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ABSTRACT
This paper proposes a new storage model,device transparency, in
which users view and manage their entire data collection from any
of their devices, even from disconnected storage-limited devices
holding only a subset of the entire collection.

1. INTRODUCTION
Users increasingly own multiple devices running various me-

dia applications, but managing data objects across devicesremains
largely manual and error-prone. Collections easily becomedisor-
ganized and drift out of sync.

To address this problem, we propose a new principle,device
transparency, for the design of storage systems. We argue that all
of a user’s devices should present a single coherent view of the
user’s data collection, even when each of those devices can only
store a fraction of the objects.

We propose that device transparency can be achieved by dis-
tributing all application metadata globally, so that each device knows
about all objects, including both those stored locally and not. This
“metadata-everywhere” technique enables a system to provide the
appearance of a unified collection which can be organized using
any device. When some devices are unavailable, because theyare
powered off or disconnected from the network, the system canalso
use the global metadata to inform the user where data objectsare
actually stored.

2. A CASE FOR DEVICE TRANSPARENCY
Users often own many devices that combine storage, networking,

and multiple applications managing different types of data, such as
photos, music tracks, videos, and email messages. In this paper,
we focus on situations where some small devices, such as mobile
phones, pocket cameras, or media players, may not have enough
storage for all of a user’s data objects. Generally, the usermanually
partitions the collection across the devices, choosing which objects
will be replicated where.

Many existing storage systems designate one more-powerfulde-
vice, such as a laptop or network server, as a central hub which
stores master replicas of the complete collection. Mobile devices

store partial replicas and propagate all updates via the hub. This
model permits consistent access to replicated objects, butgenerally
does not provide a unified view to the user: a mobile device can
only manage those objects which are stored locally. In addition,
a centralized system becomes unavailable when the hub device is
unreachable or if it runs out of space to store the entire collection.

Adding only a few additional devices results in a much more
difficult task. Consider a user with a laptop, the mobile devices
mentioned above, a desktop computer at home and at work, and
perhaps a DVR, a networked storage device, and some space in a
highly-available cloud service. This set of devices no longer has
an obvious master device that can store a single complete copy and
mediate all updates. Any of the potential master devices mayoften
be powered off, lie beyond slow network links, or have no conve-
nient object management interface.

Since a hub storage system won’t suffice, the user is forced to
manage her collection in anad hoc, manual way. As a result, the
user sees a storage abstraction that looks like “objecta on device
x”, “object b on devicey,” etc.: it is up to the user to keep track
of where her objects live and whethera andb are different objects,
copies of the same object, or different versions of the same object.
Because her devices have limited resources, the user also bears the
burden of organizing her object collection, larger than a single de-
vice’s storage, into coherent groups that span all of the devices.

We believe that users would be better served by systems that
present a single storage collection across multiple devices. Inspired
by location transparency [27] for network file systems, we call this
principledevice transparency: a user should be able to manage all
of her objects from any of her devices. As much as possible, a user
should be able to think of her data as a unified collection rather than
as isolated fragments on various devices. For example, whena user
needs an object which is not stored on the local device, she should
be able to explore the entire object collection (including objects not
stored locally) to find it. The system should tell her what devices
are responsible for the object’s contents, and should download a
local copy automatically.

At present we are unaware of any practical device-transparent
storage system. A number of systems replicate and synchronize
all data on all devices [11, 26], thus providing device transparency
at the cost of requiring that all devices be large enough to hold all
data. Other systems support partial replication for storage-limited
devices but do not provide device transparency [13, 15, 20, 23] be-
cause disconnected devices do not present the user with a view of
the entire data collection.

The ideal device transparent storage system would, at all times
and on all devices, present an identical, complete collection of ob-
jects to the user; changes would propagate instantly and atomically.
Of course, the constraints imposed by the physical world on devices
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Figure 1: Growth of one user’s photograph collection over 10
years. As digital cameras improved, the total storage consumed
(top) increased exponentially, but the cumulative number of
photographs taken (middle) grew more gradually. As a re-
sult, the average content size of a photograph in the collection
(bottom) increased, while typical metadata per photographre-
mained the same.

and networks make it impossible to achieve this ideal completely.
Some devices may be only intermittently connected, so they may
not know about recently created or modified objects, and indepen-
dent modifications on disconnected devices may lead to latercon-
flicts. Devices may not have enough local storage to hold a copy of
every object; if a device is temporarily disconnected, someobjects
may become inaccessible for the interim. Even subject to these
fundamental limitations, we believe that it is possible to come sub-
stantially closer to the ideal of device transparency than existing
systems do, and that a personal storage system built around this
goal will greatly improve a user’s ability to manage a collection of
devices and data.

3. METADATA EVERYWHERE
Each device in a device-transparent storage system must know

about every object in the storage collection in order to showthe user
the complete collection even when that device cannot communicate
with the rest of the group. As such, each device must storemeta-
dataabout all objects in the collection: this metadata includesstor-
age system attributes describing which devices hold which objects,
as well as application-specific attributes such as names, playlists,
and types, enabling the user to identify and search for objects in the
collection. The system should proactively pass information about
updates to these objects between devices such that the user sees
the same up-to-date collection on each device as soon as network
connectivity permits.

The storage system does not need to keep the contents of all ob-
jects on each device, however. Instead, it should allow applica-
tions and users to set policies defining which objects shouldreside
where, subject to network bandwidth and storage capacities.

object creation and manipulation:
(objectID, versionID)← create()
(objectID, versionID)[]← lookup(query)
versionID[]← getVersions(objectID)
(key, value)[]← getMetadata(objectID, versionID)
contentID ← open(objectID, versionID)
contents← read(contentID, offset, length)
versionID← newVersion(objectID, versionID[],

metadata, contents)
versionID← deleteObject(objectID)
placement rules:
ruleID← addRule(name, query, devices, priority)
(ruleID, query, devices, priority)← getRule(name)
(ruleID, query, devices, priority)[]← getAllRules()
removeRule(ruleID)
event notifications:
watchID← addWatch(query, watchF lags, callback)
removeWatch(watchID)
callback(watchID, event)

Figure 2: Device-transparent API summary. None of these calls
block on network communication.

This distinction between object metadata and object content is a
key mechanism that guides the design of a device-transparent stor-
age system. Since every device knows about all objects, an appli-
cation running on a given device can inform the user that an object
has a recent and possibly conflicting update, even if that device
hasn’t yet obtained (or will never obtain) the object’s content. Sim-
ilarly, when an application needs an object whose content isnot
on the same device, it can use the metadata to help the user find
a device that does have the content—even if the device storing the
object is currently offline (e.g., a backup device sitting ina closet
or safe deposit box)—so the user can bring the right device online
if necessary and synchronize the devices.

Storing all metadata everywhere may have once been impracti-
cal, but portable devices’ capabilities have increased rapidly. While
this has led to a proportionate increase in the amount of data, such
as high-fidelity music, photos, and video, it has not been matched
by a corresponding increase in metadata. Applications use some
base set of attributes they define and modify, which often only
changes later in consequence to user actions.

Figure 1 illustrates this pattern by tracking the growth of asin-
gle user’s photograph collection over a decade and three cameras.
While the user gradually became a more prolific photographer, the
increase in number of photos was outstripped by the technology-
driven growth in the sizes of those photos. If the same types of
applications manipulate each of the photos, and thus the amount of
metadata is roughly equal for each photo, then the total fraction of
storage space devoted to metadata decreases over time.

4. STORAGE API
Traditional file system APIs do not provide the facilities orse-

mantics applications need to manage data objects in a devicetrans-
parent model. Only applications understand how to present object
names and collections to the user—most users do not know, or need
to know, how their e-mail or media applications store files. Appli-
cations often must be involved in reconciling concurrent updates
to the same object, since they can present or hide conflicts inan
application-specific way.

Figure 2 shows a storage system API that provides applications
with the necessary information to show users a device-transparent



collection. It is broken into three groups of operations: object cre-
ation and manipulation, placement rules, and event notifications.
Each object has a single permanent unique identifier, and each up-
date to an object has a version identifier, which allows the system to
describe the recent history of an object even in the face of concur-
rent updates from multiple devices. If two or more current versions
of an object exist, an application can resolve that conflict by creat-
ing a new version that specifies multiple predecessor versions. Any
application can choose to ignore or resolve any conflict; objects are
not tied to a particular application. Applications can attach arbitrary
sets of tag/value pairs as metadata to an object: instead of asin-
gle pathname applications use logical queries against the tag/value
metadata to find objects and manage collections of objects. Appli-
cations could also use this interface to present a traditional folder
hierarchy.

Placement rules allow applications to indicate which objects to
store on which devices. We do not expect users to write place-
ment rules directly: instead, applications define placement rules on
users’ behalf. Users can group objects onto devices by common
metadata attributes: e.g., songs go onto the media player. Alterna-
tively, users can browse collections and specify particular objects
and the devices on which they should be placed. The latter mode is
important because previous work has shown that users often do not
predict which objects they will need nor describe those collections
with rules very well [23]. When mistakes prevent the user from ac-
cessing an object while disconnected, searching the metadata will
indicate which devices currently have copies of the object.Place-
ment rules contain a priority so that devices can gather important
objects even when rules match more objects than fit in a device’s
local storage.

A device-transparent storage system must be able to synchronize
devices over any topology: any two of a user’s devices that can
communicate must also be able to exchange updates and objects.
After synchronizing metadata, devices transfer object contents in
the background, without blocking the user’s interaction with the
data collection. Because updates can arrive at any time, thefinal
component of the storage API is a watch mechanism that uses per-
sistent queries to notify applications of updates wheneverthey ar-
rive.

5. HOW MUCH METADATA?
A primary factor that will determine whether a device-transparent

storage system is feasible in practice is the amount of metadata
each device must hold, as this overhead occurs on every device in
a user’s group.

To explore the expected size of metadata collections in a device-
transparent storage system, we extracted metadata for three modest
personal data sets: the email, music, and photo collectionsa single
user gathered over the past decade. Table 1 shows the resulting
metadata sizes. To extract metadata, we parsed the email messages
to extract useful headers, imported the user’s media playerattribute
database, and usedexiftags ordcraw to extract attributes from
photos.

The most important feature this data set illustrates is thatthe
size of the metadata associated with each object is roughly constant
regardless of content type or size of each object. As such, the total
size of the store is bounded by the number of objects, not the type
of objects in the store. Consequently, collections of many small
objects, such as email messages, represent the hardest use case for
a device-transparent storage system.

Even if extra user and application attributes or identifiersand
database indexes led to a metadata collection a factor of twoor
three larger than the sizes shown in the table, the total amount of

email
number of messages 724230

total content size 4.3 GB
median message size 4188 bytes

metadata size 169.3 MB
metadata/content overhead 3.8%
metadata size per message 245 bytes

music
number of tracks/playlists 5278/21

total content size 26.0 GB
mean track size 5.1 MB
metadata size 2.6 MB

metadata/content overhead 0.01%
metadata size per object 511 bytes

photos
number of JPEG/RAW objects 61740/10640

total number of objects 72380
JPEG/RAW content size 32.7/90.1 GB

total content size 122.8 GB
metadata size 22.6 MB

metadata/content overhead 0.02%
metadata size per object 328 bytes

Table 1: Metadata sizes for example datasets.

metadata for this example (less than 600 MB) would be reasonable
for today’s current portable devices. The total content size (153
GB) would not fit on a laptop only a few years old, and not on
many current portable devices. Adding video objects to the content
collection would only increase the disparity between metadata and
content store sizes, even if newer applications use more andlarger
metadata attributes.

The communication requirements for keeping multiple devices
up to date should not be an undue burden. Small mobile devices
already handle frequent email updates over poor-quality network
links, and the only extra burden in a device transparent storage sys-
tem is passing those updates to each device. The bandwidth re-
quired to move content to the correct devices would be no morein
a device-transparent storage system than it is today.

6. DISCUSSION
The design of a device-transparent storage system must address

many points beyond the few areas that this paper considers. For ex-
ample, we assume that an overlay network combines all of a user’s
devices into a single group to locate and manage network paths be-
tween those devices, and that a complete discussion of placement
rules would describe how the storage manager on each device en-
sures that no objects get lost. Here are some areas for discussion
along with brief comments.

What happens when metadata doesn’t fit?Although warning
strategies can try to limit cases where metadata takes up toomuch
space, adding too many objects or including a device that is too
small can cause a device to run out of space. At this point, the
full device stops receiving updates from the rest of the group, but
other devices continue unimpeded. The user can either delete in-
dividual items or get a new device with more storage space, which
is exactly the same choice the user faces today. An alternative ap-
proach might be useful for small devices with limited interfaces
(e.g., photo frames): a read-only class of devices could only hold



metadata for some object types, but consequently be unable to pass
updates between devices.

What about version histories? Won’t those grow without bound
even if the size of an individual object doesn’t?Multiple versions
need to be kept only while there is a possibility of conflicts.Once
all devices know about a given version of an object, everything
strictly older can be truncated. Waiting to truncate versions until
all devices agree whether there were any updates would cost extra
metadata storage space if devices are absent or turned off for a long
time. If this problem arises in practice, an active device can detect
and warn the user of the state buildup, and provide the optionto
evict the absent device from the group temporarily or permanently.

How much work will modifying applications be? This process
should be similar to the changes organizations are already mak-
ing to support systems such as Live Mesh [16] and MobileMe [1],
which include some support for disconnected and concurrentup-
dates. Many applications already implement an attribute storage
system atop standard filesystems, and watch for remote changes
from other applications; a common attribute system will simplify
these applications. Dealing with placement rules will be new for
many applications, though a generic file browser should be able to
handle placement rules for many types of objects rather thanre-
quire that every single application do so.

Why should all devices need to know about all objects when de-
vices can only use some types of data?Merely acting as a conduit
to carry content and update notifications between other devices is a
useful service. Also, identifying what data types a device can and
can not use is no longer a simple problem; adding new applications
to mobile devices on the fly is now common. Devices which are
truly single purpose, rarely mobile, and hence not useful for up-
date propagation, could instead act as read-only edge devices as
described in the photo frame example above.

Do users really care about being able to find data on other devices
that are turned off or inaccessible?Having access to application
metadata for an object, even if the underlying object is inaccessible,
still allows many useful operations. For example, a user cangroup
photos into albums, add songs to playlists, find missing items, and
move these collections between devices, all without needing access
to the underlying objects.

Can this model work for multiple users?Sharing data collections
is probably feasible for family sized groups, though not larger orga-
nizations, as that would break the assumption that the totalamount
of metadata is small enough for any single to device to hold. One
way to design a shared collection would be to separate the stor-
age collection into unshared and shared items and run a separate
instance of the storage system over each.

Will handling conflicts be a problem for normal users?People
should almost never see conflicts in a device-transparent storage
system. Media objects and mail messages tend to be written once,
and read many times afterwards. The job of the storage systemis to
track enough version information so that the only time a person sees
a conflict is when that person made a truly incompatible change to
the same attribute field from two different, disconnected devices.
Any other type of change should be merged automatically by the
applications.

7. RELATED WORK
The systems that come closest to providing device-transparency

utilize optimistic replication to reach eventual consistency. All of
the existing systems we are aware of, however, fall in groupsto
either side of our goal by not supporting partial replicas, or by not
providing a complete view of the collection while disconnected.

Optimistic Replication Schemes:
Coda [13], Ficus [11], Ivy [17], and Pangaea [22] developed

optimistic replication and consistency algorithms for filesystems.
Coda used a centralized set of servers with disconnected clients. Fi-
cus and Ivy allow for updates between clients, but did not provide
for partial replicas, and Pangaea handled disconnected servers, but
not disconnected clients. A later extension to Ficus [21] added sup-
port for partial replicas, at the cost of no longer supporting arbitrary
network topologies.

BlueFS [18] and EnsemBlue [19] extended Coda to permit a de-
gree of decentralized updates along with more flexible placement
rules and support for unmodified consumer devices, but retains a
single central server.

Bayou [26] provided a device transparent view across multiple
devices, but did not support partial replicas, and requiredall appli-
cations to provide merge procedures to resolve all conflicts.

PersonalRAID [24] tried to provide device transparency along
with partial replicas. The approach taken, however, required users
to move a single portable storage token physically between devices.
Only one device can thus use the data collection at a given time.

TierStore [5], WinFS [15], and PRACTI [3] each support partial
replicas, but limit the subsets to subtrees of a traditionalhierarchi-
cal filesystems. TierStore targets Delay-Tolerant-Networking sce-
narios. WinFS aims to support large numbers of replicas. PRACTI
also provided consistency guarantees between different objects in
the collection. None of these systems provide device transparency
over a complete collection.

Cimbiosys [20] and Perspective [23], come closest to the goals
of device transparency; both support flexible placement rules over
partial replicas. Neither attempts to provide a complete view over
the data collection from disconnected devices or aid applications in
reasoning about object version histories. Polygraph [14] extended
Cimbiosys to recover from compromised devices.

Point to point synchronization:
Point-to-point synchronization protocols like rsync [28], tra [4],

and Unison [2] provide on-demand and efficient replication of di-
rectory hierarchies. They do not, however, easily extend toa clus-
ter of peer devices, handle partial replicas without extensive hand-
written rules, or proactively pass updates whenever connectivity
permits.

Version Control:
Version control systems such as Git [8] and Subversion [25] pro-

vide algorithms and models for reasoning about version histories,
allowing developers to time-shift working sets back to arbitrary
points.

Attribute Naming:
Storage system organization based on queries or attributesrather

than strict hierarchical names have been studied in severalsingle-
device [7, 10] and multi-device [6] settings, in addition tothe con-
temporary optimistic replication systems. More generally, the field
of Personal Information Management [12] aims to organize data so



that users can find it easily, whereas device transparency aims to aid
management of a data collection spread across multiple devices.

Centralized Topologies:
A number of newer systems provide tight application integration

between multiple clients, such as MobileMe [1], Google Gears [9],
and Live Mesh [16], but retain a centralized set of servers, so dis-
connected clients cannot share updates.

8. SUMMARY
Growing storage and network capabilities of mobile devices, com-

bined with personal data collections that do not fit on all devices,
leads to confusion caused by the object-on-a-device abstraction that
traditional storage systems provide.

This paper describes a new abstraction, device transparency, that
unifies the collections of objects on multiple devices into asingle
structure. Adopting the design principle of global metadata distri-
bution would allow a storage system to provide the illusion of true
device transparency in the face of intermittent communication and
limited storage. We are currently working to implement and evalu-
ate a personal storage system,Eyo, to examine these ideas in more
detail.
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