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Abstract

Partitioning data over multiple storage servers is an attrac-
tive way to increase throughput for web-like workloads.
However, there is often no one partitioning that yields
good performance for all queries, and it can be challeng-
ing for the web developer to determine how best to execute
queries over partitioned data.

This paper presents DIXIE, a SQL query planner, opti-
mizer, and executor for databases horizontally partitioned
over multiple servers. DIXIE focuses on increasing inter-
query parallel speedup by involving as few servers as pos-
sible in each query. One way it does this is by support-
ing tables with multiple copies partitioned on different
columns, in order to expand the set of queries that can be
satisified from a single server. DIXIE automatically trans-
forms SQL queries to execute over a partitioned database,
using a cost model and plan generator that exploit multiple
table copies.

We evaluate DIXIE on a database and query stream
taken from Wikipedia, partitioned across ten MySQL
servers. By adding one copy of a 13 MB table and us-
ing DIXIE’s query optimizer, we achieve a throughput
improvement of 3.2X over a single optimized partitioning
of each table and 8.5X over the same data on a single
server. On specific queries DIXIE with table copies in-
creases throughput linearly with the number of servers,
while the best single-table-copy partitioning achieves little
scaling. For a large class of joins, which traditional wis-
dom suggests requires tables partitioned on the join keys,
DIXIE can find higher-performance plans using other par-
titionings.

1 Introduction

High-traffic web sites are typically built from multiple web
servers which store state in a shared database. This archi-
tecture places the performance bottleneck at the database.
When a single database server’s performance is not suffi-

cient, web sites typically partition data tables horizontally
over a cluster of servers.

There are two main approaches to executing queries
on partitioned databases. For large analytic workloads
(OLAP), the approach is to maximize parallelism within
each query by spreading the query’s work over all
servers [11, 17]. In contrast, the typical goal for workloads
with many small queries (OLTP) is to choose a partitioning
that allows most queries to execute at just a single server;
the result is parallelism among a large set of concurrent
queries. Queries that do not align well with the partitioning
must be sent to all servers. Many systems have addressed
the problem of how to choose good partitionings for these
workloads [2, 4, 7, 19].

Some workloads, however, execute small queries but do
not partition cleanly, as different queries access the same
table on different columns. For example, one query in a
workload may access a users table using the id column,
while another accesses the table with the username col-
umn. No single partitioning will allow both queries to be
sent to just one server; as a result the workload does not
cleanly partition. Workloads that cleanly partition allow
capacity to scale as servers are added. In contrast, queries
that restrict on columns other than the partition column do
not scale well, since each such query must be sent to all
servers.

This paper suggests the use of table copies partitioned
on different columns, in order to allow more queries in a
workload to partition cleanly. This idea is related to the
pre-joined projections of tables used in column stores [20,
23, 29] to increase intra-query parallelism, but here our
goal is to increase inter-query parallelism.

In order to exploit partitioned data, including table
copies, this paper presents the DIXIE query planner. DIXIE
focuses on small queries that can execute on a subset of
the servers if the right table copies are available. It ad-
dresses an intermediate ground between the whole-table
queries of OLAP workloads and the straightforward clean
partitioning of some OLTP workloads.
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Figure 1: Web site architecture. Front-end web servers running
application code issue queries to a cluster of database servers.
The users table is copied and partitioned, once by user name and
once by ID.

DIXIE uses two key ideas. First, for small queries the
overhead at the server may be larger than the data han-
dling cost; these queries do not benefit from distributing
the work of an individual query among many servers. As
an example, on our experimental MySQL setup, a simple
query that retrieves no rows consumes almost as much
server CPU as a query that retrieves one row. As a re-
sult, cluster throughput can be dominated by the resources
wasted due to overhead if small queries are sent to all
servers. In the extreme, sending each query to all servers
in an N-server cluster may result in 1/N the throughput of
sending each query to one server.

Second, DIXIE’s optimizer uses a novel cost model
which appropriately weights query overhead against the
costs of data retrieval. For example, DIXIE may prefer a
plan that retrieves more rows than another plan, but from
fewer servers, if it predicts that the the reduction in over-
head from the latter plan outweighs the per-row cost of the
former.

We have implemented DIXIE as a layer that runs on each
client and intercepts SQL queries; see Figure 1. Applica-
tions which use DIXIE can be written as if for one database
with a single copy of each table. We have evaluated it on
a cluster of ten servers with a traced Wikipedia workload
and with synthetic benchmarks. With appropriately chosen
table copies, DIXIE provides 3.2X higher throughput for
the Wikipedia workload than the best single-table-copy
partitioning.

2 Problem

The following example illustrates costs when executing
queries over a partitioned database. Consider a simple
case with a users table, containing id, group, name,
and address columns. The id column is unique, and
the table will be range partitioned over ten servers using

some column which we will choose. Assume we would
like to issue the following query:

Q1: SELECT * FROM users WHERE id = ?

Executing many concurrent queries choosing id values
randomly and uniformly, if we send each query to only one
of the ten servers one would certainly expect a throughput
higher than if the query was sent to all servers. However,
it is unclear exactly how much these costs would differ,
since in the ten server case nine of the servers do not need
to retrieve or send back any rows.

The cost on the server of executing a simple query like
the one above that returns zero data is 90% of the server
CPU time of executing a query which returns a small
amount of data: 0.36 ms vs. 0.4 ms (these numbers are
server processing costs only, they do not include client or
network transit time). Section 8 describes the experimental
setup. This shows that requesting a row, even if there is no
data to read and transfer back to the client, incurs a very
significant cost. A profile of the MySQL server shows that
the cost consists of optimizing the query, doing a lookup
in the btree index, and preparing the response and sending
it to the client. On a system executing many concurrent
queries, we measure a 9.1X increase in overall throughput
if each query is sent to one server instead of ten.

Thus this query would would incur much less cost if the
table were range partitioned by id, and requests could be
sent to one server, as opposed to partitioning on some other
column, requiring requests to be sent to all ten servers.

Unfortunately, a single partitioning of a table does not
always suffice. Many applications issue queries which ac-
cess the same table restricting on different columns. Anal-
ysis of Wikipedia shows that for a table which comprised
50% of the overall workload, half the queries on that table
restricted on one column, half on another. This pattern
also occurs in social networking applications with many-
to-many relationships [19]. Consider a different query:

Q2: SELECT * FROM users WHERE group = ?

Partitioning on the id column would cause Q2 to go
to all servers, while partitioning on the group column
would cause Q1 to go to all servers. There is no way to
cleanly partition this table for both queries.

Storing multiple copies of the users table partitioned
in different ways can solve this problem. If we create two
copies of the users table, one partitioned on id and the
other on group, we can efficiently execute both Q1 and
Q2. The cost is a doubling of storage space and a doubling
in the cost of updates. For workloads dominated by reads
the tradeoff may be worthwhile.

With more ways to access a table, query planning be-
comes more complicated. A smart query optimizer should
choose plans which avoid unnecessary lookups, given the
appropriate table copies. Properly optimizing these work-
loads is not just a matter of directing a single query to
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Figure 2: DIXIE’s design. There may be many web servers talk-
ing to the database server cluster, and thus many instances of
DIXIE.

the single appropriate partition. Web applications issue
complex queries which often have many potential plans
and require accessing multiple servers. For instance, the
existence of table copies might affect the table order used
in a join, or whether to execute a join by pushing down
the query into the servers. The problem DIXIE solves is
the selection of plans for executing queries on databases
with multiple partitioned copies of tables, with a goal of
increasing total multi-client throughput by (among other
considerations) decreasing query overhead.

3 Overview and System Model

DIXIE is a query planner intended to operate within a clus-
tered database system. DIXIE takes as input SQL queries
written for a single database, plans and executes them
on the cluster, and returns rows to the client. Some other
mechanism in the overall clustered database handles trans-
actions, if necessary. DIXIE relies on each server in the
cluster taking care of local planning and optimization, leav-
ing DIXIE with the task of deciding how to divide the work
of each query among the servers.

The key insight behind DIXIE is to reduce the number
of servers involved in executing a query by using copies
of tables partitioned on different columns, thus improving
throughput when there are many concurrent queries. The
challenge lies in a choosing a good plan to efficiently use
server CPU resources.

Figure 2 shows the architecture of DIXIE. The web
application on each front-end web server generates SQL
queries intended for a single database server and passes
them to the local DIXIE library. DIXIE parses each query,
and then the planner generates a set of candidate plans for

the query. The query optimizer evaluates the cost of each
plan, chooses the plan with the minimum predicted cost,
and sends this plan to the executor. The executor follows
the plan by sending requests to the cluster of database
servers (perhaps in multiple rounds), filtering and aggre-
gating the retrieved rows, and returning the results to the
application. Queries generated by the web application are
queries and the requests generated by DIXIE to the back-
end database servers are dqueries.

The developer provides DIXIE with a partitioning
schema. This schema identifies the copies of each table
and the column and set of ranges by which each copy is
partitioned. All copies use range partitioning. DIXIE adds
measured selectivity estimates for each column in each
table to the schema.

Table copies are referred to by the table name and par-
titioning key. In the application shown in Figure 1 in Sec-
tion 1, the users table has two copies, one partitioned
on username and one partitioned on id.

DIXIE’s goal is to increase total throughput for work-
loads with many independent concurrent queries, each of
which involves only a small fraction on the database. This
goal is consistent with the needs of many web applica-
tions. Web applications must retrieve data quickly to ren-
der HTML pages for a user, and so developers often expect
to serve the working set of data from memory. DIXIE’s
cost estimates assume that most rows are retrieved from
memory instead of disk, and that each column used for
partitioning has a local index on each server, so that the
cost of looking up any row is roughly the same. DIXIE also
assumes that applications only issue equality join queries
on a small number of tables. These assumptions are con-
sistent with the design of Wikipedia, for example, which
does not execute joins on more than three tables, and of
Pinax [24], an open source suite of social network appli-
cations. Extending DIXIE’s cost model to handle work-
loads which frequently retrieve data on disk is future work.
DIXIE handles a select-project-join subset of SQL.

Adding copies of tables can reduce the costs of read
queries at the expense of increasing the cost of write
queries – writes must be executed on all table copies. For-
tunately the applications we examined have very low write
rates – by one account Wikipedia’s write rate is 8% [6] and
based on a snapshot of MySQL global variables provided
by the Wikipedia database administrator on 7/11/2011,
the write rate was as low as 1.7% (including all INSERT,
UPDATE, and DELETE statements). DIXIE is a read query
optimizer; but we examine the throughput effect on the
server of writing to multiple table copies in Section 8,
and show that in a synthetic workload on ten servers with
write rates as high as 80% the benefit to reads outweighs
the added expense of writing to two copies.

Choosing an appropriate set of table copies and parti-
tions is important for good performance of a partitioned
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SELECT *
FROM blogs, comments
WHERE blogs.author = ’Bob’
AND comments.user = ’Alice’
AND blogs.id = comments.object

Figure 3: Q3, Alice’s comments on Bob’s blog posts.

database, but is outside the scope of this work; DIXIE
requires that the developer establish a range partitioning
beforehand. Our experience shows that potential partition-
ing keys are columns frequently mentioned in the WHERE
clause of queries. A subset of DIXIE’s techniques would
work with another partitioning method like hash partition-
ing, but in that case DIXIE would not be able to optimize
range queries.

4 Query Planning

DIXIE generates a set of plans corresponding to different
ways to execute the original query. It estimates the cost
of each plan using a cost model, and then executes the
lowest cost plan. DIXIE generates plans similar in style to
a traditional distributed query optimizer such as R* [17],
with a few key differences. First, DIXIE rewrites the appli-
cation SQL query into many SQL dqueries; essentially it
transforms nodes and subtrees in the query plan into SQL
statements which can be issued to the RDBMS backend
servers. A DIXIE query plan is a description of steps to
take to execute a query. Second, DIXIE incorporates parti-
tionings of table copies, so it generates plans with different
table copies that issue dqueries to subsets of the servers.

As an example, Figure 3 shows a query which retrieves
all of Bob’s blog posts on which Alice has written a com-
ment. DIXIE will decompose this SQL query into smaller
dqueries for each table (or combination of tables) in the
query. We assume a partitioned database over N servers
with the blogs table partitioned on the author column
and the comments table partitioned on the user col-
umn. One of the plans DIXIE generates for the example
query retrieves all of Bob’s blogs using the author ta-
ble copy, then retrieves all of Alice’s comments on Bob’s
blogs using the user table copy restricting by the blog ids
returned in the first step, and finally assembles the results
in the client to return to the application. If the tables had
copies partitioned on the join keys, it would also generate
a plan which sent the join to every server and unioned the
results (a pushdown join).

DIXIE goes through four stages to generate a set of
plans: rewriting the query to separate and group the clauses
in the predicate by table, creating different join orders,
assigning table copies, and narrowing the set of partitions.
The planner generates a step, which explains how to access

a table, for each table in the query. Each step has a SQL
statement to execute on the table, a specific table copy for
the table in the step, a list of partitions to which to send the
request, a description of what values need to be filled in
from previous steps, and what values to save from this step
to fill in the next one. A pushdown join step will mention
multiple tables.

After DIXIE chooses the generated plan with the lowest
estimated cost, its executor saves the results of each step
in a temporary table both to fill in the next step and to
compute the final result. The query plan specifies which
dqueries the executor should send in what order (or in
parallel), what data the executor should save, how it should
substitute data into the next query, and how to reconstruct
the results at the end.

4.1 Query Rewriting
DIXIE seeks to create plans which push down projections
and filters into the servers to reduce the amount of data
returned to the client. To do this it rewrites each query into
queries on each table. If tables have partitionings on join
keys, DIXIE will also generate plans that execute the entire
join in the database servers (or parts of the join tree in the
servers), which we describe in the next section.

Consider a SELECT query which uses one table:

Q4: SELECT * FROM T WHERE T.a=X
AND (T.b=Y OR T.c=Z)

DIXIE needs to generate a set of dqueries for this query,
with each dquery accessing a single table, perhaps on a sin-
gle partition. To decide what partition(s) a query must use,
DIXIE observes that an AND must run on the intersection
of the sets of partitions needed by the ANDed expressions,
and that an OR must run on the union. To ease this anal-
ysis, DIXIE flattens a query’s predicate into disjunctive
normal form, an OR of ANDs. DIXIE would rearrange
Q4’s predicate thus:

WHERE (T.a=X AND T.b=Y)
OR (T.a=X AND T.c=Z)

DIXIE will create one dquery which retrieves X and Y,
and another which can be executed in parallel retrieving X
and Z. The results must be unioned together. DIXIE will
use the partitioning scheme to determine which partitions
should execute each part of the query.

4.2 Join Orderings
DIXIE’s current implementation considers all possible join
orderings, and creates a plan for each, with each step ac-
cessing one table. DIXIE also generates pushdown joins
by combining every prefix of the sequence of tables in a
join ordering, and creating a plan where the first step of
the plan is a pushdown join dquery on the tables in the
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1 SELECT * FROM blogs WHERE author=’Bob’
2 SELECT * FROM comments

WHERE user=’Alice’ AND object=?

1 SELECT * FROM comments
WHERE user=’Alice’

2 SELECT * FROM blogs
WHERE author=’Bob’ AND id=?

Table 1: Set of plans for the query in Figure 3.

1 SELECT * FROM blogs,comments
WHERE blogs.id=comments.object
AND author=’Bob’ AND user=’Alice’

Table 2: Additional pushdown join plan for the query in Figure 3,
with blogs.id and comments.object table copies.

prefix. DIXIE also considers all possible combinations of
table copies. If T is the set of tables in the query and there
are ct table copies for table t ∈ T , the original size of the
set of plans is:

|T | ∗ |T |!∗∏
t∈T

ct

DIXIE discards any plan with a pushdown join step
where there are not matching table copies partitioned on
the join keys. For the query in Figure 3 the planner would
create the following set of table orderings:
(blogs,comments),(comments,blogs)
From that it would generate the two plans shown in

Table 1, requesting rows from blogs and comments
in different orders. The pushdown join plan is invalid
with the current set of table copies, blogs.author and
comments.user, so DIXIE would prune this plan.

If we had blogs.id and comments.object ta-
ble copies, DIXIE would generate sixteen plans, using all
combinations of the new table copies, join orderings, and
prefixes. In particular, it would generate the pushdown join
plan shown in Table 2.

4.3 Assigning Partitions

Every plan is a sequence of steps, one for each table or
combination of tables. DIXIE converts this into a sequence
of execution steps. An execution step is a SQL query, a ta-
ble copy for each table in the query, and a set of partitions.
The planner can narrow the set of partitions based on the
table copies and expressions in each step; for example, in
the plan where the planner used a copy of table blogs
partitioned on author, the first step of the first plan in
Table 1 could send a dquery only to the partition where
blogs.author = ’Bob’. The set of partitions for

each step might be further narrowed in the executor, de-
pending on values that are retrieved and substituted from
previous steps. Each execution step also contains instruc-
tions on what column values from the results of the pre-
vious dqueries to substitute into this step’s dqueries, by
storing expressions which refer to another table. For ex-
ample, step two of the first plan in Table 1 would store
an expression indicating that the comments.object
clause required data from the blogs.id values that are
retrieved in the first step. DIXIE would then convert this
into an IN expression. Substitution is done during execu-
tion. If a step does not require data from any other step, it
can be executed in parallel with other steps.

Table 3 shows a set of three plans that DIXIE would
generate for Q3 in Figure 3. This table shows the SQL
to be issued in the dquery in each step of each plan in
the left column. Plans 1 and 2 have two steps each, Plan
3 has one. None of these plans have steps which can be
executed in parallel. The middle column uses B, C, and
R to represent the intermediate storage for the results as
the steps are executed. The second steps of Plans 1 and
2 use B.id and C.object as placeholders for values
returned in the previous steps, which it substitutes into
these dqueries during execution. The right column has
four parts for each step, and for the purposes of planning
we limit our explanation to the first two: the table copy
(or copies) used in the step and the partitions to which to
send the dquery in the step. We will discuss nr and ns in
Section 5 when explaining optimization.

Step one of Plan 1 can be sent to just the partition with
Bob’s blogs, p1, and step two can go just to the partition
with Alice’s comments, p0, independent of the results re-
turned in step one since we intersect the sets of partitions
for ANDs. Plan 3 must execute a dquery for every partition
because it is not using the table copies which partition on
columns used in the most restrictive clauses. DIXIE gener-
ates more plans for this query, but these are the three most
likely to have the smallest cost, because they use table
copies partitioned on columns mentioned in the query.

All of the queries Wikipedia and Pinax issued are simple
enough that DIXIE’s query planner can efficiently generate
a plan for every combination of order of tables in the join
and possible table copy. In the applications we examined
no query ever joined across more than three tables and no
table had more than three copies. However, the number of
plans generated is exponential in the size of the number of
tables in the query, and existing pruning techniques could
be used to reduce the number of plans considered [21].

5 Cost Model

DIXIE predicts the cost of each generated plan using a cost
model designed to estimate server CPU time, and chooses
the lowest cost plan for execution. DIXIE models the cost
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Table Copy
Query Steps Partitions

nr, ns
Plan 1:
SELECT * author
FROM blogs → B p1
WHERE author = ’Bob’ 20, 1
SELECT *
FROM comments → C user
WHERE user = ’Alice’ p0
AND object IN (B.id) 1, 1
Plan 2:
SELECT * user
FROM comments → C p0
WHERE user = ’Alice’ 10, 1
SELECT *
FROM blogs → B author
WHERE author = ’Bob’ p1
AND id IN (C.object) 1, 1
Plan 3:
SELECT * id,
FROM blogs,comments object
WHERE author = ’Bob’ p0, ..., pN
AND user = ’Alice’ → R 1, N
AND blogs.id
=comments.object

Table 3: Candidate query plans generated by DIXIE for the query
in Figure 3

of a plan by summing the costs of each step in the plan, and
estimates the cost of a step by summing the query overhead
and the row retrieval costs in that step. Minimizing CPU
time, rather than elapsed time, is appropriate to the goal
of inter-query parallelism.

coststep = costr ∗nr + costs ∗ns

Query overhead, costs, is the cost of sending one dquery
to one server. costr is the cost of data retrieval for one row,
which includes reading data from memory and sending
it over the network. nr is the number of rows sent over
the network to the client, which we assume is close to
the number of rows read in the server since most data
retrieval is index lookups. Since all rows are indexed and
in memory, row retrieval costs do not include any disk
I/O costs. DIXIE’s optimizer computes cost per step as the
sum of the row retrieval cost per row times the number of
rows read in the step and the cost of receiving a query at
the server times the number of dqueries sent in the step,
and the total query cost as the sum of the cost of its steps.
It is irrelevant to cost estimation whether the steps in the
plan were executed in parallel or sequentially, since we
are interested in minimizing overall server CPU time.

Costs are only used to compare one plan against another,
so DIXIE’s actual formula assumes costs is 1 and scales

costr. Section 8 shows how to determine costr and costs.
DIXIE uses table size and selectivity of the expressions in
the query to estimate nr, a proxy for the number of rows
that might be read in the server. It uses the cost functions
below to estimate nr, the number of rows retrieved, and ns,
the number of servers queried, for each step step.

selectivity(s) = ∏
c∈s

1
|dkc|

nr = table sizes ∗ selectivity(step)

ns =
∣∣partitionsstep

∣∣
To compute selectivity, DIXIE stores the number of rows
in each table and dkc, the number of distinct values in each
column. DIXIE could be extended to support histograms
of values and dynamically updating selectivity statistics,
by periodically querying the tables and rewriting the parti-
tioning plan. We leave this to future work. The selectivity
function shown assumes a WHERE clause with only ANDs,
so it can multiply the selectivity of the different columns
mentioned in the query.

Table 3 shows three plans for the query shown in Fig-
ure 3. Assume the statistics in the partitioning plan predict
that Bob has authored twenty blog posts, Alice has writ-
ten ten comments, and Alice has commented once on one
of Bob’s blogs. Then the optimizer would assign costs
according to the formula described above, as shown in
Table 3. The total costs for Plans 1, 2, and 3 are as follows:

cost(Plan 1) = 21∗ costr +2∗ costs
cost(Plan 2) = 11∗ costr +2∗ costs
cost(Plan 3) = costr +N ∗ costs

6 Query Executor

The executor takes a query plan as input and sends
dqueries for each step in the plan to a set of backend
database servers. The executor executes independent steps
in parallel, and steps which require data from another step
in sequence. DIXIE assumes that dqueries request small
enough amounts of data that the executor can temporarily
store the results from each step in the client. The execu-
tor substitutes results to fill in the next step of the plan
with values retrieved from the previous steps’ dqueries.
For example, in Plan 1 in Table 3, the executor would
insert blog post.id values from step one into the
comments.object clause in step two.

The executor can often reduce the number of dqueries
it issues by further narrowing the set of servers required to
satisfy a step’s request. This means that the cost initially
assigned to a step by the optimizer may not be correct.
For example, the returned values from the first step of a
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join may all be on one partition, meaning the executor will
only need to send one dquery for the second step to one
server, reducing the query overhead and thus reducing the
total cost. The optimizer has no way of knowing this at the
time when it chooses a plan for execution, and so there are
cases where it will not select the optimal plan.

The executor uses an in-memory database to store the
intermediate results and to combine them to return the
final result to the client. This produces correct results be-
cause DIXIE will always obtain a superset of the results
required from a table in the join. As it executes dqueries,
the executor populates subtables for every logical table in
the dquery (not one per table copy). After completion, it
uses the in-memory database to execute the original query
on the subtables and return the results to the client.

7 Implementation

We have implemented a prototype of DIXIE in Java. It
accepts SQL queries and produces dqueries which it ex-
ecutes on a cluster of MySQL databases. DIXIE expects
table copies to be stored as different tables in the MySQL
databases. The prototype uses JSQLParser [14] to create
an intermediate representation of each SQL query. JSQL-
Parser is incomplete, so we altered JSQLParser to handle
IN, INSERT, DELETE, and UPDATE queries.

We tested the effectiveness of DIXIE using queries gen-
erated by Wikipedia and an open source suite of social web
applications called Pinax [24], including profiles, friends,
blogs, microblogging, comments, and bookmarks.

We implemented a simple partitioner which recom-
mends partitions by parsing a log of application queries
and counting columns and values mentioned in WHERE
clauses. The simple partitioner then generates a partition-
ing plan with those columns split on ranges to evenly dis-
tribute query traffic to each partition. We found DIXIE to
be useful in testing different partitioning schemes without
changing application code.

DIXIE keeps static counts of number of rows, partition-
ing plans, table copies, and distinct key counts for each
table, for use by its query optimizer. These are stored in
configuration files which are read on start up once and
not updated. A mechanism to update these configuration
files on the fly as table copies are added and deleted or as
table counts change could be implemented by regularly re-
reading the files and updating in-memory data structures
to use the new configuration and statistics.

DIXIE’s executor saves intermediate results in a per-
thread in-memory database, HSQLDB [13]. DIXIE then
executes the original query against this in-memory
database. An alternate implementation would have been
to construct the response on the fly as results are returned
from each partition and each step, but using an in-memory

database allowed us to handle a useful subset of SQL with-
out having to write optmized code to iterate over and re-
construct results. In the applications we examined, DIXIE
never needed to execute a plan which read a large portion
of a table into the client, but in a future version DIXIE will
do so by requesting tables in chunks.

DIXIE is designed to address the problem of scaling
reads. To simulate the costs added by writes, we execute
writes sequentially in the client to each table copy, without
any serialization between clients. In our experiments, con-
current writes to the same row could cause table copies to
become out of sync. We believe this is acceptable since the
purpose of this work is to measure the performance impact
of added writes in the database servers. The application de-
veloper can use existing mechanisms for distributed trans-
actions to manage writes to table copies; this could change
what might have been single partition write transactions
into distributed write transactions with DIXIE.

8 Evaluation

This section demonstrates DIXIE’s ability to automatically
exploit table copies to improve database throughput on a
realistic web workload. The improvement increases with
the number of servers, and is a factor of three compared
to the best single-table-copy performance on ten servers
and a factor of 8.5 over a single server. This section also
explores the factors that DIXIE weighs when choosing
among query plans and examines the accuracy of its cost
prediction model.

8.1 Workloads and Experimental Setup
Database Workloads. The workload used in Section 8.2
models the Wikipedia web site: it uses a subset of a
Wikipedia English database dump from 2008 [1] parti-
tioned across 10 servers (the original Wikipedia database
is not partitioned), a trace of HTTP Wikipedia re-
quests [27], and a simulator which generates SQL queries
from those requests [6]. The simulator uses the Wikipedia
data, published statistics about caching in the application
layers, and information from the Wikipedia database ad-
ministrator to generate an accurate workload. The total
database including indexes is 36 GB in size, but the 2008
workload only ends up using a subset of the data that fits
in memory. We verify on read workloads that the servers
are not using the disk. There are 100K rows in the page
table, 1.5M rows in the text table, and 1.5M rows in the
revision table (the most heavily queried tables). A ma-
jority of Wikipedia queries use the page table, restricting
on the page.title or page.id columns. Figure 4
shows the schema of the page and revision tables.
INSERT, UPDATE, and DELETE queries are 5% of the

overall workload, consistent with information provided by
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page (id, namespace, title, ...)
revision (id, page, text_id, ...)

Figure 4: Partial Wikipedia page and revision table schemas.

the current Wikipedia database administrator. Writes are
not transactional: the client sends independent writes to
each server that needs to be updated. For example, when
writing a table with multiple copies, the client sends a
separate write to update each of the copies. The rest of the
evaluation uses synthetic queries and data constructed to
explore specific questions. Every column is indexed.

Hardware. All experiments run on Amazon EC2. Each
database server is a “small instance” (one CPU core and
1.7GB of RAM). Experiments use ten servers unless indi-
cated otherwise. Three “large” instances (each with five
CPU cores and 12GB of RAM) generate client requests.
The clients are fast enough that throughput is limited by
the database servers in all experiments. All machines are in
the same availability zone, so they are geographically close
to each other. Each database server is running MySQL
5.1.44 on GNU/Linux, and all data is stored using the Inn-
oDB storage engine. MySQL is set up with a 50MB query
cache, 8 threads, and a 700 MB InnoDB buffer pool. This
is sufficient for the working set of Wikipedia data in the
workload, because the majority of the database is the text
of Wikipedia pages, many of them not accessed.

Runtime Measurement. Before each experiment,
DIXIE’s planner and optimizer generate traces of plans
from application SQL traces. During each experiment,
multiple client threads run DIXIE’s executor with a plan
trace as input; the executor sends dqueries to servers and
performs post-processing on the client. We pre-generate
plans in order to reduce the client resources needed at ex-
periment time to saturate the database servers. Planning
and optimization take an average of 0.17ms per query.

Throughput is measured as the total number of appli-
cation queries per second completed by all clients for a
time period of 300 seconds, beginning 30 seconds after the
clients start, and ending 30 seconds before stopping the
clients. The traces are long enough that the clients are busy
during the duration of measurement. Before measurement,
a read-only version of each trace file is run all the way
through the system to warm up the database cache and the
operating system file cache, so that during the experiment
the databases minimally use the disk.

8.2 Wikipedia

Wikipedia’s 2008 workload benefits from both partitioning
the data over multiple servers and from using more than
one table partioning. Figure 5 shows the change in overall
throughput for the same workload over 1, 2, 5, and 10
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Figure 5: Throughput (queries per second) of the Wikipedia
workload with 1, 2, 5, and 10 servers. The patterned red bars
correspond to the best setup with only one copy of each table
(this setup partitions the page table by page.id). The solid green
bars correspond to a setup with an extra copy of the page table,
partitioned by page.title.

partitions, with and without an extra table copy. The best
partitioning with only one copy per table, which partitions
the page table by page.id, yields a total of 7400 QPS
(application queries per second) across ten partitions (see
Figure 5, 10P). In this partitioning, 25% of all Wikipedia
queries generate dqueries to all partitions. Adding a copy
of the page table partitioned on page.title reduces
this number to close to zero, and increases overall through-
put to 23347 QPS, a 3.2X increase. DIXIE automatically
exploits the table copy to achieve this increase.

In order that the data fit in server memory, the one and
two partition cases use a dataset with only 10K rows in the
page table. With one partition, it is better to have only
one copy of each table to avoid extra writes. The benefit of
the extra table copy increases with the number of partitions
because sending a query to one partition instead of N frees
N − 1 query overhead’s worth of CPU time for use by
other queries.

To help explain the details of how the added table copy
helps, we can divide the read-only portion of the Wikipedia
query workload into three parts:

Single table, single-partition queries. These queries
access a single table restricting on a column used as a
partitioning key. These queries can be sent to one server.

Single table, multi-partition queries. These queries
only access one table, but not on any partition key, so they
must be sent to all partitions.

Multi-step queries. These are join queries which re-
quire accessing two or more tables. They can be executed
either as a single pushdown join (which in this workload
must be sent to all servers) or in multiple steps. Each step
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SELECT * FROM page
A WHERE page.id = i

SELECT * FROM page
B WHERE page.title = t

SELECT * FROM page,revision
WHERE page.namespace = 0

C AND page.title = t
AND revision.id = page.latest
AND page.id = revision.page
INSERT INTO page

D VALUES (co, c1, ... cn)

Table 4: Examples of Wikipedia page table queries.

is either a pushdown join on a subset of the tables in the
join or a set of lookups on a single table, which can be
modeled as a single-table query.

We will focus on queries that use the page table, which
are affected by the addition of the page.title table
copy. 50% of queries use the page table; examples of
each type of these queries are shown in Table 4. Queries A
and B are single table queries. Query A is a single-partition
query, since it can be sent to the single partition containing
the appropriate page.id value. Query B is originally a
multi-partition query. Query C is a multi-step query which
is executed as a pushdown join query and must be sent to
all servers, and Query D inserts a row into the page table.

With the addition of a page.title table copy, Query
B generates a dquery to one server instead of dqueries to
all, reducing query overhead by a factor of ten. Query C re-
quires DIXIE to choose between a pushdown join and join-
ing in the client. In this workload DIXIE always chooses
the latter. The next section shows how DIXIE makes that
choice depending on the selectivity of the columns men-
tioned in the query.

Adding table copies can impose a penalty: writes must
update all copies. Figure 6 shows the difference in through-
put when adding a page.title table copy and increas-
ing the percentage of writes. When writes are at 0%, using
the page.title table copy to direct each query to one
partition instead of all partitions achieves a 9.1X improve-
ment in throughput. Throughput improvement decreases
as the workload contains a higher percentage of writes.
The table shows results from a benchmark with a mix of
Queries B and D on the page table partitioned over ten
servers, randomly and uniformly reading and inserting
page rows.

8.3 Query Planning

For some join queries, DIXIE must choose between two
plans: a two-step join and a pushdown join. To illustrate
this choice, we examine Plans 1 and 3 from Table 3, which
DIXIE generates from the application query in Figure 7.
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Figure 6: Throughput (queries per second) of a workload execut-
ing a combination of queries B and D in Table 4 on ten database
servers. One line corresponds to a setup which partitions the page
table only on page.id, and the second line corresponds to a setup
with an extra copy of the page table, partitioned by page.title.
The first setup sends reads to all ten servers and writes to one,
the second setup reads from one server and writes to two.

SELECT *
FROM blogs, comments
WHERE blogs.author = ’Bob’
AND comments.user = ’Alice’
AND blogs.id = comments.object

Figure 7: Alice’s comments on Bob’s blog posts.

If an optimizer were to mainly consider row retrieval
cost, it would select Plan 3, the pushdown join, since it
retrieves the fewest rows. The plan describes an execution
which contacts all servers, but sends at most one or two
rows back to the client.

Plan 1 contacts two servers in two steps: first to get
Bob’s blog posts, then to get Alice’s comments on Bob’s
posts. Plan 1 requires sending back unnecessary rows in
step one because it sends back all of Bob’s blog posts,
even though Alice only commented on one or two.

Figure 8 shows the throughputs for these plans with ten
servers, varying the amount of data returned in step one
of Plan 1 by increasing the number of blog posts per user.
There are 1000 users and ten comments per user. A row in
the blog posts table is approximately 900 bytes, and a row
in the comments table is approximately 700 bytes. Queries
use different values for “Alice” and “Bob” in Figure 7. The
graph also shows DIXIE’s cost predictions, based on the
formula described in Section 5, inverted and scaled up to
be in the same range as the measured QPS for comparison.

Figure 8 shows that if the query retrieves few enough
rows in step one, the system can achieve a higher through-
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Figure 8: Throughput (queries per second) retrieved from ten
database servers and DIXIE’s predicted cost for each query plan.

put with Plan 1 which sends dqueries to only two servers
and retrieves more rows, than with Plan 3, which sends
dqueries to all servers while retrieving fewer results. Using
Plan 1 instead of Plan 3 when there are only ten blog posts
per user gives a 4.2x improvement in throughput. This
number would increase with more servers. When there
are 145 rows returned per author Plan 1 is equivalent in
throughput to Plan 3.

Since DIXIE’s predicted query costs for the two plans
cross shortly after 145 rows, it will usually choose the best
plan. Its ability to do so depends on its having reasonable
estimates for query overhead and row retrieval time. The
next section investigates these two factors.

8.4 Cost Model
To test the accuracy of DIXIE’s query cost models (de-
scribed in Section 5) and measure the cost of per-query
overhead, we set up a controlled set of experiments using
one database based on the synthetic workloads. We varied
the number of rows retrieved, the row size, and the percent-
age of queries sent to all shards. By varying the number of
rows retrieved we can derive a ratio of query overhead to
row retrieval time for a single server. We show that query
overhead is independent of the size of the rows retrieved.

Setup. The database is on one Amazon EC2 as de-
scribed in Section 8.1. In each experiment the database
has one table of 100K rows, with nine either 15, 150, or
255 character columns. Each column has a different num-
ber of distinct keys, and as such a different number of rows
returned when querying on that column. Every column has
an index and each table fits in memory.

Workload. Throughput is measured by running as
many client threads as necessary to saturate the database
server (in these experiments 16), each generating and issu-
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Figure 9: Measurement of milliseconds spent executing a query
on a single EC2 MySQL server, varying the number of rows per
query and bytes per row using multiple clients.

ing queries of the form:

SELECT * FROM table1 WHERE c5 = ?

We vary the number of rows retrieved by the queries in a
run by changing the restricted column in the query. Within
a run each client thread issues a sequence of queries re-
questing a random existing value from one column (ex-
cept for the run that measures retrieving zero rows), with
a uniform distribution. The overall throughput of a run as
measured in queries per millisecond is a sum of each client
thread’s throughput, measured as a sum of queries issued
divided by the number of milliseconds in the run.

Figure 9 shows the time per query measured as 1/qps
where qps is the throughput in queries per second, as a
function of the number of rows returned by the query. This
graph shows how total per-query processing time increases
as the number of rows retrieved increases for different row
sizes. This graph is fit by lines of the form tq = to +nr ∗ tr,
where tq is the total time of the query, to is query overhead,
nr is the number of rows retrieved per query, and tr is the
time to retrieve one row. On our experimental setup, for
150 byte rows, we measure query overhead as 0.45ms and
the time to retrieve one row as 0.011ms. For 1700 byte
rows, query overhead was .43ms and the time to retrieve a
row was .022, and for 2700 byte rows the numbers were
0.5ms and .033ms. DIXIE only uses one value for costr,
but this experiment shows that costr varies for row size.
Including metrics in the configuration files on the average
size of rows in a table and using this in the cost formula
would help DIXIE produce better query plans.

Using the formula in Section 5, DIXIE would estimate
the cost of retrieving 20 rows from one server as .88, and
retrieving 20 rows from two servers as 1.32, a 50% in-
crease. Retrieving 100 rows from two servers instead of
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Rows Returned Servers DIXIE’s Cost Time
20 1 .88 .95ms
20 2 1.32 1.37ms
100 1 2.64 2.67ms
100 2 3.08 3.24ms

Table 5: DIXIE plan cost estimation vs. actual time.

one server would be 16.7% higher. Table 5 shows the dif-
ference between DIXIE’s plan costs and experimentally
validated plan costs, in milliseconds. The actual time to
request 20 rows from one server is .95ms and from two
servers is 1.37ms, a 44% increase, and for 100 rows it is a
21% higher.

Query overhead is the MySQL server allocating re-
sources to parse the query, obtain read table locks, and
check indices or table metadata to determine if it has rows
which match the query.

Since the per-row cost is roughly one twentieth the per-
query overhead, DIXIE uses a costr of 0.05 in the formula
described in Section 5. So in the blogs and comments
query in Figure 7, DIXIE would choose to execute the two-
step join plan as long as selectivity statistics indicated that
there were less than 162 blog posts per author. Note that
for the purposes of showing how costs change according
to column selectivity we are ignoring Plan 2, which DIXIE
would also consider. This is 12% off from the measured
optimal switchover point, shown in Figure 8, which is 145
blog posts per author.

9 Related Work

DIXIE relies on a large body of research describing how to
build parallel databases and query optimizers. This section
includes the most closely related systems.

DIXIE operates on horizontally partitioned databases
on a shared-nothing architecture [22]. The benefits of this
design were demonstrated in systems like Gamma [8], Ter-
adata [26], and Tandem [12]. A number of more recent
databases exploit horizontal partitioning. H-Store [15],
Microsoft’s Cloud SQL Server [3], and Google Megas-
tore [10] are main-memory partitioned databases. These
systems either prefer or require applications to execute
queries which only touch a single partition, and do not de-
scribe how to efficiently execute queries that might require
spanning partitions.

C-Store [23] and its successor Vertica [29] store copies
of table columns partitioned on different columns. C-
Store’s query planner and optimizer consider which copies
of a column to use in answering a query; its focus is paral-
lelizing single queries that examine large amounts of data.
Vertica has a sophisticated query optimizer which works
over partitioned data on multiple servers, but its optimizer

is also designed for large analytic queries, and chooses to
favor colocated joins (what we call pushdown joins) where
possible [28]. DIXIE relies on the fact that web application
queries are often simple, selective, and use a small number
of tables in joins. As shown in this work, there are queries
where colocated joins are less efficient for these queries
than other plans that DIXIE would choose.

The fractured mirrors work [20] presents the idea of
storing tables in different formats on different disks to
minimize disk seeks, but the authors do not consider par-
titions, or speak to the costs involved in distributed query
execution and how this affects the choice of query plans.

Other work has made the point that social networks do
not partition well, and suggested replication solutions [19,
18]. This work relies on network-style clustering in the
data, and aims to put users on the same servers as their
friends. DIXIE makes no such assumptions.

Schism [7] chooses good partitioning and replication
arrangements with the goal of ensuring that transactions
need never involve more than one server. Schism doesn’t
quantify the cost of query overhead or describe how to
do query planning and optimization. [2] also investigates
partition choice, focusing on warehouse datasets.

In the field of query optimization many systems have
addressed how to execute distributed queries. The query
optimizer in Orchestra [25], a peer-to-peer database built
on a distributed hash table, estimates a plan’s cost by con-
sidering the cost at the slowest node or link used in each
plan stage, which will ultimately optimize for latency but
not throughput.

Distributed INGRES [9] has a distributed query opti-
mizer, but like the other systems mentioned above, it op-
timizes for reduced latency and parallelism. R* [17] is a
distributed query optimizer which seeks to minimize to-
tal resources consumed, like DIXIE, but does not support
the idea of table partitioning, so table access methods are
limited. Most of these systems use replication for fault
tolerance; none take advantage of table copies on different
range partitions to execute plans that minimize machine
accesses.

Kossman noted that when estimating costs of a query,
communication costs including fixed per-message costs
must be considered [16], and discusses choosing which
replica of a table to use when executing a query. This
paper extends upon that work by noting that in certain
web workloads, this cost is the dominant cost of execution,
and also proposing a new way of minimizing it.

Evaluation of Bubba [5] showed that when the system
is CPU-bottlenecked, declustering degrades performance
due to startup and communication costs, which are part
of query overhead. DIXIE applies a similar idea to web
application workloads, but goes beyond this to motivate
keeping many copies of the data, and to use query over-
head in the query optimizer to determine cost.
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10 Conclusion

Due to the high cost of issuing unnecessary queries in
a clustered database, and since web applications often
have workloads which do not cleanly partition, developers
should use multiple copies of tables partitioned on dif-
ferent columns. DIXIE is a query planner, optimizer, and
executor for such a database. DIXIE can execute appli-
cation SQL queries written for a single database against
a partitioned database with multiple partitionings of ta-
bles without any additional code by the application devel-
oper. DIXIE chooses plans which have high throughput
by using per-query server overhead as a dominant fac-
tor in calculating query costs. The code is available at
http://pdos.lcs.mit.edu/dixie.
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