
Dynamic Computation Migration

in Distributed Shared Memory Systems

by

Wilson Cheng-Yi Hsieh

S.B., Massachusetts Institute of Technology (1988)
S.M., Massachusetts Institute of Technology (1988)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1995

cMassachusetts Institute of Technology 1995. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science
September 5, 1995

Certified by :

M. Frans Kaashoek
Assistant Professor of Computer Science and Engineering

Thesis Supervisor

Certified by :

William E. Weihl
Associate Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler
Chairman, Departmental Committee on Graduate Students

1

2

Dynamic Computation Migration in Distributed Shared Memory Systems

by
Wilson Cheng-Yi Hsieh

Submitted to the Department of Electrical Engineering and Computer Science
on September 5, 1995, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Computation migration is a new mechanism for accessing remote data in a parallel system. It is the
partial migration of an active thread to data that it accesses, in contrast to data migration, which
moves data to the computation that accesses it (often by making a copy). Computation migration
improves performance relative to data migration, because data is not moved; as a result, it avoids
sending protocol messages to keep replicated data consistent.

Performance measurements of two distributed shared memory systems demonstrate that com-
putation migration is a useful mechanism that complements data migration. Computation migration
performs well when data migration does not perform well; in particular, computation migration
should be used instead of data migration when writes either are expensive or dominate reads.

The initial implementation of computation migration in the Prelude distributed shared memory
system demonstrated that computation migration is useful for write-shared data, and that combining
data migration and computation migration is useful for improving performance. The implemen-
tation of dynamic computation migration was done in the MCRL system. The decision to use data
migration or computation migration in MCRL is deferred until runtime, when better knowledge of
read/write ratios is available.

Experiments demonstrate that computation migration should be used for writes in two appli-
cation kernels. For a concurrent distributed B-tree on Alewife, using computation migration for
writes improves performance by 44%, relative to pure data migration, when the operation mix
consists only of inserts. In addition, experiments demonstrate that dynamically choosing between
data and computation migration for reads can improve performance. For a B-tree on Alewife with
80% lookups and 20% inserts, using a dynamic choice for reads improves performance 23% relative
to pure data migration; always using data migration for reads only improves performance by 5%.

Keywords: computation migration, data migration, distributed shared memory, parallel program-
ming

Thesis Supervisor: M. Frans Kaashoek
Title: Assistant Professor of Computer Science and Engineering

Thesis Supervisor: William E. Weihl
Title: Associate Professor of Computer Science and Engineering

3

4

Acknowledgments

My advisors, Professors Frans Kaashoek and Bill Weihl, have been wonderful to work with, both
professionally and personally. I certainly would not have finished if it were not for their guidance
and knowledge, and I’ve learned a lot about doing research from them. They let me explore many
different research areas, which made graduate school a great learning experience.

The rest of my committee has also been wonderful: John Guttag has always given me sound
advice, and David Kranz has always been available to answer my questions. My committee provided
incredibly useful feedback on my dissertation, which as a result is orders of magnitude better. Any
mistakes, misstatements, or other problems with this dissertation remain mine, of course.

I thank everyone who acted as a reference for me during my job search: Bill Weihl, Frans
Kaashoek, Fran Allen, Ron Cytron, and John Guttag. In particular, I’d like to thank them for
writing me reference letters even after I had virtually decided to go to UW.

Ken Mackenzie, Don Yeung, and especially John Kubiatowicz (without whom there would be
no Alewife machine) were extremely helpful in answering my numerous questions about the Alewife
system. David Chaiken and Beng-Hong Lim, were willing to answer Alewife questions even after
they graduated, and Kirk Johnson answered all of my questions about CRL. I also borrowed (with
permission) some of Kirk’s text and numbers about CRL. Finally, Scott Blomquist was great in
keeping the CM-5 up and running.

Everyone in the PDOS research group made the 5th floor a fun place to work. My officemates
Kevin Lew and Max Poletto put up with me this past year; I forgive Max for eating my plant, and for
not listening to my advice to leave MIT. Debby Wallach answered all of my questions about using
the CM-5, and was generous with her time in helping me on the CM-5; she was particularly good
at shredding bad drafts of these acknowledgments. Anthony Joseph has always been more than
helpful with questions of any sort, especially when they were not thesis-related. I wish Anthony
and Debby the best of luck in getting out of here quickly. Dawson Engler got me interested in
dynamic code generation: ‘C would not have been designed were it not for his interest in the topic.
Ed Kohler was a great source of typesetting and design knowledge, and he improved the look of
my dissertation immensely.

Quinton Zondervan played chess with me when I needed breaks, and Parry Husbands answered
all of my random theory questions. Bob Gruber, Carl Waldspurger, and Sanjay Ghemawat were all
here with me at the beginning of this millennium; I wish them the best of luck in their respective
careers, and I hope to see them often! Paul Wang had the common sense to know what he really
wanted, and I hope he becomes a rich and famous doctor (medical, that is).

5

The Apple Hill Chamber Music Players have given me a wonderful atmosphere in which to
play music during the last few summers. It was a refreshing change of pace to be there, and they
helped to keep me sane. The music section at MIT is also very special, and I’ll miss it deeply; it was
a wonderful part of both my undergraduate and graduate careers. I thank everyone in the section
for providing many great opportunities for making music.

I will miss my friends and fellow chamber musicians of the last few years: Eran Egozy, Don
Yeung, Elaine Chew, Ronni Schwartz, and Julia Ogrydziak. When we play together again I’ll try to
be less insistent on playing things my way. Not. I have a great admiration for Jamie McLaren and
Marc Ryser, who had the guts to leave MIT and become musicians.

Marcus Thompson, now Robert R. Taylor Professor of Music, has been a great teacher and
friend for eleven years; I wish I could study viola with him for another eleven years. Being able
to learn from him (about life as well as the viola) was a constant source of inspiration, and helped
keep me sane through graduate school.

David Krakauer put up with me as a roommate for six years, even after I turned him down as a
roommate in college. I owe him a great debt for letting me use his computer — especially when it
was in his room and he was sleeping! Of course, Krak did his best to help me avoid my thesis: he
always found computer games for me to play when I had work to do.

I give my deepest love to Helen Hsu, who has made my last year of graduate school far happier
than it otherwise would have been. She has been my best friend as well as my biggest cheerleader,
and I don’t know if I would have finished this dissertation without her to cheer me up.

Last, but of course most importantly, I owe everything to my parents. They have my love and
my gratitude for providing me with a wonderful upbringing and education, as well as their unfailing
love and support.

Chapter 5 is a revision of text originally published in “Computation Migration: Enhancing Locality in Distributed-
Memory Parallel Systems,” by Wilson C. Hsieh, Paul Wang, and William E. Weihl, which appears in the Proceedings of the
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

I was generously supported by a National Science Foundation Graduate Fellowship for the first three years of my
graduate career. This research was also supported in part by many other sources: ARPA under Grants N00014-94-1-0985
and N00014-89-J-1988, an NSF National Young Investigator Award, Project Scout under ARPA contract MDA972-92-
J-1032, NSF under Grant CCR-8716884, an equipment grant from DEC, and grants from AT&T and IBM.

The views and conclusions contained in this document are those of the author. They should not be interpreted as
representing the official policies, either expressed or implied, of any of the organizations mentioned in the previous
paragraph, or of the United States Government.

6

Contents

1 Introduction 15

1.1 Context . 16
1.2 Overview . 17
1.3 Contributions . 17
1.4 Organization . 18

2 Remote Access Mechanisms 21

2.1 Remote Procedure Call . 21
2.2 Data Migration . 22
2.3 Thread Migration . 23
2.4 Computation Migration . 24
2.5 Comparison . 25

3 Computation Migration 27

3.1 Mechanics . 27
3.1.1 Runtime System . 29
3.1.2 Compiler . 29

3.2 Program Annotation . 30
3.3 Migration Criteria . 31

3.3.1 Static . 32
3.3.2 Dynamic . 33
3.3.3 Dynamic Protocol . 33

4 Experimental Environment 37

4.1 Alewife . 37
4.1.1 Hardware Overview . 38
4.1.2 Software Overview . 39
4.1.3 Ideal Alewife . 41

4.2 CM-5 . 41
4.2.1 Hardware Overview . 42
4.2.2 Software Overview . 42

7

4.3 Discussion . 43
4.4 Proteus and Simulated Alewife . 44

5 Static Computation Migration in Prelude 47

5.1 Implementation . 48
5.2 Prelude Results . 48
5.3 Discussion . 51

6 Dynamic Computation Migration in MCRL 53

6.1 CRL Overview . 54
6.2 Implementation Issues . 57

6.2.1 Language Issues . 57
6.2.2 Compiler Issues . 58
6.2.3 Optimistic Active Messages . 58

6.3 MCRL Implementation . 59
6.3.1 Multithreading Support . 59
6.3.2 Dynamic Computation Migration Support 60

6.4 Implementation Details . 65
6.4.1 Alewife . 65
6.4.2 CM-5 . 67

6.5 Limitations . 68

7 Performance 69

7.1 Measurement Techniques . 69
7.2 Low-level Measurements . 70

7.2.1 Operation Latencies . 71
7.2.2 Migration Latency . 73
7.2.3 Microbenchmark . 80

7.3 Application Kernels . 87
7.3.1 Counting Network . 87
7.3.2 B-tree . 92

7.4 Summary . 98

8 Related Work 101

8.1 Software Distributed Shared Memory . 101
8.1.1 Language-level DSM . 102
8.1.2 OS-level DSM . 104

8.2 Computation Migration . 104
8.3 Distributed Systems . 105

8

9 Conclusions 107

9.1 Summary . 107
9.2 Future Trends . 108
9.3 Extensions . 109
9.4 Future Work . 110
9.5 Observations . 110

A CRL and MCRL Internals 113

B LIFO Versus FIFO Scheduling 119

C Regression Formulas 121

9

10

List of Tables

5.1 B-tree throughput in Prelude: 0 cycle think time 49
5.2 B-tree bandwidth demands in Prelude: 0 cycle think time 50
5.3 B-tree throughput in Prelude: 10000 cycle think time 51
5.4 B-tree bandwidth demands in Prelude: 10000 cycle think time 51

6.1 Summary of the CRL shared memory interface. 55
6.2 Measured CRL latencies, 16-byte regions (in both cycles and microseconds). 56
6.3 Measured CRL latencies, 256-byte regions (in both cycles and microseconds). . . . 56
6.4 MCRL non-blocking operations. 60
6.5 MCRL operations for dynamic computation migration 61

7.1 Measured MCRL latencies, 16-byte regions (in both cycles and microseconds). . . . 71
7.2 Measured MCRL latencies, 256-byte regions (in both cycles and microseconds). . . 71

8.1 Characterization of DSM systems. 102

A.1 Calls and message types in CRL and MCRL state diagrams 114

11

12

List of Figures

2-1 Message pattern under remote procedure call. 22
2-2 Message pattern under data migration. 23
2-3 Message pattern under computation migration. 24

3-1 Stack patterns under different access mechanisms. 28
3-2 Sample annotation for computation migration. 31
3-3 Sample annotation for computation migration of a partial frame. 32
3-4 Message patterns under a dynamic protocol. 35

4-1 Software atomicity with half-threads on Alewife. 40

6-1 Hand optimization of code in MCRL. 57
6-2 Client code for dynamic computation migration 63
6-3 Server code for dynamic computation migration 64

7-1 Comparison of data migration costs and computation migration costs for MCRL
on Alewife . 74

7-2 Comparison of data migration costs for MCRL on Alewife 75
7-3 Comparison of data migration and computation migration costs for MCRL on an

ideal Alewife machine . 76
7-4 Comparison of data migration costs for MCRL on an ideal Alewife machine 77
7-5 Comparison of data migration and computation migration costs for MCRL on the

CM-5 . 78
7-6 Comparison of data migration costs for MCRL on the CM-5 79
7-7 Cost per microbenchmark iteration under the heuristic on Alewife. 82
7-8 Cost per microbenchmark iteration under the heuristic on Alewife. 83
7-9 Cost per microbenchmark iteration under the heuristic on the CM-5. 84
7-10 Cost per microbenchmark iteration under the heuristic on the CM-5. 86
7-11 An eight-input, eight-output bitonic counting network. 88
7-12 Cost per iteration of accessing a counting network on Alewife. 89
7-13 Cost per iteration of accessing a counting network on the CM-5. 90
7-14 A vertical cross-section of a B-tree. 92
7-15 Cost per iteration of accessing a B-tree on Alewife using the heuristic. 94

13

7-16 Cost per iteration of accessing a B-tree on Alewife using the heuristic. . . . 95
7-17 Cost per iteration of accessing a B-tree on the CM-5 using the heuristic. . . 96
7-18 Cost per iteration of accessing a B-tree on the CM-5 using the heuristic. . . 97

A-1 Home state diagram for CRL and MCRL . 115
A-2 Remote state diagram for CRL . 116
A-3 Remote state diagram for MCRL . 117

B-1 LIFO versus FIFO scheduling . 120

14

Chapter 1

Introduction

This dissertation investigates computation migration, a new mechanism for accessing remote data
in a parallel system. Computation migration moves computation to data that it accesses, in
contrast to data migration, which moves data to computation (often by making a copy of the
data). This dissertation investigates the design issues involved in using computation migration, and
describes two implementations of computation migration in distributed shared memory systems.
Performance measurements of these systems demonstrate that computation migration is a useful
mechanism that complements data migration. In particular, computation migration is particularly
appropriate for write operations in applications that use graph traversal.

Computation migration is the partial migration of active threads. Thread state is moved, but not
code; the assumption is that the same program is loaded on every processor. Under computation
migration, a currently executing thread has some of its state migrated to remote data that it accesses.
Others have explored the migration of entire threads for load balancing, but it is not effective
for accessing remote data because the granularity of migration is fixed (and typically too large).
Computation migration generalizes thread migration by moving only part of a thread. In particular,
computation migration moves the part of a thread that corresponds to one or more activation
frames at the top of the stack. Reducing the amount of state that must be moved for a remote
access makes computation migration a cheap mechanism for accessing remote data.

Computation migration performs well when data migration with replication does not. Con-
versely, computation migration performs poorly when data migration with replication performs
well. Data migration with replication improves the performance of read operations (operations that
do not modify data), because it allows them to execute in parallel. However, data migration with
replication hurts the performance of write operations (operations that modify data), because data
must be kept coherent. Computation migration outperforms data migration when there are many
writes, because it sends fewer messages: when data is not moved, coherence traffic is eliminated.

Reducing the number of messages sent improves performance for two reasons. First, it reduces
the demand for network bandwidth, which reduces the occurrence of network hot spots. More
importantly, it removes the various costs of message handling, on both the sending and receiving

15

sides. These costs include marshaling and unmarshaling values, allocating buffers, and dispatching
to message handlers.

As part of the coherence traffic that it eliminates, computation migration also avoids moving
data. Data migration must move data from processor to processor; in the case of large data (where
“large” is relative to the bandwidth of the communication network), simply moving the data from
one processor to another can be a major cost.

The remainder of this chapter overviews the research described in this dissertation. Section 1.1
explains the context of this work, distributed shared memory systems. Section 1.2 overviews
the systems that I have built to evaluate computation migration. Section 1.3 summarizes my
contributions and conclusions. Finally, Section 1.4 outlines the structure of this dissertation.

1.1 Context

This dissertation evaluates computation migration in the context of distributed shared memory
(DSM) systems. A DSM system is a parallel system with two defining characteristics: memory is
physically distributed along with the processors, but the system provides a global shared name space
that can be used on any processor. Distributed shared memory systems are important for three
reasons. First, they provide for the exploitation of locality; the distribution of memory allows for
the distinction between local and remote data. Second, they provide a convenient programming
model; the presence of a shared name space simplifies programming. Finally, many of them provide
a portable interface for parallel programming.

In order to support local caching of data, most distributed shared memory systems typically
use data migration with replication when non-local data is accessed. Data migration means that
non-local data is brought to the thread that references it (whether through a pointer indirection or
a procedure call); replication means that a copy of the data is brought. Not all systems that provide
data migration use replication, but most do in order to improve performance.

Replication leads to the problem of coherence: multiple copies of data must be kept “in sync”
so that the address space behaves like a single memory. Although distributed shared memory
systems provide a simple (and possibly portable) model of programming, they often cannot achieve
the performance of hand-coded message-passing programs. DSM systems typically use only one
protocol for maintaining the coherence of data, whereas the access patterns for data vary widely.
The Munin project [9] is unique in that it provides various different coherence protocols that can
be used for different types of data. However, as in other DSM systems, Munin restricts its attention
to the migration of data, and does not allow for the migration of computation.

This dissertation introduces a new mechanism that should be provided in distributed shared
memory systems, computation migration, which complements data migration with replication. The
choice of mechanism for any particular remote access depends on an application’s characteristics
and on the architecture on which the application is being executed. Programmers (or preferably
compilers) should be able to choose the option that is best for a specific application on a specific
architecture.

16

1.2 Overview

In initial work we designed and implemented a prototype of static computation migration. “Static
computation migration” means that the programmer statically indicates in the program where
computation migration occurs. This prototype was implemented in the Prelude distributed shared
memory system [100]. In Prelude we used compiler transformations to implement computation
migration based on simple annotations.

This dissertation overviews our Prelude implementation and some of our performance results on
a concurrent, distributed B-tree, which lead to two conclusions. First, a software implementation of
static computation migration can performs nearly as well on a B-tree as a hardware implementation
of data migration with replication. Second, a combination of computation migration and data
migration could potentially outperform data migration.

In more recent work, I have designed and implemented a protocol for making a dynamic
choice between computation migration and data migration. “Dynamic computation migration”
means that the programmer indicates where computation migration may occur; the decision to use
data migration or computation migration is deferred until runtime. This dissertation discusses the
issues involved in designing such a protocol, as well two heuristics that make good choices between
computation and data migration.

The protocol for dynamic computation migration is implemented in the MCRL distributed
shared memory system. MCRL is a multithreaded object-based DSM library that provides support
for variable-sized, programmer-defined regions of memory. Using a system that supports variable-
sized regions avoids the false sharing of data, which can occur in systems that maintain coherence
in fixed-sized units. Several DSM systems have gone to great lengths to avoid false sharing in their
page-based coherence schemes [19, 59], so it is important to avoid letting false sharing obscure
other performance effects.

This dissertation describes the implementation of MCRL, and the results of measuring its
performance.

1.3 Contributions

This section summarizes my contributions and conclusions:

- I present computation migration, a new mechanism for accessing remote data in parallel
systems. Computation migration complements data migration, in that it performs well when
data migration does not.

- I describe how a simple annotation can be provided to express computation migration of
single activation records. Such an annotation can be used to indicate a static decision to use
computation migration, or can be used as a hint to indicate that a dynamic decision between
data migration and computation migration should be made.

- I have built a multithreaded distributed shared memory system called MCRL that incorporates
dynamic computation migration. MCRL is a multithreaded extension of the CRL system [51];

17

it also supports a dynamic choice between computation migration and data migration. MCRL
is an all-software distributed shared memory system: it does not depend on any special
hardware support to provide shared memory. MCRL runs on the MIT Alewife machine and
Thinking Machines’ CM-5.

- I describe and evaluate two simple heuristics for choosing between computation migration and
data migration, and . My experiments with a microbenchmark demonstrate that
simple heuristics can make good choices between data migration and computation migration
for reads.

- My experiments demonstrate that computation migration should be used for write operations
in the two application kernels measured. For a concurrent distributed B-tree on Alewife,
using computation migration for writes improves performance by 44%, relative to pure data
migration, when the operation mix consists only of inserts. In addition, my experiments
demonstrate that dynamically choosing between data and computation migration for reads
can improve performance. For a B-tree on Alewife with 80% lookups and 20% reads, using a
dynamic choice for reads improves performance 23% relative to pure data migration; always
using data migration for reads only improves performance by 5%.

- A comparison of MCRL on Alewife and the CM-5 provides some insight into architectural
issues that impact data migration and computation migration. First, DMA is an important
mechanism for data migration. Second, restrictions on message length need to be chosen
with care, as they can severely limit performance.

- Finally, this dissertation provides some additional insight into the benefits and restrictions of
using optimistic active messages. Optimistic active messages are a communication mechanism
that generalizes active messages [95]; we have demonstrated its usefulness in other work [49,
97].

1.4 Organization

Chapter 2 overviews several remote access mechanisms: remote procedure call, data migration,
and thread migration. It then briefly describes computation migration, and how it compares to the
other mechanisms.

Chapter 3 discusses computation migration in more detail. It analyzes the design issues regarding
computation migration, discusses why a dynamic choice between computation migration and data
migration is useful, and describes two heuristics for making such a choice.

Chapter 4 describes the experimental environment for this dissertation. It overviews the
platforms on which I evaluated computation migration: the MIT Alewife machine, Thinking
Machines’ CM-5, and a simulated version of Alewife on the Proteus simulator.

Chapter 5 describes our initial work on static computation migration. It describes the implemen-
tation of static computation migration in the Prelude system, summarizes some of the performance
results, and explains why dynamic computation migration can be useful.

18

Chapter 6 describes the implementation of MCRL and the interface for dynamic computation
migration that MCRL provides. It describes the differences between CRL and MCRL, as well as
various implementation issues. It concludes by describing some of the implementation details on
Alewife and the CM-5.

Chapter 7 describes and analyzes the performance results of using dynamic computation
migration in MCRL. It measures the raw performance of MCRL, as well as the behavior of the two
heuristics on a microbenchmark and two application kernels.

Chapter 8 discusses related work. Chapter 9 summarizes the results and conclusions of this
dissertation and suggests directions for future work.

The appendices provide supplementary information. Appendix A gives some technical details
on the internals of the CRL and MCRL systems. Appendix B explains the effect that LIFO scheduling
of threads can have on measurement. Appendix C contains the linear regression formulas used to
calculate my performance results.

19

20

Chapter 2

Remote Access Mechanisms

This chapter describes various forms of remote access: remote procedure call, data migration,
thread migration, and computation migration. It then briefly compares computation migration to
data migration and remote procedure call.

2.1 Remote Procedure Call

The most common mechanism for implementing remote access in a message-passing system is
remote procedure call (RPC for short), which has been used in both distributed and parallel
systems [12]. RPC, which is also referred to as “function shipping,” is typically the choice of
interface for client-server systems. Part of the reason is that an RPC interface provides protection
through encapsulation (analogous to the protection that object-oriented languages provide).

RPC’s resemble local procedure calls; the underlying message-passing is hidden by compiler-
generated stubs. When an RPC occurs, a local call is made to a client stub, which marshals the
arguments and sends a message to the processor where the data resides. At the remote processor, a
server stub unmarshals the arguments and calls the procedure. When the remote procedure returns
to the server stub, the server stub marshals any result values into a message and returns the message
to the client stub; the client stub returns the results to the RPC caller.

Remote procedure calls require two messages, one for the call and one for the reply. Using RPC
for a series of accesses to remote data can result in no locality of access; each successive access is
remote. Figure 2-1 illustrates the message-passing patterns of RPC, where one thread on processor
P0 makes n consecutive accesses to each of m data items on processors 1 through m, respectively.
A total of 2nm messages are required, ignoring coherence traffic.

One advantage of RPC is that it does not add excessive load on a server. That is, when a remote
call finishes and returns, the thread that initiated the call does not consume any more resources
on the server. Another advantage of RPC is that it performs well in the case of write-shared data
(shared data that is frequently written). Since the semantics of writes requires that they be serialized,
there is no parallelism to be gained by replicating data. As a result, when the pattern of writes is
unpredictable, it is faster for writers to use RPC instead of moving data from writer to writer.

21

2n 2n

2n 2n

P0

P2

P1 Pm

P3

Figure 2-1. Message pattern under remote procedure call. A thread on processor P0 makes n
consecutive accesses to each of m data items on processors 1 through m, respectively. Coherence
traffic is not shown.

2.2 Data Migration

Data migration, also known as “data shipping,” means that remote data is moved to the processor
where a request is made. Data migration can be combined with replication, where a copy of the
data is sent to the requesting processor; this introduces the problem of coherence. In the remainder
of this dissertation I use “data migration” to include the use of replication, and explicitly state when
replication is not involved. Data migration can take the form of hardware caching in shared-memory
multiprocessors such as Alewife [1] and DASH [66].

Data migration can also be implemented in software. For example, the Munin system [9]
allows the programmer to choose among several different coherence protocols for shared data;
some of the protocols use replication, and some do not. The Emerald system [55] is one of
the few systems that uses data migration without replication. The use of replication is important
for performance, however, particularly for read-shared objects, as it allows locally cached copies
to be accessed without network overhead. Figure 2-2 illustrates the message-passing patterns of
data migration, where one thread on processor P0 makes n consecutive accesses to each of m data
items on processors 1 through m, respectively. A total of 2m messages are required, ignoring other
coherence traffic.

Data migration can perform poorly under several circumstances. First, large data is expensive
to migrate. Second, data that is written with any frequency is expensive to keep coherent. Write-
shared data appears to occur moderately frequently, and can result in data that migrates from one
cache to another with relatively few copies existing at any one time [40]. Some researchers have
tried to optimize their cache-coherence algorithms for so-called “migratory data” [30, 89] to reduce
the communication required to maintain consistency. Even so, RPC and computation migration
require fewer messages than data migration for write-shared data, and can result in better overall
performance.

22

2

2 2

2

P1

P3

P0

Pm

P2

Figure 2-2. Message pattern under data migration. A thread on processor P0 makes n consecutive
accesses to each of m data items on processors 1 through m, respectively. Coherence traffic is not
shown.

One important advantage of data migration combined with replication is that it can improve the
locality of repeated accesses. After the first access by a thread to some data, successive accesses will
be local, assuming that a thread on another processor does not invalidate the first thread’s cached
copy. In addition, data migration and replication increase the possible concurrency for accessing
read-shared data (shared data that is rarely written); multiple copies of data can be read in parallel.

2.3 Thread Migration

Thread migration is a mechanism that has primarily been examined as a load balancing tech-
nique [24]. “Thread” is used in the sense of lightweight processes [28, 75], which contrasts
with “run-to-completion” threads in systems such as TAM [85], Cilk [13], Filaments [34, 36], or
Multipol [22]. Run-to-completion threads are even more lightweight than lightweight processes;
however, they either cannot block or may only block in a limited set of circumstances.

Thread migration is analogous to process migration [55, 79, 87], but is more lightweight,
because processes have much more state than threads. Thread and process migration can occur
in two forms: active migration, where currently executing threads or processes are migrated, and
inactive migration, where non-executing threads or processes are migrated.

Eager et al. [32] used analysis and simulation to investigate the performance benefits of migrating
active processes to improve load balance. They found that active process migration has limited
performance benefits over inactive process migration. Their results apply to thread migration as
well, since they show that ignoring the cost of migration does not change the qualitative nature of
their results.

Although active thread migration is of limited use in balancing load, and not widely used, many
systems use inactive thread migration to balance load. To name just a few, the Topaz operating

23

1

1

1 1
P2

P1

P3

P0

Pm

1

Figure 2-3. Message pattern under computation migration. A thread on processor P0 makes n
consecutive accesses to each of m data items on processors 1 through m, respectively. Coherence
traffic is not shown.

system [72] for the Firefly multiprocessor workstation [92] migrates inactive threads. Markatos [70]
explored a scheduling policy that favors locality over load balance: threads are initially scheduled
based on expected accesses, and idle threads are migrated to balance load. Anderson et al. [3] studied,
among other things, the performance implications of using local queues for waiting threads; threads
in these queues could be migrated to balance load.

None of these systems explored the possibility of using active thread migration to improve the
locality of a remote access. The major problem with such an approach is that the grain of migration
is too coarse: migrating an entire thread can be expensive. As a result, migrating an entire thread
for a remote access may be overkill for two reasons. First, much of a thread’s state may be unrelated
to the access. Second, migrating an entire thread could cause load imbalance.

2.4 Computation Migration

Computation migration is a generalization of active thread migration, in which a portion of a
thread migrates upon a remote access. Migrating only part of a thread reduces the granularity of
migration, which alleviates the two problems of thread migration. First, we can migrate only the
state relevant to a remote access. Second, we can avoid load imbalance by moving only small pieces
of computation.

Figure 2-3 illustrates the message-passing patterns of computation migration, where one thread
on processor P0 makes n consecutive accesses to each of m data items on processors 1 through
m, respectively. A total of m − 1 messages is required (plus one additional message if the call
must return to P0), ignoring coherence traffic. Computation migration requires only “one-way”

24

messages, because unnecessary return messages are not sent. This optimization is a form of tail
forwarding [47], which is a generalization of tail recursion to parallel systems.

Computation migration also gives some of the benefits of thread migration and RPC. If we
move part of a thread’s stack to the remote data, we can receive the benefit of increased locality of
accesses; for example, if the executing thread makes a series of accesses to the same data, there is a
great deal to be gained by moving those accesses to the data. At the same time, we gain the benefit
of RPC; we can vary the granularity of the computation to be performed at the data. Keeping the
computation small allows us to avoid the problem of overloading the resources at a single processor,
since we move only the amount of state necessary to improve locality.

The cost of computation migration depends on the amount of computation state that must
be moved. If the amount of state is large (such as a substantial portion of a thread) computation
migration will be fairly expensive. In addition, when the amount of data that is accessed is
small or rarely written, data migration with replication (especially when done in hardware) should
outperform computation migration.

Computation migration is the dual of data migration. Instead of moving data to computation
that accesses the data, the system moves the computation to the data. If a computation accesses
different data, not all of which are on the same processor, some data migration may need to occur.
In some cases it may be better to migrate the computation as well as some of the data; the pure
data migration solution of always migrating all of the data to the computation may not always be
the best.

2.5 Comparison

When comparing computation migration and data migration, the most obvious performance benefit
is that computation migration does not move data. Although the resulting increase in performance
can be great for very large data, it is not the primary reason that computation migration can
outperform data migration. Figures 2-1 through 2-3 illustrate how computation migration can
save messages when traversing a data structure, but that savings is also not the major benefit of
computation migration. The major benefit of computation migration is that coherence traffic is
eliminated.

The reason that computation migration reduces coherence traffic is because a migrated com-
putation leaves the data in place for the next migrated computation. That is, the performance gain
results from keeping the data at one processor. As a result, successive migrated computations need
not perform any coherence activity. Although specialized coherence protocols can sometimes be
used to reduce the cost of coherence (as in Munin [9]), they do not help when data is accessed
unpredictably.

Although computation migration does not incur the cost of maintaining coherence, it has
the disadvantage that it does not allow for replication. Replication allows reads from multiple
processors to occur locally and in parallel, which dramatically improves their throughput. As a
result, computation migration is more effective for write-shared data, whereas data migration with
replication is more effective for read-shared data.

25

Finally, remote procedure call can be viewed as a special case of computation migration in which
no thread state is migrated. As a result, using RPC can save coherence messages, just as computation
migration does. The use of computation migration, however, can make successive accesses by a
thread local; the use of remote procedure call means that successive remote procedure calls are
non-local. (Section 8.3 describes research that investigates the batching of RPC’s so as to reduce
communication costs.) Similarly, computation migration saves messages by “short-circuiting”
return messages; when a computation migrates and then executes a procedure, the procedure can
return locally to its caller.

26

Chapter 3

Computation Migration

The use of data migration treats a parallel machine as a two-level memory hierarchy: from the
point of view of any processor, there is local memory and remote memory. However, a distributed-
memory parallel machine is not just a memory hierarchy: computation can move from one memory’s
processor to another memory’s processor. Remote procedure call allows computation to be initiated
at a remote processor, but does not allow an existing computation to migrate. This chapter discusses
high-level issues regarding computation migration: how much computation should be migrated,
when computation should be migrated, how computation migration can be expressed, and how it
can be implemented.

Section 3.1 discusses how computation can be migrated. Section 3.2 discusses how simple
program annotations can be used to indicate the use computation migration. Finally, section 3.3
discusses how the decision to use computation migration can be made.

3.1 Mechanics

Computation migration is partial thread migration. The first issue that must be resolved is the
granularity at which computation is migrated. The simplest solution is to migrate a single activation
record. Not only is it the unit in which a stack is usually allocated, but it is also easy to express the
migration of an activation record, as described in Section 3.2.

It would be possible to migrate either multiple activation records, or just a portion of an
activation record. The activation record/procedure unit is a unit of measure determined by the
abstractions in a program, and may not always be the correct unit of migration. For example, it
may be useful to migrate just the execution of a single loop in a procedure, instead of migrating the
entire procedure.

Issues relating to the migration of partial or multiple records are discussed as they arise.
The implementations of computation migration described in this dissertation only migrate single
activation records. However, there is no fundamental reason why this research could not be
generalized to migrate partial or multiple records.

27

initial

f

g

RPC

f

g

h

data migration

f

g

computation migration

f g

Processor a Processor b

Figure 3-1. Stack patterns under different access mechanisms. Processor a is executing a thread,
where f has called g. g is about to access remote data on processor b. Stacks grow downward in
this figure.

28

Figure 3-1 illustrates the movement of activation records under RPC, data migration, and
computation migration. In the figure, “initial” is the starting state. Processor a is currently
executing a thread. In this thread, the procedure f has called the procedure g. g is about to access
remote data on processor b. Under RPC, g calls a remote procedure h that runs in a new thread
on processor b; this procedure returns its value to g. Under data migration, the data is moved or
copied to processor a, and execution continues on processor a. Under computation migration, the
activation record for g is moved to processor b, where the access to the data occurs.

In RPC implementations, compiler-generated “stubs” marshal arguments and return results.
The stubs hide the details of communication from the actual code for g and h, so that the compiler
can generate code for them normally. In data migration implementations, either the compiler,
library, operating system, or hardware is responsible for moving data.

In computation migration implementations, some mechanism must be provided to move
activation records. To move activation records safely, we must restrict the use of computation
migration so that a processor does not export non-global memory addresses. This restriction only
exists for implementations of computation migration that are not run on shared-memory systems.

The remainder of this section describes two implementations of computation migration. These
two implementations have complementary strengths and weaknesses, and could be used together in
one implementation. The first implementation described relies on the runtime system to implement
migration, and has been implemented in the Olden system [81]. The second relies on the compiler
to generate code to handle migration, and was implemented in Prelude [50]. MCRL provides an
interface for a compiler-based implementation, but does not provide compiler support for using it.

3.1.1 Runtime System

The most direct implementation of computation migration is to have the runtime system move an
activation record. In other words, the runtime system must contain enough functionality to marshal
an activation record, send it over the network, and unmarshal the activation record onto a stack.
After setting a return stub, the runtime system can then return control directly to the migrated code.
When the migrated code returns, the stub is responsible for returning control back to the original
processor. The Olden project [17] takes this approach in implementing computation migration.

This implementation is flexible, in that multiple activation records can be migrated in a straight-
forward manner. However, it suffers from several complications. First, a simple implementation
will move some unnecessary data; not all of the data in an activation record will be live at the time of
migration. In order to avoid moving dead data, the interface for migrating an activation record must
be fairly complex. The compiler must generate a template for each migration point that indicates
which entries in an activation record are live. Second, even if moving dead data is not an issue, a
similar issue arises if a partial frame needs to be moved. In order to move a partial activation record,
the compiler would again need to tell the runtime system what slots in a record to move.

3.1.2 Compiler

Another approach to implementing computation migration is to have the compiler (or user)
explicitly generate migration procedures. Such an approach can be viewed as having the compiler

29

generate specialized migration code for each procedure. The compiler must generate a new
procedure for each migration point. This procedure represents a “continuation” of the original
procedure, in that it contains the code to be executed from the migration point to the end of the
procedure. This continuation procedure is the code that is executed after a migration occurs. The
data that needs to be moved to execute the continuation procedure is the set of live variables at the
migration point.

This approach can produce better migration code, in that only the portion of the stack frame
that needs to be migrated is actually transmitted. In addition, this approach is easily generalized
to move a partial activation record. However, it suffers from two drawbacks. First, it leads to
code expansion. By producing specialized code for each migration point, the compiler winds up
duplicating a large amount of code. Second, generalizing this approach to migrate multiple frames
requires some extra mechanism. For example, one way to extend this approach to the migration of
multiple frames would be to pass the proper continuation procedure at every procedure call. Such
a solution would risk making the common case (any procedure call) more expensive to support
computation migration.

3.2 Program Annotation

There are several important reasons to use annotations for computation migration. First, it is
simple to experiment with computation migration. Changing where migration occurs simply
involves moving the annotation, and the programmer can easily switch between using computation
migration, RPC, and data migration. Second, the annotation affects only the performance of
a program, not its semantics. In other words, the annotation only affects where computation
executes.

Some languages permit a programmer to code a structure explicitly that mimics the effect
of computation migration. For example, Actor-based languages [69] encourage a “continuation-
passing” style for programs, in which each actor does a small amount of computation and then calls
another actor to perform the rest of the computation. In effect, the computation migrates from
actor to actor. By carefully designing the message-passing structure of the program, a programmer
can optimize the communication cost.

For several reasons, computation migration should not be coded explicitly into the structure of
a program. The most important reason is that such programs are difficult to tune and port. Perfor-
mance decisions in such a program are closely intertwined with the description of the algorithm;
changing the communication pattern may require substantial changes to the program, and may result
in inadvertent errors being introduced into the computation. It is better to separate the description
of the computation from the decisions of how it is to be mapped onto a particular machine, and to
let the compiler handle the details of the message-passing for computation migration.

Finally, experience with both parallel and distributed systems indicates that programming in
terms of explicit message-passing can lead to programs that are much more complex than ones
written in terms of shared memory. An explicit message-passing style is also undesirable from

30

void traverse(node ∗n)
{

read lock(n);
while (! is leaf(n)) {

next = next node(n, k);
read unlock(n);
n = next;
read lock(n); move /∗ annotation ∗/

}
read unlock(n);

}

Figure 3-2. Sample annotation for computation migration. The annotation indicates that the
procedure traverse should use computation migration to access n if it is remote.

a software engineering perspective, because it requires the modification of the interfaces of data
objects to include additional procedures that represent the migrated computations.

Figure 3-2 illustrates how a simple annotation can be used to indicate computation migration
in a C-like pseudocode. The annotation indicates that at the bottom of each iteration of the while
loop, the computation should migrate to the next node if the node referenced by n is not local. The
entire activation record moves; that is, the computation from the move annotation to an exit from
traverse executes on the remote processor, unless it migrates again to yet another processor.

A simple annotation for migrating a partial frame is illustrated in Figure 3-3. Two annotations are
used; one to indicate where a migration should begin, and one to indicate where a migration should
return. In the figure, the annotations indicate that the code between read lock and write lock,
inclusive, is the code to be migrated. If n is non-local when read lock is called, that block of code
should execute on the processor where n is located. When the read unlock operation completes,
control should return back to where traverse2 was executing.

A simple annotation for migrating multiple activation records is difficult to design, and is left for
future work. Moving a single or partial record is easier to specify, since the textual representation
of an activation record is captured by a single procedure. In addition, the migration of multiple
records should be flow-sensitive; that is, multiple records should be migrated for certain call chains,
but not for others.

3.3 Migration Criteria

This section describes how the decision to use computation migration could be made. First, it could
be made statically, based on programmer knowledge about object sizes and reference patterns. If
such knowledge is insufficient, a dynamic choice is necessary.

31

void traverse2(node ∗n)
{

read lock(n); begin move /∗ annotation ∗/
/∗

some operations on n
∗/

read unlock(n); end move /∗ annotation ∗/
}

Figure 3-3. Sample annotation for computation migration of a partial frame. The annotation
indicates that the procedure traverse2 should use computation migration to access n if it is remote
when read lock is called. The code should migrate back after read unlock.

3.3.1 Static

The simplest strategy for providing computation migration is for the programmer to decide statically
where computation migration should occur in a program. The decision can be indicated with a
simple annotation, such as the one described in Section 3.2. The decision to use computation
migration is based on the knowledge that computation migration outperforms data migration with
replication under either of the following conditions:

- The object being accessed is large, so moving it rather than the computation is expensive.

- The object being accessed is written often, so maintaining coherence is expensive.

Although the first condition is easy to detect, the second may not be. More importantly,
most objects are likely to be small, so the more important factor in determining whether to use
computation migration is likely to be the second. As a result, except in the case of write-only or
write-mostly data structures, it may be difficult for a programmer to know at compile-time that a
remote access should always be performed using computation migration.

Another difficulty with statically determining when to use computation migration is that the
same code may be used to access either a read-shared or a write-shared object. For example,
in Figure 3-2, it is not possible to know whether the variable n will refer to a read-shared or a
write-shared object. It would only be possible to know if the objects on which traverse is called
are either all read-shared or all write-shared. This condition may hold for certain applications. For
example, the counting network, which I describe in Section 7.3.1, is a completely write-shared data
structure. However, for general data structures it is unlikely that the condition is true.

32

3.3.2 Dynamic

If the programmer cannot statically determine when computation migration should occur, then
the logical choice is to choose dynamically when to use computation migration. Since the runtime
system can monitor the reads and writes of an object, it can determine when computation migration
would be beneficial. The programmer still uses an annotation, but the annotation becomes a hint.
The runtime system is responsible for deciding whether the hint should be followed.

Unfortunately, past performance is not a guarantee of future performance. In other words, it
is not in general possible to predict the future frequency of writes based on the past frequency of
writes. However, in order to make a dynamic decision tractable, we must assume that the relative
frequencies of reads and writes stay relatively constant for over short periods of time. Compile-time
information can sometimes be used to predict future access patterns [5], but the information that
can be gained using current techniques is limited.

We could use many metrics to determine the frequency of reads and writes. For example, any
of the following might be useful:

- The average number of reads between writes. This measure would require some bookkeeping
on every operation.

- The relative frequency of reads and writes. This measure requires a mechanism for counting
time, which is difficult. It also requires some bookkeeping on every operation.

- The average number of read copies when a write begins. This measure is equivalent to the
average number of invalidations that a write must perform.

- The average cache hit rate. Computing the hit rate requires bookkeeping on local operations,
which is undesirable.

- The number of threads on each processor. Keeping count of the number of threads gives an
indication of the load balance.

All of these metrics are fairly complex. They also require a mechanism for weighting more
recent measurements more heavily than older measurements. Although the above metrics may lead
to good decisions, the cost of computing them is relatively high. The following section describes
two simple heuristics that make relatively good choices.

3.3.3 Dynamic Protocol

The first question that arises when designing a protocol for dynamically choosing between data
and computation migration is which processor makes the choice. When a client accesses non-local
data of which it has a cached copy, it need not perform any protocol processing. However, when it
does not have a cached copy, it must contact the server. When the client contacts the server, either
processor could decide between data or computation migration:

- The client can decide whether to use data or computation migration. There is no overhead
to using either mechanism beyond the decision itself.

33

- The client can request that the server decide to use data or computation migration. There is
some overhead involved for either mechanism, since the client must pass enough information
to allow the server to make the decision.

My protocol uses a server-based choice because the server has the most information about the
pattern of global accesses to data. Although a client can keep track of its own access patterns, it
does not have any information about other clients’ access patterns. Even if the server regularly
broadcasts global information to clients (which could potentially be expensive), a client never has
information that is as up-to-date as the server. In addition, since the client must contact the server
anyway, it seems advantageous to make use of the server’s extra knowledge of global access patterns.

The protocol does not add any extra messages for using data migration, but does add an extra
message for computation migration. It may be possible to design a dynamic migration protocol
that does not require this extra acknowledgment, but this design point was chosen for the sake of
simplicity.

A client and server interact in the protocol in the following manner. When a client accesses a
local object (either its home is local or it is cached), the local copy can simply be used without any
communication. When a client accesses a remote object, it sends a migration request message to the
server. (It must also send such a message if it tries to acquire a read-only copy of a region in write
mode.) This message must contain enough information for either data migration or computation
migration to occur. That is, the processor must be in a state such that it can receive either a copy
of the data or a migration acknowledgment, which I describe below.

When the server receives a migration request message, it must first decide whether to send
the data back or to execute some computation. If the server decides to use data migration, it
sends the data back to the client. If the server decides to use computation migration, it must send
back a “migration acknowledgment” to the client; it can then either create a thread to defer the
computation, or execute it directly.

Figure 3-4 illustrates some possible message patterns using my dynamic protocol. When a
processor receives a migration request message, it decides whether to send back data or notify its
client that it has decided to execute computation. The dynamic computation migration protocol
requires more bandwidth than static computation migration, since the migration acknowledgment
must be sent. However, the cost of sending and receiving this extra message does not have to be
on the critical path of the migration, as this acknowledgment can be sent in the background. In
Figure 3-4 the same decision (to migrate data or computation) is made at every processor; it is also
possible for different decisions to be made at each processor.

 Heuristic

The heuristic always migrates computation for non-local writes and data for non-local reads.
Ignoring considerations of load balance, it is intuitively a clear benefit to always migrate writes to
data (assuming that the computation is not much larger than the data). Given the semantics of
writes, they must always be serialized anyway. As a result, it makes sense to execute them all at one
processor, which avoids the cost of moving data from one writer to another. The only case where
this heuristic fails to perform well is when exactly one remote processor accesses the region (and

34

computation migrationdata migration

2

2 2

2

P1

P3

P0

Pm

P2

1

1

1
1P2 P3

P0

1

(1)

(1)
(1) (1)

(1)P1 mP

Figure 3-4. Message patterns under a dynamic protocol. Messages labeled in parentheses can be
sent in the background. Coherence traffic is not shown.

the processor occasionally writes the region). Note that the heuristic is not truly a dynamic
scheme; in most programs any use of a CRL function can statically be determined to be either a
read or a write.

The decision to migrate computation or data in the case of reads is less clear. There is an
inherent tension between computation migration and data migration combined with replication. If
reads are computation-migrated to the home, performance is reduced when there are many more
reads than writes: future reads do not hit in the cache. On the other hand, if reads migrate data
back to themselves, performance is reduced when there is a substantial number of writes: future
writes must invalidate more cached copies of data.

 Heuristic

The heuristic always migrates computation for non-local writes, for the same reason that
the heuristic does. It dynamically chooses data migration or computation migration for non-
local reads, depending on the relative frequency of reads and writes. The heuristic uses computation
migration for reads that follow writes, until any processor performs a second read before another
write occurs. That is, if a processor manages to execute two reads before any writes occur, data
migration should be used.

The logic underlying this heuristic is that data migration will be useful when replication will help,
which is exactly when multiple reads occur at one processor. Given the assumption that the relative
frequency of reads and writes remains relatively constant over several operations, we interpret the

35

fact that two repeated reads occurred to mean that repeated reads are likely to occur in the near
future.

Intuitively, this heuristic will perform better than the heuristic when there is a large
proportion of writes. The heuristic migrates reads even when there are many writes. As a
result, it forces writes to invalidate replicated copies unnecessarily. However, the heuristic
should do worse when the operation mix consists predominantly of reads, since it migrates some
read operations following a write. As a result, the percentage of cache hits will decrease.

36

Chapter 4

Experimental Environment

This chapter describes the experimental environment for this dissertation. The evaluation of
dynamic computation migration was done on two machines: the MIT Alewife machine and Thinking
Machines’ CM-5. The comparison of the two implementations demonstrates how communication
performance and multithreading support affects DSM systems in general, and data migration and
computation migration in particular.

- Although the CM-5’s network has a greater total aggregate bandwidth into each processor,
Alewife is able to use achieve a higher data transfer rate.

- The restriction on message length on the CM-5 dramatically reduces its communication
performance.

- The high cost of context switching on the CM-5 dramatically reduces the advantage of
multithreading.

In addition, various other architectural features have an effect on system performance. First,
the expense of active message support on Alewife makes our optimistic active messages mechanism
(which is described in Section 6.2.3) perform poorly. Second, the register windows on the CM-5
reduce the performance of active messages, and are the primary reason that context switches are so
expensive.

Section 4.1 and 4.2 describe the important characteristics of Alewife and the CM-5. The
implementation of dynamic computation migration in MCRL on these two machines is described in
Chapter 6. Section 4.3 summarizes the main differences between Alewife and the CM-5. Section 4.4
describes the Proteus simulator and the simulation of Alewife that we used in our work on static
computation migration, which is described in Chapter 5.

4.1 Alewife

Alewife [1] is an experimental shared-memory multiprocessor. The Alewife architecture consists of
processor/memory nodes connected by a packet-switched interconnection network. The network

37

is organized as a low-dimensional mesh; on the current machine it has two dimensions. The raw
bandwidth of an interconnection link is approximately 45–50 Mbytes/second in each direction.

Each processor/memory node consists of a Sparcle processor [2], an off-the-shelf floating-
point unit, a direct-mapped, 64K unified cache with 16-byte lines, eight megabytes of DRAM, the
local portion of the interconnection network, and a Communications and Memory Management
Unit (CMMU). The 8M of DRAM is divided into three portions, the first two of which can be
used by the programmer: 4M of shared memory, 2M of local memory, and 2M of shared-memory
directory. The Sparcle processor is derived from a SPARC v7 processor, and as a result is similar to
a CM-5 processor.

Alewife provides efficient support for both coherent shared-memory and message-passing
communication styles. Shared memory support is provided through an implementation of the
LimitLESS cache coherence scheme [21]. In LimitLESS, limited sharing of memory blocks (up
to five remote readers) is supported in hardware; higher-degree sharing is handled in software by
trapping the home processor.

In addition to providing support for coherent shared memory, Alewife provides the processor
with direct access to the interconnection network [61]. Efficient mechanisms are provided for
sending and receiving both short (register-to-register) and long (memory-to-memory) messages.
Using these message-passing mechanisms, a processor can send a message in a few user-level
instructions. A processor that receives such a message traps; user-level software can respond either
by executing a message handler or by queuing the message for later consideration.

4.1.1 Hardware Overview

Alewife uses the SPARC register windows [86] as four hardware contexts for fast multithreading. As
an example use for these contexts, the Alewife runtime system can be configured to automatically
context switch to another hardware context upon a remote memory reference. The hardware
contexts are also used for handling active messages; a hardware context is always left free for active
messages to execute in. My experiments only use one hardware context for computation, and leave
the remaining ones for active message handling.

Two bugs in the CMMU chip are worth mentioning. First, because of a timing conflict
between the CMMU and the floating-point unit, codes that make significant use of floating-point
computation must run at 20 MHz instead of the target clock rate of 33 MHz. Because of this,
all Alewife experiments are run at 20 MHz. Second, in order to ensure data integrity when using
the block transfer mechanism, it is necessary to flush message buffers from the memory system
before using DMA. This overhead cuts the peak bandwidth of the block transfer mechanism from
approximately 2.2 bytes/cycle (44 Mbytes/second at a 20 MHz clock rate) to roughly 0.9 bytes/cycle
(18 Mbytes/second). Both of these bugs will be fixed in a planned respin of the CMMU.

Alewife uses a heuristic deadlock avoidance mechanism for the network. Whenever a processor
detects that its send queue is full for “too long,” it assumes that the network is clogged. The processor
begins taking packets out of the network until it determines that the network is unclogged; when
the network is unclogged, it then relaunches these packets. This mechanism definitely affects
performance (and there appear to be bugs when network traffic is high), but turning it off risks
deadlock. In my experiments the timeout is set to 65535 cycles (approximately 3.3 milliseconds).

38

4.1.2 Software Overview

The Alewife C compiler is a research compiler that achieves approximately 90% of the performance
of gcc with an optimization level of O2. It compiles a superset of C that includes a set of message-
passing mechanisms. The compiler and runtime system provide support for creating computation
in the form of two calls: thread on and user do on. The former call is used to create a thread (on
any processor) to initiate computation; the latter is used to start an active message.

Threads on Alewife are non-preemptive. In other words, threads must explicitly yield the
processor. However, a thread can be interrupted by an active message, which executes in a separate
hardware context. It takes approximately 175 cycles for a thread to be created and then start running
after the thread creation message interrupts the processor. This assumes that no other thread is
running, and that a context switch to the newly created thread happens immediately.

Active messages in Alewife are more general than those originally described by von Eicken
et al. [95]. Active messages run atomically; that is, other active messages cannot interrupt the
processor while an active message is running. It costs approximately 60 cycles for an active message
to start executing after it has interrupted a processor.

The Alewife runtime system allows active messages to become “half-threads.” A half-thread
can be interrupted by another active message, but cannot block. However, if the total number
of active threads and half-threads overflows the number of free hardware contexts, a half-thread
is descheduled. The transition to a half-thread is accomplished by the user active global call,
which takes about 100 cycles in the fast case (when the instruction path is warm and a free thread
exists). In the respin of the CMMU, the fast-case transition should only take a few cycles.

The support for the transition to a half-thread allows an active message to use software atomicity
mechanisms. Before the transition to a half-thread, an active message is guaranteed to run atomically.
During this time, it can setup software mechanisms for atomicity. Following the transition, it can
then assume that it is still running atomically. Figure 4-1 illustrates this use of user active global;
it contains an abstracted version of some message handling code from within the CRL distributed
shared memory system.

The message handler illustrated in Figure 4-1 runs as an active message. It is not interruptible
until it executes user active global. If the global variable atomicity bit is set, it means that
a previous handler is executing; a continuation for the current call must be created. Otherwise,
atomicity bit is set, and the call is executed.

The half-thread transition can be viewed as a variant of optimistic active messages [49, 97], which
is describes in Section 6.2.3. Active messages on Alewife have hardware support in the form of the
hardware contexts that Sparcle provides. However, the transition does not the same functionality
as optimistic active messages. Several important restrictions of the current implementation of the
runtime system limit its usefulness. These problems are not inherent in the system, but are merely
artifacts of the current runtime system.

First, active messages can only transition to half-threads, not full-fledged threads that can block.
Allowing optimistic active messages to block is one of the important features of the optimistic active
message model. Future versions of the Alewife kernel should allow active messages to transition to
full threads.

39

void message handler(void)
{

/∗ active message handler ∗/
if (atomicity bit) {

/∗ create a continuation
and discard the message

∗/
return;

}

/∗ extract the function and its arguments
from the message,
and discard the message

∗/

/∗ set the software atomicity bit ∗/
atomicity bit = 1;

/∗ transition to a half−thread ∗/
user active global();

/∗ execute the function ∗/

atomicity bit = 0;
}

Figure 4-1. Software atomicity with half-threads on Alewife. This code is abstracted from the
internals of the CRL distributed shared memory system.

40

Second, active messages and their associated half-threads are not guaranteed to execute in LIFO
order. When an active message transitions to a half-thread, it may be descheduled to allow the
last active message to run. Allowing a half-thread to be descheduled breaks the intended model
of execution, where the transition allows further active messages to interrupt the processor. As a
result, guaranteeing atomicity during the execution of nested active messages is expensive. This
effect is discussed in more detail in Section 6.4.1.

The compiler and runtime system provide support for fast atomic sections through the use of a
pair of calls called user atomic request and user atomic release [14]. The effects of these calls
are similar to turning off and on interrupts, respectively. The calls block and unblock, respectively,
incoming user-level active messages; system-level active messages can still execute. Both calls take
only a few cycles to execute in the fast case; the latter call traps into the kernel if an active message
arrived during the atomic section. This mechanism is similar to one suggested by von Eicken in his
thesis [94]; it is also similar to a mechanism described by Stodolsky et al. [90].

4.1.3 Ideal Alewife

Some of my measurements are on an “ideal” Alewife machine. In particular, Section 7.2.2 describes
the presumed costs of data migration and computation migration on such a machine. Those
measurements assume the following two changes that will be in the respin of the CMMU:

- The DMA bug is fixed. As a result, the effective bandwidth of memory-to-memory transfers
increases by a factor of 2.5, from about 18 Mbytes/second to about 45 Mbytes/second.

- The local-to-global transition for active messages only takes a few cycles.

These measurements are taken on the actual Alewife machine. The first difference is accounted
for by not flushing any of the message buffers. Since my measurements on the “ideal” Alewife
machine do not use of any of the data transferred, the effects of the DMA bug are not seen. “Real”
code cannot be run on the “ideal” Alewife machine, because the DMA bug can corrupt data that is
used.

The second difference is accounted for by not transitioning active messages to half-threads.
Such an optimization is safe for simple measurements, because only one thread makes requests at
a time. This optimization cannot be done safely for measurements of any programs that contain
concurrency, since letting active messages run for long periods of time can deadlock the network.

The results for running on an ideal Alewife machine are measured with a clock rate of 20MHz,
which allows for comparison with the measurements of the real machine.

4.2 CM-5

The Thinking Machines’ CM-5 is a message-passing multicomputer based on a fat tree network [64].
Each processor has two network links, each with a bandwidth of 20 Mbytes/second each way. The
maximum achievable total bandwidth is approximately 11.8 Mbytes/second [16], which is a limit
imposed by the software overhead of handling messages.

41

My experiments were run on a 128-node CM-5 system that runs version 7.4.0 Final of the
CMOST operating system and version 3.3 of the CMMD message-passing library [93]. Each CM-5
node contains a SPARC v7 processor that runs at 32 MHz, and 32 Mbytes of physical memory.
Each node has a direct-mapped, 64K unified cache [94].

4.2.1 Hardware Overview

The CM-5 network has several properties that are unusual for multiprocessor networks. First,
the interconnection network provides multiple paths between processors. As a result, message
reordering is possible: messages sent between two processors can arrive out of order. Thus, the
CM-5 looks much like a cluster of workstations, in which the network is commonly assumed to
reorder messages.

Second, non-deterministic routing is used in the CM-5 network. As a result, the performance
of the network can appear to vary widely under contention.

Third, the CM-5 network is context-switched along with the processors: in-transit messages
are dumped to the processors. Context-switching the network and the processors together enables
entire partitions and the network associated with them to be safely gang scheduled. Strict gang
scheduling of the processors and the network allows user-level access to the network interface,
because applications cannot send messages to one another. Unfortunately, draining the network
during a context switch is known to cause measurement problems on the CM-5. Drainage of the
network on timer interrupts appears to happen even in dedicated mode; this effect increases the
variability of network performance.

The two network links into each processor are used as two networks in order to avoid deadlock.
In the CMAML communication library these networks are used as request-response networks:
requests go on one network, and replies go on the other.

Finally, the network only supports single packet messages; additionally, a packet consists of only
five words. As a result, active messages [95] on the CM-5 are restricted in that they can have only
four arguments. As a result, any communication that requires more than four arguments costs a
great deal more. The CMAML library provides a bulk data movement facility called scopy; it uses
hard-wired active messages to avoid sending a handler address in data packets.

4.2.2 Software Overview

The compiler we used on the CM-5 is gcc 2.6.3, with the optimization level set at O2. In CMMD
terminology [93], the programs are node programs; that is, there is no master program running on
the host.

The CM-5 was one of the platforms for the research on active messages [95]. Active messages
reduce the software overhead for message handling: messages are run as handlers, which consist
of user code that is executed on the stack of a running computation. Executing a handler on
the current thread’s stack avoids the overhead of thread management; a minimum-cost round-trip
active message takes approximately 12 microseconds. Scheduling the execution of active messages
is typically done by disabling and enabling interrupts, or by polling the network. Many applications
choose to use polling, because the cost of changing the interrupt level is expensive on the CM-5.

42

The CM-5 does not provide any support for multithreading. The software environment is
intended for SPMD programs, where each processor runs the same single-threaded program. This
software model grew naturally out of SIMD machines such as Thinking Machines’ CM-2, but is
limited by the lack of multithreading.

A non-preemptive thread package is used to support multithreading on the CM-5. We de-
veloped this thread package for our work on optimistic active messages [97], which is described
in Section 6.2.3. It is fairly well-tuned; as a baseline number, the fastest context switch time is
approximately 23 microseconds.

The SPARC processor on the CM-5 has eight register windows that are managed as a ring
buffer. One of the windows is kept invalid so as to mark the end of the buffer. As a result, six
nested procedure calls can execute within the register windows. The seventh nested procedure call
requires that at least one window be flushed to the stack. CMOST appears to flush a single window
upon window overflow. The bottommost window is flushed to the stack, after which it becomes
the invalid window; the invalid window then becomes valid. Upon window underflow, the reverse
process occurs.

4.3 Discussion

There are several important differences between Alewife and the CM-5: communication per-
formance, the costs for context switching, the presence of hardware contexts, and support for
multiprogramming. The first two differences have an impact on my measurements, whereas the
latter two do not.

The difference in communication performance has a large effect on the relative costs for data
migration and computation migration, as will be shown in Chapter 7. The CM-5 is generally
slower, except for active message handling. For a round-trip active message, the two machines
have similar performance: about 12 microseconds for the CM-5, and about 15 microseconds on
Alewife. However, there are several other factors that cause a large difference in communication
performance:

- The time to transfer relatively short messages is much lower on Alewife. By “relatively
short,” I mean messages that are longer than four words, but not transferred using DMA
on Alewife. On the CM-5, such messages are transferred using the scopy mechanism. One
active message is required for every 4 bytes of payload, and an additional active message
round-trip is required to set up an scopy. On Alewife, single messages that do not use DMA
can contain up to 15 words of payload.

- The time to transfer large messages is higher on the CM-5. By “large,” I mean messages that
are transferred using scopy on the CM-5 and DMA on Alewife. The scopy mechanism on
the CM-5 can achieve a maximum of 10 Mbytes/second [94], but requires an extra round-trip
message to set up. The DMA hardware on Alewife can transfer data at 44 Mbytes/second,
and does not require the processor to move the data. The DMA bug in the Alewife CMMU
requires that message buffers be flushed from the cache, but Alewife’s effective DMA rate of
18 Mbytes/second is still almost twice as high as the CM-5’s transfer rate.

43

Context switching is much cheaper on Alewife. As a result, the performance of threads versus
active messages on Alewife is much closer. There are several reasons why context switches on
Alewife are relatively cheaper than on the CM-5:

- Only the registers for a single context need to be saved on Alewife, whereas the entire register
set must be saved on the CM-5. As a result, the cost to save registers is much greater on the
CM-5.

- During a context switch on the CM-5 there is no polling. As a result, active messages are
blocked in the network for long periods of time on the CM-5. On Alewife interrupts are
only disabled for a short time during a context switch.

The hardware contexts on Alewife, combined with the support for half-threads, can help active
message performance; free contexts are used to handle active messages. However, this effect will
not appear in my results, for two reasons. First, since active messages cannot transition to full
threads, the cost of creating threads must still be paid if blocking can occur. Second, and more
importantly, the active message support still contains some bugs at the time of writing.

Finally, Alewife is a single-user machine, whereas the CM-5 is a time-shared and space-shared
multi-user machine. All of my experiments on the CM-5 are run in dedicated mode, so the effect of
sharing the machine does not show up in my measurements.

4.4 Proteus and Simulated Alewife

Our initial research was performed on the P simulator [15], an execution-driven parallel
architecture simulator. P delivers high performance by directly executing instructions rather
than simulating them; simulator timing code is inserted into assembly code. As a result, the
simulated processor architecture is the same as that of the architecture on which P is run.
The processor on which we ran P is a MIPS R3000-based machine [56].

The machine architecture that we simulated was similar to Alewife, in that it used the LimitLESS
cache coherence protocol [20]. In addition, each processor had a 64K shared-memory cache with
a line size of 16 bytes. The primary differences between the P model and Alewife are the
following:

- The processor architecture is different. P models a MIPS processor, whereas Sparcle
is a SPARC-based processor with multiple hardware contexts.

- The network interface is different. P does not model the memory-mapped register
interface that Alewife provides.

- Local caching effects are not simulated. Because P uses direct execution, the caching
of instructions and local (non-shared) memory is not simulated.

We also performed experiments to estimate the effects of providing hardware support for user-
level message passing. The addition of hardware support for RPC and computation migration makes

44

the comparison to Alewife shared memory fairer, since shared memory has a substantial amount
of hardware support. In our experiments we simulated a network interface that is integrated with
the processor. In particular, we assumed that the network interface was mapped into ten additional
registers in the register file, so that marshaling and unmarshaling would be cheaper. (We did not
directly simulate the extra registers, but simply changed the accounting for the marshaling and
unmarshaling costs.) The performance advantages of such an organization have been explored by
Henry and Joerg [42].

45

46

Chapter 5

Static Computation Migration in

Prelude

To evaluate the benefits of computation migration, we implemented static computation migration
in the Prelude system. This chapter describes the Prelude implementation, and summarizes some
of our performance results. A more complete description of our measurements and results can be
found in our conference paper [50].

Our Prelude results lead to several conclusions:

- Computation migration, like data migration with replication, outperforms RPC. The reason
is that both data migration with replication and computation migration improve the locality
of repeated accesses.

- The performance of a software implementation of computation migration on a concurrent,
distributed B-tree is half that of a hardware implementation of data migration with replication.
This result demonstrates the usefulness of computation migration in improving performance,
given the disparity in performance between hardware and software. It also demonstrates the
need for a comparison between all-software systems.

- Hardware support for message-passing improves the performance of computation migration.
On systems with very fast message-passing, computation migration can perform nearly as
well as hardware data migration.

- Statically using computation migration for all remote accesses is insufficient. Performance
could be improved by judiciously combining computation migration and data migration with
replication.

Section 5.1 describes the implementation of static computation migration within Prelude.
Section 5.2 describes some of our results, and Section 5.3 discusses the implications of these results.

47

5.1 Implementation

Prelude [100] is an object-based language that provides procedures and instance methods. Instance
method calls are the remote accesses in Prelude, and procedures (single activations) can migrate
to objects on which they invoke instance methods. Instance method activations are not allowed to
migrate, because we require (in implementations that do not use shared memory) that all instance
method calls run at the site of the invoked object. In shared-memory implementations, instance
method calls “pull” copies of an object to themselves.

There are two parts to the Prelude implementation of computation migration. The first part of
the implementation is how migration is expressed by the programmer using a simple annotation.
The second part is how the compiler generates code for computation migration.

Prelude supports a simple program annotation, similar to that shown in Figure 3-2, that allows
the programmer to indicate the use of static computation migration. The annotation is used to
mark an instance method call as a migration point within a procedure; the procedure is migrated if
the instance method call is non-local. Computation migration imposes no additional cost on local
accesses, because every Prelude method invocation must check whether the invoked object is local.

We implemented computation migration within the compiler, as described in Section 3.1. The
compiler, which generates C code, emits a “continuation” procedure at the point of migration.
The continuation procedure’s body is the continuation of the migrating procedure at the point of
migration; its arguments are the live variables at that point. We used an imprecise, conservative live
variable analysis for our experiments.

In order to handle successive migrations of computation, the compiler generates two con-
tinuation procedures at each point of migration. The first continuation procedure represents an
initial migration. It is called when a procedure first migrates, and it returns its values to its caller
through a return stub. The second procedure represents a later migration. It is called when the first
continuation procedure migrates, and it returns its values to the first continuation’s caller through
its return stub. The linkage information for the first continuation’s return stub is passed to the
second continuation. When the first continuation procedure migrates (and, as a result, the second
continuation procedure is called on another processor), it kills itself.

5.2 Prelude Results

One of our Prelude experiments was on a distributed B-tree implementation. This B-tree is a
simplified version of one of the algorithms proposed by Wang [99]; it is described in more detail in
Section 7.3.2. In our experiments, we first construct a B-tree with ten thousand keys; the maximum
number of children or keys in each node is constrained to at most one hundred. The values of the
keys range from 0 to 100,000, and the nodes of the tree are laid out randomly across forty-eight
processors. We then create sixteen threads on separate processors that alternate between thinking
and initiating requests into the B-tree. We ran experiments with two different think times, zero and
ten thousand cycles. Each request had a 10% chance of being an insert, and a 90% chance of being
a lookup.

48

Scheme Throughput

(operations/1000 cycles)

data migration 1.837
RPC 0.3828
RPC w/hardware 0.5133
RPC w/replication 0.6060
RPC w/replication & hardware 0.7830
computation migration 0.8018
computation migration w/hardware 0.9570
computation migration w/replication 1.155
computation migration w/replication & hardware 1.341

Table 5.1. B-tree throughput in Prelude: 0 cycle think time

In our experiments, we compared RPC, data migration in the form of Alewife shared memory,
and computation migration. Under RPC, each instance method call executed at the object upon
which it was invoked. Under data migration, shared memory was used to pull objects to the site of
the callee. Finally, under computation migration, the annotation described in the previous section
was used to move the calling procedure to the object. We used computation migration on both
read and write operations.

Tables 5.1 and 5.2 present the results of the experiments using a zero cycle think time. “Hard-
ware” in the first column of the tables means that we simulated a register-based network interface,
as described in Section 4.4. It is important to remember that we compared a software implementa-
tion of RPC and computation migration to a hardware implementation of data migration, namely
Alewife-style cache-coherent shared memory. Cache-coherent shared memory benefits from hard-
ware support in three ways. First, it provides cheap message initiation. Data migration messages
are launched and consumed by the hardware most of the time. Second, it provides cheap global
address translation, without which a global object name space must be built in software. Finally, it
provides cheap read and write detection on cache lines.

In all of our B-tree experiments, computation migration has higher throughput than RPC,
but lower throughput than data migration. In fact, even with hardware support for RPC and
computation migration, the throughput of data migration is over three times that of RPC and
almost twice that of computation migration. As explained in our paper [50], much of the relatively
poor performance of computation migration and RPC can be attributed to the inefficiencies in the
runtime system.

In addition, replication contributes significantly to data migration’s throughput advantage. One
of the limiting factors to B-tree performance is the root bottleneck; it is the limiting factor for RPC
and computation migration throughput. Computation migration, for instance, moves an activation
for every request to the processor containing the root. The activations arrive at a rate greater than

49

Scheme Bandwidth

(words/10 cycles)

data migration 75
RPC 7.3
RPC w/hardware 9.9
RPC w/replication 7.0
RPC w/replication & hardware 9.3
computation migration 3.5
computation migration w/hardware 4.3
computation migration w/replication 3.8
computation migration w/replication & hardware 3.9

Table 5.2. B-tree bandwidth demands in Prelude: 0 cycle think time

the rate at which the processor completes each activation. Data migration, however, provides local
copies of B-tree nodes to alleviate resource contention.

Although data migration alleviates resource contention, it requires a great deal more network
bandwidth. The amount of network bandwidth required to maintain cache coherence can be seen
in Table 5.2; maintaining coherence imposes a substantial load on the network. Furthermore, the
cache hit rate was less than seven percent; we can conclude that data migration benefited from its
caches only because of its replication of the root of the B-tree.

We expect computation migration’s performance to improve considerably when software repli-
cation is provided for the root; as shown in Table 5.1, this expectation holds true. However, the
throughput of computation migration is still not as high as that of data migration. This difference
remains because we still experience resource contention; instead of facing a root bottleneck, we
experience bottlenecks at the level below the root — the root node has only three children.

We then set up an experiment in which this new source of resource contention was alleviated.
In this experiment, the B-tree nodes are constrained to have at most only ten children or keys (but
all other parameters are identical). The resulting throughput for computation migration with root
replication is 2.076 operations/1000 cycles vs. 2.427 operations/1000 cycles for data migration.
While data migration still performs better, computation migration’s throughput is better because
the bottleneck below the root has been alleviated. The reason for this alleviation is twofold.
First, the roots of the trees in these experiments have four (instead of three) children. Second,
activations accessing smaller nodes require less time to service; this lowers the workload on the
frequently accessed processors. From these experiments, we conclude that the main reason for data
migration’s performance advantage is the replication due to hardware caches. This result correlates
with conclusions made by other studies examining B-tree performance and caching [29, 99].

Keeping the above information in mind, the throughput of computation migration should be
closer to that of data migration in a B-tree experiment where contention for the root is much lighter

50

Scheme Throughput

(operations/1000 cycles)

data migration 1.071
computation migration w/replication 0.9816
computation migration w/replication & hardware 1.053

Table 5.3. B-tree throughput in Prelude: 10000 cycle think time

Scheme Bandwidth

(words/10 cycles)

data migration 16
computation migration w/replication 2.5
computation migration w/replication & hardware 2.7

Table 5.4. B-tree bandwidth demands in Prelude: 10000 cycle think time

(thus reducing the advantage provided by caching). Tables 5.3 and 5.4 show performance results
for experiments conducted with a ten thousand cycle think time; for brevity, RPC measurements
have been omitted. With hardware support, computation migration and data migration have almost
identical throughput. Again, data migration uses more bandwidth because it must maintain cache
coherence.

5.3 Discussion

In the two applications that we describe in our conference paper (one of which is described here),
static computation migration always outperforms RPC. However, a hardware implementation
of data migration with replication outperformed our software implementation of computation
migration. Such a result is not surprising, given the speed of hardware relative to software. What
is surprising is that the performance of the software implementation of computation migration
approaches that of the hardware implementation of data migration with replication.

Our Prelude experiments with the B-tree showed that a static choice of always using computation
migration is insufficient. In particular, the root of a B-tree should be replicated using data migration,
and the leaves should be accessed using computation migration.

In conclusion, although our results on Prelude are promising for computation migration, they
also illustrate the need for more research. First, they demonstrate that a better comparison would
involve two software-based implementations of computation migration and data migration with
replication. Such a comparison would remove any difference in hardware support for the two

51

mechanisms. Second, they illustrate the need to explore the combination of computation migration
and data migration. A judicious mixture of the two mechanisms could yield better performance
than either could alone.

52

Chapter 6

Dynamic Computation Migration in

MCRL

To evaluate the effectiveness of combining computation migration and data migration, the dynamic
protocol described in Section 3.3.3 was implemented in the MCRL distributed shared memory
system. MCRL is a multithreaded extension of CRL, a distributed shared memory library built at
MIT [51]. MCRL extends CRL in two ways: first, it provides support for multithreaded programs;
second, it provides support for dynamic computation migration.

Multithreading is important for several reasons. First, it is an important structuring tool. Many
programs are naturally written with multiple threads of control. Second, it is a useful mechanism for
hiding latency; in particular, the latency of remote accesses. Finally, for the purposes of evaluating
computation migration, multithreading is a necessity. Moving computation from processor to
processor makes sense only if the model of execution is multithreaded.

An important difference between our work in Prelude and the work in MCRL is that the
MCRL system is all-software. As a result, it provides a “level playing field” with which to evaluate
the dynamic computation migration protocol and the two decision heuristics. In addition, the
performance results from MCRL have been measured from real machines, not a simulator. These
results provide a sanity check on our simulated results, and also verify that we can achieve good
performance on real machines.

A last difference between Prelude and MCRL is that MCRL does not have any compiler support.
The CRL shared-memory interface is fairly high-level, and can be used by a programmer. However, it
requires that the programmer manage the translation between global identifiers and local identifiers.
The MCRL interface for dynamic computation migration is even more complex, and it is unlikely
that a programmer would want to write for it.

However, the intent in using MCRL is not to treat it as a programmer interface. Instead, the
goal is to treat it as a compiler target. Although providing simple annotations for computation
migration is important, the primary goal of this dissertation is to demonstrate the usefulness of
mechanisms for dynamic computation migration. Compiler mechanisms for providing annotations
such as those described in Section 3.2 are important, but not the main focus in this dissertation.

53

In the remainder of this dissertation, the term “pure data migration” will mean the use of the
standard CRL calls. That is, the programmer decides to always use data migration, and directly
uses the CRL calls. I use “dynamic data migration” and “dynamic computation migration” to refer
to the use of the dynamic protocol in MCRL. In other words, one of the heuristics is invoked at
runtime, and the runtime system decides to use either data migration or computation migration.

The remainder of this chapter describes my implementation of dynamic computation migration
in MCRL. Section 6.1 overviews the DSM interface that the CRL system provides. Section 6.2
describes high-level implementation issues that arise with computation migration and MCRL.
Section 6.3 describes the differences between CRL and MCRL: first, the changes to support
multithreading; and second, the changes to support dynamic computation migration. Section 6.4
describes some detailed implementation issues for the two machines that MCRL runs on: Alewife
and the CM-5.

6.1 CRL Overview

CRL (short for C Region Library) is a C library that provides an interface for distributed shared
memory [51]. Its global name space is in the form of regions, which are programmer-defined
blocks of memory. Regions are identified by region identifiers, or rids, for short. These regions
are analogous to objects in other parallel languages. Unlike hardware implementations of shared
memory, software implementations depend on programmer intervention to define regions for
coherence; only by doing so can the cost of checking for remote accesses in software be amortized
over the size of an object.

CRL provides support for SPMD parallel programs. The programming model is that each
processor runs a single thread. Whenever a thread makes a remote request, it spins until its request
is fulfilled. Its model of coherence is that of entry consistency; the local copy of a region is only
valid while an appropriate lock for that region is held. Locking happens implicitly with the access
functions in CRL, which acquire regions in either read-mode (shared) or write-mode (exclusive).

Each region in CRL has a fixed home processor. A processor that is not the home for a
particular region is a remote processor. The home processor acts as a server for a region; remote
processors that access a region are clients of its home processor.

Table 6.1 lists the shared memory operations that CRL provides. The top half of the table
contains operations that are global; they operate on rids. The bottom half of the table contains
operations that are local; they operate on mapped regions. CRL also provides several global
synchronization operations that are not listed. Technical details on the internal structure of CRL
are given in Appendix A.

Region metadata is stored in a region header . Regions on both home nodes and remote nodes
have headers, although the information stored in them is different. CRL divides the protocol for
accessing a region into two phases. The first phase consists of mapping a region, which sets up the
region header. The rgn map operation translates an rid to a local address. It allocates memory to
hold a region and its header, initializes the header, and returns a pointer to the region.

54

Function Effect

Global operations
rgn_create create a new region
rgn_delete delete a region
rgn_map map a region locally

Local operations
rgn_unmap unmap a mapped region
rgn_start_read start a read operation on a region
rgn_end_read end a read operation on a region
rgn_start_write start a write operation on a region
rgn_end_write end a write operation on a region
rgn_flush flush the local copy of a region

CRL constants
crl_self_addr local processor id
crl_num_nodes total number of processors

Table 6.1. Summary of the CRL shared memory interface. The global synchronization operations
are not listed.

The second phase of accessing a region consists of initiating a read or a write using the
rgn start read or rgn start write procedures, respectively. When these procedures complete,
they ensure that the region data is coherent. If the data is not local, the procedures send any
appropriate messages and spin while waiting for responses. Once the data arrives, it is guaranteed
to remain coherent until the matching termination procedure (rgn end read or rgn end write) is
called. The rgn unmap procedure can then be used to unmap a region, after which its local address
is no longer valid.

CRL caches unmapped regions and their headers in a data structure called the unmapped region
cache, or URC. As the name indicates, when a region is unmapped it is added to the URC, which
is direct-mapped. If the region is in the URC and rgn map is called on it, no communication is
required to map it. Regions are only evicted from the URC upon a conflict. The version of CRL on
which MCRL is based does not manage the URC very well; a more recent version of CRL achieves
higher hit rates in the URC.

CRL has good performance, as shown in Tables 6.2 and 6.3; CRL on an ideal Alewife machine
would perform within a factor of 15 of Alewife itself. The data in these tables is partially taken from
the original version of the paper by Johnson et al. [52]. In these tables, the numbers marked “Alewife
(ideal)” do not include the overhead of flushing message buffers and transitioning messages into
threads. These ideal latencies represent the latencies that should be possible after the Alewife
CMMU respin (which is described in more detail in Section 4.1). The CM-5 numbers in Tables 6.2
and 6.3 are slightly different than those in the original version of the CRL paper. These numbers

55

CM-5 Alewife Alewife (ideal) Alewife (native)
cycles µsec cycles µsec cycles µsec cycles µsec

start read hit 78 2.4 46 2.3 47 2.3 — —
end read 91 2.8 50 2.5 50 2.5 — —
start read miss 1714 53.6 959 48.0 580 29.0 38 1.9

no invalidations
start write miss 3374 105.5 1620 81.0 978 48.9 66 3.3

one invalidation
start write miss 4936 154.2 3009 150.5 1935 96.7 707 35.4

six invalidations

Table 6.2. Measured CRL latencies, 16-byte regions (in both cycles and microseconds). Measure-
ments for Alewife’s native shared memory system are provided for comparison. Most of these
numbers are taken from the original CRL paper [52].

CM-5 Alewife Alewife (ideal)
cycles µsec cycles µsec cycles µsec

start read miss, no invalidations 3635 113.6 1123 56.2 642 32.1
start write miss, one invalidation 5308 165.9 1776 88.8 1046 52.3
start write miss, six invalidations 6885 215.2 3191 159.6 2004 100.2

Table 6.3. Measured CRL latencies, 256-byte regions (in both cycles and microseconds). Most of
these numbers are taken from the original CRL paper [52].

56

extern void f1(object a); extern void f1a(local object ∗);
extern void f2(object a); extern void f2a(local object ∗);
extern void f3(object a); extern void f3a(local object ∗);

void foo(object a) void foo(rid t a)
{ {

f1(a); local object ∗a0 = rgn map(a);
f2(a); rgn start read(a0)
f3(a); f1a(a0);

} f2a(a0);
f3a(a0);
rgn end read(a0);
rgn unmap(a0);

}

Figure 6-1. Hand optimization of code in MCRL. The program fragment on the left-hand side
represents code in a high-level language. The program fragment on the right-hand side represents
code in MCRL. The procedure f1 has the same effect as f1a; similarly for the procedures f2 and
f2a, and f3 and f3a.

are measured on a newer version of the CMOST operating system, as well as a newer version of the
CMMD library.

CRL currently runs on the MIT Alewife machine, on Thinking Machines’ CM-5 machine, and
on a network of Sun workstations.

6.2 Implementation Issues

This section describes issues that arise in the use of dynamic computation migration and MCRL.
Section 6.2.1 describes some of the language issues involved with using a low-level object model.
Section 6.2.2 describes related compiler issues. Section 6.2.3 overviews our research on optimistic
active messages, which is an important mechanism for making communication efficient.

6.2.1 Language Issues

Some of the locality issues that arise in higher-level languages such as Prelude do not arise in MCRL.
In particular, since the programmer is responsible for managing the translation of region identifiers
to local addresses, the programmer will also optimize code around these translations. In other
words, the programmer will tend to hoist global address translation out of procedure calls. As a
result, some abstractions will take global addresses as arguments and others will take local addresses.
Figure 6-1 illustrates this effect.

57

In Figure 6-1 the program fragment on the left-hand side represents code in a high-level
language that provides an address space of objects, such as Prelude. Invocations are performed
on global addresses, and abstractions such as f1, f2, and f3 are written to take global addresses as
arguments. The fragment on the right-hand side represents code in a system such as MCRL. The
programmer is responsible for translating global addresses into local addresses, and naturally hoists
such translations out of procedures (assuming that releasing locks between the procedure calls is
not necessary for correctness). For my experiments I wrote code in the latter form. Such a coding
style represents the best performance that a compiler for a high-level language could achieve by
hoisting locking and global address translation out of procedures and loops.

6.2.2 Compiler Issues

An annotation similar to that described in Section 3.2 could be used to indicate the use of dynamic
computation migration. Handling an annotation requires either changes to the C compiler, or the
addition of a preprocessing phase. Since our current implementation is done in the context of
MCRL and the C language, there would be several language restrictions that were not present in
Prelude. Note that if MCRL were implemented only on shared-memory multiprocessors, these
restrictions would be unnecessary.

First, if the address is taken of a stack location, the containing activation frame cannot be
migrated. If the frame were migrated and the address were stored in the heap, the address would
be a dangling reference. Second, if the address of a stack location is passed to a procedure and not
ignored, the activation frame for the procedure cannot be migrated. The stack location is a local
address, and cannot be used on another processor.

In addition, the C compiler must understand MCRL’s data types. In particular, it must under-
stand the distinction between region identifiers and local pointers. Local pointers cannot be passed
off-node; only the rid that corresponds to a local pointer can be passed to another processor. For
every pointer that needs to be migrated, the compiler must know to send the corresponding rid
instead.

Finally, the compiler must understand the semantics of MCRL locking. If a computation were to
migrate while it holds a lock, the ownership of that lock must be passed along with the computation.
The compiler would have to understand this semantics, and handle it correctly. The current version
of MCRL does not support the migration of lock ownership, but it would not be difficult to add
such support.

6.2.3 Optimistic Active Messages

In other work [49, 97] we have demonstrated the usefulness of optimistic active messages. Opti-
mistic active messages are a generalization of active messages. Active message handlers must be
restricted because of the primitive scheduling control available for active messages. Optimistic ac-
tive messages, on the other hand, allow more general message handlers: there are fewer restrictions
on code that can be put in message handlers.

Active message handlers are generally run as interrupt handlers; this fact, combined with the
fact that handlers are not schedulable, puts severe restrictions on the code that can be run in a

58

message handler. For example, a message handler is not allowed to block, and can only run for
a short period of time. Active messages that block can create deadlocks; long-running handlers
can congest the network. In our papers [49, 97] we describe how using optimistic active messages
eliminates these restrictions. Optimistic active messages allow arbitrary user code to be written as
message handlers. They also allow arbitrary synchronization between messages and computation;
in addition to this gain in expressiveness, optimistic active messages will generally perform as well
as active messages.

Optimistic active messages achieve the performance of active messages by allowing user code
to execute in a message handler instead of a thread. By executing in a handler, we avoid thread
management overhead and data copying time. Because handlers are not schedulable entities,
executing arbitrary user code in message handlers is difficult. As mentioned above, handlers may
not block, and can only run for a short period of time. Our solution is to be optimistic and compile
handlers under the assumptions that they run without blocking and complete quickly enough to
avoid causing network congestion. At runtime, these assumptions must be verified.

If our optimistic assumptions fail at runtime, we “abort” the optimistic active message. When
an optimistic active messages aborts, we revert to a slower, more general technique for processing
the handler. Possibilities include creating a separate thread or putting an entry on a job queue.

This optimistic approach to active message execution eliminates thread management overhead
for handlers that run to completion, and will achieve performance equal to active messages when
most handlers neither block nor run for too long. Furthermore, it frees the programmer from the
burden of dealing with the restrictions of active messages, which greatly simplifies writing parallel
applications.

My experiments make extensive use of optimistic active messages. Since we do not have
compiler support for optimistic active messages, all of my optimistic active message handlers are
hand-coded. My OAM abort code, which creates a thread upon abort, is also hand-coded.

6.3 MCRL Implementation

This section describes the implementation of MCRL. Section 6.3.1 describes the support for
multithreading in MCRL, and the changes to CRL that were necessary. Section 6.3.2 describes the
support for dynamic computation migration in MCRL.

6.3.1 Multithreading Support

CRL does not provide any facility for multithreading. It supports a SPMD model of computation,
in which each processor runs exactly one thread. This section describes the changes necessary to
make CRL multithreaded.

Although spinning while waiting for a lock or a message is efficient when there is only one
thread per processor, it makes poor use of the processors when there are threads waiting to run.
The major change in adding multithreading to CRL is to add blocking when most messages are
sent. In addition, on Alewife I had to modify the kernel and sundry synchronization libraries; on
the CM-5, I had to modify our user-level thread package. Although more complex strategies are

59

Function Effect

rgn_map_nonblock map a region without blocking (if it is cached or already
mapped), otherwise return NULL

rgn_start_read_nonblock start a read without blocking (if it is cached), otherwise
return NULL

rgn_start_write_nonblock start a write without blocking (if it is cached), otherwise
return NULL

Table 6.4. MCRL non-blocking operations. These operations are for use within active messages
and optimistic active messages.

possible (for example, competitively spinning and then blocking, which has been investigated for
synchronization strategies [58]), I chose to implement a pure blocking strategy for simplicity.

On Alewife, the fastest round-trip time for a remote request is roughly 22 microseconds. Thus,
a context switch allows useful work to happen despite the cost of a context switch, which is slightly
over 7 microseconds. On the CM-5, the fastest round-trip time for an active message is about
12 microseconds, whereas a context switch costs at least 23 microseconds. As a result, some fast
remote calls do not block, as the latency of a fast call cannot be hidden by context switching.

Another change was to make multiple rgn map’s on a processor return the same region. In
MCRL, when a thread tries to map a remote region, it blocks. If another thread attempts to map
the same region, it also blocks and waits for the result of the first rgn map. This optimization saves
both network bandwidth and memory; it ensures that only one message is sent, and ensures that
only one copy of the region is mapped.

A series of other changes was necessary to support execution of MCRL calls within optimistic
active message handlers. Supporting multithreading on Alewife and the CM-5 only requires the
prevention of race conditions within voluntary yields of the processor, since neither machine
currently has support for the preemption of threads. However, once MCRL calls can occur in
active messages, there are many more race conditions to prevent, and the system begins to look
preemptive.

Finally, several non-blocking operations had to be added in order to execute within optimistic
active messages. As described in Section 6.2.3, blocking is not permitted within active messages.
As a result, any call that can potentially block must have a non-blocking form as well. Table 6.4 lists
the non-blocking calls in MCRL.

6.3.2 Dynamic Computation Migration Support

This section describes how the dynamic migration protocol is implemented in MCRL. It first
describes the interface for dynamic computation migration, and then describes the implementation
of the dynamic protocol.

60

Function Effect

Client operations
rgn_start_local_read starts read if data is local and readable
rgn_end_local_read used to end read if computation migrated
rgn_start_local_write starts write if data is local and writable
rgn_end_local_write used to end write if computation migrated
rid_home return home processor of region
crl_thread_id return id of current thread
rgn_migrated check if region migrated
rgn_home_addr return address of region at home

Server operations
migration_policy_read decide whether to migrate a read
migration_policy_write decide whether to migrate a write
rgn_map_migrated map a region at the home node
rgn_notify_rmigrate notify client that migration happened on a read
rgn_notify_wmigrate notify client that migration happened on a write
rgn_notify_rmigrate_and_kill notify client that migration happened on a read, and kill

waiting thread
rgn_notify_wmigrate_and_kill notify client that migration happened on a write, and kill

waiting thread
rgn_fake_read_msg act as if a shared request has arrived
rgn_fake_write_msg act as if an exclusive/modify request has arrived

Other
rgn_header return address of a region’s header

Table 6.5. MCRL operations for dynamic computation migration

Interface

Table 6.5 lists the operations in MCRL that support dynamic computation migration. These
operations are not intended for use by a programmer, but by a compiler — just as my intent is to
use MCRL as a compiler target.

Figures 6-2 and 6-3 illustrate the use of these calls for dynamic computation migration. The
client first calls rgn start local read. This operation behaves identically to rgn start read if
the data is local; otherwise, it changes the state of the region’s metadata so that the processor can
send a migration request. The client must check the return code of rgn start local read, which
indicates whether the region was local.

If the region is non-local, the client then initiates the dynamic protocol. It calls the continuation
routine server read, which is hand-written. The arguments crl self addr, x, crl thread id(),
and rv are used for linkage. rgn home addr(x) and crl self addr are used internally by MCRL
for data migration requests. After sending a migration request message, the client suspends. The

61

argument to crl suspend is used to detect the race condition where a wakeup returns before the
thread suspends; if a wakeup does return early, crl suspend merely returns.

The argument to crl suspend is also used to indicate whether the server returned data or
executed the computation. After waking up, the client uses rgn migrated to check this flag. If the
data is returned, the client executes the computation; otherwise, it falls through.

On the server side, the first action is to decide whether to use data migration or computation
migration. This decision is made in the migration policy read call. If the server decides to
use data migration, it executes rgn fake read msg, which mimics the effect of handling a request
for data. Otherwise, if the server decides to use computation migration, it returns a migration
acknowledgment using rgn notify rmigrate. It then maps the region using rgn map migrated,
which is faster than rgn map because it does not need to check whether it is executing at the home
node. Finally, it starts a read, executes the computation, and returns a value using remote wakeup.
This last call is not in the MCRL interface: it is written by the user (or generated by the compiler),
because its interface depends on the number of return values.

Two of the calls listed in Table 6.5 require extra explanation, as they are not used in the example
code. These calls are rgn_notify_rmigrate_and_kill and rgn_notify_wmigrate_and_kill.
These calls are used in server code that is called as a result of a repeated migration. As described
earlier, a repeated migration can return to the original caller. The above calls allow server code to
kill an intermediate thread in a chain of migrations. Killing such a thread avoids the cost of having
to reschedule the thread and then execute it, when all it will do is exit. Just as importantly, it reclaims
thread resources; if threads are not killed, the number of threads can quickly overflow any limit.

The dynamic migration protocol is more expensive for writes than for reads. This difference
is due to the fact that writes must manage version numbers. More specifically, when a client wants
to acquire a write copy of a region of which it already has a read copy, it must send a message that
includes the version number of the copy that it has. Although it would be possible to modify the
MCRL interface to have two sets of write calls (one for a pure write and one for a write when a read
copy is present), such a design would result in a more complex interface.

Finally, one early design choice was to use computation migration only for region data. An
alternative choice would be to use computation migration for both region headers and region data.
In other words, a call such as rgn map local and read could be added that maps and starts a read
for a local region, or initiates computation migration. However, such a design would break MCRL’s
model, which is to split rgn map and rgn start read into two operations.

Implementation

Dynamic migration can only occur on remote processors. Operations that occur at a region’s home
processor do not migrate, even if the only valid copy of the data is currently on a remote processor.
Allowing home operations to migrate in such cases could lead to “migration thrashing,” where a
computation chases data from processor to processor. For example, if a home operation could
migrate, it could migrate to a remote processor while the data is returning to the home; it could
then migrate back to the home, and repeat the whole cycle again.

62

void client read(rid t r1)
{

void ∗x;
int migrate;
unsigned notify;
int migrateReturnValue;
int ∗rv = &migrateReturnValue;

x = rgn map(r1);
migrate = rgn start local read(x, ¬ify);

if (migrate) {
/∗

thread on is the Alewife call to create a thread on
some processor

∗/
thread on(rid home(r1), /∗ home processor ∗/

server read, /∗ function to call ∗/
rgn home addr(x), /∗ arguments ∗/
crl self addr,
x,
crl thread id(),
rv);

crl suspend(¬ify);
if (rgn migrated(notify)) {

rgn end local read(x);
goto done;

}
}

/∗ COMPUTATION goes here ∗/

rgn end read(x);
done:
rgn unmap(x);

}

Figure 6-2. Client code for dynamic computation migration

63

void server read(HomeRegion ∗home x,
unsigned proc,
void ∗remote addr,
tid t,
int ∗rv)

{
void ∗x;

if (! migration policy read(home x, proc)) {
rgn fake read msg(home x,

proc,
rgn header(remote addr));

return;
} else {

rgn notify rmigrate(proc, remote addr);
}

x = rgn map migrated(home x);

rgn start read(x);

/∗ COMPUTATION goes here ∗/

/∗ wakeup sleeping process

user do on is the Alewife call to create an
active message on a processor

∗/
user do on(proc,

remote wakeup,
t,
rgn header(remote addr),
rv,
1);

rgn end read(x);
rgn unmap(x);
return;

}

Figure 6-3. Server code for dynamic computation migration

64

Migration can occur in three cases: when a read misses, when a write misses, and when a write
hits on a read-only copy. These situations correspond to the three types of remote requests: read
requests, write requests, and modify requests. If a region is in any other state (for example, a read
request is outstanding), my protocol blocks.

The state diagrams for CRL and MCRL are given in Appendix A. For simplicity, only one
outstanding potential migration per region per processor is allowed. That is, if a thread attempts to
migrate on a region while another thread on the same processor has sent a migration request on
that region, the second thread blocks until a migration acknowledgment or data is received.

Blocking the second thread in the above situation avoids another form of migration thrashing.
For example, in response to the first potential migration the home could send data back to the
remote processor. If the second request did not block, but instead sent another potential migration
to the home, the advantage of having sent the data back is lessened.

In the implementation of my protocol, the extra acknowledgment for a migration adds an
additional message send to the latency of the migration, but the reception is off of the critical path
of the migration. As soon as a thread decides to use computation migration, it sends the migration
acknowledgment. It would be possible to send this acknowledgment later; for example, after the
computation is in the process of potentially migrating to another processor. However, delaying the
acknowledgment could cause potential migrations to “pile up” at the client.

The heuristic does not require any information in a region header, as it is a static protocol.
The protocol requires four words in a home region’s header to store 128 bits of information;
these bits are used to detect when a remote processor accesses a region twice. These four words
are sufficient to represent up to 128 processors.

6.4 Implementation Details

This section describes implementation details of the two platforms on which MCRL currently runs:
the MIT Alewife machine and Thinking Machines’ CM-5. Neither machine supports pre-emptive
scheduling; as a result, threads must yield the processor explicitly.

In MCRL writers are given priority when threads can be woken. In other words, when a writer
finishes it does not wake up any readers unless there are no writers waiting. Although this bias is
not fair to readers, it reduces the chance that writers will starve.

The largest difference between Alewife and the CM-5 is the nature of the runtime sys-
tems. Alewife is largely interrupt-driven; interrupts and traps are relatively inexpensive on
Alewife, due to the presence of hardware contexts. However, the user atomic request and
user atomic release calls, which “shut off” user-level active messages, allow the programmer to
use a form of polling when necessary. In comparison, since interrupts are expensive on the CM-5,
applications almost always use polling to obtain higher performance.

6.4.1 Alewife

The Alewife implementation of MCRL uses the support for multithreading that the Alewife system
provides. It was necessary in some cases to add some additional support for blocking in the Alewife

65

kernel and libraries. Even though the active message support on Alewife is analogous to optimistic
active messages, the restriction that half-threads cannot block means that the active message support
is not much better than that on the CM-5. Besides the issues described in the rest of this section,
at the time of writing there still appears to be some bugs in the active message support. As a result,
the application performance results do not include times for optimistic active messages.

The Alewife compiler produces efficient code, but it has some quirks that affect the results
of my experiments. In particular, all registers are caller-save. The reason is that the back end is
shared between the C compiler and the Mul-T compiler. Mul-T [60] is a dialect of Lisp for parallel
computation. Since Mul-T allows the creation of continuations and closures, a caller-save protocol
is most sensible. For C code, however, a caller-save protocol can lead to unnecessary movement of
data back and forth from the stack.

It was necessary to change the scheduling of threads in the Alewife runtime system. The original
system executes threads in LIFO order: newly created threads are put on the front of the scheduling
queue. This scheduling strategy is patently unfair, and can lead to some distorted measurements. In
particular, as discussed in Appendix B, an unfair strategy can lead to overestimating the throughput
of the system. As a result, the scheduler was changed so that threads are created in FIFO order. In
addition to avoiding the aforementioned measurement effects, a FIFO discipline also matches the
scheduling strategy on the CM-5.

The Alewife runtime system has extremely primitive scheduling, and for simplicity I avoided
making any other changes to the scheduler. As a result, my heuristics for dynamic computation
migration do not make use of load balance information, which may be useful. The effect of having
such information would be useful to explore.

Optimistic Active Messages

As a result of problems with Alewife’s active message support, the cost of using optimistic active
messages on Alewife is high; using threads turns out to be faster. Therefore, all of the application
measurements on Alewife are taken with user code running as full threads, and not as active
messages. The remainder of this section describes the difficulties with active messages on Alewife,
which are artifacts of the current implementation of the kernel.

Ignoring the bugs in the active message support, the restrictions on active messages are still
sufficient to make the use of optimistic active messages ineffective. As a result of the non-LIFO
ordering of half-threads, guaranteeing message atomicity efficiently is difficult. MCRL uses a single
bit to maintain atomicity in software; this bit is turned on and off around critical sections. However,
because non-LIFO execution of half-threads is possible, a stack discipline cannot be maintained
for this bit. In other words, an executing thread or optimistic active message cannot assume that
the bit remains off once it has turned it off. There are two solutions to this: an optimistic active
message can keep the bit locked for its entire execution; alternatively, an optimistic active message
can recheck the bit whenever it needs atomicity, and abort if the bit has been turned on. (These
options are roughly analogous to forward and backward validation in optimistic concurrency control
systems [41].) My implementation uses the first option for simplicity.

66

Keeping the atomicity bit on means that more optimistic active messages are likely to abort.
Abort is expensive for several reasons. First, my implementation of abort for optimistic active
messages uses the Alewife thread on call to create a thread locally. Unfortunately, thread on
sends a message to the processor on which a thread is to be created even when the processor is
local. Second, starting an active message and transitioning to a half-thread costs almost as much as
starting a thread. These implementation artifacts have the effect of degrading abort performance
on Alewife: an aborting optimistic active message must pay the cost of starting an active message,
sending and receiving a message, and creating a thread.

Finally, half-threads that overflow the number of hardware contexts will run slowly. For example,
an active message can interrupt the processor and transition to a half-thread; if the half-thread is in
the last free context, it is unloaded. The previous half-thread continues execution, and if another
active message arrives it will also be unloaded upon transition.

6.4.2 CM-5

The CM-5 implementation of MCRL uses a user-level thread package that we developed for our
work on Optimistic RPC [97]. The thread package requires that interrupts be off during calls to
thread operations, which is how it achieves atomicity. Since toggling the interrupt mask on the
CM-5 is expensive (it is on the order of hundreds of cycles [94]), all of the experiments described
in this dissertation are with interrupts turned off; polling is used to receive messages.

A context switch in our thread package takes approximately 23 microseconds. Most of this
time is the cost to save and restore two register windows, which is about 20 microseconds. The
context switch cost also depends on the number of active register windows. Based on the calling
conventions in the thread package, there are a minimum of two active windows: the window for
the current procedure, and the window for the context switch code. There is an additional cost of
approximately 5 microseconds for each extra window that must be saved. In addition, each window
that must be restored after a context switch takes about 5 microseconds.

The SPARC register windows also impact procedure call time. Each nested procedure call
after the seventh is expensive. Each extra procedure call takes approximately 10 microseconds.
When the call stack overflows the register windows, it takes about 5 microseconds to push the
bottom activation record onto the stack; when that activation record is returned to (and the call
stack underflows the register windows), another 5 microseconds must be paid to load it. Under
non-multithreaded uniprocessor workloads, register window handling only accounts for about 3%
of the total cycles [86]. However, the cost for using register windows is higher for active messages
(and optimistic active messages), because active messages execute on the stack of the currently
executing thread, which deepens the call stack.

The largest factor in the performance of my dynamic migration protocol is the limited message
size on the CM-5. The messages in my protocol are longer than four words, whereas the standard
CRL calls only send messages of four arguments, ignoring region data transfers. As a result, code
that uses pure data migration only requires a single round-trip active message for all of its requests.
Computation migration, on the other hand, requires an extra round-trip active message to transfer
its extra arguments, which are sent using the CMAML scopy facility.

67

6.5 Limitations

This section describes some of the limitations of MCRL, and discusses how they can be addressed.
My implementation of dynamic computation migration suffers from several drawbacks. First,

it leads to a large expansion in the size of the code: for each occurrence of computation migration,
I have a continuation procedure. Second, each of these continuation procedures is hand-generated;
it would be much easier if I had compiler support. Third, all of the optimistic active message code is
also hand-written; the necessity for code to handle optimistic active message aborts leads to further
code expansion.

A compiler with support for computation migration could avoid generating the extra contin-
uation procedure. In addition, with support for optimistic active messages it could also avoid
generating extra abort procedures. At the point of migration any live variables would be marshaled
into a message, which would be sent to the destination processor. At the destination processor, an
alternate entry point to the migrating procedure would be called, which would unmarshal the values
into an identical activation record, and would then jump back into the original procedure’s code.
The only tricky point would be if the migrating procedure was originally expected to return values
on the stack; we would have to ensure that the code on the destination processor returns to a stub
that returns a message to the original processor.

One limitation of MCRL is that it has not been heavily tuned. Although it is fairly efficient,
there are several aspects of its performance that could be improved. For example, the version of
CRL upon which MCRL is based manages the unmapped region cache poorly; incorporating recent
CRL changes into MCRL would improve its performance. In addition, region headers are fairly
large (they are approximately 45 words), which is a large space overhead for small objects.

Finally, a weakness of MCRL is that the coherence protocol that it implements does not have
any mechanisms for “short-circuiting” data transfers from one remote processor to another. For
example, in a counting network a processor that writes a balancer must often acquire the data from
a remote processor. Under the coherence protocol implemented in MCRL, the data is first sent to
the home processor, and then back to the requesting processor. Modifying the protocol to allow
the data to be sent directly to the requesting processor (which is done, for example, in the DASH
protocol [65]) would improve the relative performance of data migration.

68

Chapter 7

Performance

This chapter discusses and analyzes the performance of MCRL, as well as the performance of
dynamic computation migration under my two heuristics.

Several important results regarding computation migration are demonstrated:

- First, MCRL has good performance, which makes it a good platform for comparing data
migration and computation migration. MCRL is compared both to CRL and to the Alewife
machine.

- Computation migration of writes improves performance, as demonstrated by a microbench-
mark and two application kernels. The heuristic almost always outperforms pure data
migration.

- Dynamic computation migration of reads can sometimes improve performance. The

heuristic almost always outperforms pure data migration, and sometimes outperforms the
 heuristic.

Section 7.1 describes how the performance results in this chapter were computed; it also
discusses several other measurement details. Section 7.2 analyzes low-level measurements of MCRL:
operation latencies, migration costs, and a microbenchmark. Section 7.3 analyzes measurements of
two application kernels. Section 7.4 summarizes the results in this chapter.

7.1 Measurement Techniques

This section describes the measurement strategy used in this chapter, as well as some measurement
issues. The technique of taking a linear regression of multiple measurements is the same as that
used in the original CRL paper [51].

My results compute the average time for a single iteration of some experiment. Some of the
experiments are single-processor, whereas most involve multiple processors. For the former, a
single iteration means the time for the processor to complete the operation (or set of operations)

69

in question. For the latter, a single iteration means the average time for all of the processors to
complete the operation.

The average time per iteration is measured by taking a linear regression of data from multiple
runs of each experiment. (The number of runs, and the number of iterations in each run, are
described separately for each experiment.) The linear regression is of data of the form (i, t), where
i is the number of iterations performed in the run, and t is the time the run takes. The computed
slope of the least-squares line is the average time for a single iteration. Error bars in my graphs
represent 95% confidence intervals on the slope. Appendix C summarizes the relevant regression
formulas.

In order to factor out cache differences as much as possible, dynamic computation migration
and pure data migration are compared using the same executable. That is, dynamic computation
migration under the executable is not compared to pure data migration under the

executable, and vice versa. This keeps the difference due to cache effects at a minimum when
comparing results. However, in order to allow for some comparison between the two heuristics, I
pad the region headers in MCRL for the heuristic so that they are the same as for the

heuristic. This minimizes cache effects due to different region sizes and alignments.
Finally, it is necessary to factor out the cost of remote rgn map operations. The design of the

MCRL interface deliberately avoided using computation migration for rgn map; therefore, including
the cost of rgn map calls that require communication would make computation migration appear
to perform badly. In order to factor out these costs, the unmapped region cache is made fairly large.
In addition, all of my experiments first map all of the regions on all of the processors, which warms
up the URC. As a result, the URC miss rate is low.

It is important to note that measurements on the CM-5 were all taken in dedicated mode. In
non-dedicated mode, the timers provided by the CMMD library can be inaccurate, even when there
are no other programs running. Although there can be some timing inaccuracies even in dedicated
mode, the inaccuracies are substantially lower than in non-dedicated mode.

As can be seen in the results, consistent timings are difficult to acquire on the CM-5. This effect
is a result of two factors. First, the context switching of the network can lead to timing error, as
described above. In addition, the non-deterministic routing scheme used in the network can also
cause timing differences.

Finally, the left y-axes of all of the graphs in this section are times in microseconds. The graphs
in each section are at the same scale to allow for comparison of the relative performance of Alewife
and the CM-5. The right y-axes give times in cycles for the respective machines.

7.2 Low-level Measurements

This section analyzes three sets of low-level measurements of MCRL. First, it analyzes the raw
performance of MCRL by comparing it to CRL, as well as comparing the performance of MCRL
on Alewife to Alewife itself. It then compares the costs of data migration and computation
migration in MCRL. Finally, it uses a simple microbenchmark to measure the efficacy of the

and heuristics.

70

CM-5 Alewife Alewife (ideal)
cycles µsec cycles µsec cycles µsec

start read hit 66 2.1 70 3.5 70 3.5
end read 90 2.8 77 3.9 80 4.0
start read miss, no invalidations 1995 62.3 1170 58.5 845 42.3
start write miss, one invalidation 2950 92.2 1980 99.0 1238 61.9
start write miss, six invalidations 4163 130.1 3410 170.5 2189 109.4

Table 7.1. Measured MCRL latencies, 16-byte regions (in both cycles and microseconds). These
measurements correspond to those in Table 6.2 on page 56.

CM-5 Alewife Alewife (ideal)
cycles µsec cycles µsec cycles µsec

start read miss, no invalidations 4049 126.5 1402 70.1 888 44.4
start write miss, one invalidation 4998 156.2 2157 107.8 1286 64.3
start write miss, six invalidations 6202 193.8 3611 180.6 2200 110.0

Table 7.2. Measured MCRL latencies, 256-byte regions (in both cycles and microseconds).
These measurements correspond to those in Table 6.3 on page 56.

7.2.1 Operation Latencies

This section analyzes the costs for MCRL operations. The measurements of MCRL indicate
that MCRL is efficient, and that as a result it is a good platform for evaluating dynamic computation
migration.

The costs of each operation are measured by taking the regression of 64 runs, where the ith
run consists of performing the operation on i regions. Tables 7.1 and 7.2 list some of the costs
for operations in MCRL. These costs correspond to the CRL costs listed in Tables 6.2 and 6.3 (on
page 56).

Local Operations

Local operations (a start read that hits, or an end read) in MCRL are in general more expensive than
in CRL, because MCRL operations can potentially block. CRL operations do not block; they spin
and wait for their effects to complete.

For a start read, the possibility of blocking means that the operation might have to retry itself.
As a result, it must check a return code, which takes a few extra cycles. In addition, a few cycles
must be paid to setup a loop for retrying the operation. For an end read, the possibility of blocking
means that the operation may issue some wakeups: if there are any waiting writers, an end read
must wake them up. At the minimum, a few cycles must be spent checking for waiting writers.

71

The ideal Alewife costs are virtually identical to the non-ideal costs for local operations. The
presence of the DMA bug does not affect local operations; nor does the expense of transitioning
local threads.

Finally, the relative overhead of MCRL versus the Alewife machine is greatest for local oper-
ations. Hardware and operating system implementations of distributed shared memory, such as
Alewife and Ivy, respectively, do not impose any extra costs on local operations. MCRL, however,
requires that start read and end read operations must be called, which together take approximately
150 cycles.

Remote Operations

Remote operations in MCRL on Alewife are several hundred cycles more expensive than the same
operations in CRL. The primary cost is that incurred by context-switching a waiting process; even
if there is no other runnable thread, the Alewife runtime system will unload a thread that suspends,
and then load it back when it wakes up.

Some of the remote operations on the CM-5 are actually cheaper in MCRL than in CRL. For
example, the write misses on the CM-5 are cheaper. The reason is that MCRL uses polling to receive
active messages, whereas the version of CRL measured by Johnson et al. uses interrupts. In these
experiments only one active thread exists in the system, which is the one that initiates the MCRL
operations. The other processors simply sit in the scheduler and poll the network. As a result,
messages are received more quickly than in the CRL experiments, since the overhead of interrupts
on the CM-5 does not have to paid.

The remote operations on the CM-5 are not as expensive as one would expect. Given that a
context switch costs 23 microseconds, it might seem unusual that the MCRL cost for a remote read
is only 12 microseconds slower than in CRL. The reason is that the thread package on the CM-5
does not perform a context switch if the last thread to run becomes the next thread to run. In these
experiments, since there is only one thread that suspends and wakes up, no context switches need
to occur. In a situation where multiple threads are runnable, the cost of a full context switch would
have to be paid.

MCRL on Alewife compares well to Alewife hardware. For remote operations that only involve
hardware on Alewife (a remote read that causes no invalidations, or a remote write that causes
one invalidation), the Alewife system is approximately twenty times faster than MCRL on Alewife.
This relative performance is good for software, considering that software emulation of hardware is
often two orders of magnitude slower than the hardware itself. For remote operations that require
software intervention on Alewife (a remote write that invalidates six readers), the Alewife system is
only three times faster than MCRL. The primary reason for the remaining difference in performance
is that messages such as invalidations and invalidation acknowledgments are consumed in hardware.

72

7.2.2 Migration Latency

This section compares the costs of data migration and computation migration in MCRL on Alewife
and on the CM-5; in addition, it compares these costs on an ideal Alewife machine. The results
demonstrate how the size of data affects the relative costs of moving data and computation on each
architecture. The results also demonstrate how Alewife is much faster than the CM-5 in moving
data, because it allows for DMA from the network interface.

Three different costs are compared: the cost of using data migration under the CRL interface, the
cost of dynamically using data migration, and the cost of dynamically using computation migration.
The cost to choose whether to use data migration or computation migration is not measured in
these experiments. For computation migration, the cost is for a null computation: no computation
is migrated. Thus, the measurements are equivalent to measuring the cost of null RPC using the
dynamic protocol. These measurements only measure the relative overhead of colocating data and
computation.

The costs are measured by taking the regression of 64 runs, where the ith run consists of
performing the operation on i regions. For data migration, the cost includes mapping a region,
locking it in read mode, unlocking it, and unmapping it. For computation migration, the costs
includes mapping a region, sending a migration message, waiting for it to return, and unmapping
the region.

Alewife

Figures 7-1 and 7-2 illustrate the relative costs of data migration and computation migration on
Alewife. For all of the curves, the cost is for a read operation; a write using the dynamic protocol is
slightly more expensive.

The optimistic active message implementation of the dynamic protocol is approximately 4%
faster than the thread version. This speedup is because the thread version must go through the
scheduler, whereas active messages execute in a new hardware context. Nevertheless, even though
the optimistic active message implementation is faster for a single migration in isolation, it is slower
in general. This reversal is because of the Alewife limitations on active messages that are described
in Section 6.4.1.

Figure 7-1 illustrates the cost of accessing one region on Alewife with either data migration
or computation migration. The costs for computation migration and data migration are virtually
identical for tiny regions. However, as the size of the region increases, computation migration
begins to outperform data migration. The cost for computation migration stays constant, since it
is independent of the region size; the cost for data migration increases linearly in the region size.
At 2048 bytes, computation migration is 111% faster than data migration.

Figure 7-2 illustrates the costs of data migration on Alewife. Pure data migration is approximately
7% percent faster, since it does not incur the overhead of the dynamic protocol. Although it is
not immediately evident from the graph, the costs for data migration are piecewise linear; at
approximately 500 bytes the marginal cost per byte for data migration increases. At smaller sizes
the incoming DMA to receive the data is overlapped with protocol computation; at larger sizes the
computation must wait for the DMA to complete.

73

500 1000 1500 2000

region size (in bytes)

0

100

200

300

400

500

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

2000

4000

6000

8000

10000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-1. Comparison of data migration costs and computation migration costs for MCRL on
Alewife

74

500 1000 1500 2000

region size (in bytes)

0

100

200

300

400

500

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

dynamic data migration, thread
dynamic data migration, OAM
pure data migration

0

2000

4000

6000

8000

10000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-2. Comparison of data migration costs for MCRL on Alewife

75

500 1000 1500 2000

region size (in bytes)

0

100

200

300

400

500
ti

m
e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

2000

4000

6000

8000

10000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-3. Comparison of data migration and computation migration costs for MCRL on an ideal
Alewife machine

Ideal Alewife

Figures 7-3 and 7-4 compare the costs for pure data migration, dynamic data migration, and
dynamic computation migration on an ideal Alewife machine. That is, measurements were taken
without flushing message buffers or transitioning active messages to half-threads, as described in
Section 4.1.3. These optimizations are possible because the measurements do not depend on the
correctness of the data that is transferred, and because there is no concurrency in the experiment.
These graphs demonstrate how faster communication reduces the effect that data size has on the
performance of data migration.

As the graphs illustrate, the CMMU changes will decrease the performance gain of computation
migration. For regions of 2048 bytes, computation migration is only 71% faster on an ideal CMMU;
this speedup compares with an 111% performance difference on the real CMMU. The improvement
in the local-to-global thread transition improves the performance of both data migration and
computation migration. The major difference comes from fixing the DMA bug. This fix makes
memory-to-memory transfer more efficient, which increases the performance of data migration.
However, although the quantitative results of using dynamic computation migration would change,
the qualitative results should not change dramatically.

76

500 1000 1500 2000

region size (in bytes)

0

100

200

300

400

500

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

dynamic data migration, thread
dynamic data migration, OAM
pure data migration

0

2000

4000

6000

8000

10000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-4. Comparison of data migration costs for MCRL on an ideal Alewife machine

77

500 1000 1500 2000

region size (in bytes)

0

100

200

300

400

500
ti

m
e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

5000

10000

15000

tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-5. Comparison of data migration and computation migration costs for MCRL on the
CM-5

CM-5

Figures 7-5 and 7-6 illustrate the corresponding costs on the CM-5. The wide error bars are due to
unavoidable noise in the measurements. Using the dynamic protocol is much more expensive than
using pure data migration, as an extra round-trip message is required. As a result, data migration is
always significantly slower using the dynamic protocol. However, for large data sizes, computation
migration still outperforms data migration (both pure data migration and dynamic data migration).

The curves in Figure 7-6 are piecewise linear. The breakpoint occurs because MCRL does
not use the CMAML scopy primitive for data transfers of less than 384 bytes. Instead, it uses a
specialized active message protocol to transfer data. This specialized protocol is faster than scopy,
but it only sends three data words per packet. The scopy primitive sends four data words per packet
by not sending a handler address: it uses a hard-coded active message handler to receive data [94].
That is why the curves in Figure 7-6 flatten out after 384 bytes: scopy sends fewer messages per
byte than the specialized protocol.

The thread implementation is always slower than the active message implementation. Most of
the extra time is spent in context switching. For computation migration (Figure 7-5), and for small
data transfers for data migration (Figure 7-6), the cost is approximately 23 microseconds. The cost

78

500 1000 1500 2000

region size (in bytes)

0

100

200

300

400

500

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

dynamic data migration, thread
dynamic data migration, OAM
pure data migration

0

5000

10000

15000

tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-6. Comparison of data migration costs for MCRL on the CM-5

79

of a single context switch to the newly created thread accounts for this time. The second context
switch away from the thread is not on the critical path.

For large transfers of data (regions larger than 384 bytes), the cost for using threads increases
to 45 microseconds. The reason is that the second context switch is on the critical path. The server
node must send a round-trip active message to the client in order to initiate an scopy. However,
when the active message returns, the server is in the middle of the second context switch. No
polling occurs in the middle of the context switch. As a result, the scopy does not begin until after
the second context switch completes.

The major overhead of the dynamic protocol is the slowness of dynamic data migration. This
overhead is approximately 70 microseconds, and is due to several factors. The extra round-trip
message to setup an scopy is approximately 34 microseconds: roughly 12 microseconds for an
active message, plus 23 microseconds for the context switch on the server. The scopy itself
takes approximately 24 microseconds. A penalty of 5 microseconds must be paid because of one
extra procedure call (and resulting window overflow) that the dynamic protocol currently uses.
The corresponding window underflow cost is not on the critical path, and the overflow could be
removed with inlining.

Discussion

The CM-5 is significantly slower than Alewife, in terms of both latency and bandwidth. Again,
there are two primary reasons for this disparity in performance: the software overhead for moving
data on the CM-5, and the limit on message length on the CM-5.

For large data transfers (those over 500 bytes), the data transfer rate on the CM-5 is approx-
imately half that of Alewife: approximately 9 Mbytes/second versus 18 Mbytes/second. On an
ideal Alewife machine, the data transfer rate would be even higher, at about 41 Mbytes/second.
The difference in bandwidth is due to several factors; the primary factor is that Alewife uses DMA,
where the processor must move the data on the CM-5.

An interesting point to note is that the active message performance on Alewife and the CM-5
is comparable. The cost to migrate 16-byte regions is roughly equivalent on the CM-5 and Alewife.
On the CM-5, four active messages are used to move the data. On Alewife, a single message is
used to DMA the region; since the overhead to receive an active message is higher on Alewife, the
resulting latency is comparable to that on the CM-5.

7.2.3 Microbenchmark

This section describes results from a simple eight-processor microbenchmark. This microbench-
mark compares the cost for data migration with replication against the costs of computation
migration and RPC in the presence of contention. My protocol for dynamic computation migra-
tion is used to choose between moving computation and data. The results illustrate how increasing
the rate of writes increases the cost of coherence, and how my heuristics can be used to reduce
these costs.

The microbenchmark measures how well each heuristic does across a range of read/write mixes
on a single 256-byte region. This region size is sufficiently small such that the cost of moving

80

data is not a dominant cost. Each processor starts a single thread, which executes some number
of iterations of a simple loop. In this loop, a processor generates a random number and decides
whether to access the region in read or write mode. It then accesses the region in the appropriate
mode, releases it, and then yields the processor. The cost of one iteration was measured by taking
the regression of 20 runs, where the ith run consists of every processor executing i × 100 iterations.

The results demonstrate that my two heuristics for choosing between computation migration
and data migration can reduce the costs of coherence. The heuristic performs well when
there are mostly reads or mostly writes, and generally outperforms data migration. The

heuristic performs better than the heuristic when the numbers of reads and writes are
approximately equal, but performs slightly worse than the heuristic when there are mostly
reads or mostly writes.

Alewife

The think time on Alewife is approximately 230 cycles: it takes approximately 55 cycles for the to
generate a random number operation, and 175 cycles to compute modulus (it requires a system call,
since Sparcle does multiplication and division in software).

 heuristic Figure 7-7 illustrates the behavior of the heuristic. At 0% reads, every
operation is migrated. The latency is that for always using computation migration. At 100%
reads, every operation has data sent back. The latency is that for always using data migration with
replication. The curve for the heuristic bulges upward. As the number of reads increases, data
must be moved between the readers and the home. However, once reads begin to predominate, the
performance advantage of replication becomes more of a factor. That is, when there is a sufficient
percentage of reads such that caching is effective, the cost begins to decrease.

The heuristic saves some of the data transmission that pure data migration requires. In
particular, data does not have to be moved to handle writes. Since all writes migrate to the home,
an operation that follows a write does not need to move the data back through the home.

Although it is not immediately evident from Figure 7-7, at a high percentage of reads (near
100%) the heuristics perform a few percent worse than pure data migration. This performance
degradation might be expected for the heuristic, since it uses computation migration for
some reads. However, this performance loss should not be that great for the heuristic, since
it never migrates reads.

It turns out that near 100% reads, each iteration of the microbenchmark costs approximately
20 cycles more under the protocol. These cycles are lost on a local read; that is, when
rgn start local read is called when a read copy is present. Of these 20 cycles, 15 are artifacts of
the compiler. Only four extra cycles should be necessary in this scenario. These cycles consist of
the following steps:

- 1 cycle is necessary to load a stack address into an argument register; this argument is passed
to rgn start local read.

- 3 cycles are necessary to check the return value from rgn start local read.

81

0 20 40 60 80 100

percentage reads

0

500

1000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)
pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

5000

10000

15000

20000

25000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-7. Cost per microbenchmark iteration under the heuristic on Alewife. In this
experiment 8 processors access a 256-byte region.

The remaining cycles are due to artifacts of the Alewife C compiler. Most of the cycles are lost
because the compiler makes all registers caller-save. As a result, there are several register saves and
restores that are unnecessary. Another extra load is due to poor common subexpression elimination:
a common subexpression that takes one cycle to compute is stored onto the stack and reloaded
upon use. Finally, one instance of tail recursion optimization does not occur because the compiler
does not know that a stack address is only used to pass a value back from rgn start local read
— this stack address is the one mentioned above.

The optimistic active message implementation is slower than the thread implementation. This
slowdown is due to the two factors described in Section 6.4.1: optimistic active messages must run
atomically by locking out other active messages (optimistic or not), and the global thread transition
is expensive. It is not clear why the OAM curve has a peak at approximately 90% reads.

 heuristic Figure 7-8 illustrates the behavior of the heuristic. Again, as for the
 heuristic, it is not clear why the OAM curve has a peak at approximately 90% reads. The
 heuristic performs similarly to the heuristic at the endpoints: 0% and 100% reads.
However, it avoids the upward bulge in the corresponding curve for the heuristic. This is

82

0 20 40 60 80 100

percentage reads

0

500

1000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

5000

10000

15000

20000

25000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-8. Cost per microbenchmark iteration under the heuristic on Alewife. In this
experiment 8 processors access a 256-byte region.

83

0 20 40 60 80 100

percentage reads

0

500

1000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)
pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

10000

20000

30000

40000

tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-9. Cost per microbenchmark iteration under the heuristic on the CM-5. In this
experiment 8 processors access a 256-byte region.

because it uses computation migration for reads when there is a high percentage of writes. All data
transfer costs are eliminated, so the cost remains constant.

The heuristic chooses to use data migration for reads when there is a large percentage of
reads. Such a decision is sound, since data migration with replication is cost-effective when caching
is effective. Caching is effective when there are repeated read accesses to the same data, which is
exactly what the heuristic detects.

CM-5

The costs (in cycles) for computing a random number and performing a modulus should be
comparable to those on Alewife (roughly 55 and 175 cycles, respectively); the absolute time for the
operations should be roughly 33% less, since the CM-5’s clock speed is 50% higher than Alewife’s.

 heuristic Figure 7-9 illustrates the average latency per iteration for the microbenchmark
on the CM-5 for the heuristic. As in the Alewife implementation, the curves for the
dynamic protocol have minima at 0% and 100% reads. At 0% reads, computation migration is used

84

exclusively; at 100% reads, data migration is used exclusively. As the number of reads increases
from 0%, the cost increases because readers must have copies of the data migrated to them.

The difference between the thread and OAM implementations of dynamic computation migra-
tion is accounted for almost entirely by the cost of context switching. The thread implementation
is approximately 260 microseconds slower per iteration, which is about 11 context switches (at 23
microseconds per context switch). This result implies that there are half of the context switches are
“extra” context switches. In other words, since there are eight active threads on the home processor
(one local and seven that are created in response to computation migration), approximately half
go from one migration thread to the next. The other half of the context switches go from one
migration thread back to the local thread.

 heuristic Figure 7-10 illustrates the behavior of the heuristic. As in the Alewife
implementation, the curve for the dynamic heuristic is flat over much of the domain of read
percentages. In these operating ranges, the heuristic correctly chooses to use computation migration
for reads and writes. As a result, the cost of moving data to readers does not have to be paid. As
the number of reads approaches 100%, the heuristic chooses to use data migration, which allows
readers to access cached copies of the data.

Discussion

The results for the heuristic indicate that statically deciding to use computation migration
for writes and data migration for reads generally performs better than static data migration. Using
computation migration for writes avoids the need to move data; in addition, it exploits the serial
semantics of writes. Objects that are mostly written or mostly read are good candidates for using
the heuristic.

The results for the heuristic indicate that there is a benefit to dynamically choosing
between computation migration and data migration for reads. In particular, objects that are accessed
with a near-equal mix of reads and writes are good candidates for using the heuristic.

The heuristic performs better than the heuristic over the domain of read per-
centages. However, the heuristic performs better for strongly read-shared data. In addition,
the heuristic performs nearly identically to the heuristic for strongly write-shared
data. The heuristic only performs better when data has a near-equal mix of reads and writes.

The curves for the two heuristics have the same relative shape on both Alewife and the CM-5
(ignoring the bump in Figure 7-7). However, the time per iteration differs dramatically: the CM-5 is
significantly slower. The reason is that the costs of both data migration and computation migration
are greater on the CM-5.

The cost for data migration is roughly a factor of two greater on the CM-5. In the graph, this
effect can be seen at 100% reads, where the cost for pure data migration is dominated by the cost
for migrating data. This result matches the results given in Section 7.2.2. By comparing Figure 7-2
on page 75 and Figure 7-6 on page 79, we can confirm that the cost for migrating a 256-byte region
on the CM-5 is roughly twice as expensive as on Alewife.

85

0 20 40 60 80 100

percentage reads

0

500

1000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

10000

20000

30000

40000

tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-10. Cost per microbenchmark iteration under the heuristic on the CM-5. In this
experiment 8 processors access a 256-byte region.

86

Computation migration performs relatively better on the CM-5 than on Alewife. At 0% reads,
dynamic computation migration is 2.9 times faster than pure data migration on Alewife; it is 4.6
times faster than pure data migration on the CM-5. The reason is that data migration is significantly
slower on the CM-5, because the processor must move the data from the network interface to
memory.

The variance of measurements on the CM-5 is much greater than on Alewife, because of several
factors. First, since routing is non-deterministic on the CM-5, network traffic patterns can vary
from run to run. Second, the timers provided by the CMMD library apparently can account for
context switching incorrectly. In particular, the timers may measure time spent in context-switching
the network, which appears to occur even in dedicated mode [16].

7.3 Application Kernels

This section analyzes measurements of MCRL on two application kernels. Results are presented
for these two data structures, which are a counting network and a concurrent distributed B-tree.
Both of these applications involve graph traversal, although their read/write characteristics are very
different.

7.3.1 Counting Network

A counting network is a distributed data structure that supports “shared counting”, as well as
producer/consumer buffering and barrier synchronization [4, 43]. Shared counting occurs when
multiple threads request values from a given range. For example, when a set of threads executes
the iterations of a parallel loop, each iteration should be executed by exactly one thread. A shared
counter allows threads to dynamically obtain iteration indices to execute.

The simplest data structure for shared counting is a counter protected by a lock: a thread
acquires the lock and updates the counter when it needs a loop index. This solution scales poorly
because of contention; a counting network is a distributed data structure that trades latency under
low-contention conditions for much higher scalability of throughput.

A counting network is built out of balancers; a balancer is a two-by-two switch that alternately
routes requests between its two outputs. Several O(lg2(n)) depth counting networks have been
discovered [4]: one is isomorphic to Batcher’s bitonic sorting network, and the other is isomorphic
to a balanced periodic sorting network. Figure 7-11 contains a diagram of an eight-input, eight-
output bitonic counting network.

Experiments

The experiments were performed on an eight-by-eight (eight input, eight output) bitonic counting
network. Figure 7-11 contains a diagram of such a counting network. The counting network is a
six-stage pipeline. Each stage consists of four balancers in parallel, as shown in Figure 7-11. The
counting network is laid out on twenty-four processors, with one balancer per processor. Placing
the balancers on separate processors maximizes the throughput of the counting network. Each row

87

o
u
t
p
u
t
s

i
n
p
u
t
s

Figure 7-11. An eight-input, eight-output bitonic counting network. Each shaded box is a balancer,
which switches input requests between its two outputs.

88

0 10 20 30

number of processors

0

5000

10000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread

0

50000

100000

150000

200000

250000
tim

e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-12. Cost per iteration of accessing a counting network on Alewife.

of the counting network is spread across one quarter of the machine. This layout should balance
the amount of bandwidth required across any particular communication link.

The experiment creates one thread per processor. Each thread accesses the counting network
in a tight loop. On Alewife this experiment was run with up to 32 processors (the largest machine
size) accessing the network. On the CM-5 it was run with up to 128 processors. Only the

heuristic was run, because the behavior of the heuristic would be virtually identical. At 0%
reads, the behavior of the heuristics is to migrate all writes; the extra cost of making decisions in
the heuristic is small.

The results for the counting network demonstrate that dynamic computation migration can
outperform data migration for write-shared data. In particular, on Alewife dynamic computation
migration outperforms pure data migration when the number of processors that access a counting
network is greater than one. The results also demonstrate that architectural artifacts of the CM-5
can dramatically reduce the performance of dynamic computation migration.

Alewife

Figure 7-12 illustrates the results of using my dynamic computation migration protocol on
a counting network on Alewife. Unsurprisingly, dynamic computation migration significantly
outperforms data migration, since computation migration does not incur any coherence overhead.

89

0 50 100

number of processors

0

5000

10000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)
pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

100000

200000

300000

400000

tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-13. Cost per iteration of accessing a counting network on the CM-5.

Despite the small size of the counting network nodes (eight words), the cost of maintaining
coherence is still more expensive than moving computation.

Data migration outperforms computation migration when only one processor accesses the
counting network. Each balancer that the processor touches will be migrated to that processor.
It takes seven iterations for the processor to touch all seventeen balancers that it accesses in the
network. Once it has accessed all of those balancers, all subsequent accesses to the network will be
local. As a result, data migration with replication is faster than computation migration. However,
a counting network would not be used with only one client, since a centralized solution would give
better performance.

The cost per iteration for computation migration is the same for one, two, and four clients.
The costs are the same because the counting network is four balancers wide. With four or less
clients, the clients do not interfere with each other in the counting network. The requests into the
counting network will move across the counting network without having to wait. With more than
four clients, the counting network begins to behave like a pipeline; with more than twenty-four
clients, the pipeline is constantly full.

CM-5

Figure 7-13 illustrates the results of using my dynamic computation migration protocol on a
counting network on the CM-5. Several of the results match those on Alewife. For one processor,

90

data migration performs better because the counting network becomes on that processor. The
performance of computation migration is the same for one, two, and four processors. For two
through sixteen processors, computation migration outperforms data migration. In fact, for sixteen
or less processors, the thread version of computation migration actually performs better than the
optimistic active message version. This anomaly occurs because the optimistic active message
version has enough procedure calls to overflow the register windows. In addition, any optimistic
active message that invokes my migration protocol must abort, since my protocol blocks a thread
that invokes it. Except for balancers that happen to be accessed locally, these aborts occur on all
balancers in the first five stages of the counting network.

For 32 processors and above, data migration performs better than computation migration. The
counting network is full, and the cost for computation migration is significantly greater than that of
data migration, because of the extra round-trip message that my protocol requires. Not only must
the overhead of sending and receiving messages be paid; the extra message also blocks the processor
that sends the message. Since a round-trip active message can take as little as 12 microseconds, the
sending thread does not yield the processor, which would take about 23 microseconds. As a result,
the round-trip message blocks the processor for at least 12 microseconds.

Finally, with 32 or more processors the thread implementation of computation migration is
much more expensive than the optimistic active message implementation. The difference in cost
occurs because migration acknowledgments are delayed in the thread implementation. In the thread
implementation, when a migration request is received, a thread is created; a migration acknowl-
edgment is sent only after the newly created thread is scheduled. In the OAM implementation,
on the other hand, the OAM sends a migration acknowledgment immediately (as long as the op-
timistic active message does not abort). As a result, in the thread implementation the counting
network “backs up” quickly, because a number of context switches must occur before a migration
acknowledgment is sent.

Discussion

The results for the counting network confirm those in our conference paper [50]; that is, using
computation migration improves performance for a counting network. The reason is that a counting
network is always written, and writes are expensive when using data migration.

As can be seen by comparing Figures 7-12 and 7-13, the CM-5 is a much less scalable architecture
for a counting network. The primary reason is the CM-5’s short message size: the extra message
that computation migration requires slows down my protocol. Since the sending processor on the
CM-5 does not block, this cost (a minimum of 12 microseconds) is not hidden at all. As a result,
the cost for computation migration is much greater when using my protocol.

In contrast, the Alewife protocol does not saturate up to 32 processors. In order to further test
the scalability of Alewife, I ran the same set of experiments on a four-input, four-output counting
network. (Such a network is one-fourth the size of the network shown in Figure 7-11, and is the
same as the upper left or lower left subnetworks of the larger network.) Computation migration
performs well on the smaller network; dynamic computation migration outperforms pure data
migration for two to thirty-two processors.

91

−1 105 999

115 154 253 345340305

105 253 345 345 605 70611−1 105

anchor

root

Figure 7-14. A vertical cross-section of a B-tree. This figure diagrams a vertical slice through a
three-level B-tree. The anchor is used to locate the root of a B-tree.

7.3.2 B-tree

A B-tree [7] is a data structure designed to represent a dictionary, which is a dynamic set that supports
the operations insert , delete, and lookup. The basic structure and implementation of a B-tree is similar
to that of a balanced binary tree. However, unlike a binary tree, the allowed maximum number of
children for each B-tree node is not constrained to two; it can be much larger. Comer [27] presents
a full discussion of the B-tree and its common variants.

Bayer and McCreight’s original B-tree [7] was designed to support sequential applications.
Since then, researchers have proposed many different algorithms to support concurrent operations
on the B-tree (e.g., [8, 26, 53, 62, 63, 74, 82, 99]) and have conducted many studies examining
their performance (e.g., [29, 54, 62, 99]). Some algorithms [26, 53, 99] are designed to run on a
distributed-memory multiprocessor, where the B-tree nodes are laid out across several processors.

Two primary factors limit performance in distributed B-trees: data and resource contention. Data
contention occurs when concurrent accesses to the same B-tree node must be synchronized. The
most critical example of data contention is the root bottleneck, where an update to the tree’s root
node causes all incoming B-tree operations to block. Even if no synchronization among concurrent
accesses is necessary, performance can still be degraded by resource contention. For example, since
every B-tree operation accesses the root node, we would expect the memory module that contains
it to be heavily utilized. If the rate of incoming operations exceeds the rate at which requests are
serviced, then a bottleneck still exists.

As in the Prelude experiments described in Chapter 5, the B-tree implementation is a simplified
version of one of the algorithms proposed by Wang [99] (it does not support the delete operation).
The form of these B-trees is actually a variant of the “classic” B-tree: keys are stored only in the

92

leaves, and all nodes and leaves contain pointers to the node to their right. As analytically shown
by Yao [101], B-tree nodes (in trees with only inserts) are on average approximately 69% full. The
values of the keys range from 0 to 1,000,000.

Figure 7-14 includes a diagram of part of a B-tree. The anchor is a data structure that is primarily
read-only; it is used to locate the root of the B-tree. The anchor is only written when the B-tree
gains a level. In the experiments the B-tree does not gain levels, which is typical of large B-trees.
Lookup and insert operations traverse the B-tree downwards and rightwards from the root until they
find the appropriate leaf. If an insert causes a leaf to overflow, the leaf is split in two; a background
thread is started to insert a pointer to the new leaf node into its parent. This splitting process is
continued upwards as necessary. If the root winds up being split, a new root is created.

Experiments

The experiments described in this section measure the time for thirty-two processors to access a
B-tree. In the experiments an initial B-tree is built with 200,000 keys. Each node or leaf can contain
500 children or keys, respectively; they are approximately 4000 and 2000 bytes in size, respectively.
With these parameters, the B-tree is three levels deep. (The B-trees in these experiments are over
an order of magnitude larger than those in our Prelude experiments, which is due to the fact that
the sizes of the Prelude B-trees were limited by the memory available to the P simulator.)
The nodes and leaves of the tree are created randomly across thirty-two processors.

After the B-tree is created, all of the B-tree nodes are then flushed from every processor, so that
only the home nodes have valid data. Thirty-two threads are created, one on each processor, each
of which repeatedly initiates either lookup or insert requests into the B-tree. This represents a cold
access time for the B-tree. After every processor completes a series of cold accesses, the processors
repeat the experiment to obtain warm access times for the B-tree. The costs are measured by taking
the regression of the average latency of at least 6 runs, where the ith ran for 100i iterations.

The B-tree code had to be modified in order to make the two heuristics useful. My heuristics
for dynamic computation migration use the distinction between read and write acquisition of a
region to decide what to do. On an insert in the original B-tree code, a thread acquires nodes in
read-mode until it reaches the bottom level of the B-tree. It then releases the leaf node, reacquires
it in write-mode, and acquires nodes in write-mode going across the bottom until finds the correct
node. Since an insert always acquires the first leaf node in read-mode before acquiring it in write-
mode, the heuristic for writes is effectively ignored when the leaf is reached. In order to make my
heuristics effective, the code was changed to always acquire leaf nodes in write-mode. This change
does not significantly affect the performance of the B-tree, as fewer than 1% of all inserts need to
move across the bottom of the B-tree.

Any background threads (due to splits, which were described above) that are created are started
on the home processor of the node that must be written. This optimization is performed in all
of my experiments. Writes only use computation migration on the leaves, since any writes that
propagate upwards are executed in background threads.

The results demonstrate that dynamic computation migration performs well on a B-tree. The
coherence overhead for B-tree nodes is high, particularly because they are large objects.

93

0 20 40 60 80 100

percentage lookups

0

1000

2000

3000

4000
ti

m
e
 (

in
 m

ic
ro

se
c
o

n
d

s)
pure data migration
dynamic computation migration, thread

0

20000

40000

60000

80000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-15. Cost per iteration of accessing a B-tree on Alewife using the heuristic.

Alewife

Figures 7-15 and 7-16 illustrate the results of using my heuristics for a B-tree on Alewife. Para-
doxically, the heuristic generally performs better than the heuristic, even when the
percentage of lookups is low (and the percentage of writes is high). The reason for this apparent
anomaly is that a traversal of the B-tree must visit at least two interior nodes and one leaf node.
Visits to the non-leaf nodes from inserts and lookups are always reads, so the rate of writes is very
low (writes occur when an insert splits a leaf node). As a result, it is more efficient to always use data
migration for the interior nodes, which the heuristic does. The heuristic performs
worse because it uses computation migration for some reads of interior nodes.

Although the heuristic performs better than the heuristic when the percentage of
lookups is less than 80%, the heuristic performs better relative to data migration for lookup
percentages between 80% and 90%. For example, at 80% lookups, the heuristic performs
23% better than pure data migration, whereas the heuristic performs only 5% better than
pure data migration. The reason is that when the lookup rate increases to 80%, the rate of writes on
the second level of the tree drops, so that the effect described in the previous paragraph becomes
less significant. Instead, the performance gain for using the heuristic on the leaf nodes
becomes more significant, which results in better performance.

94

0 20 40 60 80 100

percentage lookups

0

1000

2000

3000

4000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread

0

20000

40000

60000

80000

tim
e
 (in

 A
le

w
ife

 c
y
c
le

s)

Figure 7-16. Cost per iteration of accessing a B-tree on Alewife using the heuristic.

95

0 20 40 60 80 100

percentage lookups

0

1000

2000

3000

4000
ti

m
e
 (

in
 m

ic
ro

se
c
o

n
d

s)
pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

50000

100000 tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-17. Cost per iteration of accessing a B-tree on the CM-5 using the heuristic.

Although the heuristic generally performs worse than the heuristic, both heuristics
outperform pure data migration when the percentage of lookups is lower than 90%. The nodes
are large enough to make writes expensive under data migration; as a result, computation migration
improves performance when there is a significant proportion of writes.

CM-5

Figures 7-17 and 7-18 illustrate the behavior of my heuristics for a B-tree on the CM-5. Both the
 and the heuristic perform approximately twice as well as data migration. The reason
is that data migration for large objects is expensive on the CM-5; it takes approximately 1/3 of a
second to move a 2000-byte object from one processor to another.

The thread implementation performs better than the OAM implementation under the

heuristic, which is surprising. The confidence intervals for measurements of the two implemen-
tations overlap on much of the graph, so this is not a conclusive result, but it is likely to be true.
This anomaly is most likely due to read contention for invalidated nodes on the second level of the
tree. The heuristic uses data migration for these nodes; as data is being transferred into the
network, the network is polled to prevent deadlock. As a result, a read can interrupt another read,
which lowers the overall throughput of operations.

96

0 20 40 60 80 100

percentage lookups

0

1000

2000

3000

4000

ti
m

e
 (

in
 m

ic
ro

se
c
o

n
d

s)

pure data migration
dynamic computation migration, thread
dynamic computation migration, OAM

0

50000

100000 tim
e
 (in

 C
M

-5
 c

y
c
le

s)

Figure 7-18. Cost per iteration of accessing a B-tree on the CM-5 using the heuristic.

97

The heuristic performs at least as well as the heuristic for the data shown. Due
to the high cost of migrating B-tree nodes on the CM-5, the effects that are seen on the second
level of the tree on Alewife do not occur on the CM-5. Instead, a reverse effect occurs: the

heuristic slopes upward from 70% lookups to 90% lookups. This effect occurs because the

heuristic starts to choose data migration more frequently on the second level of the tree, which is
the wrong choice due to the large size of interior nodes (approximately 4Kbytes). Finally, the OAM
implementation outperforms the thread implementation, as expected.

Discussion

Again, as in the counting network, the CM-5 performs worse than Alewife. Data migration is much
more expensive on the CM-5 because the processor must move data from the network interface
to memory. On Alewife the DMA mechanism can be used to move data without the processor’s
intervention.

Because of the slowness of data migration on the CM-5, the behavior of the two heuristics
is reversed relative to Alewife. On Alewife the heuristic performs better than the

heuristic because it does less computation migration. Data migration is fairly efficient on Alewife,
which makes it more beneficial to allow more caching to occur.

On the CM-5, data migration is very inefficient for large objects. As a result, the better tradeoff

is to perform slightly more computation migration; the decreased cache hit rate is offset by the
savings in not moving data between processors.

7.4 Summary

This chapter has demonstrated several results. These results fall into three categories. First, they
demonstrate the benefits of computation migration, and the effectiveness of the two heuristics for
dynamic migration. Second, they illustrate how architectural characteristics affect data migration
and computation migration. Third, they confirm our earlier results on optimistic active messages.

Regarding computation migration, the following conclusions can be drawn from my results:

- Using computation migration for writes improves performance, because it reduces the cost
of maintaining coherence. On the microbenchmark, the heuristic outperforms pure
data migration for most read/write ratios on both machines; only when there are mostly reads
does the heuristic perform slightly worse. This loss in performance occurs because
the decision to use data migration in the heuristic is made dynamically, not statically.

On the counting network and the B-tree, the heuristic almost always outperforms
pure data migration on Alewife. Due to various architectural artifacts, computation migration
does not perform that well on the counting network on the CM-5.

- Using computation migration for reads can improve performance. On the microbenchmark,
the heuristic outperforms the heuristic for most read/write ratios. On the B-
tree, the heuristic sometimes outperforms the heuristic on Alewife; it generally

98

outperforms the heuristic on CM-5. The difference is due to the high cost of data
migration on the CM-5.

In addition, several major architectural differences between Alewife and the CM-5 can be seen
in my results. These differences have a strong effect on my measurements. First, the combination of
slow context switching on the CM-5, combined with the fact that there is no polling during a context
switch, degrades performance severely. An active message that arrives during a context switch will
be delayed an average of 12 microseconds. This cost hurts the performance of computation
migration, because more threads are created when using computation migration.

Second, the limit on message size on the CM-5 degrades performance severely. Any message
transfer that sends more than four words requires an extra round-trip active message, which at
minimum takes 12 microseconds. This cost hurts the performance of the dynamic migration
protocol, which for the measurements described in this chapter always requires messages longer
than four words.

Third, the DMA mechanism on Alewife is effective at transferring data between processors.
The major reason that DMA is faster than the scopy mechanism on the CM-5 is that the processor
does not have to move the data itself. The result is that data migration of large objects is significantly
cheaper on Alewife, which lowers the relative benefit of computation migration.

Finally, the use of optimistic active messages is in general effective on the CM-5, which confirms
our prior results. Using an optimistic active message is more efficient than starting a thread,primarily
because the cost of context switching is so high on the CM-5. However, the use of optimistic active
messages is ineffective on Alewife, given the various restrictions on active messages in the current
version of the kernel and CMMU.

99

100

Chapter 8

Related Work

The research described in this dissertation can be viewed as an abstraction of the general parallel pro-
gramming problem of algorithm/program optimization. When optimizing any particular parallel
algorithm, the issue of where computation and data should occur always arises. Typically, most sys-
tems have fixed either the data or the computation, and only viewed the movement of computation
as a load-balance issue. For example, in high-performance Fortran systems, a useful simplification
has been to use the “owner-computes” rule [45, 46, 103]; in these systems the programmer lays
out the data and computation always occurs at the data. Conversely, in shared-memory systems,
the programmer lays out the computation, and data is pulled to computation when necessary. This
dissertation attempts to bridge this gap by exploring the tradeoffs involved when both data and
computation can move.

Section 8.1 describes some of the many software DSM systems that have been built or designed,
almost all of which have focused on data migration with or without replication. Section 8.2 describes
some of the related work on computation migration for multiprocessors. Finally, Section 8.3
describes some of the related work in distributed systems.

8.1 Software Distributed Shared Memory

The combination of a global address space with MIMD multiprocessing and distributed memory
is called distributed shared memory (or DSM for short). The origins of this term are somewhat
vague, but “distributed shared memory” appears to be a transmogrification of the term “shared
virtual memory” used by Li and Hudak [67]. A distributed shared memory system provides the
programmer with a single address space, even though memory is physically distributed with the
processors. Some researchers have used the term “NUMA” (non-uniform memory access) to
describe such systems.

Table 8.1 gives a characterization of some of the DSM systems that have been implemented.
All of the systems listed provide a global address space. However, such an address space can be
implemented at a number of different levels in a system. For example, it can be implemented in
the compiler or a library, in the operating system (typically in the virtual memory system), or in the

101

Implementation Memory model Coherence Example

compiler or library object object Emerald [55], Amber [24],
Prelude [100], Orca [6],
Midway [102], CRL [51]

operating system flat page Ivy [67], Munin [9],
TreadMarks [59]

hardware flat cache line NYU Ultracomputer [38],
Cedar [37], IBM RP3[78],
DASH [66], Alewife [1]

Table 8.1. Characterization of DSM systems. “Implementation” refers to the level of the system
at which shared memory is implemented. “Memory model” describes the organization of the
global address space. “Coherence” indicates the unit of coherence. “Example” lists a few example
systems; the list is not intended to be exhaustive.

machine itself (typically in the cache system). The software-based systems are described in more
detail below.

The address space that the programmer sees depends on the level in the system at which
implementation occurs. In compiler and library-level implementations, the programmer sees a
global address space in terms of a space of objects. In implementations at the operating system
level (where the term “DSM” is widely used) or the hardware level (where the less descriptive term
“shared-memory” is typically used), the programmer sees a flat uniform address space, in which
pointers can reference memory on any node.

This section overviews the related work in software distributed shared memory systems. Such
systems are the implementations that are above machine-level; that is, compiler-level, library-level,
or operating-system level implementations as described in Table 8.1 on page 102.

8.1.1 Language-level DSM

Many shared-address space languages provide a global namespace in terms of objects. The roster
of parallel object-oriented languages includes Amber [24], Emerald [55], Orca [6], Prelude [100],
COOL [23], ABCL/f [91], Concert [57], CST [48], Jade [80], Mentat [39], and Concurrent
Aggregates [25]. Although all of these projects are interesting, only some of those relevant to
computation migration are discussed in this section. Only one other project, Olden, has investigated
computation migration; that project is discussed in more detail in Section 8.2.

This dissertation began with our exploration of static computation migration [50] in the
context of Prelude. In that work we demonstrated that simple annotations could be used to specify
static computation migration. We also demonstrated the potential benefits of static computation
migration for counting networks and B-trees, although for the latter a dynamic choice between data
migration and computation migration was clearly necessary.

102

The Emerald system provides support for the migration of objects in a distributed system.
The default mechanism for remote access is remote procedure call, but Emerald provides several
options for the arguments to a call. These options can cause an argument object to be “pulled” to
an invocation; these mechanisms allow for data migration without replication. An object so invoked
could either be pulled for the duration of the call (“call-by-visit”) or permanently (“call-by-move”),
until the next migration. Amber, which is based on C++, provides similar mechanisms. Neither of
these projects explored the use of replication, which is important for improving the performance
of read operations.

The COOL language is also based on C++. Similar to Emerald and Amber, it does not
support replication, and remote procedure call is the mechanism for remote access that the system
provides. COOL provides some mechanisms for data migration, but concentrates on providing
mechanisms to control where methods execute. In contrast to Emerald and Amber, however,
COOL’s mechanisms for managing locality are method-based rather than invocation-based. COOL
provides executable “annotations” that describe where and when a method should execute. “Object
affinity” for a method results in remote procedure call, whereas “task affinity” is used to execute
tasks back-to-back to increase cache reuse.

The SAM runtime system [84] provides a global address space and support for object-oriented
parallel programming languages. It provides two data types: single-assignment values and accumu-
lators. Accumulators are managed in a manner similar to migratory data in caching schemes: they
are moved from processor to processor as they are accessed.

Most of these projects have involved research on scheduling and replication. For example, the
Orca [5] system does dynamic data replication based on compile-time information and runtime
access patterns. However, except for our initial work in Prelude, they do not investigate the
dynamic movement of computation, except at the granularity of entire threads. Some of these
parallel languages do allow the explicit encoding of computation migration. However, making the
structure of a program match the layout of its computation is a poor design choice.

Many “shared-memory” C projects distinguish between local and global pointers. Global
pointers effectively form a separate address space of objects. For example, CRL [51], on which
MCRL is based, provides a separate global namespace of region identifiers. CRL provides an
interface that is similar to that of Shared Regions [83]. Another similar project is Cid [76], which
also extends C to provide an additional global name space. The Cid project is more ambitious than
CRL, as it also provides a multithreading and synchronization model. The Split-C language [31] is
another recent language that extends C with a global address space. It differs from other languages
in that arithmetic can be performed on global pointers.

The Midway system [11] supports a global address space by requiring that the programmer
correctly associate synchronization with every object. Although it provides a single flat address
space, the requirement that objects be correctly synchronized by the programmer makes the address
space look more like an object-based system. Midway’s coherence protocol uses an interesting
combination of fixed and variable data sizes for maintaining coherence [102]. The address space
is divided into large fixed-size regions, within each of which coherence is maintained on fixed line
sizes. Line sizes in different regions can differ, which provides a means to avoid false sharing.

103

8.1.2 OS-level DSM

Ivy [67] was the first distributed shared memory system implemented at the operating system level.
It implemented shared memory within the virtual memory system: instead of using the disk as
backing store, shared pages were paged from remote processors.

The Munin project [9] investigated the use of type-specific coherence protocols. It demon-
strated that the choice of the most efficient coherence protocol depends on the access pattern of
the type. Munin allowed a programmer to choose among different coherence protocols for different
types of data. However, as in other distributed shared memory projects, it did not integrate their
coherence protocol with computation migration.

In his dissertation Carter briefly analyzes the advantages of using RPC to access a job queue [18].
Since a job queue is frequently written by many processors, data migration is a poor choice. RPC is
preferable to computation migration, since the purpose of using a job queue is to distribute work,
and migrating computations to a job queue would do the opposite.

The TreadMarks system [59] is technically not implemented in the operating system, as it is
implemented entirely at user-level. However, it makes use of the virtual memory system to maintain
coherence, and as a result is closer in spirit to other operating-system based systems.

The Olden project [81] is another distributed shared memory that uses the virtual memory
system to detect accesses to non-local pointers. The following section discusses Olden in more
depth, as it also provides support for computation migration.

8.2 Computation Migration

Rogers et al. [81] have also developed mechanisms for migrating single activation records: on any
access to remote data, they always migrate the top activation. The idea of migrating activations
is similar to our work, but their approach is more restrictive than ours. Migrating an activation is
often, but not always, the best approach. We let the user choose the appropriate mechanism; this
flexibility can be vital for achieving good performance.

In more recent work, Rogers and Carlisle [17] have expanded the Olden project to give
language support for statically determining when to migrate computation or data. The programmer
is required to give the compiler indirect knowledge of how data is laid out by specifying how likely a
data structure traversal is to cross processors. Such a strategy works well for scientific applications,
where the layout of data structures is fairly predictable. However, it is unlikely to work for truly
dynamic data structures such as B-trees.

Fowler and Kontothanassis [35] have suggested performing what they call “temporary thread
migration”. However, they do not compare and analyze the tradeoffs involved in using computation
migration versus data migration.

Load balance can conflict with locality management in parallel systems. However, locality is
a generally more important issue than load balance. For instance, Markatos and LeBlanc have
shown that for NUMA shared-memory multiprocessors, locality management can have a much
larger impact on performance than load balancing [71]. This effect is due to the high cost of
communication in distributed-memory systems.

104

8.3 Distributed Systems

Remote evaluation [88] is a mechanism for distributed systems that would enable an implementation
of computation migration. The idea is to have servers export an eval call to clients, instead of a fixed
RPC interface. The use of this call can reduce communication demand, since clients can create
their own procedures to batch multiple calls together.

Service rebalancing [44] is a related mechanism that moves inactive modules between clients
and servers in an RPC system. Service rebalancing allows client modules to become server modules,
and vice versa; its use is intended to support load balancing.

The Thor object-oriented database [68] provides support for batching cross-domain calls to
reduce communication [104]. Unlike remote evaluation and service rebalancing, Thor does not
allow clients to send arbitrary requests to a server. Instead, a client can combine the methods in a
server’s interface using simple control structures.

All of the above systems concentrate on reducing message traffic for RPC systems. None of
them integrate their mechanisms with data migration. In addition, protection between a client and
server is important in their systems; in my research it is not an issue.

Research of a similar flavor also occurs in query optimization for distributed databases [33]. The
primary distinction between databases and distributed shared memory systems is that the amount
of data being accessed is much larger; instead of small region-based accesses, accesses take the form
of queries over relations or whole databases. The result is that query optimization concentrates on
minimizing the volume of data that must be moved; techniques such as semijoin [10] are used to
avoid moving entire relations. The other difference is that such techniques typically concentrate
on the execution of a single query, whereas my techniques look at the aggregate performance of
multiple accesses from different processors.

105

106

Chapter 9

Conclusions

This chapter summarizes the contributions and results of this dissertation. It then discusses some
possible extensions of my work, outlines directions for future research, and concludes with some
observations about parallel computing.

9.1 Summary

This dissertation has described a new mechanism for remote access, computation migration. It
has discussed design issues for computation migration, and has described two DSM systems that
support computation migration. It has also evaluated two heuristics for dynamically choosing
between computation migration and data migration. The following conclusions can be drawn from
the performance results described in this dissertation:

- Computation migration is a useful mechanism that complements RPC and data migration
with replication. Computation migration performs well with respect to data migration when
maintaining coherence is expensive: that is, when the data is large, or when there is a high
percentage of write accesses to the data. Computation migration is particularly useful in
applications that use graph traversal, because it allows computation to “crawl” through a
distributed data structure.

- For the application kernels measured, write accesses should use computation migration. Our
Prelude results show that for a counting network, a software implementation of computation
migration can outperform a hardware implementation of data migration. In general, syn-
chronization objects will tend to be written frequently, which makes them good candidates
for computation migration. The MCRL results demonstrate that a dynamic choice to use
computation migration for writes performs well, even with the overhead of making a dynamic
choice.

- Using data migration for reads can suffice if data is either strongly read-shared or strongly
write-shared. The heuristic always uses computation migration for writes and data

107

migration for reads. It performs well for a B-tree, where the upper levels of the tree are
strongly read-shared; using computation migration for writes improves performance by 44%,
relative to pure data migration, when the operation mix consists only of inserts. However,
as demonstrated by a simple microbenchmark, the heuristic does not perform as well
relative to pure computation migration when there is a near-equal mix of reads and writes.

- Although the heuristic performs well when there are many reads or many writes,
the heuristic performs better when there is a near-equal mix of reads and writes.
Microbenchmark measurements indicate that the heuristic correctly chooses to use
computation migration when the numbers of reads and writes are approximately equal. The
 heuristic can perform better than the heuristic when the cost to move data is
high. For a B-tree on Alewife with 80% lookups and 20% inserts, using a dynamic choice for
reads improves performance 23% relative to pure data migration; always using data migration
for reads only improves performance by 5%.

In addition, several conclusions can be drawn about the two machine architectures on which
MCRL has been implemented. With respect to the differences between Alewife and the CM-5, the
following results have been demonstrated. First, the SPARC register windows hurt performance
on the CM-5. It is not clear that register windows are useful on sequential machines; Wall has
demonstrated that link-time register allocation can perform nearly as well [96]. However, the
presence of register windows decreases the performance of the CM-5. The register windows
raise the cost of context switching on the CM-5. In addition, they raise the cost for deeply
nested procedure calls; when running with active messages the call stack is deeper than in sequential
programs. Second, the DMA mechanism on Alewife is effective in moving data. DMA is particularly
effective in MCRL, because extra data moves to set up DMA are not required: a region’s data acts
as a message buffer.

Finally, with respect to optimistic active messages, the following conclusions can be drawn.
First, the use of optimistic active messages is in general effective on the CM-5, which confirms our
prior results. Using an optimistic active message is more efficient than starting a thread, primarily
because the cost of context switching is so high on the CM-5. Second, the use of optimistic active
messages is ineffective on Alewife, given the restrictions on active messages in the current version
of the kernel and CMMU. A faster implementation might be possible using polling on Alewife.
However, that is not the natural programming style, given that interrupts are fast.

9.2 Future Trends

As networks continue to evolve, we see two trends that are unlikely to change:

- The communication bandwidth available in parallel systems is increasing. The raw bandwidth
provided by networks is increasing. In addition, the ability to access network interfaces from
user space is also reducing the software bottleneck on communication bandwidth.

108

- While network latencies are decreasing, processor cycle times are decreasing even faster. As
a result, network latencies (in terms of processor cycles) are increasing, and the cost for
transmitting messages will remain significant compared to the cost of local computation.

The first trend means that the size of messages will matter less. As a result, the cost to send
“large” data will decrease, and the effects of data size will be less when using data migration. On the
other hand, the marginal cost to migrate additional computation state will decrease as well, which
will decrease the cost to migrate computation with a large amount of state.

Although the size of data will matter less when using data migration, computation migration
will still be effective in reducing coherence traffic. The second trend means that the cost of
communication will matter more. As a result, mechanisms that reduce the number of messages in
a distributed shared memory system will become more important, and computation migration will
remain useful.

9.3 Extensions

It would be interesting to remeasure my CM-5 experiments on a CM-5E. The CM-5E has support
for longer messages than the CM-5; messages can contain up to 18 words. With longer messages,
the extra round-trip message that my protocol requires on the CM-5 would not be necessary for the
measurements described in this dissertation. As a result, the performance results would be more
interesting, and would allow for a better analysis of dynamic computation migration on the CM-5
architecture.

A useful extension to MCRL would be the provision for two types of read-mode. As described in
Section 7.3.2, the B-tree code had to be rewritten for my heuristics, because the decisions they make
are based on whether operations are reads or writes. Instead of changing read-mode acquisitions
to write-mode, which limits concurrency, it would be cleaner to provide a hybrid read/write mode.
Such a mode would tell the runtime system that a thread is likely to upgrade its copy to write-mode.

Another useful extension would be to investigate a protocol that allowed a client to dynamically
choose between data and computation migration. The heuristic could be used with such a
protocol, although the heuristic could not. In addition, although the simple heuristics that
have been described are effective, there is a large design space of heuristics that can be explored.
For example, it may be possible to improve them by taking load into account.

It would also be worth experimenting with the migration of partial or multiple activation records.
Although some of the relevant issues have been discussed, neither migration of partial records nor
migration of multiple records has been implemented. It would be useful to investigate mechanisms
for migrating computation at different granularities, but it is not clear what applications could
profitably make use of such mechanisms.

Finally, it would be useful to analyze the number of coherence messages that computation
migration saves over data migration. Measured message counts would be useful, as well as an
analytic model of message patterns. In addition, a comparison of computation migration to
different coherence protocols would be useful, since the comparison using MCRL only compares
computation migration to a single coherence protocol.

109

9.4 Future Work

My intention has been to treat MCRL as a compiler target. Instead of building a parallel C compiler
with support for computation migration, a more interesting research direction would be to build a
compiler for an object-oriented programming language that translates to MCRL. There would be
many open issues to deal with in such a compiler, such as how to hoist rgn map, rgn start read,
and rgn start write out of blocks of code (as discussed in Section 6.2.1).

Another direction for future work is the investigation of automatic mechanisms to make use
of dynamic computation migration. Although it is not difficult to insert program annotations for
migration, it would be preferable to automate the decision about where computation migration
should occur. One possibility would be to combine the analyses that the Olden compiler performs
with a dynamic computation migration protocol.

The exploration of user annotations to control dynamic migration directly could be fruitful.
Such annotations could allow the user to specify hints for dynamic migration in a region-specific
manner. For example, in the B-tree it might be possible to use the level of a node when deciding
whether to use computation or data migration. Since it is implemented in software at user-level,
MCRL is sufficiently flexible to allow for application-level decisions.

When computation migration outperforms data migration, it may also achieve a better cache
utilization than data migration. In other words, since data migration replicates data on multiple
processors, it has a larger cache footprint than computation migration. It would be valuable to
assess whether computation migration does achieve any benefit from this effect.

This dissertation has examined computation migration in homogeneous, tightly-coupled parallel
systems. The results should remain valid for DSM systems on more loosely-coupled parallel systems
such as workstation clusters, given the convergence of local area networks and supercomputer
networks. An open area of investigation will be the use of computation migration in heterogeneous
systems, especially because the same program image would not be loaded on every processor. In a
heterogeneous system, computation migration may involve sending code, which could be expensive.

Finally, this dissertation has examined the performance impact of computation migration, but
in future parallel systems (for example, workstations on a wide-area network) other concerns may
be an issue. The ownership of data could well be an important factor in deciding whether to allow
data migration. For example, the use of a dynamic protocol to allow a server to choose whether to
export data could be mandatory if some servers refuse to export data.

9.5 Observations

This dissertation has described a new mechanism, computation migration, that can reduce the cost
of coherence for certain types of data. Other research on reducing coherence costs has evaluated the
effect of using different patterns for migrating data. Computation migration takes a complementary
approach to reducing coherence costs: instead of migrating data, it migrates computation. Such
an approach is an example of how examining problems from different perspectives can lead to
interesting new solutions.

110

Although distributed shared memory systems provide a simple programming model that allows
for the exploitation of locality, the choice of implementation varies widely. Computer architects
build shared-memory machines; operating systems researchers build virtual-memory based systems;
and language designers build parallel object-oriented languages. Unfortunately, there has not been
a great deal of convergence among these three research communities, and there also has not been
analysis of the tradeoffs among the three different approaches.

High-level object-based parallel programming languages are the easiest platform for providing
distributed shared memory. Software implementations have the advantage that the unit of sharing
is flexible. Fixed-size units are either too large, which leads to false sharing, or are too small,
which leads to more communication. Software implementations also have the advantage that new
mechanisms such as computation migration can be added. Hardware is not modifiable, and as such
is less flexible. Finally, language-based approaches have the enormous potential advantage of being
able to take advantage of high-level program analysis.

Finally, the biggest difficulty with parallel machines is their lack of usability. In particular,
there is a dearth of debugging support for parallel systems. Debugging a multithreaded parallel
problem is extremely difficult. Not only are parallel programs inherently more difficult to debug
than sequential ones; the debugging tools that are provided by current systems are in general worse
than the tools on sequential machines. Parallel machines will only take the first step towards being
general-purpose when there are good programming tools available for them.

111

112

Appendix A

CRL and MCRL Internals

This appendix summarizes the internal structure of CRL and MCRL in terms of the state diagrams
that they use. The diagrams for the home state machines are identical for CRL and MCRL.

In the following diagrams, solid arrows represent transitions due to user calls. In the home
diagrams, thickly dashed arrows represent transitions due to messages from the remote diagrams,
and vice versa. Thinly dashed arrows are similar to the thickly dashed arrows, except that the
messages that they represent are in response to user calls. States with “Rip” (Read-in-progress) in
their names mean that a read is in progress; states with “Wip” (Write-in-progress) in their names
mean that a write is in progress. Remote states with “Req” in their names mean that a request for
a read or write copy is outstanding. Home states with “Iip” (Invalidate-in-progress) in their names
mean that invalidates are outstanding from the home.

Figure A-1 illustrates the state machine for home nodes in CRL and MCRL; Figure A-2 illustrates
the state machine for remote nodes in CRL. Figure A-3 illustrates the new state machine for remote
nodes in MCRL. The “RemoteMip” state means that a potential migration is in progress. The
meanings of the message labels in these figures are given in Table A.1.

CRL regions are laid out with a header in front of them; this header contains coherence
information. The headers have not been optimized for size, and as a result are rather large. The
header region for CRL is 22 words on Alewife (2 of the words are to work around a DMA bug),
and 26 words on the CM-5 (1 word is to pad out to a double word). In MCRL these values go up
to 44 words (1 extra word to pad out to a double word) and 46 words (one word of pad can be
removed). The heuristic requires 5 more words to store heuristic state; the heuristic
does not require any extra storage.

113

Call Meaning

Server messages
start read user calls rgn start read or rgn start local read
start write user calls rgn start write or rgn start local write
start local read user calls rgn start local read
start local write user calls rgn start local write
end read user calls rgn end read
end readi user calls rgn end read and an invalidate has arrived
end write user calls rgn end write

Message Meaning

Server messages
e-req request for a write copy
m-req request for a write copy when the client has a read copy
m-req0 request for a write copy when the requester and the home

have the only read copies
s-req request for a read copy
flush client flushes its copy
flush0 client flushes its copy and it had the last read copy other than

the home
inv’s back all invalidates have been acknowledged
release a client downgrades its write copy to a read copy

Client messages
e-ack acknowledgment of e-req
m-ack acknowledgment of an m-req
s-ack acknowledgment of an s-req
inv an invalidate has arrived

Table A.1. Calls and message types in CRL and MCRL state diagrams

114

start_write

start_read

HomeShared

HomeSharedRip

flush

HomeExclusive

HomeExclusiveRip

HomeExclusiveWip HomeInvalid

end_read

end_read

release

inv’s
back

inv−ack

inv’s back

flush0

flush0

e−req,
m−req

m−req0

s−req

inv’s back
HomeIip

inv’s back

HomeIipSpecial

end_write

s−req
e−req,
m−req

e−req,
m−req

release,
inv−ack

s−req

start_read

start_write

start_write

start_read

user calls

message from remote node

response to action from home node

Figure A-1. Home state diagram for CRL and MCRL

115

RemoteInvalid

RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRip

RemoteModified

RemoteModifiedRip

RemoteModifiedWip

flush

end_read

end_read

flush

s−ack

e−ack,
m−ack

inv

inv

m−ack

inv

end_writestart_read

start_read,
start_write

start_write start_read

start_write

user calls

message from home node

end_readi

inv

Figure A-2. Remote state diagram for CRL

116

RemoteMip

RemoteInvalid

RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRip

RemoteModified

RemoteModifiedRip

RemoteModifiedWip

flush

end_read

end_read

flush

s−ack

e−ack,
m−ack

inv

inv

m−ack

inv

end_writestart_read

start_read,
start_write

start_write start_read

start_write

user calls

message from home node

end_readi

start_local_read,
start_local_write start_local_write

migrate

e_ack, m_ack

s_ack

inv

Figure A-3. Remote state diagram for MCRL

117

118

Appendix B

LIFO Versus FIFO Scheduling

This appendix describes the difference in measurements that can occur due to LIFO scheduling of
threads, as mentioned in Section 6.4.1.

Under LIFO scheduling, the processors that happen to arrive last will have their computation
executed first. These processors will be able to request more computation, and will complete earlier
than the other processors. Under FIFO scheduling, all processors will finish at approximately
the same time. Aggregate throughput does not change, but the average latency that is measured
decreases dramatically.

Figure B-1 illustrates a simplified form of this effect. Each number represents a job from
a particular processor; there are four processors, and each submits four jobs to a server. The
aggregate time to finish all 16 jobs is the same, so the throughput of jobs through the system under
either scheduling discipline. However, the average latency to completion for each processor is 50%
as long under FIFO scheduling.

Under both scheduling disciplines the aggregate throughput of processor completion is 1
processor per 4 job times. Under LIFO scheduling, the average latency seen by a processor is 10
job times. Under FIFO scheduling, the average latency is 14.5 job times.

119

1 1 1 11

server

clients jobs

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

1 1 1 12 3 4 2 3 4 2 3 4 2 3 4

unfair (LIFO)

fair (FIFO)

Figure B-1. LIFO versus FIFO scheduling

120

Appendix C

Regression Formulas

This appendix contains the regression formulas used to compute the performance results in this
dissertation. These equations, and tabulated values of Student’s t distribution, can be found in any
standard statistics text [73].

For a set of n points of the form (xi, yi), the slope β̂1 of the least-squares line is given by
Equation C.1.

β̂1 =
n
Pn

i=1 xiyi −
�Pn

i=1 xi
� �Pn

i=1 yi
�

n
Pn

i=1 x2
i −
�Pn

i=1 xi
�2 (C.1)

The 95% confidence interval on the slope is given by

β̂1 ±
t.025srPn

i=1 x2
i − (

Pn

i=1 xi)2

n

where s is the standard deviation of the random error and t.025 is based on (n−2) degrees of freedom.
The variance of the random error, s2, is given by Equation C.2.

s2 =

Pn
i=1 y2

i − (
Pn

i=1 yi)2

n − β̂1

�Pn
i=1 xiyi − (

Pn

i=1 xi)(
Pn

i=1 yi)
n

�

n − 2
(C.2)

121

122

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J. Kubiatowicz, B.H. Lim,
K. Mackenzie, and D. Yeung. The MIT Alewife Machine: Architecture and Performance.
In Proceedings of the 22nd International Symposium on Computer Architecture, pages 2–13, Santa
Margherita Ligure, Italy, June 22–24, 1995.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.H. Lim, D. Yeung, G. D’Souza, and M. Parkin.
Sparcle: An Evolutionary Processor Design for Multiprocessors. IEEE Micro, pages 48–61,
June 1993.

[3] T.E. Anderson, E.D. Lazowska, and H.M. Levy. “The Performance Implications of Thread
Management Alternatives for Shared-Memory Multiprocessors”. IEEE Transactions on Com-
puters, 38(12):1631–1644, December 1989.

[4] J. Aspnes, M. Herlihy, and N. Shavit. “Counting Networks”. Journal of the ACM, 41(5):1020–
1048, September 1994.

[5] H.E. Bal and M.F. Kaashoek. “Object Distribution in Orca using Compile-Time and Run-
Time Techniques”. In Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications ’93, pages 162–177, September 26–October 1, 1993.

[6] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. “Orca: A Language for Parallel Programming
of Distributed Systems”. IEEE Transactions on Software Engineering, 18(3):190–205, March
1992.

[7] R. Bayer and E.M. McCreight. “Organization and Maintenance of Large Ordered Indexes”.
Acta Informatica, 1(3):173–189, 1972.

[8] R. Bayer and M. Schkolnick. “Concurrency of Operations on B-trees”. Acta Informatica,
9:1–22, 1977.

[9] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. “Munin: Distributed Shared Memory Based
on Type-Specific Memory Coherence”. In Proceedings of the 2nd Symposium on Principles and
Practice of Parallel Programming, pages 168–176, March 1990.

123

[10] P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve, and J.B. Rothnie, Jr. “Query Processing
in a System for Distributed Databases”. ACM Transactions on Database Systems, 6(4):602–625,
December 1981.

[11] B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. “The Midway Distributed Shared Memory
System”. In Proceedings of COMPCON Spring 1993, pages 528–537, San Francisco, CA,
February 22–26, 1993.

[12] A.D. Birrell and B.J. Nelson. “Implementing Remote Procedure Calls”. ACM Transactions on
Computer Systems, 2(1):39–59, February 1984.

[13] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y. Zhou. “Cilk:
An Efficient Multithreaded Runtime System”. In Proceedings of the 5th Symposium on Principles
and Practice of Parallel Programming, pages 207–216, Santa Barbara, CA, July 19–21, 1995.

[14] E.A. Brewer, F.T. Chong, L.T. Liu, S.D. Sharma, and J. Kubiatowicz. “Remote Queues:
Exposing Message Queues for Optimization and Atomicity”. In Proceedings of the 1995
Symposium on Parallel Algorithms and Architectures, pages 42–53, Santa Barbara, California, July
16–18, 1995.

[15] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. “Proteus: A High-Performance
Parallel Architecture Simulator”. Technical Report MIT/LCS/TR-516, MIT Laboratory for
Computer Science, September 1991. A shorter version appears in the Proceedings of the 1992
Conference on Measurement and Modeling of Computer Systems.

[16] E.A. Brewer and B.C. Kuszmaul. “How to Get Good Performance from the CM-5 Data
Network”. In Proceedings of the 1994 International Parallel Processing Symposium, pages 858–867,
Cancun, Mexico, April 26–29, 1994.

[17] M.C. Carlisle and A. Rogers. “Software Caching and Computation Migration in Olden”. In
Proceedings of the 5th Symposium on Principles and Practice of Parallel Programming, pages 29–38, Santa
Barbara, CA, July 1995.

[18] J.B. Carter. Efficient Distributed Shared Memory Based On Multi-Protocol Release Consistency. PhD
thesis, Rice University, August 1993.

[19] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. “Implementation and Performance of Munin”.
In Proceedings of the 13th Symposium on Operating Systems Principles, pages 152–164, Pacific Grove,
CA, October 13–16, 1991.

[20] D. Chaiken, J. Kubiatowicz, and A. Agarwal. “LimitLESS Directories: A Scalable Cache
Coherence Scheme”. In Proceedings of the 4th Conference on Architectural Support for Programming
Languages and Systems, pages 224–234, April 1991.

[21] D.L. Chaiken and A. Agarwal. Software-Extended Coherent Shared Memory: Performance
and Cost. In Proceedings of the 21st International Symposium on Computer Architecture, pages 314–324,
Chicago, IL, April 1994.

124

[22] S. Chakrabarti, E. Deprit, E. Im, J. Jones, A. Krishnamurthy, C. Wen, and
K. Yelick. “Multipol: A Distributed Data Structure Library”. Available at URL
http://www.cs.berkeley.edu/projects/parallel/castle/multipol, December 1994.

[23] R. Chandra, A. Gupta, and J.L. Hennessy. “COOL: An Object-Based Language for Parallel
Programming”. IEEE Computer, 27(8):13–26, August 1994.

[24] J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Littlefield. “The Amber System:
Parallel Programming on a Network of Multiprocessors”. In Proceedings of the 12th Symposium
on Operating Systems Principles, pages 147–158, December 1989.

[25] A.A. Chien. Concurrent Agregates: Supporting Modularity in Massively-Parallel Programs. MIT
Press, Cambridge, MA, 1993.

[26] A. Colbrook, E. Brewer, C. Dellarocas, and W.E. Weihl. “Algorithms for Search Trees on
Message-Passing Architectures”. In Proceedings of the 1991 International Conference on Parallel
Processing, volume III, pages 138–141, 1991.

[27] D. Comer. “The Ubiquitous B-Tree”. ACM Computing Surveys, 11(2):121–128, June 1979.

[28] E.C. Cooper and R.P. Draves. “C Threads”. Technical Report CMU-CS-88-154, CMU
Computer Science Dept. June 1988.

[29] P.R. Cosway. “Replication Control in Distributed B-Trees”. Master’s thesis, Massachusetts
Institute of Technology, February 1995.

[30] A.L. Cox and R.J. Fowler. “Adaptive Cache Coherency for Detecting Migratory Shared
Data”. In Proceedings of the 20th International Symposium on Computer Architecture, pages 98–108,
San Diego, CA, May 16–19, 1993. Stenström et al. [89] have a similar algorithm.

[31] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,
and K. Yelick. “Parallel Programming in Split-C”. In Proceedings of Supercomputing ’93, pages
262–273, Portland, OR, November 1993.

[32] D.L. Eager, E.D. Lazowska, and J. Zahorjan. “The Limited Performance Benefits of Migrating
Active Processes for Load Sharing”. In Proceedings of the 1988 Conference on Measurement and
Modeling of Computer Systems, pages 63–72, Santa Fe, NM, May 24–27, 1988.

[33] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1989.

[34] D.R. Engler, G.R. Andrews, and D.K. Lowenthal. “Filaments: Efficient Support for Fine-
Grain Parallelism”. Technical Report 93-13, University of Arizona, April 1993.

[35] R.J. Fowler and L.I. Kontothanassis. “Improving Processor and Cache Locality in Fine-
Grain Parallel Computations using Object-Affinity Scheduling and Continuation Passing

125

(Revised)”. Technical Report 411, University of Rochester Computer Science Department,
June 1992.

[36] V.W. Freeh, D.K. Lowenthal, and G.R. Andrews. “Distributed Filaments: Efficient Fine-
Grain Parallelism on a Cluster of Workstations”. In Proceedings of the First USENIX Symposium
on Operating Systems Design and Implementation, pages 201–213, Monterey, CA, November 14–17,
1994.

[37] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh. “Cedar — a Large Scale Multiprocessor”. In
Proceedings of the 1983 International Conference on Parallel Processing, pages 524–529, August 23–26,
1983.

[38] A. Gottlieb, R. Grishman, C. P. Kruskal, K.P. McAuliffe, L. Rudolph, and M. Snir. “The
NYU Ultracomputer — Designing an MIMD Shared Memory Parallel Computer”. IEEE
Transactions on Computers, C-32(2):175–189, February 1983.

[39] A.S. Grimshaw. “Easy-to-Use Object-Oriented Parallel Processing with Mentat”. IEEE
Computer, 26(5):39–51, May 1993.

[40] A. Gupta and W.D. Weber. “Cache Invalidation Patterns in Shared-Memory Multiprocessors”.
IEEE Transactions on Computers, 41(7):794–810, July 1992.

[41] T. Härder. “Observations on Optimistic Concurrency Control Schemes”. Information Systems,
9(2):111–120, June 1984.

[42] D.S. Henry and C.F. Joerg. “A Tightly-Coupled Processor-Network Interface”. In Proceedings
of the 5th Conference on Architectural Support for Programming Languages and Systems, pages 111–122,
October 1992.

[43] M. Herlihy, B.H. Lim, and N. Shavit. “Scalable Concurrent Counting”. ACM Transactions on
Computer Systems, To appear.

[44] E.H. Herrin II and R.A. Finkel. “Service Rebalancing”. Technical Report 235-93, University
of Kentucky Department of Computer Science, May 12, 1993.

[45] High Performance Fortran Forum. High Performance Fortran Language Specification, version 1.0
edition, May 1993.

[46] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. “An Overview of the
Fortran D Programming System”. In Proceedings of the 4th Workshop on Languages and Compilers
for Parallel Computing, August 1991.

[47] W. Horwat. “A Concurrent Smalltalk Compiler for the Message-Driven Processor”. Technical
Report 1080, MIT Artificial Intelligence Laboratory, May 1988. Bachelor’s thesis.

126

[48] W. Horwat, A.A. Chien, and W.J. Dally. “Experience with CST: Programming and Imple-
mentation”. In Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and
Implementation, pages 101–109, Portland, OR, June 21–23 1989.

[49] W.C. Hsieh, K.L. Johnson, M.F. Kaashoek, D.A. Wallach, and W.E. Weihl. “Efficient Imple-
mentation of High-Level Languages on User-Level Communication Architectures”. Tech-
nical Report MIT/LCS/TR-616, MIT Laboratory for Computer Science, May 1994.

[50] W.C. Hsieh, P. Wang, and W.E. Weihl. “Computation Migration: Enhancing Locality for
Distributed-Memory Parallel Systems”. In Proceedings of the 4th Symposium on Principles and
Practice of Parallel Programming, pages 239–248, San Diego, CA, May 1993.

[51] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach. “CRL: High-Performance All-Software
Distributed Shared Memory”. In Proceedings of the 15th Symposium on Operating Systems Principles,
Copper Mountain, CO, December 3–6, 1995. To appear. http://www.pdos.lcs.mit.edu/crl.

[52] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach. “CRL: High-Performance All-Software
Distributed Shared Memory”. Technical Report MIT/LCS/TM-517, MIT Laboratory for
Computer Science, March 1995. This is an earlier version of [51].

[53] T. Johnson and A. Colbrook. “A Distributed Data-Balanced Dictionary Based on the B-Link
Tree”. In Proceedings of the 6th International Parallel Processing Symposium, pages 319–324, Beverly
Hills, CA, March 23–26, 1992.

[54] T. Johnson and D. Shasha. “A Framework for the Performance Analysis of Concurrent
B-tree Algorithms”. In Proceedings of the 9th ACM Symposium on Principles of Database Systems,
Nashville, TN, April 2–4, 1990.

[55] E. Jul, H. Levy, N. Hutchison, and A. Black. “Fine-Grained Mobility in the Emerald System”.
ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

[56] G. Kane and J. Heinrich. MIPS RISC Architecture. MIPS Computer Systems, Inc., 1992.

[57] V. Karamcheti and A. Chien. “Concert — Efficient Runtime Support for Concurrent Object-
Oriented Programming Languages on Stock Hardware”. In Proceedings of Supercomputing ’93,
pages 598–607, Portland, OR, November 15–19, 1993.

[58] A.R. Karlin, K. Li, M.S. Manasse, and S. Owicki. “Empirical Studies of Competitive Spinning
for A Shared-Memory Multiprocessor”. In Proceedings of the 13th Symposium on Operating Systems
Principles, pages 41–55, Pacific Grove, CA, October 13–16, 1991.

[59] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. “TreadMarks: Distributed Shared
Memory on Standard Workstations and Operating Systems”. In Proceedings of 1994 Winter
USENIX, pages 115–131, San Francisco, CA, January 17–21, 1994.

127

[60] D.A. Kranz, R. Halstead, and E. Mohr. “Mul-T: A High-Performance Parallel Lisp”. In
Proceedings of the SIGPLAN ’89 Conference on Programming Language Design and Implementation,
pages 81–90, Portland, OR, June 21–23, 1989.

[61] J. Kubiatowicz and A. Agarwal. Anatomy of a Message in the Alewife Multiprocessor. In
Proceedings of the International Conference on Supercomputing, pages 195–206, July 1993.

[62] V. Lanin and D. Shasha. “A Symmetric Concurrent B-Tree Algorithm”. In Proceedings of the
1986 Fall Joint Computer Conference, pages 380–386, Dallas, TX, November 2–6, 1986.

[63] P.L. Lehman and S.B. Yao. “Efficient Locking for Concurrent Operations on B-Trees”. ACM
Transactions on Database Systems, 6(4):650–670, December 1981.

[64] C.E. Leiserson, Z.S. Abuhamdeh, D.C. Douglas, C.R. Feynman, M.N. Ganmukhi, J.V. Hill,
W.D. Hillis, B.C. Kuszmaul, M.A. St. Pierre, D.S. Wells, M.C. Wong, S. Yang, and R. Zak. “The
Network Architecture of the Connection Machine CM-5”. Journal of Parallel and Distributed
Computing, to appear. An early version appeared in the Proceedings of the 1992 Symposium on
Parallel Architectures and Algorithms.

[65] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. “The Directory-
Based Cache Coherence Protocol for the DASH Multiprocessor”. In Proceedings of the 17th
International Symposium on Computer Architecture, pages 148–158, Seattle, WA, May 1990.

[66] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M.S. Lam. The Stanford Dash Multiprocessor. IEEE Computer, pages 63–79, March 1992.

[67] K. Li and P. Hudak. “Memory Coherence in Shared Virtual Memory Systems”. ACM
Transactions on Computer Systems, 7(4):321–359, November 1989.

[68] B. Liskov, M. Day, and L. Shrira. “Distributed Object Management in Thor”. In M. Tamer
Özsu, Umesh Dayal, and Patrick Valduriez, editors, Distributed Object Management. Morgan
Kaufmann, 1993.

[69] C.R. Manning. “ACORE: The Design of a Core Actor Language and its Compiler”. Master’s
thesis, Massachusetts Institute of Technology, August 1987.

[70] E. Markatos. Scheduling for Locality in Shared-Memory Multiprocessors. PhD thesis, University of
Rochester, 1993.

[71] E.P. Markatos and T.J. LeBlanc. “Load Balancing vs. Locality Management in Shared-
Memory Multiprocessors”. Technical Report 399, University of Rochester Computer Science
Department, October 1991.

[72] P.R. McJones and G.F. Swart. “Evolving the UNIX System Interface to Support Multi-
threaded Programs”. Technical Report 21, Digital Systems Research Center, Paul Alto, CA,
September 28, 1987.

128

[73] W. Mendenhall. Introduction to Probability and Statistics. Duxbury Press, North Scituate, MA,
fifth edition, 1979.

[74] Y. Mond and Y. Raz. “Concurrency Control in B+ Trees Using Preparatory Operations”. In
Proceedings of the 11th International Conference on Very Large Data Bases,pages 331–334, Stockholm,
Sweden, August 21–23, 1985.

[75] F. Mueller. “A Library Implementation of POSIX Threads under UNIX”. In Proceed-
ings of 1993 Winter USENIX, pages 29–41, San Diego, CA, January 1993. Available at
ftp.cs.fsu.edu:/pub/PART/pthreads.tar.Z.

[76] R.S. Nikhil. “Cid : A Parallel, “Shared-memory” C for Distributed-memory Machines”. In
K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of 7th
International Workshop on Languages and Compilers for Parallel Computing, pages 376–390, Ithaca,
NY, August 8–10, 1994. Springer-Verlag.

[77] P. Pegnato. Personal communication, June 1995. Authorization to use Monotype Typograph’s
description of Monotype Garamond.

[78] G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe, E.A.
Melton, V.A. Norton, and J. Weiss. “The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture”. In Proceedings of the 1985 International Conference on Parallel
Processing, pages 764–771, August 20–23, 1985.

[79] M.L. Powell and B.P. Miller. “Process Migration in DEMOS/MP”. In Proceedings of the 9th
Symposium on Operating Systems Principles, pages 110–119, Bretton Woods, NH, October 10–13,
1983.

[80] M.C. Rinard, D.J. Scales, and M.S. Lam. “Jade: A High-Level, Machine-Independent Lan-
guage for Parallel Programming”. IEEE Computer, 26(6):28–38, June 1993.

[81] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. “Supporting Dynamic Data Structures
on Distributed-Memory Machines”. ACM Transactions on Programming Languages and Systems,
17(2):233–263, March 1995.

[82] Y. Sagiv. “Concurrent Operations on B-Trees with Overtaking”. Journal of Computer and System
Sciences, 33(2):275–296, October 1986.

[83] H.S. Sandhu, B. Gamsa, and S. Zhou. “The Shared Regions Approach to Software Cache
Coherence on Multiprocessors”. In Proceedings of the 4th Symposium on Principles and Practice of
Parallel Programming, pages 229–238, San Diego, CA, May 19–22, 1993.

[84] D.J. Scales and M.S. Lam. “The Design and Evaluation of a Shared Object System for
Distributed Shared Memory Machines”. In Proceedings of the First USENIX Symposium on
Operating Systems Design and Implementation, pages 101–114, Monterey, CA, November 14–17,
1994.

129

[85] K.E. Schauser, D.E. Culler, and T. von Eicken. “Compiled-Controlled Multithreading for
Lenient Parallel Languages”. In Proceedings of the 5th ACM Conference on Functional Languages
and Computer Architecture, Cambridge, MA, August 26–30, 1991.

[86] SPARC International, Inc., Menlo Park, CA. The SPARC Architecture Manual, version 8
edition, 1992.

[87] M.S. Squillante and R.D. Nelson. “Analysis of Task Migration in Shared-Memory Multipro-
cessor Scheduling”. Technical Report 90-07-05, University of Washington Department of
Computer Science, September 1990.

[88] J.W. Stamos and D.K. Gifford. “Remote Evaluation”. ACM Transactions on Programming
Languages and Systems, 12(4):537–565, October 1990.

[89] P. Stenström, M. Brorsson, and L. Sandberg. “An Adaptive Cache Coherence Protocol
Optimized for Migratory Sharing”. In Proceedings of the 20th International Symposium on Computer
Architecture, pages 109–118, San Diego, CA, May 16–23, 1993. Cox and Fowler [30] have a
similar algorithm.

[90] D. Stodolsky, J.B. Chen, and B.N. Bershad. “Fast Interrupt Priority Management in Operating
System Kernels”. In Proceedings of the USENIX Symposium on Microkernels and Other Kernel
Architectures, pages 105–110, San Diego, CA, September 20–21, 1993.

[91] K. Taura. “Design and Implementation of Concurrent Object-Oriented Programming
Languages on Stock Multicomputers”. Master’s thesis, University of Tokyo, February 1994.

[92] C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite Jr. “Firefly: A Multiprocessor Worksta-
tion”. In Proceedings of the 2nd Conference on Architectural Support for Programming Languages and
Systems, Palo Alto, CA, October 5–8, 1987.

[93] Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual, version 3.0
edition, May 1993.

[94] T. von Eicken. Active Messages: an Efficient Communication Architecture for Multiprocessors. PhD
thesis, University of California at Berkeley, 1993.

[95] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. “Active Messages: a Mecha-
nism for Integrated Communication and Computation”. In Proceedings of the 19th International
Symposium on Computer Architecture, pages 256–266, Gold Coast, Australia, May 19–21, 1992.

[96] D.W. Wall. “Register Windows vs. Register Allocation”. In Proceedings of the SIGPLAN ’88
Conference on Programming Language Design and Implementation, pages 67–78, Atlanta, GA, June
22–24, 1988.

[97] D.A. Wallach, W.C. Hsieh, K.L. Johnson, M.F. Kaashoek, and W.E. Weihl. “Optimistic Active
Messages: A Mechanism for Scheduling Communication with Computation”. In Proceedings of

130

the 5th Symposium on Principles and Practice of Parallel Programming, pages 217–226, Santa Barbara,
CA, July 1995.

[98] N. Walsh. “Internet Font Archive”. http://jasper.ora.com/comp.fonts/ifa/ifa.cgi.

[99] P. Wang. “An In-Depth Analysis of Concurrent B-Tree Algorithms”. Master’s thesis,
Massachusetts Institute of Technology, January 1991. Available as MIT/LCS/TR-496.

[100] W. Weihl, E. Brewer, A. Colbrook, C. Dellarocas, W. Hsieh, A. Joseph, C. Waldspurger,
and P. Wang. “PRELUDE: A System for Portable Parallel Software”. Technical Report
MIT/LCS/TR-519, MIT Laboratory for Computer Science, October 1991. A shorter
version appears in Proceedings of 4th International Conference on Parallel Architectures and Languages.

[101] A.C. Yao. “On Random 2–3 Trees”. Acta Informatica, 9:159–170, 1978.

[102] M.J. Zekauskas, W.A. Sawdon, and B.N. Bershad. “Software Write Detection for a Distributed
Shared Memory”. In Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation, pages 87–100, Monterey, CA, November 14–17, 1994.

[103] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. “Vienna Fortran —
a Language Specification”. Technical Report ICASE Interim Report 21, ICASE NASA
Langley Research Center, March 1992.

[104] Q.Y. Zondervan. “Increasing Cross-Domain Call Batching using Promises and Batched
Control Structures”. Master’s thesis, Massachusetts Institute of Technology, June 1995.

131

132

About the Author

The author matriculated at the Massachusetts Institute of Technology in the fall of 1984. He
participated in the VI-A internship program, through which he worked at IBM T.J. Watson Research
Center on his master’s degree; he received his bachelor’s and master’s degrees in May 1988. He
then decided that he had not had enough of the ’Tute, and that he just had to acquire one more
degree there. As a result, he stayed in Cambridge to round out over a decade of schooling at MIT.
He was generously supported by a National Science Foundation Graduate Fellowship for three
years, during which time he managed to avoid graduating. He is a co-author of two journal papers,
eight conference papers, several workshop papers, two turtledoves, and, most importantly, one
dissertation. After completing this dissertation (and realizing that there are other places than MIT),
he will begin work as a postdoctoral researcher at the University of Washington.

The author is a member of Tau Beta Pi, Phi Beta Kappa, Sigma Xi, the IEEE Computer Society,
and ACM. In his spare time, the author enjoys playing his viola (particularly chamber music), as
well as playing ultimate and squash.

133

Colophon

This text of this document was prepared using emacs version 18.58.5, which was written by
Richard Stallman and the Free Software Foundation. Figures were drawn using idraw, which was
written by the Interviews group at Stanford University. Graphs were produced using jgraph, which
was written by Jim Plank. Most of the data for the graphs was processed using perl version 4.0,
which was written by Larry Wall.

This document was typeset using LTEX version 2.09, a document preparation system written
by Leslie Lamport; LTEX is based on TEX, a typesetting system written by Donald Knuth. The
fonts used are Monotype Garamond for the main text, Courier Narrow (a version of Courier that
has been artificially condensed by 80%) for fixed-width text, and Times Italic and Symbol for
mathematics. Many thanks are due to Ed Kohler for his invaluable help in choosing and setting up
these fonts.

Monotype Garamond was designed by Monotype Type Drawing Office in 1922. This typeface
is based on roman types cut by Jean Jannon in 1615. Jannon followed the designs of Claude
Garamond which had been cut in the previous century. Garamond’s types were, in turn, based on
those used by Aldus Manutius in 1495 and cut by Francesco Griffo. The italic is based on types cut
in France circa 1557 by Robert Granjon. Garamond is a beautiful typeface with an air of informality
which looks good in a wide range of applications. It works particularly well in books and lengthy
text settings.

The description of Monotype Garamond is Copyright (C) 1994, 95 by Monotype Typography, Inc. [98]. All Rights
Reserved. Used here with permission of Monotype Typograph, Inc. [77].

134

