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This document is an MEng thesis presenting MCQC, a compiler for extracting veri-
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Chapter 1

Introduction

Computer systems are becoming more complex every day. To ensure their correctness,

the programmer must verify all execution paths return the expected result. In most

cases this is impossible due to path explosion; paths increase exponentially with the

size of the program. Unit tests can verify some inputs are mapped to the expected

outputs, but give no guarantees about the program behavior on untested inputs.

Formal verification addresses the testing problem in a systematic way. Instead of

generating inputs and mapping them against expected outputs, a proof evaluates the

formal semantics of the language to show the implementation matches a specification.

Formal proofs about programs are developed in a dependently-typed language [24],

inside a mechanized proof-assistant, like Coq [24] [2]. Coq is a proof-assistant for writ-

ing and formally proving the correctness of programs written in Coq’s programming

language, Gallina. The execution of formally verified programs written in Gallina is

the focus of this thesis.

1.1 Code generation

Gallina is a functional language with dependent types [24] that executes inside the

Coq proof-assistant. It is the implementation language of Coq, which is to say it

describes programs, not proofs. There is a separate language called Ltac for writing

proofs in Coq, which is less relevant for this thesis. The functional nature of Gallina
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Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Figure 1-1: Peano nat definition used in Coq

makes it cumbersome to run and execute outside Coq. To understand why, one must

first understand how base datatypes such as numbers and strings are represented

algebraically in Gallina.

Coq formalizes natural numbers using Peano arithmetic. There are two Nat con-

structors as seen in Fig 1-1; the O constructor instantiates a nat with a numerical

value of 0, while the S constructor defines a successor to any given nat. For example,

S O = 1, S (S (S O)) = 3 etc. The set of all natural numbers is inductively defined

this way.

Low-level programming languages such as C and assembly represent natural num-

bers as bitfields that fit into CPU registers. Bitfield arithmetic is not isomorphic to

the Peano arithmetic in Coq, as bitfields can overflow. For example in a system with a

word size of 32-bits, assigning a value of 232 to an unsigned int will overflow. In Peano

arithmetic, 232 is no different than any other number represented as 232 applications

of the successor constructor to a to a single zero constructor. Computers have finite

memory though, so at some point the number of successor applications will overcome

the total RAM of the computer running Coq and the program will be killed. Peano

nats in Coq are not infinite in practice, and the observed behavior when running out

of memory is a segmentation error.

Coq can prove propositions about natural numbers without the need to enumerate

them. The key idea is mathematical induction: proofs by induction on naturals prove

the base case and inductive case given an inductive hypothesis, which leads to a proof

for all naturals.

Similarly, Coq defines strings inductively as seen in Fig. 1-2. A string can either

be empty, or a single character prefix in front of a given string. A faithful execution

of the Gallina inductive semantics creates a prohibitive performance overhead, due

to the amount of memory and pointer references needed to do even the most basic

14



Inductive string : Set :=
| EmptyString : string
| String : ascii -> string -> string.

Figure 1-2: Inductive string definition used in Coq

computations. At the same time, subtracting two natural numbers or splitting a

string will result in unreferenced memory regions which Coq reclaims by Garbage

Collection (GC) in Gallina.

1.2 Existing approaches to code generation

Running Gallina programs can be cumbersome and can have a significant performance

overhead, while also depending on a big Runtime System (RTS) for GC, higher-

order functions, lazy evaluation and more. There are two approaches to generating

formally verified, executable code: by verified compilation of deep embeddings and

by extraction of shallow embeddings [1][14].

1.2.1 Verified Compilation

Verified compilation is the state-of-the-art of getting executable low-level code, from

verified high-level code. It is a long and involved process requiring knowledge of

advanced programming language theory and proofs in every compilation stage. The

high-level overview is this; The programmer defines A high-level eDSL with formal

semantics inside Coq. Then she writes the target program in this high-level eDSL and

proves it correct against a functional specification written in Gallina. Then, a low-

level programming language like C, assembly or LLVM must be formally defined inside

Coq. An equivallence relation between the high-level and low-level implementations,

or alternatively, a series of verified compilation passes will generate the low-level

representation from the high-level representation in a proven way. In the end, the

low-level implementation can be executed outside Coq and a trail of proofs connects

it to the original high-level implementation and correctness specification. It is our

goal to make formal verification accessible to a wider crowd with little background

15



in programming language theory, which is why we’ll be focusing on the alternative

method.

1.2.2 Extraction

Coq offers extraction plugins that take a Gallina program and extract it to Haskell,

OCaml or an Abstract Syntax Tree (AST) serialized to a JSON format [14]. The pro-

cess is straightforward for Haskell and OCaml, as their expressive type systems can

implement the Gallina language directly, with algebraic datatypes, pattern match-

ing and GC provided by their respective RTS. GHC and OCaml then compile the

extracted program [9] [12] to generate an executable. The Coq extraction plugins

offer an option to syntactically replace a Coq type with a native bitfield type for

better performance, ie: Nat substituted with a Haskell Int is a feature we used for

generating pragmatic benchmarks.

1.3 Problem with extraction

Standard Coq extraction mechanisms were not built with embeddability or perfor-

mance in mind. Coq extracts verified code to OCaml and Haskell, both of which

require a Runtime System (RTS) to execute programs. Running extracted code di-

rectly onto hardware with no high-level memory abstractions is hard, as it requires

porting the language’s RTS first, then running the extracted programs on top of it.

In situations with low memory requirements, this task may be impossible.

Additionally, the performance of algorithms operating on dynamic memory datas-

tructures, such as lists, maps and trees, suffers in extracted code. Gallina passes

arguments to functions by value, which leads to excessive copying and a dependence

on GC. This is a compromise that functional languages make in order to gain im-

mutability.

Another caveat is that Coq extraction plugins are part of the unverified part of

Coq and have to be trusted as Trusted Code Base (TCB). Having a large TCB can

defeat the purpose of Formal Verification as bugs can creep in. For extraction to

16



Haskell for example, not only is the Coq Haskell extraction plugin part of the TCB

but also the GHC compiler and the GHC RTS [9].

Finally, Gallina is pure in its implementation, so it cannot generate any observable

side-effects. Simple IO operations that are straightforward in other languages are not

supported at all in Coq. Prior to extraction, the programmer must model side-effects

using monadic composition and interpret the monads post-extraction using the IO

mechanism of the target language.

1.4 Previous work

The CertiCoq compiler implements Coq’s language inside the Coq proof-assistant,

allowing for the verified compilation of shallow embeddings. However, CertiCoq still

depends on a runtime GC and cannot generate static, stand-alone assembly. The

Œuf verified extractor [17] reifies Gallina into an AST that it then translates to

CompCert’s intermediate representation [13] but does not target the full Gallina,

only a small subset of it relevant to reactive systems. The Fiat crypto compiler does

verified compilation of an embedded domain-specific language (eDSL) down to static

C, but is only applicable to the domain of cryptographic algorithms [7].

1.5 Approach

MCQC attempts to solve the extraction problem in a more general way, in order to

make Gallina a system’s programming language with IO capabilities similar to Haskell

but without the GHC runtime [9]. MCQC uses C++17 as an intermediate represen-

tation, an extensible, compiled language, with strong compile-time facilities. C++17

offers expressive polymorphism through templates, algebraic datatypes through vari-

ants and GC through smart pointers. To implement Gallina’s strict Hindley-Milner

(HM) type system [5] MCQC makes use of Template meta-programming (TMP),

a Turing-complete, compile-time language on top of C++ that operates on types.

17



TMP has been used before to create eDSLs with dependent type-systems [16] and is

used in MCQC to implement strict typing, polymorphism and reflection on algebraic

types [20][6].

Additionally, MCQC relies on smart pointers for GC. As part of the standard

library std::unique_ptr and std::shared_ptr require no RTS to perform refer-

ence counting. MCQC uses std::shared_ptr to allocate and deallocate datatype

instances, which by default can have multiple owners.

Finally, the introduction of sum types as tagged unions by std::variant in

C++17 and product types as structs, make the extraction of algebraic data types in

C++17 possible. MCQC can generate any C++17 algebraic data type with pattern

matching and generic support from their Gallina inductive definition. By using TMP

for runtime reflection, MCQC serializes and prints arbitrary algebraic datatypes, a

useful feature for inter-process communication and debugging.

1.6 Contributions of this thesis

This thesis introduces MCQC, a compiler from Gallina to assembly through C++17

as an intermediate representation, using the Clang compiler as a back-end. MCQC

focuses on performance and usability for systems programming, while making exten-

sive use of the compile-time facilities of C++17 and the LLVM optimization passes in

Clang. MCQC provides a library of bitfield base types to achieve better performance

and uses smart pointers to enable reference-counting in algebraic data structures,

without a need for a RTS.

With respect to IO operations, MCQC provides an IO C++17 library for basic

POSIX functionality, modeled in Coq by the Proc monad library. The Proc monad is

a construction for modeling sequential IO side-effects, similar to Haskell’s IO monad.

By defining a main function of type Proc unit in Gallina and extracting with MCQC,

we can directly compile Coq programs to an executable with a main entry point.

Using MCQC we have successfully written and proved a demo web application for

online payments. The web server was written in Gallina and compiled to C++17,

18



while the client was written in Gallina and compiled to Webassembly through MCQC

and emscripten [8]. In both cases, a minimal amount of boilerplate code and proofs

was required, while the use of MCQC made it possible to write and execute verified

client and server code without leaving the Coq proof-assistant.

MCQC has some limitations compared to Gallina executed in Coq. MCQC cannot

generate code for Gallina typeclass instances [22]. Typeclasses offer a model for ad-

hoc polmorphism which is more general than C++ templates, In addition, MCQC

has limited multi-threading support. As part of Proc MCQC implements 𝑠𝑝𝑎𝑤𝑛 :

∀𝑇, (𝑇 → 𝑢𝑛𝑖𝑡) → 𝑇 → 𝑝𝑟𝑜𝑐 𝑢𝑛𝑖𝑡 which can execute closures with no return values

in parallel with std::future. To support parallel execution with return types, a

promises interface would be more effective [15] in the future.
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Chapter 2

Design

MCQC is written in Haskell and accepts as input Gallina abstract syntax trees (AST)

in a JSON format, extracted by the Coq JSON extraction plugin (Coq v.8.5.1).

MCQC compiles the Gallina AST to C++17 which then Clang compiles to assem-

bly [11] as shown in Fig. 2-1.

2.1 Compilation stages

MCQC breaks the compilation of Coq to C++17 into several stages. For each stage

there is a dependency on all previous stages.

1. Parse JSON

2. Load module dependencies

3. Code generation

4. Base types

5. Algebraic types

6. Proc monad

7. Generate type context

8. Substitute native functions

21



Figure 2-1: MCQC block diagram. A Coq file is the input, then MCQC generates
C++17 code, Clang compiles it and links with the base type library. The white box
is the input Gallina program, green boxes show imported libraries and yellow boxes
show auto-generated C++17 and executables.

9. Type unification

10. Generate main

11. Pretty-print C++17

2.1.1 Parse JSON

The input JSON is an AST of a Gallina program, described by the grammar in

Fig. 2-2. The top level structure is a Module, which represents a Coq module. Ev-

ery module can have dependencies expressed through used_modules and multiple

Declarations. A Declaration can be an algebraic type represented by IndDecl, a

type alias TypeDecl, a Fixpoint function FixDecl or a non-fixpoint named expression

TermDecl also exported as a function.

Expressions (Expr) are the computational part of Gallina and they represent in

the order which they appear in Fig. 2-2: Lambda expressions, pattern matching,

constructors, function applications, let statements, safe coercions, relative and global

references and dummy expressions.

The first step of loading module dependencies is reading used modules from disk

22



-- Top level Coq module
data Module = Module { name :: Text, used_modules :: [Text], declarations :: [Declaration] }

-- High level declarations
data Declaration =

IndDecl { name :: Text, iargs :: [Text], constructors :: [Expr] }
| TypeDecl { name :: Text, targs :: [Text], tval :: Type }
| FixDecl { fixlist :: [Fix] }
| TermDecl { name :: Text, typ :: Type, val :: Expr }

-- Patterns
data Pattern = PatCtor { name :: Text, argnames :: [Text] }

| PatTuple { items :: [Pattern] }
| PatRel { name :: Text }
| PatWild {}

-- Pattern match case
data Case = Case { pat :: Pattern, body :: Expr}

-- Fixpoint declaration
data Fix = Fix { name :: Maybe Text, ftype :: Type, value :: Expr }

-- Types
data Type =

TypeArrow { left :: Type, right :: Type }
| TypeVar { name :: Text, args :: [Expr] }
| TypeGlob { name :: Text, targs :: [Type] }
| TypeVaridx { idx :: Int }
| TypeUnknown {}
| TypeDummy {}

-- Expressions
data Expr = ExprLambda { argnames :: [Text], body :: Expr }

| ExprCase { expr :: Expr, cases :: [Case] }
| IndConstructor { name :: Text, argtypes :: [Type] }
| ExprConstructor { name :: Text, args :: [Expr] }
| ExprApply { func :: Expr , args :: [Expr]}
| ExprLet { name :: Text, nameval :: Expr, body :: Expr }
| ExprCoerce { value :: Expr }
| ExprRel { name :: Text }
| ExprGlobal { name :: Text }
| ExprDummy {}

Figure 2-2: MCQC input Gallina grammar.
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into multiple Module objects. Those modules are then concatenated to make a mono-

lithic, stand-alone module with no dependencies. MCQC outputs a single C++17

file, which helps avoid incompatibilities between the Coq and C++ module systems

and simplifies dependency resolution.

2.1.2 Code Generation

This step does most of the initial fitting of Coq into the C++17 language standard.

All safe coercions, relative and global references elaborate to global references, since

all modules are parts of the same lexical scope. Pattern matching in Coq is translated

to the polymorphic C++17 function match, seen in Fig. 2-3 and Fig. 2-4. In MCQC

match, show and proc are reserved words.

Another transformation that takes place early is ExprLet to statement inlining.

Instead of substituting with a lambda as is common in functional compilers, MCQC

takes advantage of C++17 sequential semantics by making it an assignment statement

in the function body. The type of this statement cannot be inferred by MCQC right

now so it will be set to auto, a C++17 type keyword that delegates type resolution

to Clang. MCQC handles type resolution in a more general way during the Type

unification phase during which it can explicitly type auto types to help Clang type

inference.

2.1.3 Algebraic Data types

MCQC transforms algebraic type definitions in Coq to an std::variant in C++17.

Sum types via variants is a new addition to C++17 that MCQC relies on. A variant

is a tagged union between multiple types [4], only one of which inhabits it at a time.

To keep track of the variant inhabitant, std::variant holds an enum which acts

as the tag. Product types exist in C as structs. C structs represent the cartesian

product between types and can be inhabited by all types at the same time. Sums and

products constitute the entirety of Coq algebraic datatypes and their combination

allows MCQC to define any algebraic data type in C++17 as a sum-of-products.
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Inductive nat : Set :=
| O : nat
| S : nat -> nat.

// Nat type alias for bitvector type
using nat = unsigned int;

// Pattern matching on nat
template<typename F0, typename FS,

typename = enable_if_t<CallableWith<F0>>,
typename = enable_if_t<CallableWith<FS, nat>>>

constexpr auto match(nat a, F0 f, FS g) {
switch(a) {
case 0: return f(); // Call 0 match clause
default: return g(a-1); // Call S match clause
}

}

Fixpoint fib(n: nat) :=
match n with

| 0 => 1
| S sm =>

match sm with
| 0 => 1
| S m =>

(fib m) + (fib sm)
end

end.

nat fib(nat n) {
return match(n,

[=]() { return 1; },
[=](nat sm) { return match(sm,

[=]() { return 1; },
[=](nat m) {

return add(fib(m), fib(sm));
});

});
}

Figure 2-3: Compiling the fibonacci function on the left in C++17, on the right.
The shaded box surrounds Coq and C++17 boilerplate code for natural numbers.
The definitions are almost isomorphic, except for overflow exceptions in native types
which are safely detected and propagated to the caller.

An example of a list definition can be seen in Fig. 2-4. Algebraic type declarations

are the only case where MCQC generates multiple C++ declarations for one Coq

declaration. MCQC generates a struct declaration for each constructor, a type alias

declaration for the variant, the constructor function declarations that create variant

inhabitants and finally a polymorphic match function for deconstructing the variant.

As constructors allocate memory for the new object and match takes objects apart

into their constructors, possibly deallocating memory, some memory management is

necessary. Constructors and match declarations wrap their return values and ar-

guments in a std::shared_ptr which handles memory allocation and deallocation

implicitly, by by keeping track of the object scope.

MCQC implements pattern matching with the parametric, variadic function gmatch

seen in Fig. 2-4. The generic match gmatch function accepts an arbitrary algebraic

object and a series of lamdas, one lambda for each constructor. Then, gmatch calls

the standard library function std::visit which will query the variant tag and apply
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the appropriate lambda to it depending on the inhabitant’s type and the lambda type

signature. Since lambdas in C++17 are always constexpr, Clang will inline them

in the body of the caller when the variant tag is known at compile time, creating a

zero-cost pattern-matching abstraction.

2.1.4 Base typess

Using Coq’s library of base types, such as numbers, strings and booleans can have

a significant performance impact, making MCQC unusable in practice. Coq defines

every base type algebraically and even the simplest bitwise and arithmetic computa-

tions must be defined recursively. MCQC substitutes the slow Coq base types with

a library of fast, safe, native types written in C++17. MCQC base types are imple-

mented as unsigned int, char, bool etc. in C++, while operations such as addition

and multiplication safely detect overflows and throw exceptions at runtime. To show

the native base type library obeys the Gallina semantics, MCQC tests base types

against a specification by using property-based tests.

Base types are always passed by value. Conversely, non-base algebraic datatypes

that are auto-generated are always passed by smart pointer.

Base type library

MCQC has native support for the following base types in C++17:

1. Nats

2. Chars

3. Bools

4. Strings

5. Pairs

6. Options
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// Overload functions to a single overloaded definition
template<class... Ts>
struct overloaded : Ts... {

using Ts::operator()...;
};
template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;

// Generic polymorphic match
template<typename T, typename ...Args>
auto gmatch(std::shared_ptr<T> m, Args... args){

return std::visit(overloaded { args... }, *m);
}

Inductive list (T:Type) : Type :=
| nil : list T
| cons : T -> list T -> list T.

Fixpoint app {T} (l m : list T) :
(list T) :=

match l with
| nil => m
| cons h t => cons h (app t m)
end.

template<class T>
struct Coq_nil {};
template<class T>
struct Coq_cons {

T a;
std::shared_ptr<std::variant<

Coq_nil<T>,
Coq_cons<T>>> b;

Coq_cons(T a,
std::shared_ptr<std::variant<

Coq_nil<T>,
Coq_cons<T>>> b) {

this->a = a;
this->b = b;

};
};

template<class T>
using list = std::variant<Coq_nil<T>, Coq_cons<T>>;

template<class T>
std::shared_ptr<list<T>> coq_nil() {

return std::make_shared<list<T>>(Coq_nil<T>());
}

template<class T>
std::shared_ptr<list<T>> coq_cons(T a,

std::shared_ptr<list<T>> b) {
return std::make_shared<list<T>>(Coq_cons<T>(a, b));

}

template<class T, class U, class V>
auto match(std::shared_ptr<list<T>> self, U f, V g) {

return gmatch(self,
[=](Coq_nil<T> _) { return f(); },
[=](Coq_cons<T> _) { return g(_.a, _.b); });

}

template<class T>
std::shared_ptr<list<T>> app(std::shared_ptr<list<T>> l,

std::shared_ptr<list<T>> m) {
return match(l,

[=]() { return m; },
[=](auto a, auto l1) {

return coq_cons<T>(a, app<T>(l1, m));
});

}

Figure 2-4: The app function that appends two lists. MCQC extracts the list defini-
tion from the Coq standard library and translates it to the pointered data structure
on the right, not unlike the linked-list implementation in the C++ standard library.
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MCQC represents the shared interface between base types in Coq and C++17 with

Coq typeclasses. Let’s take the interface for natural numbers, defined in the MNat.v

library as an example. MNat.v contains the NativeNat typeclass for which Coq’s

standard Nat is an instance. NativeNat declares functions like add, sub, mul etc.

which MCQC implements with native bitwise arithmetic in nat.hpp.

MCQC has compile-time semantics for all base types and does constant propaga-

tion and compile time evaluation of expressions. An important note is that MCQC

implements semantics for base types twice; once in Haskell for MCQC compile-time

evaluation and once in C++17 for runtime execution. The MCQC compile time

semantics are not necessary strictly speaking, as syntactically replacing Coq con-

structors with their C++17 function definitions is enough for Clang to do constant

propagation. However, constant propagation helps with the readability of the pro-

duced C++17 code, as for example the number 5 is easier to read than its Coq

representation; S (S (S (S (S 0)))).

Base type soundness

Because the soundness of the MCQC native base type library is not verified, some

reassurances are necessary. MCQC does property-based testing of native base types

in order to confirm they have the same properties as their Gallina counterparts.

Rapidcheck, a property-based testing library and clone of quickcheck [3] autogenerates

tests for the native base types based on a specification. The same specification is

shared between Coq and Rapidcheck tests and ensures the consistency of the shared

interface. While property-based tests are not exhaustive, they are randomly generated

and thus are more general in testing program behavior than unit tests.

Weak to strict typing

Weak typing is the default behavior in C++17, which means arbitrary types are

accepted as function arguments as long as they fit in the allocated stack frame. The

common example of weak typing is the implicit cast of char to int, when passed

to functions accepting int arguments. Weak typing can cause undefined behavior
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when haphazardly calling into extracted C++17 programs. MCQC strengthens the

C++17 type system by using TMP to enforce strict typing.

Programs extracted with MCQC enforce a HM type-system similar to the one used

in OCaml[5]. An example of strict types enforced in C++17 by TMP is in Fig. 2-3

in the definition of match. If template substitution fails at std::enable_if_t, the

function will quietly disappear at Clang compile-time, a pattern known as SFINAE

in the C++ world (Substituition Failure Is Not An Error) [23]. Failed template sub-

stitution does not throw an error but hides the templated C++ function completely.

If Clang finds no other compatible definition with that name, an undefined reference

error will be thrown.

2.1.5 Monadic effects (Proc)

Coq has no way of interacting with the underlying OS in an effectful way. MCQC

offers an interface for effectful computations by means of monadic composition. Ef-

fectful monads in Gallina elaborate to imperative-style C++ code as shown in Fig. 2-5.

The elaboration to imperative style commands happens at MCQC compile time, by

evaluation of the monadic laws for Proc. This behavior is special to the Proc monad,

defined in MProc.v and implemented in proc.hpp in C++17. An example of deriving

an imperative implementation for the cat utility, that reads a file from disk and prints

it, is shown in Fig. 2-5.

2.1.6 Generate Type context

Code extracted from Coq uses the HM type system [5]. While Clang can infer some

auto types it is not capable of full HM type inference and requires additional template

annotations. To that end, MCQC implements full HM type inference [5] in order to

fill in missing C++ template arguments. MCQC builds the type context needed for

HM in two steps; it adds all base types and function signatures from the base types

library first, then it recursively adds all function signatures and types from all input
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(** Filedescriptor type *)
Definition fd := nat.

(** Effect composition *)
Inductive proc: Type -> Type :=
| open : string -> proc fd
| read: fd -> proc string
| close : fd -> proc unit
| print : string -> proc unit
(** Monad *)
| ret: forall T, T -> proc T
| bind: forall T T',

proc T
-> (T -> proc T')
-> proc T'.

Notation "p1 >>= p2" :=
(bind p1 p2).

// Filedescriptor type
using fd = nat;

// open file
static proc<fd> open(string s) {

if (int o = sys::open(FWD(s).c_str(), O_RDWR) {
return static_cast<fd>(o);

}
throw IOException("File not found");

}
// read file
static proc<string> read(fd f, nat size) {

auto dp = string(size, '\0' );
sys::read(f, &(dp[0]), sizeof(char)*size);
return dp;

}
// close file
static proc<void> close(fd f) {

if(sys::close(f)) {
throw IOException("Could not close file");

}
}

Definition cat (path fn: string):=
open (path ++ "/" ++ fn) >>=

(fun f => read f >>=
(fun data => close f >>=

(fun _ => print data >>=
(fun _ => ret unit)))).

proc<void> cat(string path, string fn) {
fd f = open(append(path, append("/", fn)));
string data = read(f);
close(f);
print(data);

}

Figure 2-5: The cat unix utility that reads and displays a text file. The shaded box
shows Coq and C++17 boilerplate code, the proc monad for IO operations. Instances
of proc are translated to imperative C++ system calls, as shown at the bottom-right
C++ cat definition.
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modules.

Substituting native functions in the place of Coq functions is straightforward.

As long as the function name and type signatures match, MCQC replaces every Coq

function call with a call to its static C++17 implementation. For example, the binary

add function that accepts two nat arguments and returns a nat is defined recursively

in Coq but with native arithmetic in C++17. MCQC will pick the C++17 version

of add by linking the nat.hpp native library.

2.1.7 Type unification

While every declaration has a type, that’s not the case for every expression. Looking

at Fig. 2-4 in the definition of the app function that appends two lists, it is clear

the type signature of app is ∀ 𝑇, 𝑙𝑖𝑠𝑡 𝑇 → 𝑙𝑖𝑠𝑡 𝑇 → 𝑙𝑖𝑠𝑡 𝑇 but there is some work

involved to go from the type signature to C++ template arguments for coq_cons<T>

and app<T>. There are two steps to type unification, type inference and template

resolution.

Type inference

In a HM type system there are base types like nat and bool, type expressions like

list<nat>, function types like nat → nat → nat and free types like the 𝑇 in

∀ 𝑇, 𝑙𝑖𝑠𝑡 𝑇 . We extend this type system for C++17 with a pointer type which

MCQC outputs as std::shared_ptr and an auto type, for which inference will be

delegated to Clang. MCQC represents free types with De Bruijn indices [10] which

translate to C++ templates during the pretty-printing stage.

Type inference begins at the type declaration for each function, which is always

guaranteed to be well-typed from Coq. First, MCQC unifies the return type of a

function with the expression on the right-hand side of its return call. Every free

type that can be filled in on the right-hand side will be filled in at this point. Then,

each argument type in the function declaration is added to the local context as a

constraint. Those constraints are solved while traversing the AST of the function

31



body and the resulting unified types are substituted in-place of auto in the AST.

Type inference in MCQC annotates every expression in the program with a type and

fills-in free types with template arguments.

Template resolution

Having a type for every expression is helpful, but the absolute type is not what Clang

expects. It expects a template argument relative to the function or type declaration.

For example in Fig. 2-4 in the app body, app is recursively called as app<T> and

not app<std::shared_ptr<list<T» which is the absolute type of the expression. In

this example, MCQC plugged-in T during template resolution which is what Clang

expects.

Template resolution uses the Type context. MCQC matches every expression’s

type against the absolute type in the context, then minimizes the two types to

their common type subexpressions, until the two become different. What is left

is the template argument plug. This is how for example, MCQC minimizes a type

std::shared_ptr<list<T» from the context and inferred std::shared_ptr<list<nat»

to nat, the template argument Clang expects.

The C++ type system does not have support for function types. At the same

time, function types are vital in an HM type system. Using the std::function class

from the C++17 standard library is a poor choice, as Clang cannot introspect or

inline std::function objects at compile time. Templates come to the rescue; Clang

will introspect functional arguments when they are passed as templates, inline them

and optimize them, contrary to std::function objects which are opaque.

The transformation of function types to templates is lossy, as it is impossible to

go back and find the function return and argument types afterwards. In the case

of high-order functions like map in Fig. 2-6, overgeneralizing the argument function

type will certainly result in the Clang type-checker failing to resolve it. To help the

Clang type checker while not losing the benefits of inlining for functional arguments,

the std::invoke_result_t template function shown in Fig. 2-6 indicates that R is

the result type of applying function V to an argument of type T. Now the Clang type
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Fixpoint map (f: A->B) (l: list A):
list B :=

match l with
| [] => []
| a :: t => (f a) :: (map f t)

end.

template<class A, class F,
class B = std::invoke_result_t<V,T>>

std::shared_ptr<list<B>> map(F f,
std::shared_ptr<list<A>> l) {

return match(l,
[=]() { return coq_nil<B>(); },
[=](auto a, auto t) {

return coq_cons<B>(f(a), map<A>(f, t));
});

}

Figure 2-6: The high-order function map applies a function f:A->B to every element
of a list list A, returning a list B. Clang requires some help for the type of F, by
hinting on its return type B with std::invoke_result_t.

checker knows about the type of function f from its relation to T and R and can

successfully compile the code in Fig. 2-6.

2.1.8 Generate main

The main function expected by MCQC’s Proc monad in Coq and the main function

expected by Clang are typed differently typed in each language. In Coq, a main

function cannot take or return anything, so its type is proc unit. C++17 inherits

the rules for main from C and it must return int which becomes the return value

for the whole process. For MCQC, command line arguments to main passed by argc

and argv are not supported and main always returns 0.

The use of proc unit is equivalent to Haskell’s main definition as IO (), as it

interacts with the underlying system by using the IO monad and returns nothing.

Type substitution for main is the last pass that occurs before pretty-printing the

C++17 AST to C++17 code.

2.1.9 Pretty-print C++17

In order to pretty-print C++17, MCQC transformed the input Coq grammar in

Fig. 2-2 to an intermediate representation more close to C++17. MCQC uses the

intermediate grammar in Fig. 2-7 for all optimization passes. Now going from this

grammar to a .cpp file is a matter of implementing a Wadler/Leijen based pret-
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-- C++ typed name
data CDef = CDef { _nm :: Text, _ty :: CType }

-- C++ file lexical scope
data CFile = CFile { _includes :: [Text], _decl :: CDecl }

-- Global scope C++ definitions,
data CDecl =

CDFunc { _fd :: CDef, _fargs :: [CDef], _fbody :: CExpr }
| CDType { _td :: CDef }
| CDStruct { _sn :: Text, _fields :: [CDef], _nfree :: Int }
| CDSeq { _left :: CDecl, _right :: CDecl }
| CDEmpty {}

-- C++ Types
data CType =

CTFunc { _fret :: CType, _fins :: [CType] }
| CTExpr { _tbase :: Text, _tins :: [CType] }
| CTVar { _vname :: Text, _vargs :: [CExpr] }
| CTBase { _base :: Text }
| CTPtr { _inner :: CType }
| CTFree { _idx :: Int }
| CTAuto {}

-- C++ Expressions
data CExpr =

-- High level C++ expressions
CExprLambda { _lds :: [CDef], _lbody :: CExpr }

| CExprCall { _cd :: CDef, _cparams :: [CExpr] }
-- Continuations
| CExprSeq { _left :: CExpr, _right :: CExpr }
-- C++ statament
| CExprStmt { _sd :: CDef, _sbody :: CExpr }
-- Reduced forms
| CExprVar { _var :: Text }
| CExprStr { _str :: Text }
| CExprNat { _nat :: Int }
| CExprBool { _bool :: Bool }
| CExprPair { _fst :: CExpr, _snd :: CExpr }

Figure 2-7: MCQC output C++17 grammar.

typrinter [21]. MCQC uses the prettyprinter package to implement pretty-printing

to C++17.

2.2 Garbage collection

A common C++17 technique for the garbage collection of data structures is smart

pointers. They eliminate the need for manual memory management by calls to new

and delete. Instead, when a smart pointer goes out of scope, the object it points to

loses a reference. When it reaches zero references the smart pointer calls the object’s

destructor. This matches Coq’s memory model, where data structures are passed by
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value and Coq deallocates them when they lose all references.

The C++17 std::shared_ptr class is used throughout MCQC for reference

counting in pointered data structures. Reference ownership can be shared across mul-

tiple callers for std::shared_ptr which incurs some overhead. This small overhead

is a reasonable trade-off for getting a generic dynamic memory allocation interface

applicable to all Gallina programs. The reference counter used by std::shared_ptr

is stored near allocated memory for the object, which allows for better locality and

cache performance.

2.3 Algebraic datatype compile-time reflection

MCQC can print arbitrary algebraic datatypes by using TMP. An overloaded imple-

mentation of show for all types implements the following reflection scheme; Clang

will check the type of the argument to show; if it is a base type it will use one of the

predefined show functions in the MCQC base type library. Otherwise, it will have to

be either a variant or a pointer to a variant. Then show will recurse inside variants

and pointers, until it finds a struct (product type). Then, it will decompose the prod-

uct into its parts and recurse on each one. Since all base types have a corresponding

show function and all other types are pointered algebraic types, it is easy to prove

by structural induction that show always terminates in a base type, while it works as

expected for all algebraic datatypes.

Since this kind of parametric polymorphism cannot be encoded in Coq without a

function ∀𝑇, 𝑆ℎ𝑜𝑤 : 𝑇 → 𝑠𝑡𝑟𝑖𝑛𝑔, an axiomatic definition of Show is included in the

MShow.v library.

2.4 Tail-Call Optimization

The Clang compiler has support for Tail-Call Optimization (TCO) so MCQC does

as well. In recursive C++ functions that call themselves as the last step, the stack is

reused. TCO is equivalent to unrolling recursive calls to for-loops, and thus generates
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faster code. MCQC makes use of TCO when possible in recursive pure functions.

Since match is a constexpr it will be inlined early in the Clang compilation process

and if TCO is possible Clang will perform the optimization across the scope of match

statements.

2.5 Currying

A key characteristic of functional languages is partial evaluation, or currying. Partial

evaluation of a function with a value binds the value to an argument position and

returns an anonymous function with reduced arity. MCQC uses constexpr lambdas

to compose functions, providing a zero-cost currying abstraction. The number of

arguments passed to a function is known at Clang compile time, and constexpr will

elaborate one lambda for every argument given, up to 𝑛 arguments. If all 𝑛 arguments

are given, then Clang will evaluate all 𝑛 constexpr lambdas and substitute a value.

If 𝑛 − 1 arguments are given, the result will be the last unevaluated lambda, which

will take a single argument and return the result.
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Chapter 3

Implementation and evaluation

In this section we present the runtime properties and performance of programs com-

piled with MCQC. The three questions we try to answer is; can we link verified

and unverified code to create end-to-end applications, can we get better memory

performance than extracted Haskell compiled with GHC and can we get comparable

runtime performance to GHC.

3.1 Implementation metrics

MCQC is open source under an MIT license and can be found here https://github.

com/mit-pdos/mcqc. MCQC is written in Haskell and comes with the C++17 base

type library and the corresponding Coq ADT typeclasses. The lines-of-code count

for the various parts of MCQC is shown in Fig. 3-1.

Language LoC
MCQC in Haskell 1800
C++17 native types 630
Coq typeclasses 200

Figure 3-1: Lines of code count for MCQC
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3.2 Zoobar web server

In order to demonstrate MCQC’s capabilities we have developed a demo web appli-

cation for payments, the verified Zoobar server. It is influenced by the zoobar server

used in 6.858 Computer Systems Security class in MIT. It serves as a case-study of

linking verified transaction logic from Coq, with unverified, trusted HTTP libraries,

in order to implement an end-to-end web application. In Fig. 3-2 we can see the block

diagram of the zoobar compilation process and in Fig. 3-3 a screenshot of the zoobar

server running in the browser.

Linking unverified trusted libraries with verified code allows the MCQC user and

proof writer to focus on the parts of an application for which verification is most

important. At the same time, MCQC users have the choice of trusting the well-

maintained, performant libraries that they use already and can complement them

with some verified core logic from Coq, compiled with MCQC.

3.2.1 Server

We built the zoobar web server by linking an HTTP RPC server written in Go with

the transaction logic written in Gallina and MCQC. The server has no persistent

state, all users and associated balances are stored in-memory. The database is a list

of pairs, the username and the total zoobars amount of that user. Initially everyone

has the same balance, as in Fig. 3-2.

When an HTTP request arrives the proxy server will shed the HTTP metadata

and proxy the request to the transaction logic. In the transaction logic, a parser

written in Gallina will deserialize and execute the request. A request initiates a

transfer between users by subtracting 𝑛 zoobars from the first user and adding it to

the second. If either the source or the target user does not exist, nothing will happen.

If the source user has less balance than the transaction needs, nothing will happen.

If the source user has sufficient balance, then the amount will de deducted from his

balance and added to the target user. This is the core transaction logic for the server
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Figure 3-2: A block diagram of the zoobar web application compiled to run in the
browser with MCQC, Go and Webassembly. The gray box shows code executing
inside the Coq proof-assistant, dotted arrows indicate compilation steps and solid
arrows show a request/response channel.

and the following lemma applies:

∀ 𝐷𝐵, 𝑟𝑒𝑞 : 𝑙𝑒𝑡 𝐷𝐵′ := 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑟𝑒𝑞,𝐷𝐵) 𝑖𝑛

𝑧𝑜𝑜𝑏𝑎𝑟𝑠(𝑢)∑︁
𝑢∈𝑢𝑠𝑒𝑟𝑠

𝐷𝐵 =

𝑧𝑜𝑜𝑏𝑎𝑟𝑠(𝑢)∑︁
𝑢∈𝑢𝑠𝑒𝑟𝑠

𝐷𝐵′

The lemma states that after any transaction the total zoobars in the system will

remain constant. Or phrased another way, no value can be lost or created by making

transactions. Coq makes it straightforward to prove the lemma above with respect

to the transaction logic, and requires no boilerplate proofs, except for the theorems

included in the Coq standard library.

The core logic was compiled with MCQC and linked against a Go RPC web server

acting as an HTTP proxy. The total Gallina code and proofs require about 600 lines

of Coq and one work-day for the author to write, verify and compile it. Setting up

the Go web proxy took another work-day.

3.2.2 Client

We also wrote the client part of the Zoobar server in Coq and compiled it with MCQC.

The client is straightforward; it accepts two users and an amount of zoobars from the
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Figure 3-3: Zoobar web application for verified payments

Javascript UI, serializes it into a request and sends it to the server. We compiled

the client with MCQC and Emscripten [8] to Webassembly and embedded it into a

Javascript HTTP client, completing the client part of the zoobar server.

3.2.3 Linking verified applications

The zoobar server demonstrates the ease of linking code compiled with MCQC. Both

the server and client were built and proven in Coq and extracted to C++17 before

linking with the HTTP libraries in Go and Javascript. The proof effort for the

transaction logic is minimal and focuses on the code that is most important for

the overall correctness. The same code that executes inside Coq in Fig. 3-2 can

now execute in the real world, by linking against standard trusted libraries, such

as Javascript and the Go HTTP server. This zoobar demo demonstrates a hybrid

approach to verification, by combining verified logic with unverified, trusted code

and can greatly save development and proof effort for systems programming.

40



3.3 Performance Evaluation

MCQC compares fairly well against GHC in terms of run-time performance and total

memory used. The execution time of MCQC programs is on average 14.8% faster

than GHC programs, as seen in Fig. 3-4a. MCQC reduces the memory footprint of

executing verified programs by 66.25% on average compared to GHC, as seen in Fig. 3-

4b. While the reduction in reserved memory was one of the goals of MCQC, achieved

by removing the GHC RTS, the reduction in program run-time is encouraging for

using Clang as a back-end to functional compilers in the future. Especially on large

inputs in Fig. 3-4a MCQC outperforms Haskell every time.

We compare the performance of code generated with MCQC against Haskell ex-

tracted from Coq. During Haskell extraction, we tell Coq to substitutes bitvector

types (Int) for native arithmetic as the performance of peano arithmetic is multiple

orders of magnitude slower making the comparison unfair. The Clang-7.0 compiler is

used to compile C++17 and GHC-8.4.4 to compile extracted Haskell. All benchmarks

were run on a MacBook Air 2014, 1.4 GHz Intel Core i5, 4 GB 1600 MHz DDR3.

On the C++17 side, valgrind and the massif tool perform memory profiling

by instrumenting all stack and heap memory accesses [18] [19] as seen in Fig. 3-5.

On the Haskell side, the GHC profiler performs both stack and heap instrumentation

through the GHC RTS. By querying the OS for the number of pages mapped to

Haskell executables is how we determined the GHC RTS size to be about 23MB.

MCQC and Haskell share libc so we subtract it from the GHC RTS size as seen in

Fig. 3-4b.

The results in Fig. 3-4 show MCQC extracted code performs with considerably

less memory compared to Haskell and at comparable run-time. For fib, using native

integers explains the lack of heap memory allocated and a linear rise in the stack

due to loading all the fib stack frames. For fact, we get no heap or stack usage,

which indicates TCO has optimized recursion successfully as seen in Fig. 3-4. Finally,

in algorithms that rely on GC we show that MCQC uses less memory compared to

Haskell and in most cases, MCQC is faster, as seen in Fig. 3-4a.
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(a) Program run-time in logarithmic scale.

(b) Shared libraries, heap and stack use in MB.

Figure 3-4: Performance and memory benchmarks for four Coq programs, compiled
with MCQC versus GHC. Increasing values for 𝑁 were used for calculating Fig. 3-4a
and only the highest value 𝑁 was used for memory benchmarks in Fig. 3-4b. The
corresponding Coq code is in Appendix A.
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(a) Fib.v extraction with MCQC (b) Fib.v extraction with GHC

(c) Rev.v extraction with MCQC (d) Rev.v extraction with GHC

(e) Sort.v extraction with MCQC

(f) Sort.v extraction with GHC

Figure 3-5: Comparative memory profiling of four programs with MCQC and Haskell,
over time. The left column is MCQC, clang-7.0 with debug symbols, valgrind and
massif. The right column is GHC with profiling enabled.
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The heap profiles of MCQC and GHC executables show some similarities in terms

of GC, shown in Fig. 3-5. For Sort.v, an initial quadratic curve of allocations for

mergesort stack frames is seen in Fig. 3-5e and then the merge function linearly

concatenates all the leafs in the recursion tree while simultaneously releasing them.

This leads to the asymptotic drop in memory usage, as seen in Fig. 3-5e, Fig. 3-5f.
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Chapter 4

Conclusion

We have presented the MCQC compiler, a novel approach to generating executable

formally verified code directly from the Gallina functional specification. MCQC com-

piles pure and effectful Gallina programs to C++17, with no RTS or GC requirements.

The auto-generated C++17 code can then be compiled for multiple architectures, by

using the Clang compiler [11].

Code compiled with MCQC has a similar size trusted code base (TCB) as standard

Coq extraction mechanisms [14]. The MCQC TCB includes the Clang compiler and

MCQC itself, as well as the base types library. Traditional Coq extraction to Haskell

and Ocaml includes both the compiler (GHC or Ocaml) and RTS in the TCB, MCQC

does not need a trusted RTS, which makes the MCQC TCB smaller than standard

Coq execution through Haskell and OCaml.

We have demonstrated MCQC, a compiler that extracts performant, runnable

C++17 code from verified Gallina. To demonstrate MCQC we wrote a web appli-

cation for online transactions in Gallina that we compiled to C++17 with MCQC.

A minimal amount of boilerplate code and proofs was required, while the use of

MCQC made it possible to write a verified web application without leaving the Coq

proof-assistant.

Existing approaches to formally verified software have been labor intensive. They

require rewritting the whole application stack, even OS, hardware and CPU features,

to be formally verified. MCQC allows a pragmatic approach to verification where the
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application developer has the final judgment of what requires verification effort and

what does not.

By linking formally verified logic with well-established trusted software, we plan

to write more applications in Gallina as well as proofs for their correctness. We also

hope to see MCQC used as part of the Coq ecosystem for the execution of formally

verified code across platforms and architectures, making formally verified programs

possible without scraping the whole stack.

46



Appendices

47



Appendix A: Benchmark code

Here is the Coq code for the benchmarks in Fig. 3-4 and Fig, 3-5. The main definitions

in Fig. A.3 and Fig. A.4 compile to C making it easy to execute the benchmarks with

MCQC.

Fixpoint fib(n: nat) :=
match n with

| 0 => 1
| S sm =>

match sm with
| 0 => 1
| S m => (fib m) + (fib sm)

end
end.

Figure A.1: Function that computes the n-th Fibonacci number, uses Nat from
Coq.Init.

Require Import Coq.Lists.List.

Fixpoint fact(n: nat) :=
match n with

| 0 => 1
| S sm => n * (fact sm)

end.

Figure A.2: Factorial function, an example of a tail-recursive function. Uses Nat from
Coq.Init

Fixpoint rev {T} (l : list T) : list T :=
match l with

| [] => []
| h :: ts => rev(ts) ++ [h]

end.

(** Generate an arithmetic series, list of [1..n] *)
Fixpoint series (n: nat) :=

match n with
| 0 => []
| S m => n :: series m

end.

Definition main :=
print (show (rev (series 10000))).

Figure A.3: List reverse function, not tail-recursive and requires quadratic memory
allocations. Uses List from Coq.Lists
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Definition merge l1 l2 :=
match l1, l2 with
| [], _ => l2
| _, [] => l1
| a1::l1', a2::l2' =>

if a1 <=? a2 then a1 :: merge l1' l2 else a2 :: merge l1 l2'
end.

Fixpoint merge_list_to_stack stack l :=
match stack with
| [] => [Some l]
| None :: stack' => Some l :: stack'
| Some l' :: stack' => None :: merge_list_to_stack stack' (merge l' l)
end.

Fixpoint merge_stack stack :=
match stack with
| [] => []
| None :: stack' => merge_stack stack'
| Some l :: stack' => merge l (merge_stack stack')
end.

Fixpoint iter_merge stack l :=
match l with
| [] => merge_stack stack
| a::l' => iter_merge (merge_list_to_stack stack [a]) l'
end.

Definition sort := iter_merge [].

Definition main :=
let test := series 10000 in
print (show (sort test)).

Figure A.4: Mergesort with merge stacks from Coq.Sorting.Mergesort. Uses List
from Coq.Lists.
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