led to a proportionate increase in the amount of datd
as high-fidelity music, photos, and video, it has not beercheat
by a corresponding increase in metadata. Applications osees
base set of attributes they define and modify, which oftery onl
changes later in consequence to user actions.

Figure 1 illustrates this pattern by tracking the growth cfira
gle user’s photograph collection over a decade and threereean
While the user gradually became a more prolific photogragher
increase in number of photos was outstripped by the techgelo
driven growth in the sizes of those photos. If the same types o
applications manipulate each of the photos, and thus theiainod
metadata is roughly equal for each photo, then the totalifraof
storage space devoted to metadata decreases over time.

4. STORAGE API

Traditional file system APIs do not provide the facilitiessa-
mantics applications need to manage data objects in a degite
parent model. Only applications understand how to presaetb
names and collections to the user—most users do not knoweeat n
to know, how their e-mail or media applications store filepph-
cations often must be involved in reconciling concurrendatps

The storage system does not need to keep the contents of all obto the same object, since they can present or hide conflics in

jects on each device, however. Instead, it should allowicgpl
tions and users to set policies defining which objects sheadile
where, subject to network bandwidth and storage capacities

application-specific way.
Figure 2 shows a storage system API that provides applitsatio
with the necessary information to show users a deviceparest



collection. It is broken into three groups of operationsjeobcre-
ation and manipulation, placement rules, and event ndiifics.
Each object has a single permanent unique identifier, artdgac
date to an object has a version identifier, which allows tiséesy to
describe the recent history of an object even in the face ofwe
rent updates from multiple devices. If two or more currensians
of an object exist, an application can resolve that confljctieat-
ing a new version that specifies multiple predecessor vessiany
application can choose to ignore or resolve any conflicectsjare
not tied to a particular application. Applications can eltarbitrary
sets of tag/value pairs as metadata to an object: insteadsiof a
gle pathname applications use logical queries againsatiedaiue
metadata to find objects and manage collections of objegipliA
cations could also use this interface to present a traditifoder
hierarchy.

Placement rules allow applications to indicate which olsj¢c
store on which devices. We do not expect users to write place-
ment rules directly: instead, applications define placeméas on
users’ behalf. Users can group objects onto devices by cammo
metadata attributes: e.g., songs go onto the media playerna-
tively, users can browse collections and specify particalgects
and the devices on which they should be placed. The latteensod
important because previous work has shown that users oftentd
predict which objects they will need nor describe thoseeaibns
with rules very well [23]. When mistakes prevent the usenfiac-
cessing an object while disconnected, searching the ntatadkh
indicate which devices currently have copies of the objtace-
ment rules contain a priority so that devices can gather itapb
objects even when rules match more objects than fit in a device
local storage.

A device-transparent storage system must be able to symizbro
devices over any topology: any two of a user’s devices that ca
communicate must also be able to exchange updates andsobject
After synchronizing metadata, devices transfer objectarus in
the background, without blocking the user’s interactionhwhe
data collection. Because updates can arrive at any timejrtale
component of the storage API is a watch mechanism that uses pe
sistent queries to notify applications of updates whendwey ar-
rive.

5. HOW MUCH METADATA?

A primary factor that will determine whether a device-tpa®nt
storage system is feasible in practice is the amount of ratdad
each device must hold, as this overhead occurs on everyedivic
a user’s group.

To explore the expected size of metadata collections in &eev
transparent storage system, we extracted metadata ferrttodest
personal data sets: the email, music, and photo collecticirsgle
user gathered over the past decade. Table 1 shows the mgsulti
metadata sizes. To extract metadata, we parsed the emahgess
to extract useful headers, imported the user’'s media pty@oute
database, and usedi f t ags ordcr awto extract attributes from
photos.

The most important feature this data set illustrates is that
size of the metadata associated with each object is roughistant
regardless of content type or size of each object. As suehtpothl
size of the store is bounded by the number of objects, notyjhe t
of objects in the store. Consequently, collections of mamgls
objects, such as email messages, represent the hardesises®ic
a device-transparent storage system.

Even if extra user and application attributes or identifiensl
database indexes led to a metadata collection a factor ofotwo
three larger than the sizes shown in the table, the total atrafu

email

number of messages 724230
total content size 4.3GB
median message size 4188 bytes
metadata size 169.3 MB
metadata/content overhead 3.8%
metadata size per message 245 bytes
music
number of tracks/playlists 5278/21
total content size 26.0 GB
mean track size 5.1 MB
metadata size 2.6 MB
metadata/content overhead 0.01%
metadata size per object 511 bytes
photos
number of JPEG/RAW objects 61740/10640
total number of objects 72380
JPEG/RAW content size | 32.7/90.1 GB
total content size 122.8 GB
metadata size 22.6 MB
metadata/content overhead 0.02%
metadata size per object 328 hytes

Table 1: Metadata sizes for example datasets.

metadata for this example (less than 600 MB) would be reddena
for today’s current portable devices. The total conteng 53
GB) would not fit on a laptop only a few years old, and not on
many current portable devices. Adding video objects to tmtent
collection would only increase the disparity between mataaénd
content store sizes, even if newer applications use moréaager
metadata attributes.

The communication requirements for keeping multiple devic
up to date should not be an undue burden. Small mobile devices
already handle frequent email updates over poor-qualityor
links, and the only extra burden in a device transparenagtosys-
tem is passing those updates to each device. The bandwidth re
quired to move content to the correct devices would be no fmore
a device-transparent storage system than it is today.

6. DISCUSSION

The design of a device-transparent storage system mustssidr
many points beyond the few areas that this paper considerex-
ample, we assume that an overlay network combines all ofrgsuse
devices into a single group to locate and manage networls fath
tween those devices, and that a complete discussion ofrpéate
rules would describe how the storage manager on each davice e
sures that no objects get lost. Here are some areas for siigous
along with brief comments.

What happens when metadata doesn't fit?Although warning
strategies can try to limit cases where metadata takes umtoh
space, adding too many objects or including a device thatds t
small can cause a device to run out of space. At this point, the
full device stops receiving updates from the rest of the grdout
other devices continue unimpeded. The user can eitherediglet
dividual items or get a new device with more storage space&hwh

is exactly the same choice the user faces today. An alteenag-
proach might be useful for small devices with limited insexds
(e.g., photo frames): a read-only class of devices could bald



metadata for some object types, but consequently be urapbess
updates between devices.

What about version histories? Won't those grow without bun
even if the size of an individual object doesn’f@ultiple versions
need to be kept only while there is a possibility of confligisice
all devices know about a given version of an object, evenghi
strictly older can be truncated. Waiting to truncate versiontil
all devices agree whether there were any updates would xtat e
metadata storage space if devices are absent or turned affdng
time. If this problem arises in practice, an active device detect
and warn the user of the state buildup, and provide the option
evict the absent device from the group temporarily or peentn

How much work will modifying applications be? This process
should be similar to the changes organizations are alreaakt m
ing to support systems such as Live Mesh [16] and MobileMe [1]
which include some support for disconnected and concuuphnt
dates. Many applications already implement an attributeage
system atop standard filesystems, and watch for remote ebang
from other applications; a common attribute system will difg
these applications. Dealing with placement rules will be fier
many applications, though a generic file browser should teetab
handle placement rules for many types of objects rather than
quire that every single application do so.

Why should all devices need to know about all objects when de-
vices can only use some types of datifrely acting as a conduit

to carry content and update notifications between othecds\s a
useful service. Also, identifying what data types a deviae and

can not use is no longer a simple problem; adding new apjditat

to mobile devices on the fly is now common. Devices which are
truly single purpose, rarely mobile, and hence not usefulufe
date propagation, could instead act as read-only edge edeas
described in the photo frame example above.

Do users really care about being able to find data on othecegvi
that are turned off or inaccessibleMaving access to application
metadata for an object, even if the underlying object iséeasible,
still allows many useful operations. For example, a usergcanop
photos into albums, add songs to playlists, find missingsteand
move these collections between devices, all without ngealicess
to the underlying objects.

Can this model work for multiple users8haring data collections

is probably feasible for family sized groups, though najéarorga-
nizations, as that would break the assumption that the aotalunt

of metadata is small enough for any single to device to holde O
way to design a shared collection would be to separate the sto
age collection into unshared and shared items and run aadepar
instance of the storage system over each.

Will handling conflicts be a problem for normal usersPeople
should almost never see conflicts in a device-transparenags
system. Media objects and mail messages tend to be writiem on
and read many times afterwards. The job of the storage system
track enough version information so that the only time aqesges

a conflict is when that person made a truly incompatible chdng
the same attribute field from two different, disconnectediabss.
Any other type of change should be merged automatically by th
applications.

7. RELATED WORK

The systems that come closest to providing device-trarspgr
utilize optimistic replication to reach eventual congiste All of
the existing systems we are aware of, however, fall in graops
either side of our goal by not supporting partial replicashynot
providing a complete view of the collection while disconteet

Optimistic Replication Schemes:

Coda [13], Ficus [11], Ivy [17], and Pangaea [22] developed
optimistic replication and consistency algorithms for filestems.
Coda used a centralized set of servers with disconnectuatsliFi-
cus and lvy allow for updates between clients, but did novigie
for partial replicas, and Pangaea handled disconnectgdrsebut
not disconnected clients. A later extension to Ficus [2Heasup-
port for partial replicas, at the cost of no longer suppgrtirbitrary
network topologies.

BlueFS [18] and EnsemBlue [19] extended Coda to permit a de-
gree of decentralized updates along with more flexible pfere
rules and support for unmodified consumer devices, butnetai
single central server.

Bayou [26] provided a device transparent view across mialtip
devices, but did not support partial replicas, and requatedppli-
cations to provide merge procedures to resolve all conflicts

PersonalRAID [24] tried to provide device transparencynglo
with partial replicas. The approach taken, however, reglirsers
to move a single portable storage token physically betwegites.
Only one device can thus use the data collection at a givem tim

TierStore [5], WIinFS [15], and PRACTI [3] each support palrti
replicas, but limit the subsets to subtrees of a traditibiedarchi-
cal filesystems. TierStore targets Delay-Tolerant-Nekmgy sce-
narios. WinFS aims to support large numbers of replicas. EFRA
also provided consistency guarantees between differgattshin
the collection. None of these systems provide device tamesiy
over a complete collection.

Cimbiosys [20] and Perspective [23], come closest to thésgoa
of device transparency; both support flexible placemermsralver
partial replicas. Neither attempts to provide a completswover
the data collection from disconnected devices or aid agfidins in
reasoning about object version histories. Polygraph [kreled
Cimbiosys to recover from compromised devices.

Point to point synchronization:

Point-to-point synchronization protocols like rsync [285 [4],
and Unison [2] provide on-demand and efficient replicatibdio
rectory hierarchies. They do not, however, easily exteral ¢hus-
ter of peer devices, handle partial replicas without extenisand-
written rules, or proactively pass updates whenever cdiwitgc
permits.

Version Control:

Version control systems such as Git [8] and Subversion [&5] p
vide algorithms and models for reasoning about versioroties,
allowing developers to time-shift working sets back to ey
points.

Attribute Naming:

Storage system organization based on queries or attritattesr
than strict hierarchical names have been studied in sesigle-
device [7, 10] and multi-device [6] settings, in additionthe con-
temporary optimistic replication systems. More generafig field
of Personal Information Management [12] aims to organize da



that users can find it easily, whereas device transparentytaiaid
management of a data collection spread across multipleekevi

Centralized Topologies:

A number of newer systems provide tight application intégra
between multiple clients, such as MobileMe [1], Google G4,
and Live Mesh [16], but retain a centralized set of servargjis-
connected clients cannot share updates.

8. SUMMARY

Growing storage and network capabilities of mobile devicem-
bined with personal data collections that do not fit on allicke,
leads to confusion caused by the object-on-a-device afisinahat
traditional storage systems provide.

This paper describes a new abstraction, device transpatéat
unifies the collections of objects on multiple devices intsirgle
structure. Adopting the design principle of global metadgistri-
bution would allow a storage system to provide the illusibtrae
device transparency in the face of intermittent commuidoaand
limited storage. We are currently working to implement avale-

ate a personal storage systdfyp, to examine these ideas in more

detail.
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