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Abstract
Edna is a system that helps web applications allow users 
to remove their data without permanently losing their ac-
counts, anonymize their old data, and selectively dissociate 
personal data from public profiles. Edna helps developers 
support these features while maintaining application func-
tionality and referential integrity via disguising and revealing 
transformations. Disguising selectively renders user data in-
accessible via encryption, and revealing enables the user to 
restore their data to the application. Edna’s techniques allow 
transformations to compose in any order, e.g., deleting a pre-
viously anonymized user’s account, or restoring an account 
back to an anonymized state.
Experiments with Edna that add disguising and reveal-

ing transformations to three real-world applications show 
that Edna enables new privacy features in existing applica-
tions with low developer effort, is simpler than alternative 
approaches, and adds limited overhead to applications.

CCS Concepts: • Security and privacy → Data anonymiza-
tion and sanitization; Management and querying of en-
crypted data; Information accountability and usage control; 
Usability in security and privacy.
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Data Encryption, GDPR, PII
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1 Introduction
Many users today have tens to hundreds of accounts with 
web services that store sensitive data, from social media to 
tax preparation and e-commerce sites [9, 22, 54]. While users
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now have the right to delete this data (via e.g., the GDPR [21]

or CCPA [8]), users want and deserve more nuanced controls

over their data that don’t exist today.

Consider Twitter: after a change in management [15],

many users wanted to leave the platform and try out al-

ternatives (e.g., Mastodon). But each user faced a tricky ques-

tion: should they keep their Twitter account, or should they

delete it? Advice on how to quit Twitter [4, 36] highlight

how keeping an inactive account leaves sensitive informa-

tion (e.g., private messages) vulnerable on Twitter’s servers;

but deleting the account prevents the user from changing

their mind and coming back. Hence, many users left Twitter

but kept their accounts [3, 40, 48]. A better solution would

let users temporarily revoke Twitter’s access to their data

while having the option to come back.

Similarly, users give dating apps personal data, and fre-

quently deactivate and reactivate their accounts. This sen-

sitive data should be protected from the application and

potential data breaches [17, 39] when a user deactivates their

account, but be readily available when they choose to return.

Users may also prefer old data, such as past purchases in

an online store or their passport details with a hotel, to be

inaccessible to the service after some time of inactivity, and

therefore protected from leaks or service compromises [44,

56]. Or users may prefer to—explicitly or automatically—

dissociate their identity from old data, such as teenage social

media posts or old reviews on HotCRP. Today, users work

around the lack of such support by explicitly maintaining

multiple identities (e.g., Reddit throwaway accounts [43] and

Instagram “finstas” [60]), an inflexible and laborious solution.

Providing this functionality can benefit both the service

and the user. It helps the service comply with privacy reg-

ulations, reduces its liability on data breaches, and appeals

to privacy-conscious users; meanwhile, the user can rest as-

sured that their privacy is protected, but can also get their

data back and reveal their association with it if they want.

1.1 Why is this hard?
Applications lack such functionality today in part because

getting it right is hard. Real applications have complex no-

tions of privacy, data ownership, and data sharing. Simple

solutions that e.g., delete all data associated with a user can

break referential integrity or create orphaned data, which

requires application changes to handle correctly, and lack

support for users to return. To solve this manually, a devel-

oper would have to carefully perform application-specific
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database changes to remove data, store any data removed

to be able to later restore it, and correctly revert the data-

base changes on restoring. Furthermore, stored data must

be inaccessible to the application and protected against data

breaches, but must be accessible if the user chooses to return.

Developers would also have to reason about interactions

between multiple data-redacting features. For example, imag-

ine an application that supports both account deletion and

anonymizing old data: if a user wants to delete all their posts

after they have been anonymized, a SQL query must some-

how determine which anonymized posts belong to the user

in order to remove them. And if the user later wants to return,

the developer must account for the applied anonymization

and restore posts as anonymized.

1.2 Our Approach
We present a system design that moves closer to an internet

where users can leave services and return at any time, where

old data on servers is protected by default, andwhere services

provide users with control over their identifying data visible

to the service and other users.

Our approach is to create a general system that helps

developers specify and apply two kinds of transformations:

disguising transformations, which render all or some of the

user’s original sensitive data inaccessible to the application;

and revealing transformations, which restore the original

data at a user’s request. Disguising transformations aim to

protect the confidentiality of users’ disguised data (e.g., links

to throwaway accounts or old HotCRP reviews) even if the

application is later compromised (e.g., via a SQL injection or

a compromised admin’s account).

We demonstrate our approach in Edna, a system that real-

izes disguising and revealing transformations for database-

backed web applications via a set of primitives that have well-

defined semantics and compose cleanly. Developers specify

the transformations that their application should provide,

and Edna takes care of correctly applying, composing, and

optionally reverting them, while maintaining application

functionality and referential integrity.

1.3 Challenges
We had to address three challenges to make this approach

work. First, Edna needs to present a simple, yet versatile in-

terface for developers to specify disguising transformations.

Edna addresses this challenge with a restricted programming

model centered around three primitives: remove, modify, and

decorrelate (which reassigns data to placeholder users). This

model limits the potential for developer error, and lets Edna

derive the correct disguising and revealing operations, while

supporting a wide range of transformations.

Second, to work with existing applications in practice,

Edna’s disguising transformations should require minimal

application modifications. To achieve this, Edna introduces

pseudoprincipals, anonymous placeholder users that are in-

serted into the database on disguising and exist solely to own

data decorrelated from real users (e.g., because the applica-

tion requires the data to continue operating) and maintain

referential integrity. Pseudoprincipals can also act as built-

in “throwaway accounts,” as they let the user disown data

after-the-fact, as well as potentially later reassociate with

it. To correctly reason about ownership when data may be

decorrelated multiple times (e.g., by global anonymization

after throwaways have been created), Edna maintains an

encrypted speaks-for chain of pseudoprincipals that only the

original user can unlock and modify.

Third, Edna needs to have access to the original data for

users to be able to reveal their data and return to the applica-

tion, but the whole point is to make that data inaccessible to

the service. While Edna could ask users to store their own

disguised data, this would be burdensome. Instead, Edna

stores the disguised data on the server in encrypted form,

and unlocks and restores data to the service only when a

user provides their credentials to reveal.

1.4 Contributions
In summary, this paper makes four key contributions:

1. Abstractions for disguising and revealing, and a small

set of data-anonymizing primitives (remove, modify,

decorrelate) that cover a wide range of application

needs and compose cleanly.

2. Techniques to implement these abstractions, including

pseudoprincipals (§4.2), speaks-for and diff records (§4.3),

and speaks-for chains (§4.6).

3. Case studies that integrate Edna with three real-world

web applications and demonstrate Edna’s ability to

enable composable and reversible transformations.

4. An evaluation of Edna’s effectiveness and performance,

including how Edna contrasts with and complements

related work (Qapla [37] and CryptDB [45]).

While Edna enables disguising and revealing transforma-

tions in a broad class of applications, Edna has some limita-

tions. First, Edna assumes bug-free disguise specifications,

and that applications use Edna correctly. Second, while Edna

helps developers add user data controls to single applications,

Edna does not tackle the problem of data sharing between

services. Third, Edna does not aim to protect undisguised

data in the database against compromise; combining Edna

with an encrypted database can add this protection. Finally,

attacks to identify users from Edna’s metadata (e.g., the size

of stored disguised data) or placeholder data left in the data-

base (e.g., embedded text) are out of scope.

2 Related Work
Edna is the first system to address the problem of reversible

and composable data transformations for selective data re-

moval in web applications. Existing systems aim instead to
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support data deletion, prevent unauthorized data access, or

protect against database server compromise—valuable, but

complementary goals to Edna’s.

Data deletion tools, such as DELF at Meta [14], help

correctly delete data. DELF lets developers specify deletion

policies via annotations on social graph edges and object

types, and ensures correct cascading data deletion. Other

systems support wholesale user data deletion by tracking

data ownership by modifying the data layout [16, 52] or

tracking information flow [32]. While Edna also supports

GDPR account deletion, Edna’s focus is on more nuanced use

cases beyond simple deletion: Edna allows users to return

after deletion, hides old data for inactive users, or hides some

but not all data so the user can continue using the application.

Edna could, however, benefit from these systems’ proposed

techniques to track a user’s data.

Policy enforcement systems such as Qapla [37] aim

to prevent unauthorized access to data and protect against

leakage via compromised accounts or SQL injections. They

enforce developer-specified visibility and access control poli-

cies via information flow control [13, 24, 28, 50, 62], autho-

rized views [6], per-user views [35], or by blocking or rewrit-

ing database queries [37, 42, 64]. Policy-enforcing systems

do not help users anonymize data or maintain application

integrity constraints, which is Edna’s explicit goal. Instead of

denying access to data, Edna changes the database contents

so sensitive data is no longer available in the database, and

thus unavailable even to the service itself.

Encrypted storage systems such as CryptDB [45] and

Mylar [46] protect against database server compromise, with

some limitations [26]. These systems encrypt data in the

database, and ensure that only users with access to the right

keys can decrypt the data. Applications must handle keys,

and send queries either through trusted proxies that decrypt

data [45], or move application functionality client-side [46].

Encrypted databases have orthogonal goals to Edna’s: while

they protect data at all times against attackers who do not

have the keys, encrypted databases do not help applications

anonymize or temporarily remove data, which Edna does.

Any user with legitimate access can view the data in an

encrypted database, whereas Edna removes disguised data

from the database.

Other related work. Devices using iOS [2], Android [2],

or CleanOS [55] revoke data access via encryption, like Edna

does. However, these systems operate in settings that store

only a single user’s data; Edna instead tackles the problem of

transformations that operate over multiple users’ data and

shared data without breaking the application.

Vanish [23] provides users with self-destructing data and

a proof of data deletion using decentralized infrastructure

and cryptographic techniques (with limitations against Sybil

attacks [61]). Unlike Edna, Vanish cannot restore deleted

data and requires extensive application restructuring.

App

DB Edna Disguise/Reveal

Disguise
Spec

Client

Disguise/Reveal
Hooks

Developer

Figure 1. Developers write disguise specifications and add

hooks to invoke Edna from the application (green); in nor-

mal operation, clients use these hooks in the application to

disguise and reveal their data in the database (blue).

Sypse [18] pseudonymizes user data and partitions per-

sonally identifying information (PII) from other data. Instead

of partitioning data, Edna modifies the database and stores

disguised data encrypted.

Decentralized platforms such as Solid [49], BSTORE [12],

Databox [38], and others [1, 10, 11, 33, 41] put data directly

under user control, since users store their own data. But

decentralized platforms burden users with maintaining in-

frastructure, lack the capacity for server-side compute, and

break today’s ad-based business model. By contrast, Edna

leaves the data and businessmodels unchanged, and stores all

data, including disguised data, on the application’s servers.

Some platforms can prove that server-side processing re-

spects user-defined policies via cryptographic means [7] or

systems security mechanisms [59]. This may restrict feasible

application functionality (e.g., to additively homomorphic

functions), or restrict combining data with different poli-

cies. Edna protects data only after disguising, but allows

unrestricted application functionality before disguising.

3 Edna Overview
Edna helps developers realize new options for users to

control their data via disguising transformations. The devel-
oper integrates an application with Edna by writing disguise

specifications and adding hooks to disguise or reveal data

using Edna’s API (Figure 1). This proceeds as follows:

(1) An application registers users with a public–private

keypair that either the application or the user’s client gener-

ates; Edna stores the public key in its database, while the user

retains the private key for use in future reveal operations.

(2) When the application wants to disguise some data, it

invokes Edna with the corresponding developer-provided

disguise specification and any necessary parameters (such as

a user ID). Disguise specifications can remove data, modify

data (replacing some or all of its contents with placeholder

values), or decorrelate data, replacing links to users with

links to pseudoprincipals (fake users). Edna takes the data it

removed or replaced and the connections between the user

and any pseudoprincipals it created, encrypts that data with

the user’s public key, and stores the resulting ciphertext—the
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def tag_anon

# instantiate the disguise spec with the provided tag to anonymize

disg_spec = edna.instantiate_spec("tag_anon.json",params[:tag])

# apply the disguising transformation

disg_id = edna.apply_disguise(@user.id,params[:passwd],disg_spec)

# email the disguise ID to the user to allow revealing

SendDisguiseEmail(@user, disg_id)

end

Figure 2. The Lobsters developer adds a hook in the UI and code to perform topic-based anonymization.

disguised data—such that it cannot be linked back to the user

without the user’s private key.

(3) When a user wishes to reveal their disguised data, they

pass credentials to the application, which calls into Edna to

reveal the data. Credentials are application-specific: users

may either provide their private key or other credentials

sufficient for Edna to re-derive the private key. Edna reads

the disguised data and decrypts it, undoing the changes to

the application database that disguising introduced.

Edna provides the developer with sensible default disguis-

ing and revealing semantics (e.g., revealing makes sure not

to overwrite changes made since disguising).

Threat Model. Edna protects the confidentiality of dis-

guised data between the time when a user disguises their

data and the time when they reveal it. During this period,

Edna ensures that the application cannot learn the contents

of disguised data, nor learn what disguised data corresponds

to which user, even if the application is compromised and

an attacker dumps the database contents (e.g., via SQL injec-

tion). Edna stores disguised data encryptedly, so its confi-

dentiality stems from “crypto shredding,” a GDPR-compliant

data deletion approach based on the fact that ciphertexts are

indistinguishable from garbage data if the key material is

unavailable [19, 25, 47, 57].

We make standard assumptions about the security of cryp-

tographic primitives: attackers cannot break encryption, and

keys stored with clients are safe. If a compromised appli-

cation obtains a user’s credentials, either because the user

provides them to the application for reveal, or via external

means such as phishing, Edna provides no guarantees about

the user’s current or future disguised data. Edna also expects

the application to protect backups created prior to disguis-

ing;
1
and external copies of the data (e.g., Internet Archive

or screenshots) are out of scope.

While Edna hides the contents of disguised data and rela-

tionships between disguised data and users, it does not hide

the existence of disguised data. (An attacker can see if a user

has disguised some data, but cannot see which disguised

data corresponds to this user.) An attacker can also see any

data left in the database, such as pseudoprincipal data or

1
If the application restores a backup, Edna continues operating as if only

the transformations up to the time of the snapshot had been applied.

embedded text. Edna puts out of scope attacks that lever-

age this leftover data and metadata to infer which principal

originally owned which objects.

Edna’s choice of threat model and its limitations stem

from Edna’s goal of practicality and usability by existing

applications, and from design components that support this

goal. For example, decorrelation with pseudoprincipals re-

moves explicit user-content links, but leaves placeholder

information in the database to avoid application code having

to handle dangling references. Similarly, leveraging server-

side storage to hold disguised data leaves metadata available

to attackers, but avoids burdening users with data storage

management.

4 Design
We now describe how Edna’s API and disguise specifications

work via a disguising transformation for Lobsters [34].

4.1 Example: Lobsters Topic Anonymization
Lobsters [34] is a link-sharing and discussion platform with

15.4k users. Its database schema consists of stories, tags on

stories, comments, votes, private messages, user accounts,

and other user-associated metadata. Users create accounts,

submit URLs as stories, and interact with other users and

their posted stories via comment threads and votes.

Consider topic-based anonymization, which allows

users to hide their interest in a topic (a “tag” in Lobsters)

by decorrelating their comments and removing their votes

on stories with that tag. For instance, a Lobsters user Bea

who posts about their interests—Rust, static analysis, and

Star Wars—might want to hide associations with Star Wars

before sharing their profile with potential employers. This

is currently not possible in Lobsters.

The Lobsters developer can realize topic-based anonymiza-

tion as a disguising transformation. First, the developerwrites

a disguise specification (§4.2) and provide it to Edna. They

also add frontend code and UI elements that allow authen-

ticated users to trigger the disguising transformation (Fig-

ure 2). When Bea wants to anonymize their contributions

on content tagged “Star Wars”, Lobsters invokes Edna with

a disguise specification that instructs Edna to decorrelate

comments and remove votes on “Star Wars” stories (§4.3).
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// Decorrelate comments on stories w/tag {{TAG}}

"comments": [{

"type": "Decorrelate",

"predicate": "tags.tag = {{TAG}}",

"from": "comments JOIN stories

ON comments.story_id = stories.id

JOIN taggings

ON stories.id = taggings.story_id

JOIN tags ON...",

"group_by": "stories.id",

"principal_fk": "comments.user_id" } ],

// Remove votes on stories w/tag {{TAG}}

"votes": [{

"type": "Remove",

"predicate": "tags.tag = {{TAG}}",

"from": "votes JOIN stories...",

"principal_fk": "votes.user_id",

}, ... ]

Figure 3. Lobsters topic-based anonymization disguise spec-

ification (JSON pseudocode), which decorrelates comments

and removes votes on stories with the specific topic tag.

4.2 Disguise Specifications
Disguise specifications tell Edna what application data ob-

jects to disguise and how to disguise them. A disguise speci-

fication identifies objects by database table name, principal,

and predicate, where a predicate is a SQL WHERE clause. Edna
by default disguises all objects related to the given princi-

pal, as defined by a foreign-key relationship provided in the

disguise specification (using principal_fk), but predicates
can narrow the transformation’s scope (e.g., to stories with

specific tags). For each selected group of objects, developers

choose to remove, modify, or decorrelate them. The example

specification in Figure 3 decorrelates all comments and re-

moves all votes on stories with a particular tag, specified by

the TAG parameter provided at invocation time.

To ensure that decorrelation preserves referential integrity,

Edna generates pseudoprincipals to replace the original prin-

cipal. Decorrelation can use pseudoprincipals at different

granularities. In the extreme, the disguise specification may

tell Edna to create a unique pseudoprincipal for each decor-

related application object. In our example, however, all com-

ments by the same user on the same story decorrelate to

the same pseudoprincipal ("group_by": "stories.id"),
thus keeping same-story comment threads intact. The same

user’s comments on different stories, however, decorrelate

to different pseudoprincipals; an alternative might group

comments by comments.user_id, so a single pseudoprin-

cipal adopts all of a user’s TAG-related comments (effectively

creating a “Star Wars” throwaway account).

Developers can inform Edna to, upon revealing, check for

any objects added after disguising that refer to pseudoprinci-

pals; for example, a decorrelated comment might have new

responses. This enables Edna to preserve referential integrity

DBDB

Bea
Disguise Bea

speaks-for
AnonFox

Bea
speaks-for
AnonPig

Edna's  
Data Bea

Edna's Data

Beapub

An
on
Fo
x

An
on
Pi
g

Figure 4. When Edna applies topic-based anonymization to

Bea’s comments on stories tagged “Star Wars” (red), these

comments are decorrelated to pseudoprincipals (“AnonPig”,

“AnonFox”) and Edna stores encrypted speaks-for records

mapping Bea to their pseudoprincipals.

for data referring to pseudoprincipals. Edna provides three

options if it finds such objects: (i) change the object’s refer-
ence to point to the original principal; (ii) delete the object;
and (iii) continue referring to the pseudoprincipal.

4.3 Disguising
To apply a disguising transformation, Edna creates a unique

disguise ID and queries for the data to disguise based on the

disguise specification predicates. Edna then performs the

specified database changes by first applying all removals,

and then decorrelations and modifications in specification

order, potentially generating and storing pseudoprincipals.

Edna next generates diff records that contain the origi-

nal data, the changes the disguise made to the original data

(e.g., the value of any modified columns), and the disguise

ID. For each new pseudoprincipal, Edna generates a public–

private keypair and a speaks-for record that contains a pair

of (original principal, pseudoprincipal) IDs and the pseudo-

principal’s private key. Edna registers the pseudoprincipal

with its public key to enable composition of disguises (§4.6).

Edna then encrypts diff and speaks-for records—collectively

called disguise records—with the principal’s key, and stores

them in the database. Finally, Edna returns the disguise ID

to the application. A client can use the disguise ID and the

principal’s credentials to reveal the transformation later.

To perform Bea’s topic-based anonymization (Figure 4),

Edna thus: (i) queries the database to fetch comments and

votes by Bea affiliated with “Star Wars”; (ii) creates a pseu-
doprincipal (e.g., “AnonFox”) for every “Star Wars”-tagged

story that Bea commented on, and inserts it as a new user;

(iii) modifies the database by rewriting comment foreign keys

to point to the created pseudoprincipals, and removing Bea’s

votes on those stories; (iv) creates speaks-for records that
map Bea to the created pseudoprincipals, diff records contain-

ing Bea’s votes on “Star Wars” stories, and diff records that

document Bea’s original ownership of “Star Wars”-tagged

comments; (v) encrypts the speaks-for and diff records with

Bea’s public key, stores them; and (vi) returns a unique dis-
guise ID to the application.
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Edna adds a disguise table and a principal table to the

application database to store principals’ disguised data. The

disguise table contains lists of per-principal disguise records

encrypted with the principal’s public key. The principal table

is indexed by application user ID; each row contains the

principal’s public key, and a list of disguise table indexes

encrypted with the public key. To store disguise records for

principal 𝑝 , Edna (i) encrypts the records with 𝑝’s public

key; (ii) stores the ciphertext in the disguise table under

index idx; (iii) encrypts idx (salted to prevent rainbow table

attacks) with 𝑝’s public key; and (iv) appends the encrypted
idx to 𝑝’s list of encrypted disguise tables indexes in the

principal table.

This allows Edna to store records without needing access

to the principal’s private key, and to do so securely: the

principal table adds a layer of indirection from user ID to

encrypted disguise records, so an attacker cannot link prin-

cipals to their records. At reveal time, Edna can efficiently

find disguised data for a given user by decrypting and using

disguise table indexes in the principal table.

Disguising transformationsmay completely remove a prin-

cipal from the application database.When this happens, Edna

moves the corresponding list of encrypted disguise table in-

dexes from the principal table to a deleted principal table
indexed opaquely, e.g., by the public key. This removes the

user ID from the database while allowing future reveal oper-

ations by the principal to find their disguise table indexes.

4.4 Revealing
To apply a reveal transformation, Edna first locates and de-

crypts the corresponding disguise records using a disguise

ID and the user’s reveal credentials. Edna supports two forms

of reveal credentials: (i) the principal’s private key itself; or

(ii) the principal’s application password or a recovery token

(in case they forget their password), either of which Edna can

use to rederive the private key. Developers can use either

or both of these credentials depending on application needs.

In our Lobsters example, Edna rederives the user’s private

key using their password. Password or keypair changes re-

quire an application to re-register the user with Edna, which

generates new recovery tokens and re-encrypts the user’s

disguised data.

Edna’s reveal procedure (Figure 5) first looks up all dis-

guise records related to the provided reveal credentials via

Edna’s principal and disguise tables. Edna then applies diff

records created for the disgID disguise transformation to

the database, thus restoring the relevant application objects

to their pre-disguised state.

To preserve referential integrity, Edna first restores dis-

guised data that was removed. Edna then reveals any modifi-

cations, and finally performs recorrelations using decrypted

speaks-for records. Finally, Edna de-registers any pseudo-

principal who no longer has any associated disguised data,

removing them from the principal table and the application’s

Reveal(disgID, uid, privkey):

encrypted_disg_table_idxs := principal_table[uid]

decrypted_disg_table_idxs :=

decrypt(encrypted_disg_table_idxs , privkey)

for idx in decrypted_disg_table_idxs:

records = decrypt(disg_table[idx], privkey)

for rec in records:

if rec.disgID == disgID:

// apply rec to application database

// remove rec from disg_table

else if rec.type == SPEAKS_FOR:

// recursively reveal for pseudoprincipal

// generated by another disguise

Reveal(disgID, rec.pp_uid, rec.pp_privkey)

Figure 5. Pseudocode for revealing a disguising transforma-

tion while application principal uid exists. Recursive reveal-
ing (the else clause) walks the speaks-for chain to reveal

composed records of pseudoprincipals created by other dis-

guising transformations if necessary (§4.6).

users table. Developers can configure Edna to also check

for references to pseudoprincipals prior to removing them,

and depending on the application’s needs, configure Edna to

delete, rewrite, or leave the references in place. After reveal-

ing, the disguised data is no longer needed, so Edna clears

the corresponding disguise records.

Edna’s reveal semantics rely on consistency checks to

handle database changes (e.g., application updates to undis-

guised data). Edna reveals data only if revealed data: (i) will
still satisfy uniqueness and primary key constraints; (ii) will
not overwrite modifications that occurred while data was

disguised; and (iii) will maintain referential integrity.

For (i), Edna checks that removed disguised data is still

removed from the database; and for (ii), Edna ensures that
modified disguised data is in the same modified state and

decorrelated disguised data is still affiliated with the same

pseudoprincipal in the database using the new value stored in

the diff record. To ensure (iii), Edna checks for the existence
of all objects referenced by the data to reveal (e.g., a post

referenced by a to-be-revealed comment).

Edna is conservative and will never reveal rows for which

checks fail; the affected data remains disguised. §8 describes

ways to increase the scope of Edna’s checks.

In the example, if Bea wants to reveal their “Star Wars”

contributions, Lobsters invokes Edna with the disguise ID

and Bea’s password as reveal credentials. Edna uses the pass-

word to reconstruct Bea’s private key, retrieve and decrypt

Bea’s disguise records, and filter those records for those with

the disguise ID. Edna then restores deleted votes and Bea’s

ownership of decorrelated comments.

4.5 Shared Data
Many applications support shared data; in Lobsters, for ex-

ample, messages between users are owned by both users.
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Edna’s default semantics for shared data implement an own-

ership model inspired by a common treatment of messages.

When a user disguises shared data, Edna decorrelates the

data from the disguising user, but preserves the data and

its association with other owners. Edna removes the data

once all users have disguised it and all ownership links are

to pseudoprincipals. For instance, consider a Lobsters mes-

sage between Bea and Chris: after Bea disguises the message,

the message is owned by Chris and a pseudoprincipal; if

Chris then disguises the message, Edna removes it. Either

owner can reveal the message, which restores the message to

the database and recorrelates the revealing user. Regardless

of the reveal order, if all owners reveal the message, Edna

returns the message to its original state.

4.6 Composing Disguising Transformations
Edna supports composition of disguising transformations,

which occurs when a transformation applies to data that

Edna had previously disguised in some other way. Reasoning

about composition of transformations can be broken down

to reasoning about the composition of primitive operation

pairs, e.g., remove after modify, or remove after decorrelation.

Many pairs result in trivial composition: no operation can

be composed after a remove (the data is gone), and any

operation after a modify updates the data as expected.

However, operations after decorrelation results in more

complex composition scenarios. For instance, decorrelation

after decorrelation could occur if a user decorrelates some

posts, after which an administrator decorrelates all posts. In
this scenario, the administrator’s disguising operation ap-

plies to pseudoprincipal-owned posts in the same way as it

does to unmodified posts. This creates pseudoprincipals that

can speak-for other pseudoprincipals. Edna uses the pseudo-

principal’s registered public key to encrypt pseudoprincipal

disguise records, so Edna does not need to know its link to

an original principal in order to encrypt and disguise its data.

Removal or modification after decorrelation also require

special handling. For instance, a Lobsters user might first

decorrelate some of their comments and then request to

delete all their comments (e.g., by deleting their account).

But the decorrelated comments are no longer linked to the

original user; how can the deletion transformation find them?

Edna addresses this question by accepting optional reveal cre-

dentials as part of the disguise operation. These credentials

let Edna decrypt the user’s previous disguise records, find all

pseudoprincipals corresponding to that user, and apply dis-

guising transformations on behalf of those pseudoprincipals

as well as the user. Edna uses pseudoprincipal private keys

in decrypted speaks-for records as credentials to recursively

find pseudoprincipals from multiple decorrelations.

Finally, Edna must handle reveals of transformations in

any order. As before, many scenarios are straightforward:

revealing removals is trivial (data can only be removed and

restored once), and revealing modified data simply restores

the original (subject to consistency checks). Handling out-of-

order reveals of multiple decorrelations presents the greatest

challenge. Edna’s semantics enforce that data that is decor-

related multiple times will not be recorrelated until all dis-

guises are removed. For example, if Bea separately decorre-

lates their comments on “bears” and “Star Wars” posts, then

later reveals the “bears” posts, they might want Ewok-related

comments (tagged both “Star Wars” and “bears”) to remain

disguised, even though they were initially disguised under

the “bears” transformation. To support this, Edna maintains

a chain of speaks-for records that represent speaks-for rela-

tionships between pseudoprincipals. All reveal operations

walk the full speaks-for chain to reveal all necessary records

(cf. Figure 5), and if reveal operations happen out of order,

Edna removes an intermediate link in the speaks-for chain.

4.7 Authenticating As Pseudoprincipals
As described so far, if Bea wanted to modify a decorrelated

“Star Wars” comment, they would have to reveal the com-

ment, edit it using their normal credentials, and then re-

disguise the comment. Edna applications can also let users

modify decorrelated records without the reveal step. To sup-

port this, an application accepts reveal credentials along with

a modification request. Edna uses these credentials to vali-

date that the user speaks-for a specific pseudoprincipal, and

updates the database with the modification.

4.8 Security Discussion
Edna’s design achieves confidentiality of disguised data be-

tween the time of disguising and revealing, its key goal. Some

aspects of Edna’s design help make Edna practical and de-

ployable without major application modifications, but give

up stronger security in exchange for usability.

Under Edna’s threat model, Edna achieves:

1. confidentiality of disguised data, via encrypting dis-

guised data using asymmetric encryption, so only the

owning user’s private key can reveal it;

2. confidentiality of which encrypted disguised data be-

longs to which user, via opaque, encrypted indexing

to reference a user’s disguised data; and

3. reduced linkability between parts of a user’s data, via

splitting data ownership among pseudoprincipals.

However, an attacker sees all application database content

and code, and Edna’s disguise, principal, and deleted princi-

pal tables. Thus, what the attacker learns includes:

1. any undisguised data in the application database;

2. the active principals that have disguised data, via Edna’s

principal table;

3. the pseudoprincipals currently registered, from Edna’s

principal table and the application DB;

4. the number of deleted principals, via the size of the

deleted principal table;

5. the amount of disguised data in Edna; and

6. the disguise specifications, from application code.

440



SOSP ’23, October 23–26, 2023, Koblenz, Germany L. Tsai, H. Gross, M. F. Kaashoek, E. Kohler, M. Schwarzkopf

Edna provides decorrelation with pseudoprincipals to ease

integration with existing applications, even though pseudo-

principals (and their mere existence) can reveal information

to the attacker. Pseudoprincipals preserve application data

and referential integrity, ensuring that e.g., every post al-

ways has an author, or that vote counts on posts remain

unchanged, without requiring the developer to handle spe-

cial cases of deleted users and orphaned data. However, this

necessarily leaves information in the database.

Similarly, leveraging the application database to store dis-

guised data increases Edna’s practicality as it reuses existing

server-side storage and avoids burdening users with manag-

ing their disguised data, but leaves potentially exploitable

metadata available to attackers. An attacker could leverage

pseudoprincipal groupings (e.g., a pseudoprincipal owning

posts in both “CMU 2018” and “BayArea” topics), undisguised

data (e.g., comments signed with the user’s name), and Edna

metadata (e.g., that some anonymous user hasmore disguised

data than another, as Edna stores disguised data without

padding for efficiency) to infer the identity of the original

owning principal.

Finally, Edna makes no guarantees for users who actively

use disguised data after compromise (e.g., by revealing or

editing decorrelated data): after an attacker compromises

the application at time 𝑡 , they can harvest private keys that

clients provide after 𝑡 . However, Edna always protects users’

disguised data if they remain inactive.

The attacker never has access to a user’s private key unless

the user actively provides their credentials. The attacker also

cannot access the private key of any pseudoprincipal because

it is in an encrypted speaks-for record. If an application uses

password-based reveal credentials, Edna guarantees security

equivalent to the security of the user’s password.

5 Implementation
We implemented our Edna prototype in 7.9k lines of Rust.

API. An application can use the prototype if: (i) it uses
a MySQL database; (ii) rows to disguise have direct foreign

key relationships to a users table, where each user corre-

sponds to a row of that table; (iii) all rows to disguise are

owned by one or more principals; and (iv) all rows can be

uniquely identified (e.g., via primary key). Applications that

do not satisfy these assumptions—e.g., because they have

complex ownership chains or use a NoSQL database—could

be supported with extensions to the prototype.

SecureRecord Storage.When encrypting diff and speaks-

for records, Edna appends a random nonce to the record

plaintext to prevent known-plaintext attacks. It then gener-

ates a new public/private keypair for x25519 elliptic curve

key exchange. Using the newly created private key and the

principal’s public key, Edna performs the x25519 elliptic

curve Diffie-Hellman ephemeral key exchange to generate a

shared secret. Edna encrypts the record data with the shared

secret, and saves the ciphertext along with the freshly gen-

erated public key (required to decrypt the data given the

principal’s private key). This public key algorithm lacks key

anonymity, so an attacker can determine which records be-

long to the same principal, but this is not fundamental [5].

Reveal Credentials. Our prototype supports two forms

of reveal credentials: (i) private keys; or (ii) principals’ pass-
words, and recovery tokens in case they forget their pass-

words. If an application chooses to use the latter, it pro-

vides the principal’s password to Edna upon user registra-

tion. Our prototype uses a variant of Shamir’s Secret Shar-

ing [53] to generate three shares from the private key, any

two of which can reconstruct the private key. Shares are

(𝑥, 𝑓 (𝑥) mod 𝑝) tuples, where 𝑓 (𝑥) = privkey + rand · 𝑥
and 𝑝 > privkey is a known prime. One share derives

𝑥 from the user’s password using a Password-Based Key

Derivation Function (PBKDF) [29]. Edna stores the resulting

𝑓 (𝑥) half of the share, allowing Edna to derive one full share
from the password. Edna returns the second full share as

a recovery token and stores the third full share. Edna can

combine this third share with the recovery token or a full

share derived from the password to recover the private key.

The PBKDF ensures that Edna cannot guess the password-

derived value with dictionary and rainbow table attacks [63],

and that Edna cannot brute force the recovery token.

Password-based secret-sharing is only one possible im-

plementation for backup secrets; Edna could also support

password-based backup secrets by e.g., storing an version of

the private key encrypted with the user’s password.

Concurrency. Edna runs disguising and revealing trans-

formations in transactions, providing serializable isolation to

application users. If a query within a transformation fails, the

entire transformation aborts (returning an error to the appli-

cation). Edna provides an option to run long-running trans-

formations that touch large amounts of data (e.g., anonymiza-

tion of all users’ posts) without a transaction, at the expense

of clients potentially observing intermediate states.

6 Case Studies
This section evaluates Edna by using it to add new data-

redacting features to several applications; §7 evaluates the

effort needed to do so and the resulting performance.

We add disguising and revealing transformations based

on the motivating examples in §1 to three applications—

Lobsters [34], WebSubmit [51], and HotCRP [31].

6.1 Lobsters
Lobsters is a Ruby-on-Rails application backed by a MySQL

database. Beyond the previously-mentioned stories, tags, etc.,

Lobsters also contains moderations that mark inappropriate

content as removed. We added three disguising transfor-

mations: account deletion with return; account decay, i.e.,
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automatic dissociation and protection of old data; and topic-

specific throwaway accounts.

GDPR-compliant account deletion (i) removes the user

account; (ii) removes information that’s only relevant to the

individual user, such as their saved stories; (iii) modifies story

and comment content to “[deleted content]”; (iv) decorrelates
private messages; and (v) decorrelates votes, stories, com-

ments, and moderations on the user’s data. This preserves

application semantics for other users—e.g., vote counts re-

main consistent even after account deletion, and other users’

comments remain visible—while protecting the privacy of re-

moved users. Important information such as moderations on

user content remains in the database, and Edna recorrelates

it if the user restores their account. After Edna applies the

disguising transformation, Lobsters emails the user a URL

that embeds the disguise ID. The user can visit this URL and

provide their credentials to restore their account.

The account decay transformation protects user data

after a period of user inactivity. We added a cron job that

applies account decay to user accounts that have been in-

active for over a year. This (i) removes the user’s account;

(ii) removes information only relevant to the user, such as

saved stories; (iii) and decorrelates votes, stories, comments,

and moderations on the user’s data by associating them with

pseudoprincipals. Lobsters sends the user an email which

informs them that their data has decayed, and includes a

URL with an embedded disguise ID that can reactivate or

completely remove the account if credentials are provided.

Finally, topic-based throwaway accounts via topic-based
anonymization enable users to decorrelate their content

relating to a particular topic. As per §4.1, this disguises contri-

butions associated with the specified tag by (i) decorrelating
tagged stories and comments associated with tagged stories,

and (ii) removing votes for tagged stories. Again, Lobsters

sends the user an email with links that allow reclaiming or

editing these contributions.

With Edna and its support for composing disguising trans-

formations, users can delete accounts that have been decayed

or dissociated into throwaways, and can later reveal them.

6.2 WebSubmit
We integrated Edna as a Rust library with WebSubmit [51].

WebSubmit is a homework submission application used at

Brown University, and its schema consists of tables for lec-

tures, questions, answers, and user accounts. Clients cre-

ate an account, submit homework answers, and view their

submissions; course staff can also view submissions, and

add/edit questions and lectures. The original WebSubmit re-

tains all user data forever. We added support for two disguis-

ing transformations: GDPR-compliant user account removal

with return, and instructor-initiated answer anonymization,

which protects data of prior years’ students by decorrelating

student answers for a given course. These transformations

allow instructors to retain FERPA-compliant [58] answers

after the class has finished. With Edna, students can delete

their accounts or access and view their answers even after

class anonymization, and can always restore their deleted

accounts, including restoring them to anonymized state.

6.3 HotCRP
HotCRP is a conference management application whose

users can be reviewers and/or authors. HotCRP’s schema

contains papers, reviews, comments, tags, and per-user data

such as watched papers and review ratings [31]. HotCRP

currently retains past conference data forever and requires

manual requests for account removal [30]. We wrote two

disguise specifications for HotCRP: conference anonymiza-

tion to protect old conference reviews, and GDPR account

removal with return.

Conference anonymization is invoked by PC chairs af-

ter the conference and decorrelates users from their submis-

sions, reviews, comments, and per-user data such as watched

papers. User accounts remain in the database with no asso-

ciated data. Conference anonymization protects users’ data

after the conference; with Edna, users can come back to view

or edit their anonymized reviews and comments.

Account removal (i) removes the user’s account; (ii) re-
moves information only relevant to the user, such as their

review preferences; (iii) removes their author relationships

to papers; and (iv) decorrelates the remainder of their data,

such as reviews. Decorrelating a review removes its asso-

ciation with the reviewing user, but importantly keeps the

review itself around to preserve utility for others (e.g., the PC

and the authors of the reviewed paper). With Edna, users can

remove their accounts even after conference anonymization

has taken place, and can always restore their accounts.

7 Evaluation
Our evaluation seeks to answer five questions:

1. How much developer effort and application modifica-

tion does Edna require? (§7.1)

2. How expensive are common application operations,

as well as disguising, revealing, and operations over

disguised data with Edna? (§7.2)

3. What overheads does Edna impose, and where do they

come from? (§7.3)

4. How does the effort required to implement Edna’s

functionality in a related system (Qapla [37]), and its

performance, compare with using Edna? (§7.4)

5. What is the performance impact of composing Edna’s

guarantees with those of encrypted databases? (§7.5)

We compare Edna to three alternative settings: (i) a man-

ual version of each disguising transformation that directly

modifies the database (e.g., via SQL queries that remove data),

which lacks support for revealing and does not support com-

position of multiple transformations; (ii) an implementation

of disguising and revealing in Qapla [37] using Qapla’s query
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rewriting and access control policies; and (iii) an integration

of Edna with CryptDB [45], an encrypted database.

All benchmarks run on a Google Cloud n1-standard-16
instance with 16 CPUs and 60 GB RAM, running Ubuntu

20.04.5 LTS. Benchmarks run in a closed-loop setting, so

throughput and latency are inverses. We use MariaDB 10.5

with the InnoDB storage engine atop a local SSD.

7.1 Edna Developer Effort
We evaluate the developer effort required to use Edna by

measuring the difficulty of implementing the disguising and

revealing transformations in our three case studies. This took

one person-day per case study for a developer familiar with

Edna but unfamiliar with the applications.

A developer supporting these transformations must first

add application infrastructure to allow users to invoke them

and notify users when they happen. This is required even

if the developer were to implement transformations man-

ually without Edna. These changes add 179 LoC of Ruby

to Lobsters (160k LoC), and 312 LoC of Rust to the original

WebSubmit (908 LoC). They implement HTTP endpoints,

authorization of anonymous users, and email notifications.

A developer using Edna also writes disguise specifications

and invokes Edna. Lobsters’ disguise specifications are writ-

ten in 518 LoC, WebSubmit’s in 75 LoC, and HotCRP’s in 357

LoC (all in JSON). The specification size is proportional to

schema size and what data each application disguises.

The developer effort required to use Edna—writing Edna

specifications, and invoking Edna—is small, even though

these applications were not written with Edna in mind.

7.2 Performance of Edna Operations
We now evaluate Edna’s performance using WebSubmit,

HotCRP, and Lobsters (§6). We measure the latency of com-

mon operations, disguising transformations, and operations

over disguised data enabled by Edna (e.g., account restora-

tion and editing disguised data). The three applications do

not create new data that references pseudoprincipals, but to

fully capture any overheads we configure Edna to neverthe-

less run the checks for lingering pseudoprincipal references

on revealing. A good result for Edna would show no over-

head on common operations, competitive performance with

manual disguising, and reasonable latencies for revealing

operations only supported by Edna (e.g., a few seconds for

account restoration)

WebSubmit. We run WebSubmit with a database of 2k

users, 20 lectures with four questions each, and an answer

for each question for each user (160k total answers). We

measure end-to-end latency to perform common application

operations (which each issue multiple SQL queries), as well

as disguising and revealing operations when possible (re-

vealing operations are impossible in the baseline). Figure 6a

shows that common operations have comparable latencies

with and without Edna. Edna adds 9ms to account creation;
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Figure 6. Edna adds no latency overhead to common appli-

cation operations and modestly increases the latencies of

disguising operations compared to a manual implementation

that lacks support for revealing or composition. Bars show

medians, error bars are 5
th
/95

th
percentile latencies.

and disguising and revealing operations take longer in Edna

(13.1–53.2ms), but allow users to reveal their data and take

less developer effort.

HotCRP.We measure server-side HotCRP operation la-

tencies for PC members on a database seeded with 3,080

total users (80 PC members) and 550 papers with eight re-

views, three comments, and four conflicts each (distributed

evenly among the PC). HotCRP supports the same disguising

transformations as WebSubmit, but PC users have more data

(200–300 records each), and HotCRP’s disguising transfor-

mations mix deletions and decorrelations across 12 tables.

Figure 6b shows higher latencies in general, even for the

manual baseline, which reflects the more complex disguis-

ing transformations. Edna takes 63.8–84.6ms to disguise and
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Figure 7.Applying disguising transformations to previously-

decorrelated accounts increases latency linear in the number

of pseudoprincipals involved. Hatched lines indicate the pro-

portion of cost attributed to cryptographic operations.

reveal a PC member’s data, again owing to the extra crypto-

graphic operations necessary. HotCRP’s account anonymiza-

tion is admin-applied and runs for all PCmembers, so its total

latency is proportional to the PC size. With 80 PC members,

this transformation takes 6.8s, which is acceptable for a one-

off operation. As before, Edna adds small latency to common

application operations, and 9ms to account creation.

Lobsters. We run Lobsters benchmarks on a database

seeded with 16k users, and 120k stories and 300k comments

with votes, comparable to the late-2022 size of production

Lobsters [34]. Content is distributed among users in a Zipf-

like distribution according to statistics from the actual Lob-

sters deployment [27], and 20% of each user’s contributions

are associated with the topic to anonymize. The benchmark

measures server-side latency of common operations and dis-

guising/revealing transformations.

The results are in Figure 6c. The median latencies for

entire-account removal or decay are small (9.7–13.4ms for

Edna, and 4.0–5.2ms for the baseline), since the median Lob-

sters user has little data. Revealing disguised accounts takes

13.1–17.6ms in the median. Highly active users with lots

of data raise the 95
th
percentile latency to 100–180ms for

disguising and 45–80ms for revealing. Topic anonymization

touches less data and is faster than whole-account transfor-

mations, taking 3.6ms and 13.1ms for the median user to

disguise and reveal, respectively.

Summary. Edna necessarily adds some latency compared

to manual, irreversible data removal, since it encrypts and

stores disguised data. However, most disguising transfor-

mations are fast enough to run interactively as part of a

web request. Some global disguising transformations—e.g.,

HotCRP’s conference anonymization over many users—take

several seconds, but an application can apply these incre-

mentally in the background, as in Lobsters account decay.

7.2.1 Edna Performance Drill-Down. We next break

down the cost of Edna’s operations into the cost of database

operations and the cost of cryptographic operations. Edna’s

database operations are fast; in our prototype, they generally

take 0.2–0.3ms but vary depending on the amount of data

touched. Edna’s cryptographic operations are comparatively

expensive. PBKDF2 hashing for private key management

incurs a 8ms cost and affects account registration and opera-

tions on disguised data that reconstruct a user’s private key;

this accounts for up to 79% of these operations’ cost when

the operation issues only a few database queries.

Encryption and decryption incur baseline costs of 0.1ms

and 0.02ms respectively; their cost grows linearly with data

size. In the common case, disguising or revealing data per-

forms two cryptographic operations: one to encrypt/decrypt

the disguise records, and one to encrypt/decrypt the ID at

which they are stored.

Edna also generates a new key for each pseudoprincipal

created, which takes 0.2ms. Edna’s cryptography accounts

for up to 35% of the cost of disguising/revealing operations

such as account removal or anonymization; this proportion

decreases as the number of database modifications made by

a transformation increases. When the application applies

multiple disguising transformations and disguises the data

of pseudoprincipals, doing so may require several encryp-

tions/decryptions. We evaluate this cost next.

7.2.2 Composing Disguising Transformations. To un-

derstand the overhead of composing transformations in Edna,

we measure the cost of composing account removal on top

of a prior disguising transformation to anonymize and decor-

relate all users’ data. We consider WebSubmit and HotCRP,

and compare three setups: (i) manual account removal (as

before); (ii) account removal and restoration without a prior
anonymization disguising transformation; and (iii) account
removal and restoration with a prior anonymization disguis-

ing transformation. With prior anonymization, a subset of

the user’s data has already been decorrelated when removal

occurs, and removal therefore performs per-pseudoprincipal

encryptions of disguised data with pseudoprincipals’ pub-

lic keys. Restoring the removed, anonymized account must

then individually decrypt pseudoprincipal records and re-

store them. Hence, disguising and revealing in the third setup

should take time proportional to the number of pseudoprin-

cipals created by anonymization.

Figure 7 shows the resulting latencies. WebSubmit account

removal and restoration latencies increase by ≈1ms per pseu-

doprincipal (18.2ms and 21.8ms respectively); 50% of this in-

creased cost comes from the additional, per-pseudoprincipal

encryption and decryption of records, the rest comes from

database operations. HotCRP removal and restoration laten-

cies also increase by ≈1ms per pseudoprincipal (191.2ms and

230.4ms respectively); again, cryptographic operations add

≈0.5ms per pseudoprincipal, and the remaining cost increase

comes from per-pseudoprincipal database queries and up-

dates. WebSubmit and HotCRP do not create new references

to pseudoprincipals after data gets disguised, but if they did,
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Edna would need to issue additional per-pseudoprincipal

queries to rewrite or remove these references (if configured

to do so). Compared to accounts in WebSubmit, accounts in

HotCRP have more data and 14–15× more pseudoprincipals

after anonymization, which accounts for the larger relative

slowdown.

Importantly, disguising latencies stabilize when Edna com-

poses further disguising transformations: since cost is pro-

portional to the number of pseudoprincipals affected, latency

does not grow once the application has maximally decorre-

lated data (to one pseudoprincipal per record), as done by

HotCRP anonymization.

7.3 Edna Overheads
Edna adds both space and compute overheads to the applica-

tion; we measure the impact of these next.

7.3.1 Space Used By Edna. To understand Edna’s space

footprint, we measure the size of all data stored on disk by

Edna before and after 10% of users in Lobsters (1.6k users)

remove their accounts. Cryptographic material adds over-

head and each generated pseudoprincipal adds an additional

user to the application database; Edna also stores data for

each registered principal (a public key and a list of opaque

indexes) as well as encrypted records.

Edna’s disguise record storage uses 12 MB, which grows

to 58.5 MB after the users remove their accounts, and the

application database size increases from 261 MB to 290 MB

(+11%). (Edna also caches some of this data in memory.)

The space used is primarily proportional to the number of

pseudoprincipals produced: each pseudoprincipal requires

storing an application database record, a speaks-for record,

and row in the principal table. In this experiment, Lobsters

produces 78.1k pseudoprincipals. Edna removes the public

keys and database data for the 1.6k removed principals, but

stores encrypted diff records with their information, which

uses another 2.2 MB.

7.3.2 ImpactOnConcurrentApplicationUse. For Edna
to be practical, the throughput and latency of normal appli-

cation requests by other users must be largely unaffected by

Edna’s disguising and revealing operations.

We thus measure the impact of Edna’s operations on other

concurrent requests in Lobsters. In the experiment, a set

of users make continuous requests to the application that

simulate normal use, while another distinct set of users con-

tinuously remove and restore their accounts. Edna applies

disguising transformations sequentially, so only one trans-

formation happens at a time. We measure the throughput of

“normal” users’ application operations, both without Edna

operations (the baseline) and with the application contin-

uously invoking Edna. The Lobsters workload is based on

request distributions in the real Lobsters deployment [27].

Since users’ disguising/revealing costs vary in Lobsters,

wemeasure the impact of (i) randomly chosen users invoking
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Figure 8. Continuous disguising/revealing operations in

Lobsters have a <7% impact on application request through-

put when disguising a random user; an extreme case of a

heavy-hitter user with lots of data repeatedly disguising and

revealing causes a 3–17% drop in throughput.

account removal/restoration, and (ii) the user with the most

data continuously removing and restoring their account (a

worst-case scenario). We show throughput in a low load

scenario (≈20% CPU load), and a high load scenario (≈95%
CPU load). Finally, we measure settings with and without a

transaction for Edna transformations. A good result for Edna

would show little impact on normal operation throughput

when concurrent disguising transformations occur.

Figure 8 shows the results. If a random user disguises and

reveals their data (the common case), normal operations are

mostly unaffected by concurrent disguising and revealing:

throughput drops ≤3.7% without transactions and ≤7.0%
with transactions. Constantly disguising and revealing the

user with the most data (the worst-case scenario) has a larger

effect, with throughput reduced by up to 7.4% (without trans-

actions) and up to 17% (with transactions, high load).

This shows that Edna’s disguising and revealing transfor-

mations have acceptable impact on other users’ application

experience in the common case.

The latency of disguising operations depends on load:

the expensive user’s account removal and revealing take 4.4

and 3.6 seconds under high load, and 3.3 and 2.6 seconds

under low load. This is acceptable: 50% of data deletions at

Facebook take five minutes or longer to complete [14].

7.4 Comparison to Qapla
We compare Edna’s performance and the effort to use Edna

to an implementation of the same disguising and revealing

functionality for WebSubmit in Qapla.

Effort. Specifying disguising transformations as Qapla

policies requires far more explicit reasoning about transfor-

mations’ implementations and their compositions. In Qapla,

a developer would realize disguising transformations via

metadata flags that they add to the schema (e.g., is_deleted
for removed data) and toggles in application code. They then

provision Qapla with a predicate that checks if this meta-

data flag is true before returning a row. Developers must

carefully craft Qapla’s predicates, which grow in complex-

ity with the number of disguising transformations that can
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Figure 9. Edna achieves competitive performance with a

manual baseline and outperforms Qapla on nearly all com-

monWebSubmit operations (2k users, 80 answers/user). Bars

show medians, error bars are 5
th
/95

th
percentile latencies.

compose. For example, an application supporting both ac-

count removal and account anonymization must combine

predicates such that removal always takes precedence. Each

additional transformation increases the number of predicates

whose combinations the developer must reason about. De-

velopers must also optimize Qapla predicates (e.g., reducing

joins, adding schema indexes and index hints) to achieve

reasonable performance.

To modify data, the application developer can use Qapla’s

“cell blinding” mode, which dynamically changes column

values (to fixed values) based on a predicate before return-

ing query results. The developer must manually implement

more complex modifications and decorrelation (i.e., creating

pseudoprincipals and rewriting foreign keys).

Realizing WebSubmit transformations in Qapla required

576 lines of C/C++, and 110 lines of Rust to add pseudoprin-

cipal, modification, and decorrelation support.

Overall, Qapla requires more developer effort than Edna,

particularly in writing composable and performant predi-

cates, and manually implementing modifications and decor-

relations. However, Qapla’s approach does make some things

easier. Because data remains in the database, revealing simply

requires toggling metadata flags, and data to reveal can adapt

to database changes (e.g., schema updates). But keeping the

data in the database also means that developers cannot use

Qapla to achieve GDPR-compliant data removal.

Performance. We measure Qapla’s performance (Fig-

ure 9) on the same WebSubmit operations (Figure 6a). Qapla

performs well on operations that require only writes, since

Qapla does not rewrite write queries. Removing and restor-

ing accounts requires only a single metadata flag update in

Qapla, whereas Edna encrypts/decrypts user data and actu-

ally deletes it from the database. However, Qapla rewrites

all read queries, so Qapla performs poorly on operations

that require reads, such as listing answers and editing (dis-

guised or undisguised) data. Qapla’s query rewriting takes
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Figure 10. Latencies of WebSubmit (2k users, 80 answer-

s/user) operations when implemented with Edna+CryptDB

(adding encrypted database support). Bars show median la-

tency; error bars are 5
th
/95

th
percentile latencies.

≈1ms, and rewrites SELECT queries in ways that affect per-

formance (e.g., adding joins to evaluate predicates). Overall,

Edna achieves better performance on common operations.

7.5 Edna+CryptDB
We combine Edna with CryptDB to evaluate the cost of com-

posing Edna’s guarantees with those of encrypted databases.

CryptDB protects undisguised database contents against at-

tackers who compromise the database server itself (with

some limitations [26]), in addition to Edna’s existing protec-

tions for disguised data.

Edna+CryptDB operates in CryptDB’s threat model 2

(database server and proxy can be compromised). A de-

veloper using Edna+CryptDB deploys the application (and

Edna) atop a proxy that encrypts and decrypts database rows.

Queries from Edna and the application operate unchanged

atop the proxy, but to ensure proper access to user data,

the application and Edna must handle user sessions. Edna+

CryptDB exposes an API to log users in and out using their

credentials. Prior to applying transformations to a user’s

data, Edna performs a login to ensure that Edna has legiti-

mate access to their data (e.g., the user, an admin, or someone

sharing the data is logged in).

Edna+CryptDB handles keys in the same way as CryptDB:

Edna+CryptDB encrypts database rows with per-object keys,

and object keys are themselves encrypted with the public

keys of the users who can access the object. After a user logs

in, the application gives the proxy their private key, thus

allowing decryption of their accessible objects.

Our prototype only supports the CryptDB deterministic

encryption scheme (AES-CMC encryption), which limits it

to equality comparison predicates. It also does not support

joins, a limitation shared with multi-principal CryptDB.

Performance. We measure the latency of WebSubmit

operations like before, and compare a manual baseline, Edna,

and Edna+CryptDB. Edna+CryptDB is necessarily more ex-

pensive than Edna, and a good result for Edna+CryptDB
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would therefore show moderate overheads over Edna, and

acceptable absolute latencies.

Figure 10 shows the results. Normal application operations

are 2–3× slower with Edna+CryptDB than in Edna, with the

largest overheads on operations that access many rows, such

as the admin viewing all answers. Disguising and revealing

operations are also 2–7× slower than Edna.

These overheads result from the cryptographic operations

and additional indirection in Edna+CryptDB. Edna+CryptDB

relies on a MySQL proxy, which adds latency: a no-op ver-

sion of our proxy makes operations 1.03-1.5× slower. Cryp-

tographic operations themselves are cheap (< 0.2ms), but ev-

ery object inserted, updated, or read also requires lookups to

find out which keys to use, query rewriting to fetch the right

encrypted rows, and execution of more complex queries.

This is particularly expensive when the user owns many

keys (e.g., theWebSubmit admin). Admin-applied anonymiza-

tion incurs the highest overhead (+156.4ms) as it issues many

queries to read user data and execute decorrelations. Among

the common operations, an admin getting all the answers

for a lecture suffers similar overheads (+127.7ms).

Like CryptDB, Edna+CryptDB increases the database size

(4–5× for our WebSubmit prototype). Edna+CryptDB also

stores an encrypted object key and its metadata (1KB per

key) for each user with access to that object.

8 Discussion and Future Work
Edna is a first step towards a world in which web services

routinely manage, store, and reveal disguised user data. In

this setting, new questions and directions for research arise.

Retention of Disguised Data.When a user reveals their

data, Edna removes it from the disguise table. However, Edna

currently retains disguised data until a user reveals it, which

could be forever if users choose to never reveal data. Edna

could allow applications to put reasonable, coarse-grained

time limits (e.g., 10 years) on disguised data to eventually

clean it up, without leaking fine-grained information about

which data was disguised at the same time.

Reveal Semantics. Edna today provides basic correctness
guarantees when revealing data, but further work might

make Edna’s current reveal semantics more precise.

Consider an example: a user’s disguise modifies posts to

scrub their username from it, and a moderator later edits

posts to remove swear words. As the disguise modifies the

post, Edna today does not restore the original post content

upon reveal, since the application has modified the post.

However, Edna could restore the post if it knew how to

subsequently remove the swear words again. Likewise, if

Edna removed the post instead of scrubbing its content, the

moderator would never see it (and could not edit it), but

Edna would reveal the post with swear words still present.

In the first scenario, Edna knows that an update was applied,

and refuses to reveal the modified post; in the second, Edna

does not know that moderation happened and reveals the

removed post. Neither might be what the application desires.

Edna could handle this situation by tracking operations

applied in a replay log. The application would invoke Edna

when it performs operations that need to hold over revealed

data—e.g., moderations or schema changes—to log these up-

dates (as e.g., SQL queries) in Edna’s replay log. When reveal-

ing data, Edna would apply every relevant entry in the replay

log to the data about to be restored into the database. This

approach faces some limitations, such as assuming determin-

istic changes and requiring additional application changes,

and would need to ensure that the replay log can be stored

and applied efficiently.

Pseudoprincipal references. Edna currently supports

a global specification for checking and fixing references to

pseudoprincipals. Edna could also support a menu of op-

tions, such as per-table checks and fixes (where the devel-

oper to specifies per-table policies) or per-inserted-object

ones (where the developer makes application modifications

to log all added references to pseudoprincipals).

9 Conclusion
Edna enables developers to provide data disguising and re-

vealing transformations that give users control over their

data in web applications. These transformations help users

protect inactive accounts, selectively dissociate personal data

from public profiles, and remove a web service’s access to

their data without permanently losing their accounts.

We used Edna to add seven disguising transformations to

threeweb applications, and found that the effort requiredwas

reasonable, that Edna’s disguising and revealing operations

are fast enough to be practical, and that they impose little

overhead on normal application operation.

Edna is open-source at https://github.com/tslilyai/edna.
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