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1. INTRODUCTION

Application-level networking allows applications with no special privileges to
interact (almost) directly with a network interface for their communication
activities. This organization allows application writers to directly manipulate
their communication patterns and protocol semantics, which can enable net-
work communication systems to evolve more quickly and provide higher perfor-
mance than monolithic kernel- or server-based networking. For example, the
transactional TCP (T/TCP) protocol [Braden 1994], which can provide higher
HTTP performance, would undoubtedly have become commonplace years ago
if support for it could be bundled with Web browsers and servers. Applica-
tion providers have more incentive to make their applications behave well
than do operating system providers. In addition to enabling faster innovation,
application-level networking also allows for improved performance. For exam-
ple, our experiments show that the ability to integrate and specialize network-
ing code with application code can provide substantial performance increases
for real applications (e.g., up to a factor of 8 for an HTTP server).

In most systems, only privileged servers and the kernel are allowed to inter-
act with a network interface. Regularly privileged applications are restricted to
the abstraction interfaces and implementations of this privileged software. This
organization suffers two fundamental difficulties. First, an interface designed
to accommodate every application must anticipate all possible needs. Second,
the all-serving implementation of such an interface must resolve all tradeoffs
and anticipate all ways that the interface could be used. Experience suggests
that such prescience is infeasible and that the cost of mistakes is high [Anderson
1992; Bershad et al. 1995; Cheriton and Duda 1994; Hartman et al. 1994;
Kaashoek et al. 1997; Seltzer et al. 1996]. Although appropriate abstractions
can simplify the construction and improve the portability of applications, inap-
propriate abstractions often make it difficult or impossible to achieve semantic
and performance goals. For example, software overheads and inefficient use
of resources prevent many network data servers from exploiting the full per-
formance of the underlying network. The avoidance of OS latencies alone has
been shown to provide significant benefits (e.g., sub-100-microsecond round-trip
latencies) [von Eicken et al. 1995]. It has also been shown that servers can use
hardware resources much more efficiently than current OSs allow [Hitz 1995;
Kaashoek et al. 1996]. Further, because high-performance and correct seman-
tics are critical, inappropriate abstractions increase complexity as application
writers struggle to match incompatible needs and interfaces to recoup some of
the desired behavior.
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Application-level networking has the potential to eliminate these problems.
By reducing the software that cannot be bypassed to minimal primitives (e.g.,
open stream, send packet, receive packet) required for interapplication pro-
tection, one provides much greater flexibility. This flexibility will allow appli-
cation writers to specialize their networking activities to application-specific
needs, modifying default protocols and protocol implementations as necessary.
Rather than requiring all applications and all systems to adopt the same new
software, as kernel-based approaches do, application-level networking allows
distinct networking software to be bundled with different applications.

This paper describes and evaluates the application-level network services
implemented as part of the Xok/ExOS exokernel system [Kaashoek et al. 1997]
in 1996 and 1997. These services include UDP/IP, TCP/IP, POSIX sockets, ARP,
DNS, and tcpdump. Xok/ExOS’s conventional networking abstractions provide
performance that is competitive with a contemporary BSD system. In fact,
its application-level library for POSIX sockets outperforms the kernel-resident
BSD socket implementation by up to a factor of 2. Simultaneously, on the same
system, one can safely execute aggressively specialized networking applications
(e.g., a high-performance HTTP server and a protocol forwarder with correct
end-to-end semantics). We have found such specialized applications to be up to
eight times faster than socket-based versions.

The key challenges in realizing application-level networking are securely
multiplexing multiple applications onto a single networking interface, and do-
ing so while efficiently supporting useful network services. This paper explains
our design and implementation choices, experiences, and lessons learned. It
builds on and augments earlier work in application-level networking in three
main ways: (1) it provides concrete examples of exploiting the specializability of
application-level networking to improve end-to-end performance substantially,
(2) it demonstrates that and describes how full network services can be imple-
mented as independent, application-level libraries, and (3) it identifies a set
of base kernel mechanisms on which one can successfully do application-level
networking.

The remainder of this paper is organized as follows. Section 2 discusses
application-level networking in general, including previous work, basic design
considerations, and the general exokernel system architecture. Section 3 details
the design and implementation of Xok/ExOS’s networking components, includ-
ing the kernel network interfaces and mechanisms, and the application-level
implementation of standard network services. Section 4 describes the exper-
imental setup used in Sections 5–7 to evaluate the efficiency of Xok/ExOS’s
mechanisms and the benefits of their flexibility. Section 8 discusses interesting
complications, lessons learned, and open questions. Section 9 summarizes the
paper’s contributions.

2. BACKGROUND

In most systems, networking software is hidden away in the OS kernel; only
an abstract communication interface (e.g., POSIX sockets) is exposed to ap-
plication writers. For some applications, this is an ideal arrangement, since

ACM Transactions on Computer Systems, Vol. 20, No. 1, February 2002.



52 • Ganger et al.

the abstract interface is often a cross-platform standard that provides porta-
bility. However, when the interface is a poor match to an application’s needs,
the application writer is left with few options. Only those interactions explic-
itly supported by the kernel interface can be specified. Further, only behaviors
anticipated by the kernel implementors will be supported well—for example,
unexpected performance problems have been observed for servers supporting
many slow clients [Banga and Mogul 1998] and “persistent” HTTP connec-
tions [Heidemann 1997].

Consider sockets as a specific example. Sockets provide a level of abstraction
above transport protocols, hiding most network interactions behind a high-level
abstraction (either an unreliable datagram service or a reliable bytestream
service). For applications that fit sockets and current implementations well,
there is no problem. When applications evolve beyond implementer expecta-
tions, the high-level interface impedes performance and functionality. Some
examples of problems include: (1) transport-level acknowledgments and
retransmissions may be redundant (or undesirable) relative to similar
application-level functionality; this is exactly the kind of problem that the end-
to-end argument refers to; (2) socket interfaces inherently involve data copies
for most applications, because application buffers are not explicitly exchanged
with the kernel; (3) applications cannot describe known future activity to the
kernel, such as replies to be sent or upcoming connection termination, elimi-
nating some opportunities for dynamic specialization; (4) protocol implemen-
tations are hidden from applications, preventing minor changes to or merging
of protocols. Since there is no other way to communicate over the network
in most systems, application writers that encounter these problems have no
recourse.

We are certainly not the first to note this dilemma. Abstractly, the end-to-
end argument addresses this dilemma—the Internet’s protocol designers used
end-to-end arguments to provide remarkable scalability and robustness. OS
implementers violate the argument by embedding the resulting protocols in
kernels, stopping just short of the true end-points: the applications. There have
been a variety of approaches to addressing this dilemma, including application-
level networking. The remainder of this section discusses this previous work,
overviews the support needed for application-level networking, and briefly
overviews the exokernel OS architecture.

2.1 Related Work

Previous approaches to improving and advancing support for applications’ var-
ied network communication needs can be broken into three categories: bet-
ter kernel interfaces and implementations, extensible operating systems, and
application-level networking.

Better Kernel Interfaces and Implementations. The traditional system orga-
nization can be modified to better support new distributed applications with two
types of enhancements. First, there have been many proposed improvements
to the implementations of standard networking interfaces over the years. Some
notable enhancements targeted specifically for emerging network services
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include Fbufs [Druschel and Peterson 1993], LRP [Druschel and Banga 1996],
and better implementations of the select system call [Banga and Mogul 1998]. A
second, and ultimately more powerful, form of enhancement is to provide more
suitable and more flexible interfaces. Perhaps unfortunate examples of this are
the various “setsockopt,” “fcntl,” and “ioctl” calls for tweaking the behavior of
network sockets in a small set of predefined ways. Many superior interfaces
for asynchronous and copy-free data movement have been proposed [Banga
et al. 1998; Hutchinson and Peterson 1991; Krieger et al. 1994; O’Malley and
Peterson 1992; Pai et al. 1999; Pasquale et al. 1994; The Virtual Interface (VI)
Architecture 1998; von Eicken et al. 1995], though most systems are still not
using them. An interface with great potential is NT’s “sendfile” system call
(now also available in linux and FreeBSD), under which several interesting
performance enhancements could be implemented if the internal file system
and TCP/IP implementations were reorganized.

Both forms of enhancement suffer from major pragmatic and fundamental
limitations. The main pragmatic limitation is that it usually takes many years
for a new OS interface or implementation technique to move from research
prototypes to real systems, no matter how effective the research results show
it to be. Part of the reason for this is that changes become more complicated
as an OS matures, because enhancements often involve breaking modularity
boundaries and adding “fast-path” replicas of existing code paths. Even if OS
implementors could move faster, a fundamental limitation is that support is
always restricted to the needs foreseen by the implementors.

Application-level networking offers a solution to both problems. By allowing
application writers to bundle new implementations and interfaces with their
applications, application-level networking bypasses the need for the critical
shared resource (the OS kernel) to change for them.

Extensible Operating Systems. Several approaches have been proposed,
evaluated, and deployed to allow applications to replace resource manage-
ment abstractions with varying degrees of safety. For example, DOS and Alto
[Lampson and Sproull 1979] are completely open OSes that give arbitrary ap-
plications direct hardware access but provide no protection. Other systems,
such as Netware [Major et al. 1994] and Windows NT, allow arbitrary flexibil-
ity for privileged users only, again with no protection. Of course, arbitrary static
flexibility is also available to anyone with source code to an OS and sufficient
access to boot it on a machine; this type of flexibility forms the basis of Network
Appliance’s and Plan 9’s approaches to building high-performance networked
data servers [Hitz 1995; Pike et al. 1995]. Several recent extensible OSes, such
as the Cache Kernel [Cheriton and Duda 1994], Vino [Seltzer et al. 1996], SPIN
[Bershad et al. 1995; Fiuczynski and Bershad 1996], and the exokernel [Engler
et al. 1995; Kaashoek et al. 1997], focus on allowing similar degrees of flexi-
bility for arbitrary applications while maintaining interapplication protection
and fault-isolation.

All of these approaches to OS extension provide the flexibility needed to
support changing needs. This paper describes how the networking support in
the Xok/ExOS exokernel provides speed and flexibility.
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Application-Level Networking. Several previous researchers have pro-
posed, evaluated, and developed mechanisms for supporting application-level
networking (e.g., Black et al. [1997]; Edwards et al. [1994]; Kaashoek et al.
[1997]; Maeda and Bershad [1993]; Mogul et al. [1987]; Thekkath et al. [1993];
von Eicken et al. [1995]). These efforts provided the arguments for the approach,
showed that it could be used for some protocols, and demonstrated clear bene-
fits for important workloads (e.g., cluster-based parallel computation). Based on
this prior work, a standard network interface specification for cluster comput-
ing (called the VI Architecture [The Virtual Interface (VI) Architecture 1998])
is being developed and promoted by a set of companies led by Compaq, Intel,
and Microsoft.

Most of the prior work on application-level networking has focused on the
latency improvements provided by avoiding kernel entry and exit. A notable
exception is the Nemesis system [Black et al. 1997] and its recent Arsenic
network card support [Pratt and Fraser 2001], which focus on the quality of
service benefits provided by removing networking from the shared kernel. (The
Lazy Receiver Processing architecture [Druschel and Banga 1996] provides
many of the same benefits for in-kernel implementations.) We believe that the
most important aspect of application-level networking is the control that it
gives to application writers—network protocols and implementations can be
integrated with and specialized for application activities, providing order of
magnitude increases in performance.

This paper describes and evaluates the application-level network ser-
vices of the Xok/ExOS exokernel. The exokernel project extended earlier
application-level networking work in three main ways: (1) by providing con-
crete examples—such as the Cheetah HTTP server—of exploiting the special-
izability of application-level networking to improve end-to-end performance
substantially, (2) by demonstrating that and describing how full network ser-
vices including TCP/IP, UDP/IP, POSIX sockets, ARP, DNS, and tcpdump can
be implemented as independent application-level libraries, and (3) by identify-
ing a set of base network interface (NI) and OS mechanisms on which one can
successfully do (1) and (2).

2.2 Application-Level Networking

With application-level networking, untrusted applications transmit, receive,
and process their own network packets. This requires OS support for trans-
ferring packets between applications and a low-level NI exported by either an
advanced network interface card (NIC) or a device driver that emulates a NIC’s
role. This section briefly describes general application-level networking design
issues. Section 3 describes in detail the Xok/ExOS exokernel’s implementation
choices.

Overview. The central requirement for safe application-level networking
is multiplexing the NI. Multiplexing, or safely sharing, an NI among a set of
applications (rather than giving ownership to a single entity) involves two main
sets of issues: those related to sending packets and those related to receiving
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packets. Common to both are some resource management issues for the host
OS, including notification, scheduling, and memory accessibility. Each of these
design issues is discussed below.

Transmission. At one level, application-level transmission of packets is
straight-forward—an application can simply give the NI a pointer to the mem-
ory region(s) containing the packet to be sent. Assuming that the NI includes
DMA support, it can pull the packet from memory and put it on the wire.
For data confidentiality purposes, there are also issues of pinning the mem-
ory regions and ensuring that they are actually readable by the transmitting
application. Also, the application should be notified when the packet data has
been copied from the memory regions—until this point, the application should
not modify the regions in order to avoid corruption of the packet being sent.
Two somewhat controversial design considerations center on whether and how
to provide transmit queue fairness (among applications) and pretransmission
verification of packets.

Reception. The packet reception component of NI multiplexing can be bro-
ken into two steps: packet demultiplexing and packet buffering. Packet demul-

tiplexing is the process of identifying with which connection or application a
particular packet should be associated. It is the decision process by which the
contents of incoming packets are kept private from all applications except those
that have rights to them. Generally speaking, packet demultiplexing is accom-
plished by checking particular data offsets in the packet, usually corresponding
to values in the various headers. One powerful approach to doing this is to use
some form of packet filter [Mogul et al. 1987], which involves pattern matching
a preloaded set of <offset,value> pairs with the packet contents. A match iden-
tifies the appropriate receiver, and unmatched packets are handled via some
default path (e.g., by dropping them or giving them to a default OS routine).
Packet buffering involves delivering newly arrived packets to the applications
for which they are destined. Usually, this involves copying the packets into
preregistered memory regions. If the NIC can do the demultiplexing, then it
can place the packet into the correct buffer directly. Otherwise, a programmed
copy is required. Safety requires that any physical pages directly accessed by a
NIC be pinned to prevent page faults or, worse, reallocation by other applica-
tions. Also, if there are no empty preregistered buffers when a packet arrives,
the packet is usually dropped. One alternative option is to buffer packets in
the kernel (or on the NIC) and to give an application in-place access to their
packets. However, this is complex with current memory protection mechanisms,
unless one is willing to dedicate a full page to each received network packet
(of 64 to 1536 bytes for Ethernet).

Resource Management. Notification, process scheduling, and memory man-
agement are important aspects of both transmission and reception, and many
options exist for each. For example, notification approaches range between
polling on status registers and interrupt-like schemes (e.g., upcalls or signals).
Process scheduling can integrate some awareness of network events or be
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Fig. 1. Exokernel operating system architecture. A small “exo” kernel enforces protection (mul-
tiplexing) of hardware resources, but otherwise avoids abstraction and non-hardware-protection
functionality. Applications can link libraries to obtain desired abstractions, such as the POSIX-
like library called “ExOS” used by the standard UNIX csh application shown. The Web server
and Barnes-Hut applications shown use more specialized libraries that contain only the specific
functionality they require.

independent, with a corresponding impact on round-trip latencies. Memory
management must deal with the need for preallocation and pinning, balanced
against more conventional activities.

2.3 Exokernels and Library OSs

The work and experiments described in this paper were performed in the con-
text of the Xok/ExOS exokernel system [Kaashoek et al. 1997]. The exokernel
OS architecture [Engler et al. 1995], shown in Figure 1, was designed to give
applications direct control over the management of their hardware resources
while providing strong interapplication protection and fault-isolation. In this
architecture, a small kernel, called an exokernel, does nothing except multiplex
(i.e., time-share) the hardware resources among the applications running on
the system. Applications are given direct, low-level access to their resources.
The high-level resource abstractions that are traditionally provided by OSes
are instead provided in libraries against which applications can link. This or-
ganization allows application writers to select from among multiple resource
management options or to construct their own. The exokernel ensures that ag-
gressively specialized (and even buggy) resource management strategies and
implementations can be used by critical applications without interfering with
the correct operation of other programs on the system.

The ideal being pursued is that of safely allowing applications to bypass
the high-level interfaces and complex implementations of conventional OSes.
This would allow applications to interact with their hardware resources with-
out going through any intermediaries (kernel or server) and without looking
through any abstractions. In practice, of course, interapplication protection re-
quired that the exokernel insist on some degree of abstraction. Also, a server
or two crept into our exokernel system prototype when we chose to precisely
and securely emulate certain POSIX semantics. Still, by targeting the ideal
case, we learned a great deal about how to support and build application-level
services—the lessons related to networking are discussed in this paper.
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Fig. 2. Xok/ExOS’s application-level networking architecture. Applications transmit and re-
ceive packets “directly” via virtual network interfaces. Received packets are compared to pre-
specified packet filters and copied into a pre-registered buffer associated with the matched fil-
ter. Transmitted packets are linked into a shared send queue without copying the data; the four
small squares in the application regions contain the data for the four packets currently in the send
queue. Three applications are shown: the Cheetah HTTP server, which will be described further
in Section 5, the Barnes-Hut parallel application on top of the C Region Library (an explicit dis-
tributed shared memory system [Johnson et al. 1995]), and the BSD TELNETD application on top of
a POSIX-compliant TCP/IP socket library.

Xok is an exokernel for Intel x86-based computers, and ExOS is its default,
POSIX-like library operating system (libOS). Xok/ExOS is self-hosting (i.e., it
can be edited, compiled, linked, and rebooted on itself), and can run many un-
modified UNIX programs (e.g., perl, gcc, telnet, and most file utilities). Relevant
to this paper, it also supports a wide range of standard networking protocols,
tools and applications, including UDP/IP, TCP/IP, ARP, DNS, NFS, FTP, FTPD,
POSIX-like sockets, and a tightly-integrated, highly-specialized, very efficient
HTTP server. The remainder of this paper details how.

3. APPLICATION-LEVEL NETWORKING ON AN EXOKERNEL

This section describes the application-level network services implemented in
the Xok/ExOS exokernel system [Kaashoek et al. 1997]. It includes a high-
level description of the application-level networking architecture and detailed
descriptions of Xok’s NI multiplexing mechanisms, other relevant Xok mecha-
nisms (e.g., for memory mapping and scheduling), and ExOS’s implementations
of basic network services.

3.1 Overview of Software Architecture

Figure 2 shows the basic architecture of Xok/ExOS’s networking system, in
which applications interact (almost) directly with the network interface, a small
kernel component makes this safe, and libraries provide applications with net-
working abstractions that correspond to their needs. Outbound packets are sent
directly from application memory. Applications invoke the “send packet” sys-
tem call to add descriptors of outbound packets to the kernel’s FIFO send queue.
Inbound packets are received by Xok’s network device drivers (linked into the
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Table I. The Main Kernel Functions for Supporting Application-Level Networking

Transmit net xmit Asynchronously transmit a packet on a given network interface

Demux dpf insert Insert a filter and associate a packet ring with it
dpf delete Dereference a filter
dpf ref Add a reference to a filter (e.g., for a new process)

Buffering dpf pktring Route filter’s matches to a new packet ring
pktring setring Set up a new packet ring with specified set of entries
pktring modring Add, delete, or replace packet ring entries
pktring delring Delete packet ring from kernel’s view

Others wkpred Install wakeup predicate
insert pte Insert page table entry

kernel) and passed into the kernel proper. Xok identifies each packet’s destina-
tion by use of a packet filter engine and then copies it into one or more rings of
preregistered buffers shared between the kernel and applications. The remain-
der of this section explains both the kernel mechanisms and the application-
level implementation of standard network services.

3.2 Xok Interfaces and Mechanisms

This subsection describes the components of Xok that are directly relevant to
supporting fast and flexible application-level networking. Some of these were
outlined in Kaashoek et al. [1997], but they are revisited here with a focus on
how they relate to application-level networking. The abstractions used by Xok
to make interapplication protection tractable are the only ones that cannot be
bypassed by application writers. Therefore, their proper design is critical to
avoiding limitations down the road. Fundamentally, Xok’s NI is quite similar
to previous user-level NIs. There are some interesting differences, but we de-
scribe Xok’s mainly to provide context for the application-level network services
described subsequently. Also, Xok’s non-NI support is significantly different
from that of most other systems. Xok’s main kernel functions for supporting
application-level networking are listed in Table I. We discuss them in detail.

Memory Management. Xok manages three main data structures to multi-
plex main memory: per-process x86-defined virtual memory (VM) page tables,
per-page structures that identify which processes have which access rights, and
a free list. Physical pages are free when no process has access. Access rights are
added in two situations: when a process allocates a physical page from the free
list and when a process with access gives the same or lesser access to another
process. Although it is outside the scope of this paper, this base support allows
for hierarchical memory management. A process can map its own page tables
read-only. A process can also direct Xok to modify its page table by removing
VM mappings or adding mappings to pages to which they have appropriate ac-
cess. Because each process manages its own page tables, processes can ensure
that they have physical pages backing important virtual address ranges, and
they can share memory with other processes in arbitrary and dynamic ways.
When it is necessary to revoke an allocation from a process, the kernel makes
an upcall to that process—the process can then pick a page, save its contents if
necessary, and give it back to the kernel.
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Xok always “pins” physical pages that are being shared by the kernel, a
device driver, or a device. For example, this includes pages holding data to be
transmitted and pages that hold notification variables. In this context, we are
using the term “pin” to indicate that the kernel will not allow the page to be
allocated from the free list, even if it were to be made free. This does not imply
that the kernel makes the page read-only or unaccessible, and the kernel does
not prevent the application from adding or removing VM mappings for the page.

Efficient Polling. Xok does not understand why applications block or what
conditions they wait for. In fact, Xok has no blocking interfaces. By default, Xok
schedules applications without consideration of any awaited conditions. Once
scheduled, an application can check if an awaited condition has been met and,
if not, immediately yield the CPU. WK (or WaKeup) predicates provide appli-
cations running on Xok with a general mechanism for more efficient polling.
A WK predicate is a set of conditions (in sum-of-products style) that describe
the circumstances of interest to an application. Each condition consists of com-
paring some memory location to either a constant value or another memory
location. When a process wants to wait for certain circumstances, it constructs
the appropriate predicate and gives it to Xok. Xok checks and dynamically com-
piles the predicate into efficient native code. Xok also pins all pages accessed by
the predicate. The process scheduler will always evaluate a sleeping process’s
current predicate (if any) before it considers giving the CPU to that process.
If the predicate evaluates to true, the process is marked runnable. In practice,
all of the circumstances for which we used polling (e.g., sleep(), select(), IPC,
resource exhaustion, and I/O event notifications) were expressable as simple
predicates. As a result, many fewer context switches are necessary when the
system becomes populated with many polling processes.

CPU Scheduling. The Xok CPU scheduler manages the CPU with no par-
ticular consideration for I/O devices. The one exception to this rule is that
the current scheduling decision is reconsidered whenever an I/O event (e.g.,
a packet arrival) related to a sleeping process occurs. This reconsideration in-
cludes evaluating any corresponding WK predicates. If the I/O event causes
the corresponding process to awaken and that process should be granted the
current CPU time, the newly awakened process will be scheduled. I/O events
that relate to a runnable or running process do not cause the scheduler to be
invoked. Also, the fact that the process is made runnable does not guarantee
that a context switch will occur immediately.

Packet Transmission. Xok’s packet transmission interface consists of a sys-
tem call that takes three parameters: the interface on which to send the packet,
an array of <address,size> pairs, and a pointer to an integer in memory. The
kernel makes certain that the initiator has read access to the set of mem-
ory regions and write access to the integer. Then, unless the relevant device’s
transmit queue is full, the various pages are pinned and the packet descriptor
is appended to the queue. When the device driver eventually learns that the
packet has been sent by the card, Xok decrements the integer in memory and
unpins the pages. Decrementing the notification integer fits well with the WK
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mechanism and allows both per-packet and grouped handling by applications.
It is up to the application to avoid modifying its own packet until it has been
sent, which can be inferred from the value of the integer. Xok’s current imple-
mentation enforces no interapplication fairness with respect to the transmit
queue and allows applications to transmit any data desired onto the network.

Packet Demultiplexing. Xok uses a packet filter engine, called Dynamic
Packet Filter (DPF) [Engler and Kaashoek 1996], to demultiplex packets among
receivers. DPF uses dynamic code generation to make packet filtering more effi-
cient than previous software packet filter systems [Mogul et al. 1987; Jacobson
McCanne 1993]. The downside of DPF is that filter installation is more ex-
pensive. In other respects, it is similar to these previous packet filter systems.
Applications request access to particular types of received packets (e.g., TCP
packets to port 80) by constructing the corresponding DPF filter and passing
it to the Xok “install filter” system call. The kernel verifies that the new filter
either does not overlap an existing filter or that the application has access to
said filter.

Packet Buffering. Associated with each filter is a packet ring identifier. A
packet ring is a ring of buffers set up by an application and shared with Xok.
Each buffer has a field that indicates the owner: Xok if zero and not-Xok other-
wise. As shown in Figure 2, when a received packet matches a filter associated
with a particular packet ring, Xok tries to copy it into the current packet ring
entry. If the entry is not owned by Xok, the packet is dropped. If the packet is
longer than the entry, it is truncated. After the contents have been copied into
place, the original packet size is written into the ownership flag, simultaneously
giving notification and the size information to the application. Applications han-
dle their packets when and how they choose; they return buffers to the kernel
by simply writing a zero to the ownership flag. This interface involves one copy
for each received packet, because the kernel performs the demultiplexing; this
copy can be avoided with NICs that perform the demultiplexing.

3.3 ExOS Networking Abstractions

This subsection describes, with specific examples, the key mechanisms used in
ExOS to achieve efficient application-level network services. In the process, we
identify places where, in retrospect, we could have made better design choices.
Because most of ExOS is just a library linked by applications, like the math
library, our descriptions often use “ExOS” and “application” interchangeably
when describing how ExOS works. It is important to note that aggressive ap-
plications, like the Cheetah HTTP server described in Section 5, can bypass
any and all aspects of the ExOS support by simply not invoking them.

UDP/IP. The User Datagram Protocol (UDP) is a simple protocol, which
makes it a good example to start with. UDP is connectionless and has few
built-in protocol activities (no retransmission, no flow control, etc.). To create
any networking end-point on Xok, an application (1) allocates physical memory,
constructs a packet ring, and registers it with Xok, and (2) constructs a DPF
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filter description and registers it with Xok, specifying that it be associated with
the new packet ring. After this setup, Xok copies incoming packets that match
the new filter into the new packet ring. To create a UDP end-point, ExOS builds
a DPF filter to identify Internet Protocol (IP) packets that specify UDP as the
protocol and have the desired source and destination IP addresses and UDP
port number values. The source IP address, the destination IP address and the
source UDP port number can be left as wildcards, meaning that they are not
checked during DPF’s pattern match for this end-point’s filter. Any combination
of these values that does not overlap existing filters is allowed.

Once an application has made itself an end-point, it will receive packets
and can process them when and how it likes. To sleep waiting for packets, the
application constructs a WK predicate that tells the process scheduler to leave
it sleeping until the ownership flag of the next packet ring entry changes from
zero (i.e., owned by Xok) to nonzero. When a packet arrives, Xok copies it into
the packet ring and puts its nonzero size into the ownership flag. The packet,
in UDP format, can then be parsed and processed by the application.

To send a UDP packet, an application constructs an appropriate header and
passes to the xmit packet system call a gather list of pointers to the header
and the packet contents. The application knows that it can reuse the memory
regions holding the header and data when the notification integer specified in
the xmit packet call is decremented. (Note: no packet rings or DPF filters are
required for packet transmission.)

TCP/IP. Operationally, application-level Transmission Control Protocol
(TCP) end-points are established and used in the same way as UDP end-points.
However, TCP is a more involved protocol and requires additional support from
the underlying system in order to function effectively and correctly. Some as-
pects, such as generating acknowledgments and holding onto transmitted data
buffers until acknowledgment rather than letting them be reused after trans-
mission, are just part of the TCP implementation. Other aspects involve kernel
mechanism or careful organization of the core ExOS code. The four main exam-
ples are the following:

(1) Listen/accept. TCP is a connection-oriented protocol, which means that two
end-points exchange messages to establish a connection before data is actu-
ally exchanged. The common approach to doing this is to have one side es-
tablish an end-point that “listens” at a particular TCP port number for other
end-points to send a “connect” message. The listener then acknowledges the
connect message with a connect message of its own, thereby “accepting”
the connection. Generally, the new connection is viewed as a new end-
point on the listener’s system and the listen end-point remains intact. To
establish this new end-point, an application can create a new packet ring
and a new DPF filter that gets the correct subset of the listener’s packets.
DPF allows the creation of this more specific subsetting filter, so long as
the creator has the proper capability for the filter being subsetted. Because
installing a DPF filter is time-consuming, ExOS generally does not actually
create a distinct Xok-visible end-point until it is required for interapplica-
tion protection, if it ever is. Instead, the listen end-point continues to get
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the packets for both the listen end-point and the new connection. A second
demultiplexing step in user space identifies the specific connection. This
decision, which assists interendpoint resource sharing, is discussed further
below.

(2) Timers and timeouts. TCP requires timers to trigger a number of activities.
For example, TCP is a “reliable” protocol, which means that it retransmits
data that is not acknowledged and therefore may have been lost. To do this
robustly, TCP waits some period of time before trying again. It is straight-
forward to have the TCP code check for timeouts and arrived packets when
it is executing. However, an application may compute and/or sleep for ex-
tended periods of time between calls into the TCP code. Therefore, ExOS
supports WK add-ons and context switch add-ons to enable timeouts and
arrived packets to be handled in a timely manner. These add-ons allow an
application library to register functions to be called by ExOS each time a
context switch upcall is being processed or a WK predicate is being down-
loaded in the given application. The application’s context switch add-ons
are called by ExOS when the process is given the processor for a quantum.1

ExOS’s TCP code uses a context switch add-on to check for and process time-
outs and arrived packets “in the background.” This works well for TCP’s
purposes, because the timers can be coarse-grain and imprecise without
affecting correctness—and when performance is critical because a lot of
traffic is going through the TCP code, the internal timer checks provide
greater precision. WK add-ons are called by ExOS when a WK predicate is
to be downloaded, allowing application modules to add “OR” conditions to
the predicate. ExOS’s TCP code uses the WK predicate add-on to cause the
process to be awakened at least by the next timeout or packet arrival. A
handler function associated with the WK add-on processes the TCP time-
out, if that is the reason for waking up. After calling such a handler, ExOS
reconstructs the WK predicate and puts the process back to sleep via the
same algorithm as before.

(3) TIME WAIT. TCP includes explicit support for preventing packets of pre-
vious connections from being processed as part of a new connection. It
does this by having at least one end-point of a closing connection enter
and remain in the TIME WAIT state for two times the maximum round-
trip time (specified as two minutes in the TCP specification [Postel 1981]).
This presents a problem for application-level TCP implementations when
an application wants to close their connections and terminate. The easi-
est solution, which ExOS used for awhile, is to have the process wait for
all of its TIME WAIT connections to fully close before allowing the pro-
cess to terminate. Unfortunately, this approach can have adverse effects on
performance for applications, such as command line shells, that wait for
child processes to complete before continuing. The revised solution exploits

1Recall that exokernel applications participate in their own context switching (e.g., to save and
restore registers). This activity, which is a core component of the ExOS library, can also be special-
ized for other purposes, such as the add-ons discussed here and software interrupt masking (for
application-level critical sections on uniprocessors).
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the application-level nature of ExOS to deliver the “child is done” signal
to the parent process before actually terminating. Thus, a process can ef-
fectively terminate from the POSIX process hierarchy point of view, while
persisting until all TIME WAIT TCP connections close. A third approach,
which we recommend for future implementations, would be to simply hand-
off TIME WAIT connections to a special-purpose server when the process
wants to terminate. This hand-off involves a simple sequence of steps: pro-
vide the server with the few relevant TCP control block values, give the
corresponding DPF filter to the server, and switch its association from the
application’s packet ring to the server’s packet ring.

(4) Port number selection. Implicit port number selection is an important as-
pect of a TCP implementation. Although an application can choose its own
if it desires, often it asks the system to pick a good one for it. A “good
one” means, at the least, one that is not currently in use. Because of the
TCP TIME WAIT state, it is also preferable to select one that has not re-
cently been used, since the application may try to use the same service on
the same server as the previous user of that port number. Our current ap-
proach, driven by our desire for maximum decentralization, is to pick a
random port number in the allowed range (e.g., 1024–65535) and repick if
the DPF filter is rejected because someone else is currently using that port
number. This has worked well for us in practice. However, it will occasion-
ally select a recently used port number, which DPF will not complain about,
and use it to open a connection to the same server as before. In this case,
a process can wait for a lengthy period of time for the remote TIME WAIT
state to clear. For this reason, centralized TCP implementations generally
sequence through the valid port number range to reduce the probability of
such a collision. Achieving this on Xok would require a “port number” server.

When all of the above is combined, what we have described and built is a
completely decentralized, application-level TCP implementation. It has all of
the performance benefits and flexibilities of application-level networking, and
it communicates correctly with every TCP system that we have tried. In ad-
dition, because it is at the application level, we found it easier to implement
performance enhancements. For example, by minimizing and isolating proto-
col control blocks for TIME WAIT connections, we have largely eliminated the
“TIME WAIT problems” reported in Faber et al. [1999] and Mogul [1995], and
caused by large numbers of such connections in busy Web servers. As a re-
sult of this and other modifications (e.g., heavy use of precomputed values and
careful recycling of buffers), ExOS’s application-level TCP implementation out-
performs that of a popular BSD TCP by up to a factor of 2 (see Section 5).

POSIX Sockets. POSIX sockets provide a level of abstraction on top of
UDP/IP and TCP/IP end-points (as well as other protocols). Therefore, sock-
ets have all of the same requirements and components as described above
for the protocols. In addition, sockets include a number of features to hide
characteristics of the underlying protocol. For example, sockets handle pack-
ets in the background and buffer received data if the process has not already
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provided a destination memory region. Also, sockets buffer outgoing data and,
for TCP, keep the buffered data until it is acknowledged and retransmit it
when necessary. In ExOS’s implementation, all synchronous socket calls (i.e.,
calls that may involve waiting for network packets) use WK predicates as de-
scribed earlier. This is also true of the select call, which waits for activity on
any of a set of sockets. It is important to note, however, that an application
process may awaken to do work in the socket library but then go back to sleep
immediately after, because the work only moved it part way toward completion
of the original socket call.

Inter-End-Point Resource Sharing. Many network-intensive applications
use multiple network end-points at the same time. It is important to share
resources such as buffers among these end-points rather than statically parti-
tioning such resources among them. This sharing can also eliminate many end-
point setup costs for applications that involve many simultaneous or short-lived
connections. ExOS pools resources across end-points owned by a particular ap-
plication in several ways. First, as discussed above for TCP, it exploits the fact
that the DPF filter for an accepted connection is a strict subset of the filter
for the listen end-point. ExOS replaces Xok-level setup for the new end-point
with ExOS-level demultiplexing across end-points owned by the application.
Second, it exploits the fact that Xok allows multiple DPF filters to place their
packets into a single packet ring. When a new end-point is desired for listen or
connect, the relevant DPF filter is registered with Xok and associated with the
process’s main packet ring. Third, it exploits the fact that socket-level buffers
are completely in application space to share the pool across sockets owned by
that application. These mechanisms reduce the CPU time and memory space
requirements of network services that use multiple connections.

Interprocess Socket Sharing. An important aspect of POSIX sockets is inter-
process socket sharing, which generally occurs when one process opens a socket
and then forks off a child process; both then share the open socket. The key to
supporting this with application-level networking is ensuring that everything
associated with a set of sockets can be encapsulated in a specific set of dedicated
pages. This includes the file descriptor and socket structures, the protocol con-
trol blocks, the socket data buffers, and the packet rings exposed to the kernel
for received packets. The ExOS software and structures are organized to allow
extraction of a socket from one such set into a distinct set of pages. Also, a sin-
gle process can simultaneously utilize several such sets. This allows ExOS to
dynamically isolate one set of sockets from another. This ability allows ExOS to
enforce a variety of protection models, ranging from share-it-all-with-everyone
to use-a-server-whenever-there-is-more-than-one-app-with-access. Our default
is in the middle: socket state for any given socket is shared by exactly that set
of processes that have access to it. Full support of POSIX’s socket isolation se-
mantics requires the use of a third-party server (as in micro-kernel systems)
for policing access to shared socket structures.

Figure 3 illustrates how ExOS uses the ability to dynamically separate sets
of socket structures into distinct sets of pages. Specifically, it shows the inetd
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Fig. 3. Sharing of socket structures in inetd. This example shows the sharing of connections
between inetd and a child telnetd process as inetd (a) accepts a new connection, (b) forks the
telnetd process for it, and (c) closes the handed-off socket. Each connected set of boxes represents
a set of related physical pages, and the ovals indicate which processes have access to them. The
black oval represents inetd and the grey oval represents telnetd.

network service accepting a network connection, forking telnetd for that one
new connection, and then closing the one new connection. Before and after the
accept, the ExOS structures related to all of inetd’s connections share one set
of pages. As part of forking the new process, ExOS separates the one shared
connection into a distinct set of pages, which it maps into both processes’ address
spaces at the same virtual address. When inetd subsequently closes the socket,
it unmaps the pages, completing the socket hand-off.

System-Wide Services. There are a number of critical system-wide network
services. This section describes four to illustrate how such services are provided
at the application level on top of Xok’s interfaces.

(1) Naming and routing. Naming, or the translation of a “higher-level” iden-
tification to a “lower-level” identification, is core to networking. Two prime
examples are the Domain Name System (DNS), which translates alphanu-
meric machine names to IP addresses, and the Address Resolution Pro-
tocol (ARP), which translates IP addresses to link-level addresses (e.g.,
Ethernet). Related to ARP-level translation is routing, whereby the link-
level address for a nonlocal IP address is replaced by the link-level address
of the first router or gateway along the path to the nonlocal machine. For
application-level networking, a practical aspect of these naming services
is safe management of the translation tables. The sharing model is that
everyone can look at them, but updates need to be wellformed and correct
according to the naming protocols’ rules. (DNS and ARP both rely on wire
trust and are therefore subject to spoofing attacks). Using ARP as a repre-
sentative example, ExOS supports this sharing model by giving ownership
of the ARP table to an arpd application. This application, started during
system initialization, installs a DPF filter that gives it all incoming ARP
packets, including ARP responses. The ARP table, which only arpd can
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update, is read-shared and mapped by all processes. When a process de-
sires ARP information, it simply looks in the table. If the desired entry
is not present, the application constructs and transmits an ARP request
packet to get the information from other network nodes. All received ARP
packets are delivered by Xok to arpd, which updates the ARP table appro-
priately. An application that needs the update can use a WK predicate to
wait for the table to be modified and repeat its table lookup. The applica-
tion also includes a timeout clause in its WK predicate and repeats the ARP
request if the original was lost. The same basic approach can be used for
each of the name translation tables.

(2) Error reporting. Another practical consideration in networking is identify-
ing erroneous packets and delivering notification of problems to end-points.
The best example of this is the Internet Control Message Protocol (ICMP).
For example, when a valid UDP packet with no interested end-point is re-
ceived, an ICMP packet should be sent to the UDP packet’s sender with an
indication of the problem (e.g., unsupported protocol or unreachable port).
Many unexpected TCP segments also need a default response. These de-
fault responses are provided in ExOS by a “stray packet” daemon, started
at system initiation time, that downloads a DPF filter that matches any
IP packet but can be subsetted by any other application. In this way, any
unclaimed IP packets will be seen and handled by the “stray packet” server.

(3) Monitoring of traffic. Although it is not a core network service, it is often
useful to be able to observe the traffic on the local network link. One com-
mon approach to doing this is exemplified by the UNIX tcpdump utility.
tcpdump directs the kernel to give it copies of all received packets, which it
then prints in readable formats. Xok provides support for delivering copies
of specific sets of packets to applications via a mechanism called “copy fil-
ters.” A copy filter uses the same DPF mechanism as regular filters, except
that each copy filter is evaluated independently and filter overlapping is
allowed. Because the arbitrary overlapping violates confidentiality, super-
user privileges are required to install a copy filter. (Note: copy filters were
not designed to support general multicast receives on a single system; such
support is not present in Xok/ExOS.) As with regular filters, matched pack-
ets are copied into the associated packet ring. Xok/ExOS’s tcpdump-like
application simply downloads a copy filter that matches all packets and
handles the observed packets as specified in the command-line options.

(4) Well-known services. Standard networking practice identifies a number of
well-known port numbers for popular services (e.g., telnet is port 23 and
http is port 80). ExOS supports this by starting up the system’s daemons,
including inetd, before allowing users to access the system. Doing so gives
these daemons first choice of the port numbers, because they have the first
opportunity to download filters. Any that are not taken can be allocated
by applications. ExOS could enforce a rule that states “only high-privilege
applications can use port numbers below 1024” by initiating a server that
grabs all restricted port numbers and allows only high-privilege applica-
tions to subset its filters. We did not implement this functionality.
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3.4 Summary

The ExOS libraries and daemons described above provide complete network-
ing services at the application level. These services include UDP/IP, TCP/IP,
POSIX sockets, ARP, DNS, and network monitoring. This is made possible by
the NI multiplexing mechanisms in Xok and careful organization of core ExOS
modules.

4. EXPERIMENTAL APPARATUS

Sections 5–7 evaluate the efficiency and flexibility of Xok/ExOS’s application-
level networking support. This section describes the experimental setup used
to conduct the measurements in 1997 and 1998.

All experiments were performed using standard personal computer tech-
nologies. All systems used include 200 MHz Intel Pentium Pro processors, the
Intel VS440FX PCI chip set, and 64 MB of main memory. The systems all used
SMC EtherPower 10/100 fast Ethernet (i.e., 100 Mbit/second) cards [Standard
Microsystems Corporation 1996a] and were connected via a dedicated
SMC TigerSwitch 100 [Standard Microsystems Corporation 1996b] high-
performance fast Ethernet switch. The cards are based on the DEC 21140A
LAN controller chip [Digital Equipment Corporation 1996] (a.k.a. the Tulip
chip). The switch can interconnect eight full-duplex fast Ethernets at nearly
full speed on its 1.8 Gbit/second backplane. One of the systems, used as the
server when relevant, is equipped with three fast Ethernet cards. In such cases,
each of the three client machines communicates with a separate card.

Most of our experiments focus on the Xok/ExOS system. However, we also
compare the end-to-end performance of our network service implementations
to the performance provided by OpenBSD 2.2, which is a free operating system
based on 4.4 BSD [McKusick et al. 1996]. The Xok device drivers were taken
from OpenBSD, removing this potential variable. In general, OpenBSD out-
performs the exokernel-based system used in these experiments, which is func-
tional but has not been tuned significantly. ExOS’s TCP and socket libraries, on
the other hand, have been tuned and they consistently outperform OpenBSD
when emulating the same interfaces—by 50–100% for the examples in this pa-
per. This fact allows us to focus on the benefits of specializability, rather than
having the result be clouded by unknown variables.

The performance measurements came from several sources. Measurements
of elapsed time use the Pentium Pro cycle counter to get 5-nanosecond granu-
larity on the 200 MHz systems. Event counts (e.g., network transmissions, disk
requests, and interrupts) are maintained by the kernel and exposed read-only
to applications. All measurements presented are averages of at least five exe-
cutions, with coefficients of variation of less than 0.02 unless otherwise stated.

5. CHEETAH: A FAST HTTP SERVER

This section illustrates the efficiency and flexibility of Xok/ExOS’s application-
level networking services, using HTTP servers as a case study. First, the
same HTTP server is shown to deliver twice the throughput when using the
Xok/ExOS TCP/IP socket libraries described in Section 3 rather than when
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running on OpenBSD. Then, the Cheetah HTTP server is used to demonstrate
one of the main advantages of application-level networking: specialization. By
exploiting the ability to safely specialize application-level implementations, we
demonstrate an equivalently functional HTTP server that delivers three to
eight times the throughput of servers running on OpenBSD. A brief synopsis
of this section appeared in an earlier paper [Kaashoek et al. 1997]. Here, we
motivate, describe, and analyze Cheetah’s use of application-level networking.

5.1 Performance and Complexity Problems in HTTP Servers

It is easy to construct a functional HTTP server with the abstractions provided
by current general-purpose OSs. With a few hundred lines of code, an appli-
cation can listen for TCP connections via the socket interface, read requested
documents from the file system, and write them to accepted connections. There
are a variety of extensions (e.g., MIME header options and CGI scripts) to this
simple model, but it captures the performance-critical core.

Unfortunately, the performance of such implementations tends to be poor
for several reasons. First, all applications (HTTP servers and otherwise) on
a given system share a single implementation of TCP sockets. Unfortunately,
researchers have found the implementations present in most systems to be in-
adequate for HTTP servers [Banga and Mogul 1998; Mogul 1995; Spero n.d.].
The restrictive interfaces of current systems prevent application programmers
from customizing the behavior of the implementation to avoid these perfor-
mance problems. Second, the blocking nature of most file system interfaces and
some socket interfaces restricts I/O parallelism. Third, the use of distinct, non-
integrated subsystems (in this case, the file system and the networking stack)
results in significant redundancy (most notably, repeated data copying), both
in work and in memory usage.

Because HTTP server performance is critical in many environments, applica-
tion programmers often adopt complex workarounds to recoup some of the lost
performance, making these applications difficult to construct, debug, and main-
tain. For example, to exploit I/O parallelism despite blocking I/O interfaces,
early HTTP servers created a new process for each client request [Luotonen
et al. n.d.; NCSA n.d.]. To avoid the associated fork, exec, and exit overheads,
subsequent implementations maintain a pool of server processes [Apache
Software Foundation n.d.; NCSA n.d.] and coordinate work via shared mem-
ory and interprocess communication. Subsequent to our work, many imple-
mentations now utilize threads and/or recent nonblocking I/O interfaces. To
avoid file system overheads and some copying from kernel space to appli-
cation space, some applications replicate document caching functionality at
user level [Chankhunthod et al. 1996]. Because HTTP server implementors do
not have sufficient control over TCP implementations via current socket in-
terfaces, complex connection reuse semantics (referred to as “Keep-Alive” or
persistent connections) have been made a required part of the HTTP/1.1 pro-
tocol specification [Fielding et al. 1997]. This complicates HTTP servers, re-
quiring them to replicate portions of the OS networking code, and can lead to
conflicts between user-level connection management and kernel-level protocol
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Fig. 4. HTTP request throughput as a function of the document size for several HTTP/1.0 servers.
“NCSA/BSD” represents the NCSA/1.4.2 server running on OpenBSD. “Harvest/BSD” represents
the Harvest proxy cache running on OpenBSD. “Baseline/BSD” represents our socket-based HTTP
server running on OpenBSD. “Baseline/Xok” represents our socket-based HTTP server running on
Xok/ExOS. “Cheetah/Xok” represents the Cheetah HTTP server running on Xok/ExOS. “IIS/NT*”
represents Microsoft’s IIS server (version 2) running on Microsoft Windows NT. The “*” highlights
the fact that these numbers are for a 300 MHz Pentium II system, as opposed to the 200 MHz
Pentium Pro used for the others. The throughput values are obtained with six clients (two per
client machine) repeatedly requesting the same static Web document (100% cache hits) with zero
think time between the completion of one request and the initiation of the next. Care was taken
to avoid performance degradation of the OpenBSD servers due to “TIME WAIT” connections (by
using spaced bursts of requests)—no such provision is necessary for servers running on Xok/ExOS.

implementations (e.g., the order of magnitude performance decreases observed
by Heidemann [1997]).

Clearly, server developers are willing to work to improve performance.
Application-level networking allows them to do so more directly. With appro-
priately reusable libraries, this does not have to significantly increase complex-
ity. In fact, the Cheetah server described below is substantially faster and no
more complex than the aggressively optimized HTTP server that uses standard
interfaces.

5.2 ExOS Socket Performance

To evaluate Xok/ExOS’s default application-level network services, we con-
structed a socket-based HTTP/1.0 server. This socket-based server consists of
one single-threaded application that aggressively uses nonblocking socket I/O
for its TCP/IP networking in order to achieve good performance with standard
interfaces. The file system interfaces are blocking, but the experiments focus on
file cache hit performance, removing this as an issue. For robust performance,
additional complexity would be needed in this baseline server.

Figure 4 shows HTTP request throughput as a function of the requested
document size for six server configurations: our socket-based server (referred
to as “Baseline”) running on OpenBSD 2.2, Baseline running on Xok/ExOS,
the NCSA 1.4.2 server [NCSA n.d.] running on OpenBSD, the Harvest 1.3
cache [Chankhunthod et al. 1996] (now called Squid) running on OpenBSD, the
Cheetah server running on Xok/ExOS, and Microsoft’s IIS server (version 2)
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running on Windows NT (version 3). (We also measured Apache 1.2.6 and 1.3
on both OpenBSD and linux, but their “out-of-the-box” performance was always
lower than NCSA.) All requests hit in the server’s file cache. Comparing the two
Baseline server configurations allows us to evaluate Xok/ExOS’s TCP/IP socket
implementations relative to OpenBSD’s. The NCSA and Harvest numbers give
us confidence that Baseline’s behavior is reasonable. The IIS numbers provide
insight from another system and are particularly interesting because of NT’s
“sendfile” interface.

Each HTTP request consists of opening a TCP connection, receiving and
parsing an ASCII request, returning an ASCII header and the requested file
data, and closing the connection. Therefore, small HTTP requests exercise con-
nection creation/termination performance, and large HTTP requests exercise
bulk data movement performance. Figure 4 covers a spectrum that includes
both and provides several interesting pieces of information.

First, the Baseline HTTP server performs roughly as well as the Harvest
cache, which was shown to outperform other contemporary HTTP server im-
plementations on general-purpose OSes. Both outperform the NCSA server.
This gives us a reasonable starting point for evaluating HTTP server perfor-
mance. Specifically, we use the same Baseline server to compare Xok/ExOS’s
default support to that of OpenBSD and then as a baseline for more specialized
implementations of the same functionality.

Second, based on the two Baseline configurations, Xok/ExOS’s default socket
implementation outperforms the OpenBSD socket implementation by 100% for
small requests and 80% for large documents. This indicates that Xok/ExOS’s
socket performance is quite good for both creation/termination activities and
bulk data movement. We do not have detailed explanations for why OpenBSD’s
TCP socket performance is so much lower, though we do know that ExOS’s im-
plementation has been tuned. However, none of the performance enhancements
are specific to an application-level implementation, and there is no reason to
believe that OpenBSD could not be made to match them. ExOS’s socket perfor-
mance allows us to compare the specialized server to Baseline on Xok/ExOS,
removing several otherwise free variables.

Third, the IIS/NT measurements indicate that, like the socket-based servers,
it is limited by software overheads rather than the network for most file sizes.
IIS/NT’s advantage over the OpenBSD servers roughly matches the increased
CPU performance (300 MHz versus 200 MHz) for the 100 byte and 0 KB docu-
ment sizes. For the larger sizes, the advantage is larger, presumably because of
the “sendfile” support. However, its performance for 1 KB and 10 KB document
sizes is still below Baseline with Xok/ExOS’s sockets. For 100 KB, IIS/NT is lim-
ited by the available network bandwidth (three 100 Mbit/second Ethernets).

5.3 Exploiting Application-Level Networking

The real power of application-level networking is that it allows networking
software to be specialized for and integrated with important applications (see
Figure 5). To provide a concrete example, this subsection describes the use of
and quantifies the impact of such specialization in the context of the Cheetah
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Fig. 5. HTTP servers on conventional and exokernel systems. On a conventional OS, many soft-
ware layers and data copies are involved with an HTTP server’s work. The solid lines represent
control flow, and the dotted lines represent data copies. Application-level networking and exok-
ernels allow the server to avoid these redundancies, integrating and streamlining the required
software and merging the data repositories.

HTTP server. Cheetah incorporates a number of performance enhancements
enabled by application-level networking. As shown in Figure 4, these enhance-
ments improve performance by a factor of 4 for small HTTP documents and
80–100% for large documents, when compared to the Baseline socket-based
server on Xok/ExOS evaluated in the previous section.

Cheetah uses much of the same code as the Baseline server, including all
HTTP-related functionality (e.g., request translation, MIME header processing,
response header generation, etc.). However, the main control loop is different.
Cheetah simply waits for any relevant event (e.g., network packet arrival) and
then processes it. For event processing, Cheetah calls into private, specialized
instances of TCP/IP and file system libraries. Once an event has been processed,
per-request state is checked to see if forward progress can be made on the HTTP
request (e.g., the request has arrived and can be processed, or data is ready
to be sent). This simpler and more direct implementation (relative to socket
interfaces) of a nonblocking event loop provides some performance benefits,
including automatically avoiding the select problems described by Banga and
Mogul [1998]. Avoiding layers of general-purpose code for file descriptors and
sockets further reduces overhead. However, the largest improvements come
from three extensions enabled by application-level networking:

Merged File Cache and Retransmission Pool. Cheetah avoids all in-memory
data copying and the need for a distinct TCP retransmission pool by transmit-
ting file data directly from the file cache. Specifically, it calls a low-level file
system routine to obtain read-only pointers to file cache blocks, pin them, and
mark them copy-on-write. These pointers are then passed to a TCP library rou-
tine to construct packets that include data directly from the file cache. These
packets can be transmitted, and retransmitted if necessary, via Xok’s transmit
interface. This provides zero-copy disk to network transfer, where the “to net-
work” part is via a reliable protocol and can be repeated endlessly. One issue of
potential concern is synchronization with other applications using the same
files—Cheetah handles this by simply not sharing the files actively. Instead, the
files are updated only by special-purpose maintenance tools that synchronize
with Cheetah explicitly.
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Table II. Estimated Breakdown of Performance Difference Between Cheetah
and Baseline HTTP Server Implementations (for 100 byte Files and 100 KB
Files); the Total Improvement Represents the Product of the Improvements,

Since this Breakdown Assumes the Improvements Are Cumulative

Xok-enabled Enhancement 100 byte 100 KB

Direct access to cache/net 100% 20%
Packet merging 50% 1%
Merge cache/retransmit 2% 40%
Checksum precompute 1% 10%
Header precompute 20% <1%

Total improvement 271% (3.7X) 86% (1.9X)

Knowledge-Based Packet Merging. Cheetah exploits knowledge of per-
request state transitions to avoid sending distinct TCP control packets that can
be merged (a.k.a. piggybacked) with forthcoming data packets. Two examples
of this are setting the FIN bit on the last data packet and explicitly delaying the
ACK on clients’ HTTP request packets. Such packet merging reduces the num-
ber of distinct packets, making both the network and the end-points more effi-
cient. It is particularly valuable for small document sizes, where the reduction
represents a substantial fraction (e.g., 20–33%) of the total number of packets.

Precomputed Checksums. Cheetah precomputes the per-packet Internet
checksums for the data in servable files and stores them in those files. These
checksums are then provided with the data to the TCP library routine that
constructs packets. This extension reduces the number of in-memory manipu-
lations for transmitted data to zero (i.e., zero-touch disk to network transmis-
sion) when combined with the merged file cache/retransmission pool extension.
The checksums are added to the servable files by the same maintenance tools
discussed above.

As shown in Figure 4, Cheetah significantly outperforms the servers that
use traditional interfaces. By exploiting application-level networking, Cheetah
delivers four times the throughput for small documents (1 KB and smaller)
and almost twice the throughput for large documents. Further, Cheetah’s per-
formance is limited by the network hardware in all cases. Specifically, small-
document performance is limited by the number of minimally sized packets
that can be pushed through the system’s network interfaces: measured at about
64 K packets per second on our server system, or 8000 HTTP requests at eight
packets each. Large-document performance is limited by the available network
bandwidth (three 100 Mbit/s Ethernets). In fact, while the Baseline implemen-
tation is limited to only 16.5 MB/s with 100% CPU utilization, Cheetah delivers
over 29.3 MB/s with the CPU idle over 30% of the time.

Cheetah Performance Breakdown. Table II provides a rough breakdown,
based on additional system statistics and detailed profiling, of Cheetah’s per-
formance advantage over the Baseline implementation. The table shows the
breakdown for two ends of the Web document size spectrum (larger sizes are
similar to 100 KB in behavior). The medium-sized performance is explained as
mixtures of these two end-points.
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For small requests, a 50% increase in throughput comes from the 33% reduc-
tion in packets transmitted and received due to the knowledge-based packet
merging enhancement. Profiling reveals that the Baseline server spends over
half of its time in the various routines involved with implementing the general-
purpose file descriptor and socket interfaces. Unfortunately for optimization
purposes, the time is spread widely among 108 functions involved with imple-
menting these general abstractions. Also, recall that the Xok/ExOS implemen-
tations of these abstractions are already well tuned relative to OpenBSD. It is
possible that dynamic specialization of the general code paths could reduce the
overhead [Massalin and Pu 1989; Pu et al. 1995].

For the large request sizes (e.g., 100 KB), the Baseline server spends about
30% of its time in bcopy and 8% in the checksum routine (as compared to 4% and
3%, respectively, for Cheetah). Note that these percentages can be compared
by recalling that Baseline uses 100% of the CPU and Cheetah uses 70% of the
CPU (for this document size); the only caveat is that Cheetah wastes more time
context switching back and forth with the idle task (which accounts for some of
the 70% utilization). The remainder of the performance difference is again due
to the layers of code involved with the POSIX file and socket interfaces.

Other Applications and Workloads. Although it is highly specialized,
Cheetah shares system resources (e.g., CPU and memory) like any other appli-
cation on a time-sharing system. As would be expected, we find that Cheetah
has no significant effect on the performance of other applications when it is idle.
Given a specific HTTP workload, other applications run faster when sharing
a system with Cheetah than when sharing with the Baseline server, because
Cheetah uses less CPU time (more efficient operation) and less main mem-
ory (no distinct retransmission buffers). With respect to more substantial Web
servers, this increases the CPU power available for useful services, such as CGI
utilities and database searches.

We have also evaluated Cheetah with a more representative HTTP bench-
mark, called Surge [Barford and Crovella 1998]. Surge emulates the behavior,
along many axes, of a configurable number of users concurrently browsing the
Web site under test. The results indicate that Cheetah’s average response time
is 87% lower (with 90–99% lower variance) than that of the Baseline server
on Xok/ExOS, whose average response time is, in turn, 70% lower than the
same server on OpenBSD. For example, with 50 simulated users, the average
response times for the two servers on Xok/ExOS are 7 ms and 54 ms, respec-
tively (variances: 0.2 and 22, respectively). With 100 users, they are 38 ms and
286 ms, respectively (variances: 100 and 920, respectively).

5.4 Discussion

Clearly, any performance enhancement that an application writer can make
with Xok/ExOS’s application-level networking, a kernel programmer could
make inside a conventional OS by replicating or complicating the default net-
working stack. Therefore, Cheetah’s performance could certainly be achieved
inside a conventional system, given OS source code, sufficient development
and debugging time, and a willingness to live without protection boundaries.
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The power of application-level networking lies in its ability to let application
writers manipulate networking features (e.g., those described here and fu-
ture, as yet unknown, features) that have traditionally been hidden away in
OS kernels.

It is also interesting to consider which aspects of Cheetah’s performance
could be realized more incrementally in existing systems. For example, some
of the extensions, such as delaying the first ACK, could simply be incorporated
into a system’s default TCP implementation. However, although it improves
performance for Cheetah’s behavior, delaying the first ACK results in undesir-
able retransmissions and window-shrinkage for other applications. The various
packet-combining enhancements could be selectively supported with new ioctl

and send flags.
The general overhead of the socket and file system interfaces is unlikely to

be reduced substantially—these aspects of Xok/ExOS are already well tuned,
as evidenced by their performance relative to OpenBSD. One possibility would
be to introduce a variety of less general interfaces to avoid the overhead of
handling numerous states and options. As discussed in Section 2, many copy-
free interfaces could improve large file performance, though the buffers must
be kept read-only for long periods of time if they are to double as retransmission
buffers. Given appropriately malleable TCP and file system implementations,
Cheetah’s merging of file cache/retransmission pool, merging of the FIN packet,
and checksum precomputation could all be provided behind interfaces such as
IO-lite [Pai et al. 1999] or Windows NT’s “sendfile.”

6. webswamp: A FAST HTTP CLIENT

Servers are not always just passive accepters of connections; some also ini-
tiate connections (e.g., a proxy HTTP server fetching a missing page). This
section describes a specific instance of exploiting application-level network-
ing for a connection-initiating service: a Web server benchmarking tool, called
“webswamp.”

6.1 Specialization of the “Client-Side”

Early in the development of Cheetah, it became clear that existing Web
benchmarks were not capable of overloading it without excessive equipment—
either very powerful or very numerous client machines. Therefore, we used
Xok/ExOS’s application-level networking to construct webswamp, a low-level
core upon which Web benchmarks with different offered workloads can be eas-
ily built. A benchmark is developed by constructing a high-level driver that the
webswamp core calls to get the next Web page and interrequest think time.
We have built two high-level drivers, one that repeatedly requests the same
document with zero think times and one that uses the Surge algorithms to
produce a more representative workload. The webswamp core emulates a num-
ber of concurrent clients, each of which operates in a closed loop of “thinking”
and then requesting another document. The low-level core initiates connection
establishment when think times expire, handles incoming packets and any
timeouts, generates and sends HTTP requests when connections become open,
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acknowledges and counts data received, closes down connections that receive
FIN bits, and calls up to the high-level driver to get the next task when a
connection is closed.

In addition to avoiding the overheads associated with layers of socket and file
descriptor interface code, webswamp benefits from three main specializations:

Count-Only Data Reception. Webswamp avoids the need to copy received
data that will be discarded. Like most Web benchmarks, webswamp discards
received data after counting it. Because it can directly count the valid data
in each received TCP packet, webswamp does not need to copy the data into
its own buffers in order to get a count. Thus, only the copying involved with
Xok’s kernel-emulated application-level networking interface prevents zero-
copy data reception.

Skipping Checksum Verification. Webswamp can be configured to not verify
the integrity of incoming packets, removing the overhead of checksum compu-
tation. Although it is unacceptable for general activity and not appropriate
when using webswamp to test correct operation under heavy loads, this does
increase the potential offered load during benchmarks. In our current exper-
imental testbed, this enhancement does not change end-to-end performance
(it only increases client machine idle time), because the previously discussed
enhancements are sufficient to make the network itself the bottleneck.

Knowledge-Based Packet Merging. As Cheetah does, webswamp can exploit
knowledge of its activity to avoid sending distinct control packets that can be
merged with other soon-to-be-sent packets. Specifically, the ACK on the server’s
SYN packet can be discarded because the client is going to immediately send
a data packet (the HTTP request) on which the ACK can be piggybacked. Sim-
ilarly, the ACK on the server’s last data packet and FIN bit can be discarded,
because the client is going to immediately close the connection and send a FIN
packet on which the acknowledgments can be piggybacked. For small document
sizes, these two packet merging enhancements reduce the total number of pack-
ets by 25%, on top of Cheetah’s reduction in packet count. (Note: because this
enhancement changes the client load placed on the server, it is not enabled for
any of the experiments in the other sections.)

Like Cheetah’s packet mergings, webswamp’s improve end-to-end perfor-
mance within the confines of a correct TCP implementation, but result in unde-
sirable TCP behavior when used in other applications. An additional client-side
packet merging, setting the FIN bit on the HTTP request data packet, could
be very beneficial to web server performance under HTTP/1.0. Although this
would not reduce the number of packets beyond the mergings mentioned above,
it would transfer the task of supporting TIME WAIT connections to the more
numerous clients. This was not part of our experiments below.

6.2 HTTP Client Performance

To place webswamp’s performance in context, we developed a socket-based ver-
sion of the same core functionality. It supports the same interface with the
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Fig. 6. HTTP document throughput as a function of the document size for different client-side im-
plementations benchmarking Cheetah. “Sockclient/BSD” and “sockclient/xok” represent the socket-
based version running on OpenBSD and xok/ExOS, respectively. “Webswamp” and “mergeswamp”
represent webswamp running on xok/ExOS without and with the packet merging extensions. The
throughput values are obtained with six clients on a single machine repeatedly requesting the
same Web document with zero think time between the completion of one request and the initiation
of the next.

high-level driver and uses nonblocking socket calls to connect to a server, send
HTTP requests, and receive Web pages.

Figure 6 shows HTTP request throughput as a function of request size
achieved by four different benchmark implementations: the socket-based client
running on OpenBSD and on Xok/ExOS, and webswamp on Xok/ExOS without
and with the packet-merging enhancement.

Webswamp supports higher throughputs than the socket-based implemen-
tations (a factor of 5 higher for small HTTP documents and 15% for 10 KB
documents), even with Xok/ExOS’s superior socket performance (50–75% faster
than OpenBSD for small documents and 22% for 10 KB documents). The pack-
ets exchanged by client and server are exactly the same for all three implemen-
tations. The throughputs converge as the file size increases, because the single
(per-client) 100 Mbits/second link limits the bandwidth. Webswamp’s perfor-
mance advantage is almost entirely due to the avoidance of overheads related
to the general POSIX socket interface.

Figure 6 also illustrates the performance benefit of knowledge-based packet
merging on the client-side. For 1 KB and smaller HTTP documents, the number
of packets transmitted by the client is reduced by 40% (from 5 to 3, representing
a 25% reduction in the total number of packets per request). This translates into
a throughput increase of 25% for 0 KB documents, 21% for 100 byte documents,
and 8% for 1 KB documents. For 0 KB and 100 byte documents, we see again that
the network interface’s packet throughput limits end-to-end performance. For
1 KB documents, bandwidth limitations reduce the overall improvement. For
10 KB documents, the total number of packets is reduced by 10% but throughput
only increases by 4%. The difference for 100 KB files is negligible.

Experiments with surgeswamp, the webswamp-based version of Surge, in-
dicate that it can usefully simulate a much larger number of clients than the
default pthread-based implementation. Also, the times at which surgeswamp
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initiates connections to the server more closely match those requested by the
high-level decisions, which means that the workload is more representative of
reality.

7. APPLICATION-LEVEL TCP FORWARDER

With an example inspired by Fiuczynski and Bershad [1996], we illustrate that
application-level networking can be exploited to simultaneously realize perfor-
mance, simplicity and semantics not possible with conventional I/O abstrac-
tions. The example is an application-level protocol forwarder that can be used
to redirect TCP connections to other hosts. Such functionality is useful for sev-
eral purposes, the clearest being transparent load balancing of client requests
among a set of server machines. Efficient kernel-level implementations of TCP
forwarding, using the same tricks we used at the application level, were inde-
pendently developed at the same time [Maltz and Bhagwat 1998; Spatscheck
et al. 1999].

For our experiments, we implemented two protocol forwarders that act as
intermediaries for connections to specific TCP ports. Both use the same code
for deciding where to forward connections and different code for doing so. The
first forwarder uses nonblocking sockets to listen for and accept client connec-
tions. After accepting a client connection and choosing a back-end server, the
forwarder opens a second nonblocking socket connection to the chosen server.
It passes received data from each to the other and closes both when either side
closes. These actions are performed in parallel for multiple client connections.
This socket-based implementation is expensive in that data passes through
the protocol code and is copied about multiple times. More importantly, it
violates the end-to-end semantics of the TCP protocol. For example, the client
receives acknowledgments from the intermediary (rather than the server),
independently of whether a server ever actually receives the corresponding
information. This socket-based forwarder also interferes with TCP’s algorithms
for end-to-end flow control and congestion control, potentially reducing overall
performance.

The second forwarder implementation exploits application-level networking
to provide both correct semantics and improved performance. This forwarder
simply waits for a relevant packet to arrive and determines if it is for an open
connection. If it is, the forwarder modifies the destination information (Ethernet
addresses, IP addresses, and TCP port numbers), patches the IP and TCP check-
sums to reflect the changes, and transmits the packet out the appropriate net-
work interface. If the packet is not for an existing connection and contains an
SYN, the forwarder chooses a back-end server, initializes demultiplexing struc-
tures for the client and chosen server, and then forwards the packet as described
above. With this implementation, the forwarder avoids processing of most pack-
ets, acting mainly as a high-level router. More importantly, it provides correct
end-to-end TCP semantics, and its presence is invisible to the client.

Figure 7 shows the performance of these two forwarders acting as interme-
diaries between webswamp on one fast Ethernet and Cheetah on a second fast
Ethernet. Significant performance improvements are realized in the specialized
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Fig. 7. HTTP document throughput as a function of the document size for application-level TCP
forwarding (from a client on one machine through the forwarder to an HTTP server on a third
machine). “Socket Splicing” moves data between a pair of sockets communicating with the client
and server, respectively. “Direct Forwarding” simply patches and forwards packets directly to the
desired recipient, reducing redundant protocol processing and data manipulation. In addition to
the performance improvements, “Direct Forwarding” provides correct end-to-end TCP semantics
while “Socket Splicing” does not. The throughput values are obtained with six clients on a single
machine repeatedly requesting the same Web document with zero think time between the comple-
tion of one request and the initiation of the next.

direct-forwarding implementation by eliminating extraneous packet process-
ing and generation (for small requests) and data copying (for large requests),
when compared to the socket-based forwarder. This translates into a factor of
3 increase in throughput for small document sizes and 40–50% for larger docu-
ment sizes. As with Cheetah and webswamp, the performance of the specialized
forwarder is limited by the network rather than software overheads.

8. DISCUSSION

The construction and revision of the Xok/ExOS networking support came with
several lessons and controversial design decisions. This section discusses a
number of these:

Inter-End-Point Resource Sharing. As discussed in Section 3, we found
inter-end-point resource sharing to be critical to performance and scalability.
For example, allowing a single preposted packet buffer to be used for any of
a large set of open connections allows application-level networking software
to scale memory usage more like kernel implementations. Unfortunately, the
emerging Virtual Interface Architecture standard [The Virtual Interface (VI)
Architecture 1998] for application-level networking is inappropriately prevent-
ing such sharing. Unchanged, this may limit the VI Architecture’s applicability
to the small set of parallel computing applications with which it started.

Event Notification. All event notification in Xok/ExOS’s network services is
based on polling and WK predicates. This form of event notification is a powerful
foundation for decentralization, allowing processes to wait for and be awakened
on events without having to tell any other processes about them. Likewise,
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processes can awaken other processes by simply updating memory normally,
and they do not have to know who, if anyone, is waiting for the update. Still, our
experiences have not been all positive. In addition to the inherently higher event
discovery latency, we have observed two forms of scalability problems with WK
predicates. First, the size of a WK predicate grows linearly with the number of
events of interest to an application, which effects the storage space, the time
to install the predicate, and the time for the scheduler to check it. Second,
the number of WK predicates checked by the scheduler grows linearly with the
number of processes in the system, since most processes in a system are waiting
for events at any given point in time. For systems with many processes, these
are significant problems. For networking, more explicit notification could be
incorporated without hurting decentralization, since the main events of interest
come from the kernel (e.g., packet arrived, packet transmitted, time advanced).
Done efficiently, more explicit notification is probably the correct approach for
application-level networking.

DPF. To demultiplex incoming packets, some form of packet filter engine
is required. Xok/ExOS uses DPF [Engler and Kaashoek 1996], which uses dy-
namic code generation to improve filter checking speeds. Although DPF of-
fers improved performance and supports arbitrary filters (i.e., filters that claim
packets based on arbitrary fields in packets), DPF’s complexity has had a nega-
tive impact on the evolution of Xok/ExOS. For example, moving from the MIPS
platform to the x86 platform involved significant work on DPF. Similarly, when
bugs and shortcomings were encountered in the x86 DPF, the latency of fixes
was often long because DPF’s complexity limited the set of people who could
manipulate its internals. Finally, the flexibility offered by allowing arbitrary fil-
ters is of questionable value in the real world and creates an unsolved dilemma:
what to do about overlapping filters. For example, if filter A checks only
byte #1 and filter B checks only byte #2, there is no clear way to know whether
both should be allowed and which should win ties. An explicit goal of the exok-
ernel project was to avoid having the kernel understand any specific network
protocols. However, since communication on a given network almost always
uses a common demultiplexing scheme (e.g., the IP protocol suite), exploiting
this information to eliminate difficult problems makes too much sense.

Gather Transmits and Scatter Receives. Xok’s transmit interface will collect
data from multiple memory locations to form a single transmitted packet. We
found this support to be crucial to efficient application-level implementations,
because it allows headers to be constructed separately from the data buffers.
Xok does not provide the corresponding receive support. Instead, a full received
packet is copied into a single preregistered buffer. We did not miss the lack of
scatter receive support, perhaps because the two common scenarios cannot use
it: (1) received data can be processed wherever it is placed when it arrives
(e.g., an HTTP request or a TCP acknowledgment); (2) received data must be
examined before its final destination is known (e.g., framed data).

Process Scheduling. Xok’s process scheduling mechanism does not explicitly
consider interactive responsiveness. With application-level networking, this
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can have a negative impact on packet processing latencies. Although Xok’s
scheduler will give the CPU to an awakened process whose turn it is to run,
it will not preempt another process’s turn. Although this is more fair for pro-
cesses that care when they run, it does create performance problems for some
forms of ping-pong communication. Appropriate CPU scheduling support for
application-level networking remains an open area for research.

Downloaded Interrupt Handlers. The early exokernel work explored the use
of code downloaded into the network interrupt handler [Wallach et al. 1996].
The two main benefits are elimination of kernel crossings and quick “upcalls” to
unscheduled processes. We found the first benefit to be negligible in Xok/ExOS,
because I/O device delays exceed the overhead reduction. The latter could thus
be achieved with minimal cost. Downloading interrupt handlers may be more
useful for application-level networking implementations on commercial OSes,
which generally have higher kernel entry and exit costs.

Unchecked Transmission. Xok does not examine the contents of outgoing
packets, allowing applications to transmit any data desired onto the network.
This controversial choice increases flexibility, increases performance, and sim-
plifies the implementation. However, it is clearly a problem if one is trusting
packets on the wire, and one inappropriately believes that none of the other
machines on the network allow some applications to transmit arbitrary pack-
ets (as most do). Unfortunately, many environments still do make these faulty
assumptions. Therefore, most modern OSes restrict the ability to send arbitrary
packets to processes with “root” or “Administrator” privileges. The two known
approaches to providing this same level of protection with application-level net-
working are NI-attached headers and reverse packet filters. The former some-
what reduces flexibility and only ensures that the added headers are correct;
it may also require all network attach points to agree on a new header format.
The latter involves checking the appropriate header values of each packet to
be sent and then ensuring that the headers are not changed, which requires
blocking writes or copying the headers. Several system vendors have indicated
a desire to see the protection in place, simply to increase the degree of difficulty
for bad people.

Transmit Queue Fairness. Like most OSes, Xok’s current implementation
enforces no fairness with respect to the transmit queue. For guaranteed-rate
or real-time communication, in particular, this is an important consideration.
Fixing this problem requires explicitly treating the different applications as
distinct sources of packets, and only letting them add to a transmit queue when
it is “their turn” according to the chosen policy. Nemesis [Black et al. 1997]
and U-net [von Eicken et al. 1995] have both demonstrated that this type of
fairness can be accomplished by allowing the NI to explicitly schedule packets
from separate per-application or per-connection transmission queues.

Auxiliary Information about Packets. Although Xok does not do so, we be-
lieve that there is value in having additional values added to received packets
at the point that they are copied into the packet rings. Two specific additions
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of value are an identification of which card received the packet and the time of
that reception. The card identification can be valuable for authenticating packet
sources. The packet reception time would allow round-trip time measurements
to not be obfuscated by process scheduling delays.

9. CONCLUSIONS

This paper describes the architecture, implementation, performance, and flex-
ibility of Xok/ExOS’s application-level networking. This system demonstrated
that network services such as TCP/IP, UDP/IP, POSIX sockets, ARP, DNS, and
tcpdump can be implemented as independent application-level libraries. In ad-
dition, it enables applications to safely employ specialized networking software
to achieve substantial performance and semantic improvements.

We hope that our successes and failures can help in the design of emerg-
ing standards for the architecture and interfaces for NIC-multiplexed network
interfaces. Poorly designed protection mechanisms can make safe application-
level networking complex, slow, or impossible. Well-designed protection mech-
anisms can provide application-level library writers with the flexibility and
functionality required for safely providing core network services, while also en-
joying the massive performance and functionality advantages (illustrated in
[Edwards et al. 1994; Thekkath et al. 1993; von Eicken et al. 1995] and this
paper) possible with application-level networking.
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