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ABSTRACT

DFSCQ is the first file system that (1) provides a precise

specification for fsync and fdatasync, which allow appli-

cations to achieve high performance and crash safety, and

(2) provides a machine-checked proof that its implementa-

tion meets this specification. DFSCQ’s specification captures

the behavior of sophisticated optimizations, including log-

bypass writes, and DFSCQ’s proof rules out some of the

common bugs in file-system implementations despite the

complex optimizations.

The key challenge in building DFSCQ is to write a speci-

fication for the file system and its internal implementation

without exposing internal file-system details. DFSCQ in-

troduces a metadata-prefix specification that captures the

properties of fsync and fdatasync, which roughly follows

the behavior of Linux ext4. This specification uses a no-

tion of tree sequences—logical sequences of file-system tree

states—for succinct description of the possible states after

a crash and to describe how data writes can be reordered

with respect to metadata updates. This helps application

developers prove the crash safety of their own applications,

avoiding application-level bugs such as forgetting to invoke

fsync on both the file and the containing directory.

An evaluation shows that DFSCQ achieves 103 MB/s on

large file writes to an SSD and durably creates small files at

a rate of 1,618 files per second. This is slower than Linux

ext4 (which achieves 295 MB/s for large file writes and 4,977

files/s for small file creation) but much faster than two re-

cent verified file systems, Yggdrasil and FSCQ. Evaluation

results from application-level benchmarks, including TPC-C

on SQLite, mirror these microbenchmarks.
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1 INTRODUCTION

File systems achieve high I/O performance and crash safety

by implementing sophisticated optimizations to increase disk

throughput. These optimizations include deferring writing

buffered data to persistent storage, grouping many trans-

actions into a single I/O operation, checksumming journal

entries, and bypassing the write-ahead log when writing to

file data blocks. The widely used Linux ext4 is an example

of an I/O-efficient file system; the above optimizations allow

it to batch many writes into a single I/O operation and to

reduce the number of disk-write barriers that flush data to

disk [33, 56]. Unfortunately, these optimizations complicate

a file system’s implementation. For example, it took 6 years

for ext4 developers to realize that two optimizations (data

writes that bypass the journal and journal checksumming)

taken together can lead to disclosure of previously deleted

data after a crash [30]. This bug was fixed in November of

2014 by forbidding users from mounting an ext4 file sys-

tem with both journal bypassing for data writes and journal

checksumming. A comprehensive study of several file sys-

tems in Linux also found a range of other bugs [34: §6].

Somewhat surprisingly, there exists no precise specifi-

cation that would allow proving the correctness of a high-

performance file system, ruling out bugs like the ones de-

scribed above. For example, the POSIX standard is noto-

riously vague on what crash-safety guarantees file-system

operations provide [44]. Of particular concern are the guar-

antees provided by fsync and fdatasync, which give appli-

cations precise control over what data the file system flushes

to persistent storage. Unfortunately, file systems provide

imprecise promises on exactly what data is flushed, and, in

fact, for the Linux ext4 file system, it depends on the op-

tions that an administrator specifies when mounting the file

system [40]. Because of this lack of precision, applications

such as databases and mail servers, which try hard to make

sequences of file creates, writes, and renames crash-safe by

issuing fsyncs and fdatasyncs, may still lose data if the file

system crashes at an inopportune time [40]. For example,

SQLite and LightningDB, two popular databases, improperly

used fsync and fdatasync, leading to possible data loss [65].
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Aparticularly challenging behavior to specify is log-bypass
writes1. A file system typically uses a write-ahead log to

guarantee that changes are flushed to disk atomically and in

order. The one exception is data writes: to avoid writing data

blocks to disk twice (once to the log and once to the file’s

blocks), file systems bypass the log when writing file data.

Since data blocks are not written to the log, they may be

re-ordered with respect to logged metadata changes, and this

reordering must be precisely captured in the specification. A

further complication arises from the fact that this reordering

can lead to corruption in the presence of block reuse. For

example, a bypass write to file f can modify block b on

disk, but the metadata update allocating b to f has not been

flushed to disk yet; b may still be in use by another file or

directory, which might be corrupted by the bypass write.

The specification must exclude this possibility.

This paper makes several contributions:

(1) An approach to specifying file-system behavior purely

in terms of abstract file-system trees, as opposed to expos-

ing the internal details of file-system optimizations, such as

log-bypass writes directly updating disk blocks. A purely

tree-based specification shields application developers from

having to understand and reason about low-level file-system

implementation details.

(2) A precise metadata-prefix specification that describes

the file system’s behavior in the presence of crashes (in addi-

tion to describing non-crash behavior), including the fsync

and fdatasync system calls and sophisticated optimizations

such as log-bypass writes, using the tree-based specification

approach. Intuitively, the specification says that if an ap-

plication makes a sequence of metadata changes, the file

system will persist these changes to disk in order, meaning

that the state after a crash will correspond to a prefix of the

application’s changes. On the other hand, data updates need

not be ordered; thus, the name metadata-prefix. Our specifi-
cation is inspired by the observed behavior of the Linux ext4

file system,
2
as well as other prior work [11, 35].

(3) A formalization of this metadata-prefix specification.

A precise formal specification is important for two reasons.

First, it allows developers of a mission-critical application

such as a database to prove that they are using fsync cor-

rectly and that the database doesn’t run the risk of losing

data. Second, it allows file-system developers to prove that

the optimizations that they implement will still provide the

same guarantees, embodied in the metadata-prefix specifica-

tion, that applications may rely on.

The main challenge in formalizing the metadata-prefix

specification and proving that a file system obeys this speci-

fication lies in capturing the two degrees of nondeterminism

due to crashes: which prefix of metadata updates has been

committed to disk and which log-bypass writes have been

1
File systems use different terms for this optimization. For example,

ext4 often uses the term direct writes, but that is easily confused with direct

I/O, which refers to bypassing the buffer cache.

2
ext4’s implementation flushes metadata changes in order, similar to

what our specification requires. However, ext4 has no specification.

flushed. This paper uses the notion of tree sequences to cap-

ture the metadata-prefix specification. Abstractly, the state

of the file system is a sequence of trees (directories and files),

each corresponding to a metadata update performed by the

application, in the order the updates were issued; the se-

quence captures the metadata order. Data writes apply to

every tree in the sequence, reflecting the fact that they can

be reordered with respect to metadata. After a crash, the file

system can end up in any tree in the sequence. Calling fsync

logically truncates the sequence of trees to just the last one,

and fdatasync makes file data writes durable in every tree

in the sequence.

(4) To demonstrate that the metadata-prefix specification

is easy to use, we implemented, specified, and proved the cor-

rectness of a core pattern used by applications to implement

crash-safe updates. This code pattern modifies a destina-

tion file atomically, even if the file system crashes during

the update. That is, if a crash happens, either the destina-

tion file exists with a copy of all the new bytes that should

have been written to it, or the destination file is not modi-

fied. This pattern captures the core goal of many crash-safe

applications—ensuring that some sequence of file creates,

writes, renames, fsyncs, and fdatasyncs is crash-safe. If an

application’s use of fsync and fdatasync does not ensure

crash safety, the application developer is unable to prove the

application correct.

(5) To demonstrate that the metadata-prefix specification

allows proving the correctness of a high-performance file

system, we built DFSCQ (Deferred-write FSCQ), based on

FSCQ [10] and its Crash-Hoare Logic infrastructure.
3
DFSCQ

implements standard optimizations such as deferring writes,

group commit, non-journaled writes for file data, check-

summed log commit, and so on. We report the results of

several benchmarks on top of DFSCQ, compared to Linux

ext4 and two recent verified file systems.

DFSCQ has several limitations. First, DFSCQ (and the

metadata-prefix specification) does not capture concurrency;

system calls are executed one at a time. Second, DFSCQ

runs as a Haskell program, which incurs a large trusted

computing base (the Haskell compiler and runtime) as well

as CPU performance overhead. Addressing these limitations

remains an interesting open problem for future work.

2 RELATEDWORK
DFSCQ is the first file system with a machine-checked proof

of crash safety in the presence of log-bypass writes, and the

metadata-prefix specification is the first to precisely capture

the behavior of both fsync and fdatasync. The rest of this

section relates prior work to DFSCQ and the metadata-prefix

specification.

File-system verification. There has been significant

progress on machine-checked proofs of file-system cor-

rectness; the most recent results include Yggdrasil [48],

3
The source code is at https://github.com/mit-pdos/fscq.

https://github.com/mit-pdos/fscq


FSCQ [10], and Cogent’s BilbyFS [1, 2]. The main contri-

bution of this paper in relation to this prior work is the

formalization and proof of sophisticated optimizations, such

as log-bypass writes, in the presence of crashes, as well as

proving the correctness and crash safety of application code

on top of a file system. Earlier work on file-system verifica-

tion [3, 5, 6, 17–19, 21, 24, 28, 29, 29, 58] also cannot prove

the crash safety of a file system in the presence of such

sophisticated optimizations.

Efforts to find bugs in file-system code have been success-

ful in reducing the number of bugs in real-world file systems

and other storage systems [27, 32, 62–64]. However, these

approaches cannot guarantee the absence of bugs.

Application bugs. It is widely acknowledged that it is easy

for application developers to make mistakes in ensuring

crash safety for application state [40]. For instance, a change

in the ext4 file-system implementation changed the observ-

able crash behavior of the file system. This change led to

many applications losing data after a crash [14, 22], because

of a missing fsync call whose absence did not previously

keep the contents of a new file from being flushed to disk [8].

The ext4 developers, however, maintained that the file sys-

tem never promised to uphold the earlier behavior, so this

was an application bug. Similar issues crop up with different

file-system options, which often lead to different crash be-

havior [40]. This paper is the first to demonstrate that it is

possible to prove a challenging, commonly used application

pattern correct and compose it, in a provable way, with a

verified file system, to produce an end-to-end proof of crash

safety and application correctness.

Formalization techniques. Contributions of this paper
are the metadata-prefix specification and the notion of

tree sequences for writing the specifications of a high-

performance crash-safe file system. Prior work has focused

on specifying the file-system API [43], including crashes [8],

using trace-based specifications [23] or abstract state ma-

chines [1]. However, no prior specifications have addressed

bypassing the log for data writes and fdatasync.

3 MOTIVATION
To handle crashes, many modern file systems run each sys-

tem call in a transaction using write-ahead logging. For

example, if the file system is creating a new file on disk, it

needs to modify two disk blocks: one containing the direc-

tory and one containing the file’s inode. If the computer were

to crash in between these two block writes, the on-disk state

after a crash may be inconsistent: in particular, the directory

may have been updated, but the file’s inode may not have

been updated yet. Logging ensures that, after a crash, the file

system can either apply or roll back the changes, ensuring

that either all of the updates are applied, or none are.

3.1 Why fsync and fdatasync?
Extending the file-system interface with fsync and

fdatasync enables two optimizations on top of logging.

First, a file system can buffer transactions in volatile mem-

ory and defer committing them to persistent storage until an

application explicitly requests it using fsync or fdatasync.
This allows the file system to send changes in batches to the

storage device.

The second optimization targets applications that modify

large files, such as virtual-machine disk images. Making

these changes through the log requires writing the data to

disk twice: first when the change is written to the log and

secondwhen the change is applied to the file’s data blocks. To

avoid double writes, file systems bypass the log and update

on-disk file data in-place (e.g., when the application calls

fsync or fdatasync, or the file system decides to flush its

own buffer cache).

Table 1 demonstrates the importance of the log-bypass

optimization by showing the throughput of two microbench-

marks on a fast SSD with and without log bypass. The first

benchmark, smallfile, durably creates small files by call-

ing fsync after creating a file and writing 1 KB to it; the

second benchmark, largefile, overwrites a 50 MB file us-

ing 4KB writes with an fdatasync every 10 MB. “ext4 or-

dered,” which implements log-bypass writes, achieves 1.9×

the throughput of “ext4 journaled” on the largefile bench-

mark, which writes data blocks to the journal, and also

achieves 1.2× the throughput for the smallfile benchmark.

smallfile largefile

ext4 journaled 3720 files/s 152 MB/s

ext4 ordered 4560 files/s 294 MB/s

Table 1: Linux ext4 performance on an Intel S3700 SSD

in two configurations: “journaled,” where file data writes

are journaled, and “ordered,” which implements log-bypass

writes for file data.

Although these optimizations pay off even on a fast mod-

ern SSD, it is an open question whether these optimizations

will remain important with newer persistent-memory tech-

nologies, such as NVM, which don’t lose their contents after

a power failure [61]. For instance, fast persistent memory

may allow local file systems to be synchronous, avoiding

buffering altogether.

3.2 Complex interface
The two optimizations described above improve file-system

performance but make it more difficult for application devel-

opers to write crash-safe code.

Deferred durability. Figure 1 shows how a prototypical

application pattern of fsync and fdatasync, in combination

with other file-system APIs, updates a file in a crash-safe

manner. This pattern shows up in many applications, such

as mail servers, text editors, databases, etc. [40, 65]. Even

layered file systems, such as overlayfs [9], use this pattern

and sometimes get it wrong [50]. The example code assumes

that the application never runs this procedure concurrently.



tmpfile = "crashsafe.tmp"

def crash_safe_update(filename, data_blocks):
f = open(tmpfile, O_CREAT | O_TRUNC | O_RDWR)
for block in data_blocks:
f.write(block)

f.close()

fdatasync(tmpfile)
rename(tmpfile, filename)
fsync(dirname(filename))

def crash_safe_recover():
unlink(tmpfile)

Figure 1: Pseudocode for an application library that updates

the contents of a file in a crash-safe manner.

crash_safe_update(f, data) ensures that, after a crash,

file f will have either its old contents or the new data,

but not a mixture of them. To ensure this property,

crash_safe_update writes the new data into a tempo-

rary file. After crash_safe_update has finished writing

data to the temporary file, it invokes fdatasync to per-

sist the file’s data blocks on disk. After fdatasync returns,

crash_safe_update replaces the original file with the new

temporary file using rename. Finally, crash_safe_update

uses fsync to flush its change to the directory, so that upon

return, an application can be sure that the new data will

survive a crash.

All parts of this example are necessary to update the file

in a crash-safe manner. The temporary file and rename en-

sure that the file is not partially updated after a crash. The

fdatasync ensures that the file system does not flush the

rename call before it flushes the contents of the file (thus

resulting in an empty file). The final fsync ensures that the

rename is flushed to disk before crash_safe_update returns.

Note that there is no need to call fsync after creating the

temporary file.

If the system crashes while executing crash_safe_update,

it first executes the file system’s recovery code (whichmay re-

play transactions that have been committed but not applied),

followed by recovery code of applications. In our example,

the application-specific recovery code crash_safe_recover

simply deletes the temporary file if one exists. This is suffi-

cient for our example, since if the temporary file exists, we

must have crashed in the middle of crash_safe_update, and

thus the original file still has its old contents.

Log-bypass writes. The second optimization, bypassing

the log for file data writes, brings another set of complica-

tions for the application programmer, because data writes

can be reordered with respect to metadata updates. For exam-

ple, if crash_safe_update did not invoke fdatasync, some

file systems may buffer the data write in memory and flush

the rename to disk before writing the file’s contents. This

can result in an empty or zero-filled file after a crash, which

does not correspond to any prefix of system calls.

Backgroundflushes. Afinal complication due to buffering

changes in memory is that the file system may run out of

memory if an application makes many changes. File systems

deal with this by flushing changes in the background at any

time; once a change is written durably to disk, it can be

discarded from memory. File systems typically do not make

guarantees about the order in which they flush changes to

disk in the background.

3.3 Complex implementation
Exploiting deferred durability and log-bypass writes leads

to significant complexity inside of the file system, especially

when the two optimizations interact.

Block reuse. With log-bypass writes, it is important that

blocks are not reused until all metadata changes are flushed

to disk. Consider a situation where an application deletes an

old file, creates a new file, and writes some data to the new

file. If the file system were to reuse the old file’s blocks for

the new file, writes to the new file would bypass the log and

modify the same blocks that used to belong to the old file.

If the file system crashes at this point, before flushing the

in-memory transactions that deleted the old file and created

the new one, the disk would contain the old file whose data

blocks contain the new file’s data. To avoid this problem, file

systems typically delay the reuse of freed disk blocks until

in-memory transactions are flushed to disk.

Exposing uninitialized data. Log-bypass writes present
a complication where the old contents of a disk block may

be exposed in a newly created file after a crash. Consider an

application that grows a file using ftruncate. This causes

the file system to do two things: first, to find an unused

disk block and zero it out, and second, to mark the block

as allocated and add it to the file’s block list. With the log-

bypass write optimization, an implementation may treat the

zeroing of the disk block as a data write and bypass the log,

but perform the update of the free bitmap and the file’s block

list in a transaction. If the transaction is flushed to disk

without the preceding zero write, and the computer crashes,

the disk contains a new file pointing to the old disk block

whose data has not been erased yet. This can expose one

user’s data to another user.

It may seem relatively straightforward to avoid a problem

like this [20]. However, two further optimizations make the

problem less obvious and led to deleted file contents being

exposed after a crash in Linux ext4; this bug existed for six

years before it was discovered [30]. First, a modern disk has

an internal write buffer that allows the disk’s controller to

reorder writes, until the file system issues a write barrier.
Second, ext4 can use checksums to ensure the integrity of

the on-disk log after a crash, allowing it to commit transac-

tions using just one write barrier instead of two. Under the

combination of these optimizations, ext4 performs all disk

writes in a batch: the zeroes to the old file blocks and the

new transaction adding the block to the file’s block list.



Due to the checksum optimization, ext4 did not issue a

write barrier between writing the zeroes and the transaction,

which can lead to the problem described above. The disk

may choose to persist the transaction first, before zeroing

out the data block. A crash between these two steps results

in a new file pointing to old disks blocks whose data have not

been erased. On recovery, the file system will see that the

log is valid (because the checksum matches) and will replay

the creation of the file. However, the zero-ing hasn’t been

performed, and thus the block pointers in the new file may

point to blocks with content from previous files or directo-

ries. Developers of ext4 considered the two optimizations

incompatible and proposed to disallow enabling both modes

at the same time [30].

3.4 Goal: specification for formal verification
The above examples illustrate the tension between perfor-

mance and correctness in file systems and their applications.

This paper explores formal verification as a way of reconcil-

ing high-performance file systems and the bugs that arise

due to their complexity. Formal verification is a promising

approach because it can help both file-system and applica-

tion developers to reason about all possible corner cases in

their sophisticated optimized implementations, and prove

that their code is correct regardless of when the computer

may crash. However, this requires a specification describ-

ing the behavior of the file system that allows for the above

optimizations.

4 METADATA-PREFIX SPECIFICATION
The POSIX specification describes the expected behavior of

most file-system operations [26]. Unfortunately, it does not

specify much about the behavior of fsync and fdatasync,

or about what happens after a crash for any other system

call. This omission has been brought to the attention of the

POSIX committee [44], but they have been unable to reach

consensus so far on what POSIX should promise about crash

safety.

In lieu of formal guidance from POSIX, file systems have

implemented a wide range of guarantees; these guarantees

differ even within the same file system depending on which

variant of the implementation is used (as chosen through

mount options) [40]. This makes it difficult for an application

developer to know what crash-safety guarantees they can

or cannot rely on if they want to achieve high performance.

To understand the issues involved, consider an appli-

cation that calls rename("d1/f", "d2/f"), followed by

fsync("d1"). For performance reasons, a POSIX-compliant

implementation might flush just the content of the specific

directory (i.e., d1), allowing the file systems to parallelize

fsync on different files and directories. However, in our ex-

ample, this would mean that the file f could be lost after a

crash: it would be gone from d1, because d1 was synced to

disk, but it would not yet appear in d2, because d2 had not

been synced. Thus, if the fsync specification required that

just the directory itself was flushed, the file system may be

able to get good performance, but it would be difficult for

application developers to use such an API in the presence of

crashes.

To make it easier for application developers to build crash-

safe applications, the file system could provide a differ-

ent specification, mirroring the traditional BSD semantics,

where all metadata operations are synchronous (written

to disk immediately), but file contents are asynchronous.

This means that an application need not worry about call-

ing fsync on a directory; the rename operation from the

crash_safe_update example in the previous section would

be persisted to disk upon return. While this is simple to rea-

son about, it achieves low performance for metadata-heavy

workloads (such as extracting a tar file or deleting many

files).

As can be seen from these different specifications, defining

the specification for directory fsync requires a balance be-

tween achieving good performance and enabling application

developers to reason about application-level crash safety.

Approach. We approach this challenge by proposing a prac-

tical specification that is both easy use by application devel-

opers and allows for efficient file-system implementations.

Specifically, the metadata-prefix specification says:

1. fdatasync(f) on file f flushes just the data of f. This al-

lows for log bypass when writing f’s data blocks, which

is important to avoid writing file data to disk twice. For

example, this allows a database server to write to the

disk (through a large preallocated file) without incur-

ring file-system logging overheads.

2. fsync(f) is a superset of fdatasync(f): it flushes both

data and metadata. Furthermore, fsync flushes all pend-
ing metadata changes; i.e., if fsync(d) is called on direc-

tory d, it effectively ignores the argument and flushes

changes to all other unrelated directories.

3. Finally, the file system is always allowed to flush any

file’s data or all of the metadata operations performed

up to some point in time. This allows the file system to

reorder data and metadata writes to disk. After a crash,

metadata updates will be consistently ordered (i.e., if

the file system performed two operations, a and b, in
that order, then after a crash, if b appears on disk, then

so must a), but data writes can appear out-of-order.

This metadata-prefix specification provides a clear con-

tract between applications and a file system. Ensuring meta-

data ordering helps developers reason about the possible

states of the directory structure after a crash: if some oper-

ation survives a crash, then all preceding operations must

have also survived. At the same time, the specification allows

for high-performance file-system implementations: on the

metadata side, it allows batching of metadata changes (until

the next fsync call), and on the data side, it allows for log

bypass for file data writes and allows for each file’s data to



be flushed independently of other files and of the metadata.

This enables high performance for applications that modify

data in-place.

Discussion. One benefit of the metadata-prefix specifica-

tion is that, by flushing all metadata changes in order, it

simplifies the application code for durably creating files.

For example, in the crash_safe_update procedure from Fig-

ure 1, the developer knows that all directory changes have

been flushed to disk once fsync(dirname(filename)) re-

turns. Notably, this includes any possible pending changes

to parent directories as well, for instance if the applica-

tion had just created the parent directory prior to calling

crash_safe_update.

One limitation of the metadata-prefix specification is that

it can flush unrelated changes to disk when an application

invokes fsync, since the specification requires all metadata

changes to be flushed together. In practice, the metadata-

prefix specification captures behavior similar to that pro-

vided by the ext4 implementation (in its default configura-

tion), largely as a side effect of ext4 having a system-wide

log for all metadata. This suggests that the specification is

amenable to high-performance implementations and high-

performance applications, and our prototype implements

many of the optimizations found in ext4.

Recent work has explored the performance benefits of

avoiding flushing unrelated metadata changes [7, 38, 41].

An interesting direction for future work would be to come

up with a corresponding specification where it is still easy

enough to prove application-level correctness.

5 FORMALIZING THE METADATA-
PREFIX SPECIFICATION

To verify a file-system implementation, we must formalize

the metadata-prefix specification described above, which

means precisely specifying the states in which a system can

crash at every point in its execution. As in Crash Hoare

Logic [10], we explicitly specify these crash states by de-

scribing all possible contents of the disk at the time of the

crash. System calls that modify metadata run in a transac-

tion, which ensures that all metadata changes are applied to

disk atomically. Deferred writes lead to many more possible

crash states: when a computer crashes, the state of the disk

could reflect the changes of any system calls since the last

fsync. The challenging aspect of formalizing these crash

states is to describe them in a way that is easy for applica-

tions to reason about, specifically in specifying the behavior

of bypass writes and fdatasync.

5.1 Strawman: operational specification
To understand why bypass writes and fdatasync complicate

a specification, consider an example application that renames

a file from f1 to f2 and writes to f2. When the computer

crashes, the file system can recover in a state where the

application’s writes are applied to f1. This situation arises

because the file system’s bypass writes directly update the

on-disk blocks corresponding to f2, which happen to also

correspond to f1 if the rename has not been flushed yet.

A natural way to specify bypass writes is to describe what

the file system does in an operational manner: e.g., after a

bypass write to f2, f2’s data block bn is modified, and after an

fdatasync, the file’s disk blocks are flushed. This matches

the informal specification from POSIX [52] and from the

Linux manpage for fdatasync [51].

This description makes it easy for an application to reason

about the state of the system in the absence of crashes: f2

now has the new data. However, to reason about crashes,

the application must consider all possible metadata states on

disk after a crash (e.g., whether the rename succeeded) and

deduce what effect modifying bnwould have in that situation.

This may be difficult for some metadata operations, such as

creating or deleting a file, or freeing and reusing data blocks.

For instance, if an application deletes f1, then creates f2

before writing to it, and then the computer crashes, f1 may

still appear to be on disk (because the deletion metadata was

not flushed yet). Applications likely expect that the bypass

write to f2 should not corrupt f1’s contents in this case, even

though this was acceptable when the application renamed f1

to f2. As yet another example, applications also expect that

the bypass write to f2 not corrupt other file-system state

(e.g., the contents of some unrelated directory). Reasoning

about these possible crash effects requires the application to

precisely understand which disk blocks correspond to which

parts of the file system (e.g., data blocks of one file or another

file, or metadata blocks corresponding to a directory, a free

bitmap, the log, etc.).

The above example illustrates why the operational way

of describing bypass writes and fdatasync is not condusive

to proving application crash safety: applications must in ef-

fect prove the correctness of file-system internals, reasoning

about disk-block allocation and reuse.

5.2 Our approach: tree-based specification
Our approach is to specify the effects of bypass writes and

fdatasync purely at the level of file-system trees, without

mentioning disk blocks. This allows the application devel-

oper to reason purely about file-system trees that can appear

after a crash, and requires the file-system developer to prove

that bypass writes meet the tree-level specification (e.g., by

proving that file data blocks are never reused in a way that

can corrupt other files or metadata).

Our specification of the file-system state reflects the two

degrees of nondeterminism related to crashes: first, which

metadata updates have been committed to disk after a crash,

and second, which bypass writes have been reflected in the

on-disk state. The next two subsections describe how we

model these two aspects.

5.3 Representing deferred commit
In the presence of the deferred commit optimization (where

a file system buffers committed transactions in volatile mem-

ory), it is difficult to describe the tree that might be on disk



after a crash. For instance, a synchronous specification for

the unlink system call might say that after unlink returns,

the file is removed from the tree, and if a crash occurs dur-

ing unlink, the file might or might not have been removed.

With deferred commit, if a crash occurs during unlink, the

on-disk state might have little to do with unlink itself and

instead might reflect the operations that were performed on

the tree before unlinkwas called. For instance, the directory

in which unlink is called might not have been created yet.

To describe these crash states succinctly, we avoid reason-

ing about the contents of a single tree and instead represent

the possible on-disk state as a sequence of trees. Each tree

represents the state of the file system after some system call,

and each system call adds a new tree to the sequence.

Figure 2 shows an example tree sequence. On the left,

the first tree in the sequence represents the persistent state

stored on disk. The list of transactions on the bottom corre-

sponds to the system calls that have committed in memory

but whose changes have not been flushed to disk yet. Instead

of describing individual transactions, the specification talks

about a sequence of trees, where each tree represents the

state that would arise if one were to apply the in-memory

transactions, in order, up to that point. Specifically, the mid-

dle row of Figure 2 shows the disk contents that would arise

after applying a prefix of in-memory transactions, and the

top row shows the corresponding abstract file-system trees.

tree_rep tree_rep tree_rep

diskndisk1disk0

Disk sequence

txn1 txn2 txnn

...

...

Write-ahead logIn-memory 
transactions

disk0

Flushed state

...

Figure 2: An illustration of the tree-sequence abstraction.

Tree sequences simplify specifications. For instance, con-

sider the specification of the unlink system call, shown in

Figure 3, written using Crash Hoare Logic [10].
4
The spec-

ification has a precondition, a postcondition, and a crash

condition. The specification says that, if the precondition

is true when unlink is invoked, then if unlink returns, the

postcondition will be true, and if the computer crashes before

unlink returns, the crash condition will be true.

In our unlink example, the precondition describes the

state of the system before unlink is called, by saying that

4
In our implementation of Crash Hoare Logic, these specifications

are written in Coq’s programming language [13]; in this paper we show

an easier-to-read version, but the full source code is available at https:
//github.com/mit-pdos/fscq.

SPEC unlink(cwd_ino, pathname)
PRE disk: tree_rep(tree_seq)
POST disk: tree_rep(tree_seq ++ [new_tree]) ∧

new_tree = tree_prune(tree_seq.latest,
cwd_ino, pathname)

CRASH disk: tree_intact(tree_seq ++ [new_tree])

Figure 3: Specification for unlink.

there is some sequence of trees, called tree_seq, representing
system calls that have been executed since the last fsync.

tree_rep is a representation invariant connecting the physi-

cal state of the disk and the in-memory state to their logical

representation as a tree sequence. The postcondition adds

a new tree to this sequence, where the unlinked file is re-

moved. The crash condition simply says that unlink can

crash with any of the trees from the original tree sequence

(corresponding to earlier system calls) or with the new tree

that unlink added to this sequence.

Tree sequences naturally capture the metadata-prefix

property, because the tree sequence is built up by apply-

ing the application’s system calls in order. As a result, we

can succinctly describe the metadata-prefix property by say-

ing that a crash during a system call can result in any of the

trees from the tree sequence.

Tree sequences also allow for a concise specification of

fsync for directories, as shown in Figure 4. The specification

simply says that, after fsync on a directory returns, the tree

sequence contains only the latest tree from before fsync.

This latest tree reflects all of the system calls issued by the

application up to its call to fsync.

SPEC fsync(dir_ino)
PRE disk: tree_rep(tree_seq)
POST disk: tree_rep([tree_seq.latest])
CRASH disk: tree_intact(tree_seq)

Figure 4: Specification for fsync; not shown is the part

of the precondition that checks for dir_ino pointing to a

directory inode.

5.4 Representing log-bypass writes
Writes to file data that bypass the log can cause the state of

the file system after a crash to violate the order in which

system calls were issued, since log-bypass writes are not

ordered with respect to other updates that use the write-

ahead log. For instance, if an application writes to an existing

file and then renames the file, after a crash the file may

have the new name but the old contents. Conversely, if the

application first renames the file and then writes to it, after

a crash the file may have the old name but the new contents.

As explained above, an operational specification of bypass

writes is succinct (e.g., “block bn of file f2 was updated”) but

is difficult for applications to reason about. Our specification

captures the effect of bypass writes in terms of how they

modify the trees in a tree sequence.

https://github.com/mit-pdos/fscq
https://github.com/mit-pdos/fscq


Figure 5 illustrates how our specification integrates log-

bypass writes with tree sequences. A log-bypass write

(shown by blue in the figure) can affect every tree in the

tree sequence, because under the covers, the tree sequence

is simply a logical sequence of trees that would arise if one

were to apply the in-memory transactions to the real on-disk

state. Thus, modifying the real disk state can change all of

the trees in the tree sequence. The figure illustrates two sub-

tleties with log-bypass writes that our specification captures.

If the file being modified was present elsewhere in the file-

system hierarchy in a previous tree, it will also be affected

by a log-bypass write. However, if the file is nowhere to be

found, then the log-bypass write must have no effect on the

corresponding tree (that is, it is not allowed to change the

contents of another file or corrupt some metadata block).

...

tree_rep tree_rep tree_rep

disk0 disk1 diskn

Figure 5: Interaction between log bypass and tree sequences.

This tree-level description of bypass writes is easier for

application developers to reason about because the appli-

cation developer needs to consider which tree in the tree

sequence might appear after a crash (based on which meta-

data updates were committed) and then consider the files

with outstanding bypass writes in that tree. Applications

need not consider the possibility of bypass writes modifying

data blocks belonging to other files, because the specification

of bypass writes precisely describes which file(s) in the tree

can be affected.

SPEC pwrite(ino, off, buf )
PRE disk: tree_rep(old_tree_seq) ∧ ∃path,

find_subtree(old_tree_seq.latest, path) = ⟨ino, f ⟩ ∧
off ∈ f

POST disk: tree_rep(new_tree_seq) ∧ ∀i,
if ∃pn,∃fi , such that old_tree_seq[i][pn] = ⟨ino, fi ⟩,
then new_tree_seq[i] = tree_update(old_tree_seq[i], pn,

fi .overwrite(off, buf ))
else new_tree_seq[i] = old_tree_seq[i]

CRASH disk: tree_intact(new_tree_seq)

Figure 6: Specification for the pwrite system call that by-

passes the log. This simplified specification assumes that

pwrite does not extend the file.

Consider Figure 6, which shows a simplified specification

for the pwrite system call, assuming that pwrite does not

grow the file. The postcondition states that, if a file with

the same inode number exists in any earlier tree, it will

be modified, at the same offset, and otherwise the pwrite

will have no effect on that earlier tree. The abstract file’s

overwrite() method discards writes past the end of the file;

one implication is that the specification says that writes to a

file that was recently extended may be applied partially (or

not at all) in earlier trees in the tree sequence. This gives

application developers a clear guarantee about what can and

cannot happen to other files after a crash. Note that the

specification allows the file to have a different path name in

a previous tree, corresponding to our example where f1 was

renamed to f2 before f2 was modified.

SPEC fdatasync(ino)
PRE disk: tree_rep(old_tree_seq) ∧ ∃path,

find_subtree(old_tree_seq.latest, path) = ⟨ino, f ⟩
POST disk: tree_rep(new_tree_seq) ∧ ∀i,

if ∃pn, ∃fi , such that old_tree_seq[i][pn] = ⟨ino, fi ⟩
then new_tree_seq[i] = tree_update(old_tree_seq[i], pn,

fi .sync_data())
else new_tree_seq[i] = old_tree_seq[i]

CRASH disk: tree_intact(old_tree_seq)

Figure 7: Specification for fdatasync.

The specification for fdatasync, shown in Figure 7, is

similar. The main difference in the postcondition is that,

instead of updating the file’s contents using the abstract file’s

overwrite() method, it flushes the file’s data, represented

using the abstract file’s sync_data() method.

5.5 Representing crash nondeterminism
After a system crashes and recovers, the metadata-prefix

property requires that the resulting file-system state reflects

a prefix of metadata changes, along with any subset of file

data writes, since data writes may bypass the log. Tree

sequences concisely represent the prefix of metadata writes

that survive a crash, by nondeterministically choosing one

of the trees from the tree sequence.

To represent the effects of reordered data writes on that

tree, we model the contents of a file’s block as a history

of values that have been written to that block (similarly to

how FSCQ models asynchronous disk writes [10]). Writing

to a block adds a new value to the history. Reading from

a block returns the latest value from the history. Calling

fdatasync deletes all history except for the last write. A

crash nondeterministically selects one of the block values

from the history.

SPEC recover()

PRE disk: tree_intact(old_tree_seq)
POST disk: tree_rep([crash_xform(t )]) ∧ t ∈ old_tree_seq
CRASH disk: tree_intact(old_tree_seq)

Figure 8: Specification for recover.

Figure 8 formally describes how tree sequences capture

crash recovery. The postcondition of recover says that the



file-system state is a singleton tree sequence, whose tree is

the crash transform of some tree t that appeared in the pre-

crash tree sequence. The crash_xform function implements

the nondeterministic choice of data blocks from each file’s

history, as described above. Since the crash condition im-

plies the precondition, recover is idempotent with respect

to crashes and can thus handle crashes during recovery.

DFSCQ makes specifications more concise by taking ad-

vantage of the fact that some operations shrink the set of

possible crashes while others grow the set. For example,

Figure 6 specifies that pwrite’s crash condition corresponds

to the new tree, which includes all of the possible ways that

the old tree could have crashed. In contrast, fdatasync’s

crash condition in Figure 7 corresponds to the old tree, since

that tree subsumes all possible crashes after fdatasync.

5.6 Log checksums
Many file systems use checksums to ensure the integrity

of a log after a crash. Although this may seem like an im-

plementation issue, there is a risk that it shows up in the

specification because of the possibility of checksum colli-

sions. Specifically, there is a small (but nonzero) probability

that, after a crash, the recovery procedure reads the on-disk

log and decides that the log contents are valid, because the

checksum matched due to an inadvertent checksum colli-

sion, even though the file system did not write such a valid

log entry to disk. One approach to handling this nonzero

probability is to have the file-system specifications explicitly

state that there is a small probability that the specification

doesn’t hold (because of a hash collision). The downside of

this approach is that we must prove that the implementa-

tion indeed guarantees that the probability is small. This

requires probabilistic reasoning in any layer above the log-

ging subsystem, which would complicates proofs and is also

not well-supported by the Coq ecosystem.

Another approach is to state an axiom that collisions will

not happen, matching how programmers typically ignore

the possibility of hash collisions. Using this axiom, however,

we can prove a contradiction using a pigeon-hole argument

in Coq (and any other formal proof system). This would in

turn make all of DFSCQ’s specifications unsound, because

any conclusion follows from a contradiction.

We avoid reasoning about probabilities and unsoundness

of specifications by taking advantage of the fact that Hoare-

logic specifications deal with terminating procedures, so

we can model the negligible hash collisions as procedure

nontermination, a trick adopted from previous work [4]. We

introduce a new opcode in Crash Hoare Logic, called Hash,
which computes the hash value of its input. The formal

semantics models the Hash opcode by keeping track of all

inputs ever hashed, and by storing their corresponding hash

values (purely for proofs; not at execution time). If Hash is

presented with an input that hashes to the same result as

an earlier, different input, then the semantics says that the

Hash opcode enters an infinite loop and never returns. The

details of this plan are described in Wang’s thesis [57].

This formalization achieves our goals. First, it allows de-

velopers to conclude that, if Hash returns the same hash

value twice, the inputs must have been equal (because oth-

erwise, according to the formal semantics, Hash would not

have returned), without reasoning about probabilities. This

allows writing specifications about entire file-system oper-

ations, such as rename, saying that if the operation returns,
then a transaction must have been committed. Second, this

formalization is sound, because it does not prohibit the pos-

sibility of hash collisions, instead explicitly taking them into

account (by formally treating the program as entering an

infinite loop on a collision).

At runtime, of course, the Hash opcode is implemented

using a collision-resistant hash function. This hash func-

tion does not enter an infinite loop when presented with

a colliding input, and consequently it can differ from the

formal semantics of Hash. However, since we know that

our hash function is collision-resistant, we know that the

possibility of finding a collision is negligible, and thus the

possibility that the real execution semantics will differ from

the formal ones is also negligible. Consequently, using a

collision-resistant function for Hash at runtime allows us to

capture the standard assumption made by developers (that

hash collisions do not happen).

6 IMPLEMENTATION
To demonstrate that the metadata-prefix specification allows

for a verified high-performance file-system implementation,

we built a prototype file system called DFSCQ. DFSCQ is

based on FSCQ but implements a wide range of I/O and

CPU performance optimizations and provides a number of

features missing from FSCQ, such as implementing doubly

indirect blocks to support large files and proving that mkfs

is correct. DFSCQ is not as complete as ext4; for exam-

ple, it does not support extended attributes or permissions,

and it does not implement the cylinder-group optimization.

Furthermore, ext4 can run system calls concurrently, while

DFSCQ has no support for concurrency.

Following FSCQ’s approach, DFSCQ’s implementation is

extracted from Coq into Haskell code and compiled into a

user-space FUSE server. Table 2 shows the lines of code

for different components of DFSCQ. The proofs are fully

checked by Coq for correctness and guarantee that DFSCQ’s

implementation meets DFSCQ’s metadata-prefix specifica-

tion, which covers all system calls implemented by DFSCQ

(a few of them were shown earlier in this paper). The total

development effort involved 5 people over two years, but

none of these people worked full-time on DFSCQ; the total

effort behind DFSCQ is much less than 10 person-years.

The correctness argument of DFSCQ assumes that trusted

components are correct; in the case of our prototype, the TCB

includes the specifications, the formal execution semantics,

Coq’s proof checker, the Haskell extraction process, and the

runtime environment (which includes the Haskell runtime,

the FUSE driver, and the Linux disk device driver).



Component Lines of code

FSCQ infrastructure 24,032

Hashing semantics 458

General data structures 7,216

Buffer cache 2,453

Write-ahead log 11,791

Inodes and files 9,521

Directories 10,310

Top-level file-system API 2,320

Byte files 6,453

Tree sequences 5,630

crash_safe_update 3,634

Haskell extraction support 109

Total 83,927

Table 2: Lines of spec, code, and proof for DFSCQ

In the rest of this section, we provide more details about

the most interesting aspects of DFSCQ: block reuse, write-

ahead logging, CPU performance optimizations, and proofs.

6.1 Block reuse
Implementing log-bypass writes correctly is challenging.

Consider a disk block b that belongs to directory d , and
suppose an application calls rmdir(d) and then the file sys-

tem reuses b for a new file f . If the rmdir is not yet flushed
to disk, log-bypass writes to b will overwrite the on-disk

contents of d . After a crash, d will be corrupted with f ’s
contents. The typical approach for avoiding this problem

is to ensure that data blocks are not reused until after the

metadata log is applied to disk. DFSCQ implements a variant

of this approach, by maintaining two block allocators, one of

which is used for allocating blocks and the other for freeing

blocks. Flushing the metadata log forms a barrier, which

ensures that there are no possible on-disk pointers to free

disk blocks. DFSCQ swaps the two allocators on every log

flush, since it is now safe to reuse blocks that were freed

before the log flush.

To prove the safety of this plan, DFSCQ maintains an

internal invariant, called bypass safety, which is a pairwise

relation between every adjacent pair of trees in the tree

sequence. This relation states that, for two trees (one old

and one new), for every block that belongs to some file in

the new tree, that same block must either belong to the same

file in the old tree (with the same inode number, at the same

offset), or that block must be unallocated in the old tree.

Since this invariant is transitive, it allows us to prove that

updating a block in the latest tree will never affect other files

or directories. We prove that this invariant is maintained

throughout DFSCQ. If the implementation did not correctly

handle block reuse, it would violate the specification, because

log-bypass writes to a reused block may affect an unrelated

file or unrelated metadata, which would alter the tree in a

way prohibited by the specification (for instance, as shown

in Figure 6 and Figure 7), and we would be unable to prove

that the implementation meets the specification.

Another block-reuse complication arises when an applica-

tion resizes a file and then invokes fdatasync. For example,

if a file was truncated and then regrown, the file may have

the same length, but the underlying disk blocks are different

(because they were not reused). At this point, if the applica-

tion invokes fdatasync, the file system does not knowwhich

blocks the file used to have in the past and, as a result, cannot

flush the file’s old blocks to disk. This makes it difficult to

satisfy the metadata-prefix specification shown in Figure 7,

which requires that the file’s data be properly flushed in all
past trees.

To prove that applications use fdatasync correctly,

DFSCQ introduces another relation called block stability.
Block stability says that a file’s list of blocks grows monoton-

ically within a tree sequence. Growing a file maintains that

file’s block stability. Truncating a file gives up block stability

of that file, because now fdatasync will not flush the blocks

that the file used to have. Flushing the log reestablishes block

stability of every file, because there is now exactly one tree

in the tree sequence. Block stability is a per-file property,

and the postconditions of our specifications for pwrite and

fdatasync are conditional on the file’s block stability (not

shown in the simplified specs earlier in the paper).

6.2 Write-ahead logging and log-bypass writes
DFSCQ implements write-ahead logging much like other file

systems, including sophisticated optimizations like deferred

commit, deferred apply, group commit, checksums, etc. The

unique challenge faced by DFSCQ lies in proving the cor-

rectness of this write-ahead log. DFSCQ’s implementation

breaks up the write-ahead log into smaller logical modules

(as shown in Figure 9), whose correctness can be proven inde-

pendently and combined to provide a single logical abstract

state: a logged disk.

One complication we did not initially expect is reconciling

the log with log-bypass writes. Bypass writes still interact

with the log in two ways. First, bypass writes need to be

reflected in the abstract state exposed by the log. Second, if

the file system issues a bypass write to blockb, and there is an
unapplied transaction that modified block b, it is important

that this transaction does not later overwrite b’s contents.
We resolve this complication by making the log aware of

bypass writes; the log exposes two functions: write, which

logs the update, and dwrite, which bypasses the log. Both

update the abstract logged disk state, but write makes a

synchronous update whereas dwrite adds a pending write.

dwrite’s implementation also checks if there was a previous

logged write to the same address as the bypass write.

Internally, DFSCQ implements two ways of updating file

data, just like ext4’s two mount options: one where file

data writes bypass the log and one where file data writes are

logged. Both modes of operation are proven to obey the same

specification. Unlike ext4, both modes are compatible with

the log-checksum optimization, which, as a result, is always

enabled. Furthermore, DFSCQ does not require choosing

one of the two modes at the time the file system is mounted.



Figure 9: Illustration of log layers and the timeline of a trans-

action. Transactional writes are added to an activeTxn
map in the LogAPI layer. When the application calls commit,

activeTxn is buffered in a list of pending transactions in

GroupCommit. When flush is called on GroupCommit, all

pending transactions are flushed to disk together as a single

transaction in the DiskLog layer. At this point, the transac-

tions are durable, and Applier can lazily apply and truncate

the log records.

Instead, DFSCQ uses a simple heuristic to decide whichmode

to use: when appending to a file, writes are logged (since

DFSCQ must log the inode’s block-pointer update anyway),

and when overwriting a file, writes bypass the log, since no

metadata updates are needed. One downside of this simple

heuristic is that DFSCQ will log writes in some cases (e.g.,

large file appends) when it would have been better to do

bypass writes.

6.3 CPU-performance optimizations
Since DFSCQ generates executable code through Haskell,

any CPU inefficiency is multiplied by the overhead of run-

ning functional Haskell code. DFSCQ includes a range of

common optimizations, which are proven correct. For ex-

ample, DFSCQ implements specialized caches for directory

entries, inodes, dirty blocks, and free bitmap entries (used for

both free disk blocks and free inodes), instead of recomput-

ing them based on the buffer cache. DFSCQ has a two-level

implementation of a bitmap allocator: instead of treating

a disk block as an array of 32768 bitmap bits (as in FSCQ),

DFSCQ treats a disk block as an array of 64-bit words, each

of which has 64 bitmap bits. DFSCQ implements several

workarounds for Haskell-induced overhead, such as order-

ing operations to avoid excessive garbage collection and lazy

evaluation.

6.4 Proving
Proving the correctness of DFSCQ is challenging because

DFSCQ maintains complex invariants, some of which were

mentioned above. In addition, the metadata-prefix specifica-

tion also allows for complex behavior. Defining safety rela-

tions, such as bypass safety and block stability, and proving

their transitivity helped us prove the correctness of several

optimizations.

To help applications reason about the contents of trees, we

introduced a variant of separation logic [42] for pathnames

in trees. The “addresses” in this separation logic are full path-

names, and the “values” are one of three types: either a file

(along with the contents of that file), a directory (with no ad-

ditional information about the directory, since the content of

that directory is reflected in the values associated with other

pathnames), or “missing,” which indicates that the pathname

does not exist. (The simplified specifications shown in this

paper do not use this separation logic, however.)

In the absence of separation logic, we found that prov-

ing application-level code required reasoning about func-

tional tree transformations, such as the result of performing

a lookup after rename or unlink. This in turn required rea-

soning about whether any pair of names are the same or

different, whether one of them might be a directory, etc. By

tracking directories andmissing pathnames in our separation

logic, we are able to precisely capture that unlink deletes a

file and that creating a file requires that it not already exist

and that the parent directory does exist (and is a directory).

7 EVALUATION
This section uses DFSCQ to answer the following questions

about the metadata-prefix specification:

• Can developers use the metadata-prefix specification to

prove the crash safety of their applications, and are tree

sequences helpful? (§7.1)

• Does the metadata-prefix specification help file-system

developers avoid bugs? (§7.2)

• Is the metadata-prefix specification, and DFSCQ’s imple-

mentation of it, correct? (§7.3)

• Does the metadata-prefix specification allow for a high-

performance implementation? (§7.4)

7.1 Application crash safety
To provide evidence for whether a tree-sequence-based spec-

ification is useful in proving application-level crash safety,

we implemented and proved the crash_safe_update proce-

dure shown in Figure 1, which captures the core pattern used

by applications to perform crash-safe updates.

Proving the correctness of crash_safe_update led us to

discover several cases where the DFSCQ specification was

too weak. For example, in the read specification we origi-

nally forgot to mention that the data returned by the system

call is related to the contents of the file. None of these issues

required changing the DFSCQ implementation, and we were

able to reprove the correctness of DFSCQ after fixing the

specification.

Proving crash_safe_update also led us to discover a num-

ber of corner cases in crash_safe_update itself. For exam-

ple, we discovered that crash_safe_update cannot perform



Bug category and example Possible Prevented Possible with Prevented by
in FSCQ? by FSCQ? the M-P spec? the M-P spec?

Logging logic; write/barrier ordering [16, 30, 53] Some (no checksumming) Yes Yes Yes

Misuse of logging API [46, 54] Some (no log bypass) Yes Yes Yes

Bugs in recovery protocol [25, 36] Yes Yes Yes Yes

Improper corner-case handling [60] Yes Yes Yes Yes

Low-level bugs [30, 37, 59] Some (memory safe) Yes Some (memory safe) Yes

Concurrency [31, 55] No — No —

Table 3: Representative bugs found in Linux ext4 and whether the metadata-prefix specification precludes them.

a safe update on a file with the same file name as the tempo-

rary file that it uses. Another example is that, after recovery,

the destination file could be legitimately neither equal to its

original contents nor the source file: if the source file was
modified but not synced prior to calling crash_safe_update,

the destination file could contain the latest write to the source

file, but the source file itself could lose that write after a

crash. After fixing the specification to take into account

these corner cases, we were able to prove the correctness of

crash_safe_update when running on top of DFSCQ.

Tree sequences help prove application safety. As a con-

crete example, DFSCQ has an intermediate-level operational

specification for the file system, following the strawman

described in §5.1, which describes the effect of log-bypass

writes in terms of direct writes to the underlying disk.

We tried to prove crash_safe_update on top of this oper-

ational specification and gave up due to complexity after

a significant amount of effort. This directly led us to de-

velop a tree-based specification, which allowed us to prove

crash_safe_update with a modest amount of effort.

7.2 File-system bugs
This section sheds light in two ways on whether DFSCQ’s

specification can help prevent real bugs. First, we present a

case study of different kinds of bugs that have been discov-

ered in the Linux ext4 file system, and we argue for whether

FSCQ (which has a synchronous specification that disallows

DFSCQ’s optimizations) or DFSCQ avoid them. Second, we

describe our own experience in developing DFSCQ, and we

point out specific bugs that were caught in the process of

proving its correctness.

ext4 bugs case study. We looked through Linux ext4’s Git

logs starting from 2013 and categorized the bugs fixed in

those commits. Table 3 shows the resulting categories, with

representative bugs from each category. For instance, this

table includes the bug that was mentioned in the introduc-

tion, where ext4 disclosed previously deleted file data after

a crash [30]. The table also shows whether each bug cate-

gory could have occurred in the implementations of either

FSCQ or DFSCQ; for instance, some bugs arise due to concur-

rent execution of system calls, which is impossible in both

FSCQ and DFSCQ by design (i.e., they are not sophisticated

enough to have such a bug). The table also shows whether

the theorems of FSCQ and DFSCQ prevent those bugs.

We make four conclusions from this case study. First,

DFSCQ is sophisticated enough that its implementation

could have hadmany of the bugs that were fixed in ext4, mak-

ing verification important. Second, FSCQ was not sophisti-

cated enough to even have many of these bugs, especially the

trickier cases dealing with log bypass, log checksums, and so

on. Third, the metadata-prefix specification precludes every

bug category that was possible in the DFSCQ implementa-

tion. This suggests that the metadata-prefix specification is

effective at preventing real bugs. Finally, the one category

where the metadata-prefix specification is not sophisticated

enough to have bugs is concurrency: the specification, as

well as DFSCQ, are single-threaded. Verifying a concurrent

file system is an open problem and remains future work.

Development experience. While proving the correctness

of DFSCQ, we ran into several cases where we were unable

to prove a theorem, in the process discovering an underly-

ing implementation issue. For instance, when mknod was

invoked on an existing pathname, it would delete the old file.

This was allowed by the specification (which in itself could

have arguably been a bug), but more importantly it failed to

deallocate the old file’s blocks. This violated bypass safety,

and we were unable to prove that log bypass would be safe

after mknod. Another example is log bypass writes: while

trying to prove that it is safe to bypass the log for modifying

a file data block, we realized that there could be a pending

non-bypass write to that same block in the write-ahead log.

This forced us to change the system’s design for handling

log-bypass writes, as described in §6. These examples show

that proofs are good at bringing out corner cases that are

easy to overlook during development and testing.

7.3 Are DFSCQ specs correct?
Proving crash_safe_update demonstrates that the specifi-

cation provides strong guarantees that can be used by an

application. To further demonstrate that DFSCQ’s specifica-

tion are correct, we performed the following experiments,

which suggest that DFSCQ’s specification and implementa-

tion match what developers expect.

fsstress. We ran fsstress from the Linux Test Project to

check if it finds bugs in DFSCQ. When we first ran fsstress,

it caused our FUSE file server to crash. However, after some

investigation, we discovered that this was due to a bug in

our Haskell FUSE bindings that sit between DFSCQ and the



Linux FUSE interface. The bug was due to the developer

thinking that some corner case could not be triggered and

calling the error function in Haskell to panic if that case ever

executed. As it turns out, fsstress found a way to trigger

that corner case. After fixing this bug, fsstress ran without

problems and did not discover any bugs in DFSCQ’s proven

code. This bug reflects the fact that DFSCQ has a large TCB.

Enumerating crash states. We ran crash_safe_update

on DFSCQ while monitoring all of the disk writes and barri-

ers issued by DFSCQ. We then computed all possible subsets

and reorderings of DFSCQ’s disk writes, subject to its barri-

ers, to produce every possible state in which DFSCQ could

have crashed. Finally, we remounted the resulting disk with

DFSCQ and examined the file-system state after DFSCQ per-

formed its recovery. This experiment produced 182 possible

disks after a crash but only three distinct file-system states

after DFSCQ executed its recovery code: neither file existed,

the temporary file existed with no contents, or the desti-

nation file existed with the written contents. All of these

states are safe, since either the destination file didn’t exist

or it contained the correct data (the empty temporary file is

removed during recovery).

7.4 Performance
To evaluate DFSCQ’s performance, we use two microbench-

marks and three application workloads. We compare DFSCQ

to FSCQ [10], to Yxv6 [48], and to ext4.
5
We run Yxv6 in

two modes: the verified synchronous mode where all sys-

tem calls immediately persist their changes, and the asyn-

chronous mode where system calls are deferred in mem-

ory, called group_commit by Yggdrasil, which we denote by

Yxv6
∗
. This second mode, however, does not have a top-

level file-system specification that describes how commits

are deferred [47, 49]; as a result, it provides no meaning-

ful proof of crash safety. For ext4, we ran in two modes:

one with data=ordered (which we denote ext4) and the

other with data=journal,journal_async_commitmount op-

tions (which we denote ext4/J). As a result of the bug

we described earlier [30] (§3.3), ext4 prohibits the use of

journal_async_commit in data=ordered mode.

All experiments were run on aDell PowerEdge R430 server

with two Intel Xeon E5-2660v3 CPUs and 64 GB of RAM. We

used several disk configurations to compare performance.

One is a 7200 rpm WD RE4 2 TB rotational disk, which we

denote as HDD. One is an inexpensive Samsung 850 SSD,

which we denote as SSD1. The third is an expensive high-

performance Intel S3700 SSD, denoted SSD2. Finally, a RAM

disk configuration is denoted as RAM as a way of simulating

the maximum possible disk performance. We use two SSDs

to demonstrate how DFSCQ performs on both high-end and

lower-end SSDs.

To confirm that the experimental results are meaningful,

we ran all experiments an additional five times. For all ex-

5
We do not compare to BilbyFS [2] since it is designed to run only on

raw flash devices, and it runs only with an older version of the Linux kernel.

periments, the standard deviation of the measured results

was within 10% of the mean; the median standard deviation

across all experiments was 1.6%. We expect some variance

across runs due to non-deterministic behavior in the Linux

I/O stack and the storage devices.

Microbenchmarks. The microbenchmarks are intended

to measure performance of deferred commit for small file

operations and large file writes, inspired by LFS [45]. The

smallfile benchmark creates 1,000 files; for each, it creates

the file, writes 100 bytes to it, and fsyncs it; we measure

throughput in terms of files per second. The largefile

benchmark overwrites a 50 MB file, calling fsync every

10 MBytes; we measure throughput in terms of MB/s.

The results are shown in Figure 10. We draw several

conclusions. First, DFSCQ achieves good performance, sig-

nificantly improving on FSCQ and Yxv6, due to its I/O and

CPU optimizations. DFSCQ is also more complete: neither

FSCQ nor Yxv6 can run the largefile benchmark, because

they lack doubly indirect blocks.

 0

 0.5

 1

 1.5

 2

 2.5

HDD SSD1 SSD2 RAM

4
3

.9
 fi

le
/s

1
4

7
 fi

le
/s

4
5

6
0

 fi
le

/s

1
2

4
0

0
 fi

le
/s

R
e
la

ti
v
e
 t

h
ro

u
g

h
p

u
t

ext4
ext4/J

DFSCQ
FSCQ
Yxv6

Yxv6*

(a) The smallfile microbenchmark.

 0

 0.2

 0.4

 0.6

 0.8

 1

HDD SSD1 SSD2 RAM

9
5

.1
 M

B
/s

XXX

1
6

6
 M

B
/s

XXX

2
9

4
 M

B
/s

XXX

1
2

8
0

 M
B

/s

XXX

R
e
la

ti
v
e
 t

h
ro

u
g

h
p

u
t

ext4
ext4/J

DFSCQ
FSCQ
Yxv6

Yxv6*

(b) The largefile microbenchmark.

Figure 10: Performance of Linux ext4, DFSCQ, FSCQ, Yg-

gdrasil for two microbenchmarks. Vertical numbers indicate

the absolute throughput of Linux ext4. The ext4 numbers are

the same as in Table 1. Benchmarks that did not complete

due to file-size limitations are marked with “X.”



Second, DFSCQ performance is close to that of ext4 for

smallfile on HDD and even beats ext4 on SSD1. This is

because DFSCQ is just as efficient as ext4 in terms of disk

barriers, but ext4 writes out one more block to its journal

(to initially zero out the new file), which DFSCQ combines

with the subsequent data write. DFSCQ also achieves per-

formance close to that of ext4 for largefile on HDD and

SSD1. However, on SSD2 and RAM, DFSCQ’s performance

lags behind that of ext4 due to the CPU overhead of Haskell.

Applications. Figure 11 shows the performance for three

applications. mailbench is a qmail-like mail server [12],

which we modified to call fsync and fdatasync to ensure

messages are stored durably in the spool and in the user mail-

box, using the pattern from Figure 1. The TPC-C benchmark

executes a TPC-C-like workload [39] on a SQLite database.

“Dev. mix” is measuring the result of running git clone on

the xv6 source-code repository [15] followed by running

make on it.

The results mirror the conclusions from the microbench-

marks. DFSCQ significantly outperforms other verified file

systems and is able to run applications that others cannot.

DFSCQ’s performance on HDD and SSD1 is comparable to

ext4’s, but DFSCQ’s Haskell overhead becomes much more

significant with SSD2 and RAM in particular. On the TPC-

C benchmark, DFSCQ outperforms ext4 on HDD because

DFSCQ writes less data to disk compared to ext4, due to the

fact that DFSCQ combines in-memory transactions and elim-

inates duplicate writes before writing to the on-disk journal,

and ext4 does not.

8 CONCLUSION
DFSCQ is the first verified file system that implements so-

phisticated optimizations and achieves both correctness and

good performance. The metadata-prefix specification, im-

plemented by DFSCQ, is the first to describe file-system

behavior in the presence of crashes, deferred commit, fsync,

and fdatasync. Using tree sequences, DFSCQ represents the

metadata-prefix specification in a way that is amenable to

proving correctness of both the file-system implementation

and application-level code. We hope that our specification

techniques will help others to reason about their storage

systems.
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