
Verifying the DaisyNFS concurrent and
crash-safe file system with sequential reasoning

Tej Chajed
MIT CSAIL

Joseph Tassarotti
Boston College

Mark Theng
MIT CSAIL

M. Frans Kaashoek
MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

Abstract
This paper develops a new approach to verifying a performant
file system that isolates crash safety and concurrency reason-
ing to a transaction system that gives atomic access to the
disk, so that the rest of the file system can be verified with
sequential reasoning.

We demonstrate this approach in DaisyNFS, a Network
File System (NFS) server written in Go that runs on top of
a disk. DaisyNFS uses GoTxn, a new verified, concurrent
transaction system that extends GoJournal [9] with two-phase
locking and an allocator. The transaction system’s specifi-
cation formalizes under what conditions transactions can be
verified with only sequential reasoning, and comes with a
mechanized proof in Coq [37] that connects the specification
to the implementation.

As evidence that proofs enjoy sequential reasoning,
DaisyNFS uses Dafny [26], a sequential verification language,
to implement and verify all the NFS operations on top of
GoTxn. The sequential proofs helped achieve a number of
good properties in DaisyNFS: easy incremental development
(for example, adding support for large files), a relatively short
proof (only 2× as many lines of proof as code), and a per-
formant implementation (at least 60% the throughput of the
Linux NFS server exporting ext4 across a variety of bench-
marks).

1 Introduction
File systems are important to implement correctly because
applications rely on them to safely store user data. Formal
verification offers a promise of showing that the implementa-
tion of a file system always meets its specification, including
a crash safety property that says the file system recovers cor-
rectly from a sudden crash and reboot. However, efficient
implementations are internally complicated, especially be-
cause they support concurrency and aim to minimize disk
writes. Complexity makes the code more error-prone and
motivates the desire for formal verification, but also poses a
challenge: how can a proof cover concurrency, crash safety,
and functional behavior while remaining tractable for a pro-
gram the size of a file system?

The main contribution of this paper is a new approach to
verifying a file system that isolates crash safety and concur-
rency reasoning to a transaction-system implementation. This

use of a transaction system wraps the file-system data struc-
tures and logic inside a transaction, and permits sequential
reasoning for the body of each transaction. Sequential reason-
ing keeps the proof burden manageable even with an efficient
implementation that supports many features, such as large
files and in-place updates of serialized metadata.

There are three challenges in realizing this approach. The
most important lies at the interface between the transaction
system and the file system: intuitively, transactions make
things simpler, but how do we exploit this for a proof engi-
neer verifying the code running in a transaction? This paper
proves a simulation transfer theorem that formalizes how the
proof engineer can verify the body of each transaction us-
ing sequential reasoning, and yet still obtain a proof about
concurrent and crash behavior, due to the use of a verified
transaction system. This specification and its proof are not
specific to the file system written on top and could be applied
to another storage system implemented using transactions.
We use the transaction system with file-system code verified
using Dafny [26], a verification-oriented programming lan-
guage that is limited to sequential reasoning but in exchange
has good automation.

The second challenge is how to implement and verify the
transaction system itself. The performance and concurrency
of the overall system can only be as good as the transaction
system, so efficiency and fine-grained locking are impor-
tant. To that end we implement a new transaction system
called GoTxn by extending GoJournal [9] (a verified jour-
naling system) with two-phase locking. GoJournal’s spec-
ification guarantees crash safety but requires the caller to
implement concurrency control (enforced with separation
logic) to achieve atomicity. In proving GoTxn we give a
new separation-logic proof of two-phase locking’s correct-
ness based on local reasoning rather than the typical textbook
approach that reasons about the global conflict graph for a set
of transactions. GoTxn cannot make arbitrary transactions
appear atomic (for example, if they access global variables),
and so the specification for GoTxn applies only to a carefully
formalized subset of “safe” transactions that access shared
state only through the transaction system.

The third and final challenge is how to implement the file
system using only transactions. GoTxn’s safety restriction
would appear to preclude an in-memory allocator since it re-

1

quires other shared state, which we address by incorporating
allocation with a non-deterministic specification into GoTxn,
which is then used in the file system by validating the allo-
cator’s output. For sequential reasoning each operation must
be implemented as a single transaction, but operations like
removing a file can require a large number of disk writes that
might not fit in a transaction. We implement freeing using
multiple transactions; a first transaction logically deletes a
file, and then asynchronously the implementation can run
transactions that recover space from the file but have no other
visible effect.

The verified artifact from this work is DaisyNFS, which
implements a Network File System (NFS) server in Go on top
of a bare disk and comes with a proof that clients observe that
each operation follows the NFS specification as laid out in
RFC 1813 [4]. Operations appear atomic despite concurrency
and crashes. Clients can use the Linux or macOS NFS clients
to mount DaisyNFS like any other file system and interact
with it using the usual POSIX API. As an end-to-end check
that our formalization of NFS is accurate and the implemen-
tation is reasonably complete, we tested with both Linux and
macOS clients running a variety of programs.

A benefit of this file-system design is that it permits using
the sharpest tool for each part of the proof: while we use
Perennial [9], a program logic for crash safety and concur-
rency embedded in Coq, for the transaction system’s proof,
we use Dafny [26], a verification-aware programming lan-
guage with powerful automation, for the file-system opera-
tions. Dafny is a purely sequential language, but we are able
to use it despite this limitation due to the transaction system’s
proof. The value of sequential proofs can be seen in the
proof-to-code ratio for the transaction system, which is 20×,
versus the Dafny proofs which required about 2× as many
lines of proof as code. Further evidence can be seen in the
incremental development of DaisyNFS, which we elaborate
on in §9.4.

To evaluate DaisyNFS’s performance, we compare it to
that of the Linux NFS server exporting an ext4 file system.
DaisyNFS achieves within 90% of the throughput of Linux
with the ext4 data=journal option (which gives the same
crash-safety guarantees as DaisyNFS) across a variety of
benchmarks both on an NVMe and in-memory disk, and
at least 60% on the most challenging ones. The compara-
ble performance is due to the efficiency of GoJournal and
adding little overhead in the file-system code (e.g., updating
data structures in place to avoid copying). We do note that
ext4’s default data=ordered mode can get about 60% better
throughput for data-heavy workloads, at the cost of weaker
guarantees on crash.

The contributions of this paper are:

• Formalization of a simulation-transfer theorem that cap-
tures how the transaction system provides sequential rea-
soning (§5.1) for any system implemented using a transac-
tion per operation.

• A proof that the simulation-transfer theorem holds for the
GoTxn implementation (§6). This proof verifies two-phase
locking using a new strategy based on local reasoning to
connect to the GoJournal specification. For the theorem
to be true, it needs a precisely formulated definition of
safe transactions that access shared state through GoTxn
in order to behave atomically.

• Techniques to implement a file system using GoTxn, in-
cluding a validation approach to integrating in-memory
allocation into GoTxn and an approach for splitting file
removal into multiple transactions of bounded size.

• DaisyNFS, a concurrent, crash-safe file system that is veri-
fied in Dafny with sequential reasoning thanks to the above
techniques. The Dafny proofs for the file-system code en-
joy low overhead compared to the concurrent proofs for
GoTxn (2× vs. 20×). A performance evaluation shows
that DaisyNFS gets throughput at least 60% that of Linux
ext4 exported over NFS for the most challenging bench-
marks, and within 90% for many workloads.

Our approach and DaisyNFS have some limitations. The
proof approach relies on transactions appearing to run sequen-
tially, which prevents modifying state outside the transaction
system. There are cases where that would get better perfor-
mance in exchange for a more difficult proof. The transaction
system does not have a proof of liveness, and we do not prove
that transactions avoid deadlock. DaisyNFS does not support
NFS unstable writes, which improve performance by not com-
mitting writes to stable storage until explicitly requested. Our
NFS implementation does not cover some features, such as
symbolic links, hard links, and paginated READDIR; we believe
these features could be implemented and specified with the
same approach but have not done so in our prototype.

This paper describes work that is part of the first author’s
Ph.D. thesis [5], which provides more detail. The thesis also
describes the Perennial logic for verifying concurrent and
crash-safe systems, the specification and proof of GoTxn
(including GoJournal), and Goose, the tool we use to verify
GoTxn’s implementation written in Go. It goes into more
detail about the DaisyNFS proof and evaluation as well.

2 Related work
Our main contribution is a way to use transactions to enable
sequential reasoning for a concurrent file system. Our ap-
proach allows using Dafny and produces a file system that
gets good performance. Prior work has also explored how to
compose proofs across layers for modularity, to contain con-
currency, or to cross between proof systems in complemen-
tary and distinct ways; none use transactions or any similar
mechanism to isolate concurrency or crash safety reasoning.

2.1 Verifying storage systems
Directly related systems DaisyNFS directly builds upon Go-
Journal [9] to implement the transaction system, together with

2

its new version of the Perennial framework [8] that is used
to verify the transaction system’s proof. This infrastructure
is a program logic designed for storage systems that need a
combination of concurrency and reasoning about crashes at
any time, built on top of the Iris framework [23] in Coq.

The transaction system differs from GoJournal in that the
GoJournal specification requires the caller to prove that con-
current transactions do not attempt to read or write the same
objects, whereas the transaction system guarantees this au-
tomatically with per-object locks. The specification styles
are also different: whereas the GoJournal proof is a set of
specifications within the Perennial logic, the transaction sys-
tem’s proof uses a more general refinement-based definition
that we can apply to the Dafny code. This is necessary to
combine the tools, since Dafny cannot express the GoJournal
specification’s concurrency restrictions directly.

Directly related applications In prior work with the Peren-
nial framework, we verified a crash-safe, concurrent mail
server under the assumption that the file system is crash-
safe [8]. DaisyNFS is a crash-safe file system and its complex-
ity is significantly larger than a mail server: the mail server is
about 150 lines with a monolithic proof while DaisyNFS com-
bines a transaction system (itself 1,600 lines) with a 4,000-
line file system, each of which involve many intermediate
abstractions.

The authors of GoJournal verify a simple NFS file server
on top of GoJournal, but that server is not complete enough
to run real applications (it supports only one directory and
4KB files). Furthermore, the simple NFS server does its
own locking and so the proof must reason about concurrency,
increasing the proof overhead compared to DaisyNFS.

Other verified file systems Flashix [33] is a verified file
system for flash storage, recently extended to support con-
currency by Bodenmüller et al. [2]. File-system opera-
tions are proven to be atomic using a variant of Lipton’s
movers [28] technique with additional conditions to ensure
crash-atomicity [31]. In contrast, DaisyNFS proves once and
for all that operations encapsulated in a transaction are atomic.
Flashix uses per-file locks to enable concurrent file accesses,
but the directory tree is protected by a single reader-writer
lock, so operations creating or moving files cannot proceed
concurrently. DaisyNFS’s two-phase locking system allows
operations to proceed in parallel if they access disjoint parts
of the file system.

VeriBetrKV [18] is a verified key-value store similar to
the one that underpins the BetrFS [22] file system. It uses
Dafny for crash-safety reasoning but does not layer any file-
system proof on top. This file-system design does not involve
general transactions, so the code on top of the key-value store
must still carry out crash reasoning. The system has I/O
concurrency but no CPU concurrency.

AtomFS [39] is a verified concurrent file system that does
not persist data. It uses a custom concurrent relational logic

implemented in Coq. Because the system does not persist
data, AtomFS does not have any transaction system and im-
plements the file-system operations together with appropriate
locking for concurrency control.

2.2 Concurrency verification
A number of verification frameworks address concurrency,
including CIVL [20], CSPEC [6], Armada [29], Iris [24],
CCAL [16, 17], and FCSL [34], among many others. These
frameworks use a range of methods, such as movers [28]
and concurrent separation logic [3]. Although there has been
much recent progress in using these frameworks to verify
shared-memory concurrent systems, handling concurrency
still brings additional proof burden compared to verification of
sequential systems. DaisyNFS’s design isolates this verifica-
tion overhead to the transaction system’s proof, and then uses
Dafny to reason about file-system operations. Furthermore,
it would be challenging to extend a concurrency framework
with crash safety compared to starting with Perennial, which
required non-trivial extensions to add crash-safety support to
Iris.

IronFleet [19] applies Dafny’s sequential reasoning to a
non-sequential setting, namely to verify event handlers for dis-
tributed systems. Each event handler is structured in phases:
first messages are received, some local computation is done,
and then messages are sent. This structuring enables a reduc-
tion argument [28] which makes it sound to treat each event
handler as if it ran in an atomic step, with no interleaving of
steps by other machines. Instead of a reduction argument,
DaisyNFS uses the transaction system to make operations
atomic. Although DaisyNFS operations may only access
shared state through the transaction-system API, there are
no phases or constraints on the ordering of reads and writes
within a transaction.

2.3 Verified two-phase locking
Chkliaev et al. [11] verify serializability of two-phase locking
and other transaction concurrency control mechanisms in
the PVS theorem prover. Their proof formalizes two-phase
locking as an abstract protocol consisting of sequences of
read, write, and locking operations, as opposed to a concrete
implementation as in DaisyNFS. Pollak [32] uses a variant of
the CAP separation logic [15] to give a pencil-and-paper proof
of serializability for a two-phase locking implementation.

Lesani et al. [27] developed a framework for verifying
software transactional memory algorithms, modeled as I/O
automata. They applied their framework to sophisticated
STM algorithms, such as the NOrec algorithm [14]. The
STM algorithms considered do not handle persistence and the
framework does not address crash-safety reasoning.

2.4 Unverified file systems
We chose to verify an NFS server because it is widely used in
practice and the expected behavior of NFS operations is well

3

Dispatch loop

Go

Go output

GoTxn

Go

Verification
in Perennial

File-system
operations

Dafny

DaisyNFS Library

go build

dafny

Figure 1: The structure of the code.

documented in RFCs. FUSE is an alternative for implement-
ing file systems in user space, but its operations have a less
clear specification.

Isotope [35] is a block-level transaction system similar to
GoTxn in its API which was used to implement a file system
called IsoFS. Its logging design is based on multi-version
concurrency control (MVCC) [1] rather than our use of pes-
simistic locking. IsoFS has a similar design to DaisyNFS: it
factors out isolation and atomicity to the transaction system,
making it easy to handle crashes and concurrency. Unlike
GoTxn and DaisyNFS, Isotope is unverified and thus prone
to subtle concurrency bugs in the transaction system and bugs
in the IsoFS code, whereas DaisyNFS uses the split design
to verify both the transaction system and the transactions
themselves.

To be conducive to verification, DaisyNFS is implemented
differently than many NFS servers; the main differences are
that using two-phase locking is not common practice, and
most NFS servers are implemented on top of an existing file
system. For example, the Linux NFS server can export any
underlying file system supported by the kernel. An exported
file system such as ext4 may use a journaling system, but
the file system and VFS layers perform locking and are still
prone to concurrency bugs. WAFL [21] is an NFS appliance
that provides snapshots and logs NFS requests to NVRAM. It
has evolved its locking plan to obtain good parallelism [13].
Both the Linux NFS server and WAFL are more complicated
and have more features than DaisyNFS.

3 System design
As shown in Figure 1, DaisyNFS is implemented in three
layers: 1) a dispatch loop that speaks the NFS wire protocol
and calls the appropriate method for each operation; 2) a
Dafny class that implements each method; and 3) a transaction
system that applies the updates of each method to the disk
atomically. The dispatch loop is unverified; we assume that
the server correctly decodes messages, calls the right method
for an operation, and encodes the response. The middle
layer implementing the file-system operations is written and

super
block

inode
blocks

allocator
bitmap blocks

data blocks
(remainder of disk)

Figure 2: The layout of the file system on top of the transaction system’s
disk. The number of inode blocks and data bitmap blocks are compile-time
constants, but easy to change without affecting the proofs.

verified in Dafny, which has a backend for Go. The third
layer is directly written in Go and verified using Coq and
Perennial. By implementing the file system on top of the
transaction system, we can implement each NFS method in
Dafny as sequential code calling into a concurrent transaction
system library. The NFS operations supported by DaisyNFS
are listed in Figure 6.

3.1 Dafny file system
The file system is responsible for implementing files and
directories onto an array of disk blocks that is exported by the
transaction system. The disk layout used by the file system
is shown in Figure 2, with regions for inode blocks, bitmap
blocks, and data blocks for files and directories. This figure
is in terms of the disk exported by the transaction system; the
transaction system itself has a 513-block write-ahead log to
support multi-block atomic writes to the disk.

The high-level organization of the file system separates
three concerns, each building upon the previous: (1) imple-
menting indirect blocks so files can be up to 512GB, (2)
implementing byte-granularity reads and writes on top of
blocks, and (3) implementing directories by encoding them
as files with a special type together with operations to manip-
ulate those files. §7 explains the internals of the file-system
design in more detail, alongside the structure of the Dafny
proof.

3.2 Transaction system
The transaction system handles concurrency and crash

safety, and its API is listed in full in Figure 3. The file system
creates an empty transaction by calling Begin(). The entire
transaction appears to execute atomically when the caller fin-
ishes with Commit, or the transaction is discarded with no
effect on Abort. Reads and writes operate on addresses which
specify a position by giving a block number and an offset in
bits (always less than 4096 ·8, the number of bits in a block).
The Read method requires an explicit size argument while the
size of a Write is implicit in the size of the data slice. We
separate out the bit-sized operations to ReadBit and WriteBit
(rather than using a single-element byte slice) to simplify the
specification.

Figure 3 also shows the allocator API alongside the trans-
action API because its implementation is part of the interface
that the Dafny code has access to. Allocation does not behave
atomically along with the rest of the transaction, which the
proof handles by allowing allocation to return any value. In

4

1 type Addr struct {
2 Blkno uint64
3 Offset uint64
4 }
5

6 // starting and stopping a transaction
7 func Begin() *Txn
8 func Abort(tx *Txn)
9 func Commit(tx *Txn)

10

11 // operations within a transaction
12 func Read(tx *Txn, a Addr, sz uint64) []byte
13 func ReadBit(tx *Txn, a Addr) bool
14 func Write(tx *Txn, a Addr, d []byte)
15 func WriteBit(tx *Txn, a Addr, d bool)
16

17 // allocator API
18 func NewAllocator(max uint64) *Allocator
19 func Alloc(a *Allocator) uint64
20 func Free(a *Allocator, n uint64)

Figure 3: The API for the transaction system and allocator, both of which
are available within the Dafny file-system implementation. Reads and writes
between Begin and Commit appear to execute atomically on disk and for other
threads, while Abort guarantees the transaction has no effect. The allocator’s
Alloc and Free operations are safe to call concurrently.

practice the way the file system uses such a non-deterministic
specification is to store the ground-truth allocation state in
the transaction system, and then to use the allocator as a hint
to find free bits. As a result the return value of Alloc() must
be checked against the durable bitmap with ReadBit(). Simi-
larly, to free an address it must be both freed in memory and
on disk with WriteBit().

The transaction system builds upon GoJournal, verified in
prior work [9], adding two-phase locking on top to implement
transactions. While a transaction is running, it acquires locks
for any addresses it reads or writes, and on abort or commit,
it releases all locks held. Transactions that don’t conflict can
prepare in parallel, and GoJournal will batch concurrently
committed transactions for efficiency.

Acquiring multiple locks during a transaction creates the
possibility for deadlocks, for example if two threads acquire a
pair of locks in the opposite order. The two-phase locking im-
plementation does not implement a specific lock acquisition
order, leaving it to the file system to avoid deadlock — the
most interesting case is RENAME, which is discussed in more
detail in §7.1.1.

4 Specifying DaisyNFS
The specification for DaisyNFS is a state machine describing
an ideal NFS server in the form of an abstract state and a tran-
sition for each operation. The implementation of DaisyNFS
is a binary daisy-nfsd that implements the NFS protocol,
running on top of a disk. Then the DaisyNFS correctness
theorem is a refinement property, which intuitively says that
for any interaction with the implementation, the ideal, atomic
NFS state machine could produce the same responses; §4.2

gives a more formal definition. As a result a client interacting
with the server can pretend that it is the NFS state machine
and ignore the complexities of its implementation.

4.1 Formalizing NFS
RFC 1813 specifies the NFS protocol, which we make math-
ematically precise with a state-machine representation de-
fined in Dafny. The formalization requires first defining what
state operations modify, and then a transition for each NFS
operation that specifies how it changes the state and what
return values are allowed. While most of the specification
is deterministic, some operations have to be specified with
non-determinism; for example, we allow returning an out-of-
space error in many operations, and the specification allows
any timestamp to be picked for the current time. The RFC
is precise about arguments and allowed return values, and
the text is good about explaining the intended behavior, but
it does not describe the state an NFS server maintains. We
define the NFS server state as shown in Figure 4.

// the abstract state of the file system
type FilesysData = map<Ino, File>

datatype File =
| ByteFile(data: seq<byte>, attrs: Attrs)
| Dir(dir: map<FileName, Ino>, attrs: Attrs)

type Ino = uint64
type FileName = seq<byte>
datatype Attrs = Attrs(mode: uint32, ...)

Figure 4: Dafny definition of the NFS server state (simplified).

This definition says that an NFS server conceptually main-
tains a mapping from inode numbers to files, where a file can
either be a regular file with bytes, or a directory. Both types
of files have a number of attributes, storing metadata like the
file’s mode (permission bits) and modification time. A direc-
tory is a partial map from file names (which are just bytes) to
inode numbers. Note that DaisyNFS doesn’t represent the file
system as a tree but as a collection of links, which is sufficient
to model all NFS operations, because NFS clients resolve
pathnames.

The NFS state machine models each operation as a non-
deterministic transition, written as a predicate that holds when
it is allowed for an operation to change the state from fs to
fs’ and return r. The return value is always wrapped in a
Result type, which can be either Ok(v) for a normal return or
an error code for one of the errors defined in the standard. We
systematically guarantee that the state is unchanged when an
operation returns an error (though this is stronger than what
the RFC requires); the transaction system makes this easy
to achieve by aborting the whole transaction. For example,
Figure 5 shows the specification for a (hypothetical) GETSZ
operation that returns the size of the inode ino.

There are four clauses in the specification. The first just
says that this operation is read-only. The second is one possi-

5

predicate GETSZ_spec(ino: Ino, fs: FilesysData,
fs’: FilesysData, r: Result<uint64>)

{
fs’ == fs &&
(r.ErrBadHandle? ==> ino !in fs) &&
(r.ErrIsDir? ==> ino in fs && fs[ino].Dir?) &&
(r.Ok? ==> ino in fs && fs[ino].ByteFile? &&

r.v == |fs[ino].data|)
}

Figure 5: Specification of a hypothetical GETSZ operation, a simplification of
the real GETATTR operation.

Category Operations Verified

File and directory ops GETATTR, SETATTR, READ, WRITE ✓
CREATE, REMOVE, MKDIR, RENAME ✓
LOOKUP, READDIR ✓

Unsupported features READLINK, SYMLINK, LINK, MKNOD ✗

READDIRPLUS, ACCESS ✗

Configuration FSINFO, PATHCONF, FSSTAT ✗

Trivial operations NULL, COMMIT ✓

Figure 6: NFS API and which operations DaisyNFS supports and verifies.

ble error: if the server returns ErrBadHandle, then ino is not
allocated. The third is a different error, which says this opera-
tion returns ErrIsDir for directories. Finally the fourth case
says that if the operation is successful, it returns the length
of the data in fs[ino]. Dafny checks several consistency
properties of this specification itself; for example, a use of
fs[ino] will not even compile if the specification does not
earlier imply ino in fs.

We developed a state-machine model of the regular file and
directory operations in NFS in this style, including specifying
what certain errors signify. Figure 6 lists the entire NFS API
and what parts we verified.

DaisyNFS implements FSINFO and PATHCONF, which give
the client static configuration information about the file sys-
tem (for example, the maximum supported write size). These
return constants and thus have no specification. DaisyNFS
also implements FSSTAT to report total and free space, but it
does not have a meaningful specification.

DaisyNFS could support some of the remaining operations
with some more effort. Support for symlinks and MKNODwould
require mostly mechanical changes to accommodate new file
types. LINK is more complicated because in addition to track-
ing the link count of every file in the state, the specification
for REMOVE needs to say that the link count is decremented
and that the file is deleted if its link count drops to zero.

4.2 Specifying correctness for DaisyNFS
The transition system in §4 describes the abstraction of an
NFS server, but what does it mean for the daisy-nfsd binary
to implement this specification? To formalize DaisyNFS’s
correctness we use a definition of concurrent, crash-safe re-
finement, which informally says that every execution of that
server binary — including with concurrent operations and

crashes — has user-visible behavior that the specification
could also produce (that is, the behavior is allowed by the
specification). In DaisyNFS’s specification the visible behav-
ior is defined to be network requests and responses.

To define the specification, we need to be more precise
about what a program is and how it executes, since these
programs are used to model the DaisyNFS code and specifi-
cation. We write p : Go⟨X⟩ to say p is a Go program written
using operations from layer X, where X is one of NFS, Txn,
or Disk. Layer operations are always atomic transitions in
a state machine. In the NFS layer, the operations behave
according to the NFS state machine described previously in
§4.1 and defined formally in Dafny. The Txn layer is speci-
fied both in Coq where it is part of the transaction system’s
correctness theorem and in Dafny where it appears as an as-
sumption. The Disk transition system is formalized in Coq
as part of the GoJournal proof, and assumes reads and writes
of 4KB blocks are atomic. Each layer includes concurrent
threads that interleave layer operations, basic heap operations
on pointers, slices, and maps, and computation on primitives
like integers and structs.

The correctness of DaisyNFS is stated in terms of a pro-
gram that repeatedly receives a request, processes it in a
background thread, and sends a response, which is intended
to model the core behavior of the daisy-nfsd server. A
schematic depiction of this server loop is given in Figure 7.
This code starts by recovering the state of the system on line 3.
Then it repeatedly accepts new requests from the network, ab-
stracted with GetRequest() (including parsing the NFS wire
protocol). These requests are each processed in a background
thread due to the goroutine spawned on line 6. The process-
ing for each request dispatches to the appropriate file-system
operation (e.g., lines 9 and 12). The implementations of these
operations are compiled from Dafny to Go and then linked
with the transaction system.

The correctness theorem references three versions of this
loop, at different levels of abstraction. At the top, the specifi-
cation is a loop sNFS : Go⟨NFS⟩ which atomically processes
each NFS operation according to the NFS state machine.

Below the NFS layer, sdfy models the server where each
operation is replaced with its Dafny implementation, wrapped
in a transaction. In this layer we write atomically{f} to
represent a transaction running f, which by definition in the
Txn layer runs atomically for specification purposes. An
atomically block corresponds to executable code that fol-
lows a pattern like tx := Begin(); f(tx); tx.Commit() to
run f in the context of a GoTxn transaction (some additional
code handling aborts is omitted in this snippet).

The final layer that models the executable code is given
using a function link(p, i), which takes a program p using
operations from layer S and substitutes each operation with
an implementation according to i : S → Go⟨T⟩. The notation
“link” is intended as an analogy to the linking phase of com-
pilation, taking a program p with some undefined symbols

6

1 // this is the core of daisy-nfsd
2 func main() {
3 fs := filesys.Recover()
4 for {
5 req := GetRequest()
6 go func() {
7 switch req.Op {
8 case CREATE:
9 ret := fs.CREATE(req.Args)

10 SendReply(req, ret)
11 case LOOKUP:
12 ret := fs.LOOKUP(req.Args)
13 SendReply(req, ret)
14 // ... other cases ...
15 }
16 }()
17 }
18 }

Figure 7: A schematic depiction of the server loop, written in Go. sNFS
looks like this code, but by definition all operations (for example the calls
to fs.CREATE and fs.LOOKUP) are processed atomically and according to
the NFS transition system. As far as the proof goes GetRequest() and
SendReply() just produce a trace of I/O behavior and are unverified.

Figure 8: Illustration of the DaisyNFS proof strategy in terms of one possible
execution of DaisyNFS, receiving parallel MKDIR and LOOKUP operations, at
its three abstraction levels. Operations in each row are coded green and solid
or orange and dashed according to which operation they correspond to (the
top-level MKDIR or LOOKUP respectively). The refinement proof first shows that
for every code execution (bottom row), there exists an atomic execution at
the Txn layer (middle row), as proven in Theorem 2. This justifies sequential
reasoning to show the transactions follow the NFS specification (top row), as
proven in Theorem 3. Finally Theorem 1 puts the two together.

and substituting each symbol s with a call to an implementa-
tion of that method given by the library code i(s). We write
link(sdfy,txn) to represent linking the Dafny code with the
transaction system’s implementation txn.

The proof is about the server loop at the core of daisy-nfsd
at three layers of abstraction. Figure 8 illustrates one execu-
tion of the DaisyNFS server where two clients issue LOOKUP
and CREATE in parallel, at the three levels of abstraction: the
bottom shows an execution of link(sdfy,txn) at the Disk layer,
the middle a corresponding atomic execution of sdfy at the
Txn layer, and finally the top-level has a single transition for
each operation at the NFS layer.

Refinement relates two programs in terms of their visible

behavior, which we will use to connect the server loop at
the disk layer to the transaction layer and finally to the NFS
layer. For the purposes of this paper, all of the programs
involved are servers that issue network I/O, either receiving
an NFS request or responding to one. Regardless of the level
of abstraction, each model of the server defines a trace of
network I/O consisting of requests and responses, and this is
the behavior refinement talks about:

Definition (Concurrent, crash-safe refinement). An imple-
mentation program pc is a concurrent, crash-safe refinement
of a specification program ps, written pc ⊑ ps, if whenever
there are initial states σs and σc satisfying init(σs,σc) and pc
can execute from σc and produce a trace of network I/O tr,
then ps can execute from σs and produce the same trace tr.
Execution might involve crashing and restarting a program
(potentially multiple times), wiping out any in-memory state
after each crash. When we state pc ⊑ ps we leave implicit the
definition of initial states init(σs,σc), which will generally
say both states are all zeros and of the same size.

The intuition behind the notation pc ⊑ ps is that the set of
behaviors of pc (the set of traces of network I/O tr) is a subset
of the behaviors of ps.

Now we have enough to state the final DaisyNFS correct-
ness theorem:

Theorem 1 (DaisyNFS correctness). link(sdfy,txn)⊑ sNFS.

In this correctness theorem, initialization requires running
a Dafny method on an empty disk. Subsequently the system
boots by first recovering the transaction system, then restoring
the file system. Theorem 1 will follow from the correctness of
the transaction system combined with the results from Dafny.

5 Verification approach
DaisyNFS’s concurrent, crash-safe refinement is a much more
sophisticated property to verify than sequential refinement.
Figure 9 illustrates the complexity of proving a concurrent
and crash-safe refinement, whereas Figure 10a shows the rel-
atively simple per-operation obligation for sequential reason-
ing. For both forms of refinement, the basic proof technique
is to construct a forward simulation from the code execu-
tion to the specification transition system, which requires an
abstraction relation connecting their states and a proof that
shows the abstraction relation is preserved by operations. In a
sequential, non-crash simulation, it is sufficient to show that
each operation restores the abstraction relation when it returns
since its intermediate states are invisible. The complication
in a concurrent simulation is that the code can have many
concurrent threads, each running a different operation at the
specification level. The proof of any given operation must
also show that the intermediate states satisfy the abstraction
relation, since at any time other threads might run. Similarly,
the proof of each operation’s implementation must consider
interference with its execution from other threads at any time.

7

(a) Linearizability obligation (for each operation)

(b) Crash-safety obligation (for each operation)

Figure 9: Obligations for verifying a concurrent, crash-safe refinement. The
proof of refinement must show that every operation simulates the abstract
specification for the operation at some linearization point (as illustrated
in 9a), and that a crash simulates a specification crash transition (as illustrated
in 9b). The abstraction relation must be preserved at all intermediate points,
including after a crash.

5.1 Simulation transfer
The design of DaisyNFS uses transactions, and in particular
GoTxn, to simplify the proof of concurrent refinement. Trans-
actions appear to run sequentially, and thus should permit
reasoning about the body of each transaction sequentially
even though the actual execution interleaves multiple trans-
actions. A key contribution of this paper is the formalization
of a simulation-transfer theorem which proves that a system
implemented with transactions that is verified with a sequen-
tial forward simulation against some specification refines the
same specification in the sense of a concurrent, crash-safe
refinement when run through GoTxn.

Due to simulation transfer, we can use the simpler verifica-
tion methodology of sequential simulation for the DaisyNFS
file-system code, compared to the Perennial program logic
used to verify the transaction system underneath. To fully
take advantage of this difference, DaisyNFS is verified using
Dafny [26], an entirely different tool. Dafny is a verification-
oriented programming language that is restricted to sequen-
tial proofs. The use of Dafny greatly reduces the proof bur-
den for verifying DaisyNFS, because sequential proofs are
well-suited to automation and Dafny’s automation is well-
developed (in contrast automation for concurrent proofs is
still nascent, and would need to be integrated into Perennial
to be used for these proofs).

The value of sequential proofs can be seen in the proof-to-
code ratio for the transaction system, which is around 20×,

versus the Dafny proofs which required about 2× as many
lines of proof as code. Further evidence can be seen in the
incremental development of DaisyNFS, which §9.4 further
elaborates on.

To make simulation transfer this precise, let us first define
“sequential reasoning” more formally. Suppose we have an
implementation of layer S using operations from T . Note that
all the proofs about the transaction system are for an arbitrary
system with operations in S; though we use the system with
an implementation of NFS, the GoTxn proof is more general.
The implementation i consists of a function i(op) : Go⟨T⟩ for
each operation op ∈ S. The statement seq_refinement⟨T,S⟩(i)
says that i is a correct sequential implementation of S using
T . To specify the normal behavior of each operation, the
definition refers to s

op
⇝ s′, which says op can transition from

s to s′ according to the definition of layer S. To specify
correctness under crashes, this definition refers to crash(t, t ′)
and crash(s,s′), which are the crash transitions for layers
T and S respectively and model, for example, clearing the
contents of memory.

Definition (Sequential refinement). The implementation
i : S → Go⟨T⟩ is a sequential refinement, written
seq_refinement⟨T,S⟩(i), if there exists an abstraction rela-
tion R ⊆ ΣS ×ΣT such that:
(1) for every operation op ∈ S, the following sequential Hoare
triple holds:

{λ t.R(s, t)} i(op)
{︂

λ t ′.∃s′.R(s′, t ′)∧ s
op
⇝ s′

}︂
,

(2) init(s, t) must imply R(s, t), and
(3) if R(s, t) and crash(t, t ′) hold, then there exists an s′ such
that R(s′, t ′) and crash(s,s′).

Conditions (1) and (2) in this definition are standard for
sequential verification of refinement, while condition (3) is
a standard condition for sequential crash-safety [7]. Though
condition (3) requires the abstraction relation to be preserved
by crashes, the proof engineer does not have to reason about
crashes in the middle of operations. The diagram in Figure 10
depicts the main refinement condition (1) diagrammatically.

Simulation transfer takes a proof of sequential refinement
conditions for a system implemented using transactions and
derives a concurrent and crash-safe refinement. A transaction
must satisfy some conditions to ensure atomicity. We write
safe(p) to say that p is a valid transaction. The main restric-
tion is that p cannot access global state such as the heap, since
the transaction system does not make such accesses atomic.
The implementation i in this theorem gives only the body of
each transaction; the theorem instead references atomically◦ i
where (atomically ◦ i)(op) = atomically{ i(op)} uses the
macro from the Txn layer to specify that the operation is
wrapped in a transaction and is thus by definition atomic.

Theorem 2 (Simulation transfer). Let S be a spec layer im-
plemented using transactions with i : S → Go⟨Txn⟩, such that

8

CREATE

nfs3create_spec

R R

(a) Obligation for sequen-
tial refinement.

method CREATE(d_ino: uint64,
name: Bytes)

returns (r: Result<Ino>)
requires R(txn_disk, fs)
ensures R(txn_disk, fs)
ensures r.Ok? ==>
nfs3create_spec(d_ino, name,
old(fs), fs, r.v)

(b) Dafny encoding
Figure 10: Illustration of seq_refinement(iNFS) (left) and its encoding in
Dafny seq_refinementdfy(iNFS) (right), for one particular operation. In the
diagram, the solid parts are assumed, and the dashed parts must be shown to
exist. The complete Dafny spec is more precise about errors.

seq_refinement(i) and ∀op.safe(i(op)) hold. Then

∀p : Go⟨S⟩, link(link(p,atomically◦ i),txn)⊑ p.

Simulation transfer says that if an implementation of S
using transactions is correct in a sequential sense, then this is
sufficient for any spec program p to have atomic and correct
behavior for its primitives when run with GoTxn. The exe-
cutable code for p derived in two steps: link(p,atomically◦ i)
replaces the operations in S with their atomic implementa-
tions at the GoTxn API level, while link(link(p,atomically◦
i),txn) takes the result of this process and substitutes the
actual GoTxn implementations of Begin, Read, Commit, and
so on. In §6 we discuss how this theorem is proven using
Perennial and Coq.

5.2 Putting simulation transfer together with
Dafny proofs

In order to use simulation transfer to obtain Theorem 1, we
need to prove that DaisyNFS’s implementation, iNFS, satisfies
the sequential refinement conditions. To do so, we define
seq_refinementdfy(i), an encoding of sequential refinement
using Dafny pre- and post-conditions (as illustrated in Fig-
ure 10), and prove that DaisyNFS satisfies these conditions in
Dafny. The crash refinement condition (3) is straightforward;
crashes have no effect in both the Txn layer and the NFS
layers because they do not have ephemeral state. Details on
how the Dafny obligations handle initialization and recovery
are found in the first author’s thesis [5: §6.4].

Lemma 3. seq_refinementdfy(iNFS) holds.

From here we can apply Theorem 2 to Lemma 3 and ob-
tain Theorem 1, which says link(sdfy,txn)⊑ sNFS (note that
sdfy = link(sNFS,atomically ◦ i)). Figure 8 illustrates just
one execution that the theorem covers: the transaction sys-
tem proof guarantees an atomic execution while the sequen-
tial refinement guarantees the transactions themselves are
correct. There are two trusted assumptions needed for the
theorems to compose. First, seq_refinementdfy(iNFS) should

imply seq_refinement(iNFS). That is, the encoding of the re-
finement conditions in Dafny must be correct, but also the
semantics of the transaction system operations modeled in
Dafny must match the Coq proof. Second, every Dafny trans-
action must be valid, meaning safe(iNFS(op)). The Dafny
code satisfies safety due to a simple syntactic check: the only
mutable state in the file-system Dafny class is the transac-
tion system, so file-system operations cannot make mutations
other than through GoTxn.

6 Verifying the transaction system
This section describes the implementation and proof of the
transaction system, GoTxn. A contribution of this paper de-
tailed in this section is to verify the powerful specification of
Theorem 2 on top of a real implementation, which required
verifying two-phase locking using local reasoning in Peren-
nial unlike the more typical textbook proofs that reason about
the global execution of many concurrent transactions. Note
that this section is only about the transaction system and has
nothing specific to the file system implemented on top.

6.1 GoTxn’s implementation
GoTxn is implemented as an extension to GoJournal [9], a
journaling system verified in Perennial. The journaling sys-
tem provides the ability to write multiple objects atomically,
with an implementation that provides good concurrency. For
correctness GoJournal relies on the caller to guarantee that
concurrent operations do not access the same disk objects.
GoTxn automatically provides the concurrency control to
guarantee this precondition using two-phase locking (2PL).
The result is an interface that behaves atomically without any
concurrency reasoning from the caller.

The two-phase locking system logically maintains a lock
per object. The algorithm gets its name from an expanding
phase in which reads and writes acquire locks as needed,
followed by committing the transaction’s writes to the journal
and a contracting phase where all the acquired locks are
released. Instead of committing, a transaction can abort early
to abandon buffered writes and release the locks acquired so
far, in which case the disk is unaffected. The whole operation
appears to execute atomically at commit time; reads return
their results early, but the locks ensure these values remain
consistent up until the commit point. The GoTxn proof makes
the informal correctness argument precise by giving a proof
of a refinement-based specification.

6.2 Verifying two-phase locking with local reason-
ing

In §5.1, we gave Theorem 2 as the specification for the trans-
action system. Recall that this theorem converts sequential
refinement proofs for transactions into concurrent refinement.
To prove this, we first use Perennial to show that code encap-
sulated in a transaction truly behaves atomically, formalized
with the following theorem:

9

Theorem 4. The GoTxn implementation txn is a transaction
refinement, meaning for all p : Go⟨Txn⟩ where safe(p) holds,
link(p,txn)⊑ p. The definition of init(s, t) in this refinement
relates an all-zero physical disk to an all-zero transactional
disk of the same size.

Theorem 4 captures the intuition that transactions provide
atomicity, while Theorem 2 formalizes why atomicity pro-
vides sequential reasoning. The proof of Theorem 2 from The-
orem 4 is conceptually straightforward. Since the atomically
blocks in p ensure transaction operations run without inter-
ruption, the sequential refinement diagram can be applied to
code inside these blocks.

The proof of Theorem 4 itself in Perennial is more involved.
The high-level approach is to encode refinement as Perennial
Hoare triples, one for each operation [8, 38]. To make this
sound for concurrent refinement, (1) the proof must identify
and verify the linearization point of an operation, the time
at which the operation appears to have executed; and (2) the
proof tracks logical ownership of state, and threads may only
modify state that they have “acquired” ownership of through
synchronization. The resulting proof style is called “local”
because we reason about each thread in isolation, considering
just the parts of state it accesses. Using Perennial enables us
to re-use the existing GoJournal proof, but this local proof-
style is quite different from standard proofs of serializability
for two-phase locking, which reason globally about the set of
transactions and ordering constraints imposed by locks.

In more detail, the refinement proof must show that the
code tx := Begin(); f(tx); tx.Commit() has a subset of
executions of the atomically{f} construct. The difficulty
in proving this is that the linearization point is at the very end
when the code calls Commit, at which point the actual earlier
execution of f becomes visible to other threads. We must
argue that at this point the entire atomically{f} block’s
effect has occurred by tracking the behavior of f.

As the transaction executes, the proof tracks the initial
value of any objects accessed in a map J. The domain of this
map Σ = dom(J) is the footprint of the transaction, which
two-phase locking keeps locked during the transaction. The
intuition behind the invariant is that if the transaction only
depends on J, the transaction’s execution can be delayed to
take place atomically at the call to Commit, because locking
prevents the subset J of the journal from being accessed by
other threads. In particular the proof sets up a set of lock in-
variants that say the lock for address a is needed to access the
GoJournal resource a ↦→d o, which gives permission to read
and write to a. See the thesis for a more formal connection to
the GoJournal specification [5: §5.5].)

The proof maintains a refinement relation during the execu-
tion of a transaction f, which is formally expressed using the
GoJournal resources but explained more intuitively here. Let
J be a map with the values of each object in the transaction’s
footprint Σ at the first time they are accessed by f, and let J′

be a map with the transaction’s current buffered in-memory

view of the same addresses. Then, the invariant requires that
after n steps of execution:

1. The transaction holds the lock for every address a ∈ Σ.

2. Executing n steps of f in any starting state that has the
same values as J for the addresses in Σ can lead to a state
with values given by J′.

At the start of a commit, the locking described by the first
part of the invariant ensures that the durable value of each
address still match the value in J, and is required to call the
GoJournal Commit operation. The second part of the invariant
means that even though other parts of the state outside of Σ

may have changed, those changes do not affect the execution
of f. Thus, executing f at this point in a single step would
have the same behavior as the implementation has observed.
The GoJournal Commit specification ensures that the durable
values of objects in the footprint are atomically updated to
match J′.

Showing that the second part of the invariant holds requires
that code within a transaction must not access global state
outside of the transaction system, as mentioned at the end of
§5.1. Accesses to such global state would violate the invariant
because their behavior would then depend upon things outside
of the footprint Σ. Because those global values could change
by the time the transaction commits, the above argument
would no longer work if they were allowed.

The allocator creates another subtlety related to the second
part of this invariant. Allocations do not hold the allocator
lock throughout the remainder of a transaction. This seems
to violate the two-phase locking pattern, since allocations
could be implicitly observed by other concurrent transactions
from the fact that an allocated address is no longer free. Cor-
respondingly, in the proof, the footprint J of a transaction
does not describe the allocator state. Thus, at the linearization
point, the addresses returned by the allocator may no longer
be free. However, because the specification for the allocator
does not guarantee that returned addresses are actually free,
the second part of the invariant above still holds.

7 Verifying the Dafny implementation
We follow the standard approach for verifying software in
Dafny: each file-system operation is implemented as a method
on a class and its specification is given using pre- and post-
conditions. §5.1, explains how the Dafny proof shows the
code is a correct implementation of NFS in terms of sequential
refinement. This section provides details about the file-system
design and proof.

DaisyNFS is implemented and verified in several layers of
abstraction, depicted in Figure 11. Each layer is implemented
as a class that wraps the lower layer as a field. The transaction
system is an assumed interface in Dafny, while the complete
server implements the NFS wire protocol and calls into the
top-level Dafny class for each operation.

10

Layer Functionality

dir Directories and top-level NFS API.
typed Inode allocation.
byte Implement byte-level operations using blocks.
block Gather blocks for each file into a single sequence.
indirect Triple-indirect blocks organized in a tree.
inode In-memory, high-level inodes; block allocation.
txn Assumed interface to GoTxn.

Figure 11: Layers in the Dafny implementation and proof of the file-system
operations.

Between the layers of the file system there are three difficult
pieces of functionality: organizing data blocks into metadata
and data (the indirect and block layers), translating byte-level
operations into block operations (the byte and typed layers),
and implementing directories as special files that the file
system itself reads and writes (the dir layer). The modularity
was essential to complete the proof in manageable chunks (to
avoid overwhelming the developer and prover), and it would
have been natural even without verification.

7.1 Implementing the file system using transactions
The design of DaisyNFS is broadly similar to the file system
in xv6 [12], as well as Yggdrasil [36], a verified sequential file
system. We also adopt the recursive strategy for implementing
and verifying indirect blocks from DFSCQ [25]; recursion
simplifies the implementation of triple-indirect blocks, which
are needed to reach a reasonable maximum file size of 512GB.
Unlike most file systems, DaisyNFS is designed to fit every
operation into a transaction in order to support our goal of
sequential reasoning. This is a non-standard design and we
encountered some unique challenges in doing so. In this
section we highlight difficulties in fitting two features into
transactions: renaming and freeing space from deleted files.

7.1.1 Avoiding deadlock in renames
The NFS RENAME operation is similar to the rename sys-
tem call: it moves a source file or directory to a destination
location. What makes it tricky is that it involves more than
one inode and hence introduces the possibility for deadlock.
We use the standard strategy of enforcing a global ordering
where inodes are always locked in numerical order (smaller
inode numbers first); this avoids a deadlock where a cycle of
threads is waiting on each other.

In a rename operation, the source and destination are each
specified by a combination of the parent directory inode and
name within that directory. Rename has an additional func-
tionality of overwriting the destination if the source and desti-
nation are files, or if both are directories and the destination
is empty. It is this latter check that makes deadlock avoidance
difficult: it is necessary to lock the source and destination
directories first to lookup the source and destination names,
but those might be files that are earlier in the inode lock order.
We address this in the code by returning an error from the

Dafny transaction before the lock order would be violated.
The error comes with the set of inodes that should have been
acquired. The rename is then re-run with this set of inodes as
a lock hint; these are first acquired in the correct order, then
compared against the current source and destination in case
they have been renamed concurrently.

At this point it is worth discussing the performance consid-
erations that lead to handling lock ordering in the file system,
rather than generically in GoTxn. The transaction system
could avoid deadlocks by either enforcing a global order over
addresses or by timing-out operations. Enforcing a global
order is inefficient for the file system; data blocks will never
cause deadlock because the file system only accesses a block
after locking the (unique) inode that owns it. Timing-out op-
erations would lead to slow and spurious transaction failures
that could more rapidly be avoided in the higher-level code,
hence we do not attempt to detect deadlock dynamically.

7.1.2 Freeing space
Freeing space becomes surprisingly tricky with large files.
The problem is that a large-enough file may reference too
many blocks to be freed in a single transaction. DaisyNFS
handles freeing by removing a file from its directory and
marking it free in one transaction, and in separate transactions
reclaiming the space it took by deallocating its blocks.

Removal is implemented as a combination of two trans-
actions, one which performs the logical operation but leaks
space, and an operation ZeroFreeSpace(ino) which frees
and zeroes the unused space in an inode that we prove has
no effect on the file-system state. Because this operation is
a logical no-op, it is safe to call it at any time. In practice
the implementation is careful to call it after any operation
that leaves unused blocks, in particular SETATTR, which can
shrink a file by reducing its size, and REMOVE, which deletes
a file. Furthermore since ZeroFreeSpace doesn’t affect the
user-visible data, it may return early to avoid overflowing a
transaction, which GoJournal limits to 511 blocks.

There is one case where freeing blocks is important for
correctness and not just to reclaim space. Growing a file
is supposed to logically fill the new space with zeros. If
the file had old data in that space, it would not be zero but
some previously written and deleted data, which both violates
the specification and is a potential security risk. The way
we handle this with background freeing is with a run-time
check: when the SETATTR operation grows a file checks, it
checks if the free space is already zero first, and if not fails
with a special error code. The unverified code interprets this
as a signal to immediately call ZeroFreeSpace and try the
operation again. The same support also handles holes created
by writing past the end of a file, which are similarly supposed
to be zero.

The freeing implementation is an interesting example of
using validation in verification. The specification for much
of the freeing code is loose, allowing any data to be written

11

proof code spec

GoJournal 29,000 1,419
Transaction system 10,000 250 932 (Thm 2)
File system 6,787 4,051 630 (Thm 3)
Trusted interfaces — — 558
daisy-nfsd unverified 1,144 —

Figure 12: Lines of proof, code, and trusted specification. GoJournal is
included only for comparison; its specification is subsumed by the transaction
system’s.

to the free space. We only needed a strong specification for
the code that checks if the zeroing is done; the rest of the
code needs to be correct for this check to ever succeed, but
we aren’t required to prove it.

7.2 Achieving good performance
An important aspect of the Dafny proof was to write code
in a way that produces high-performance Go code. Com-
pared to Dafny’s C# backend, the generated Go code for
Dafny’s built-in immutable collections has much additional
pointer indirection and defensive copying. Using these data
structures for byte sequences would simplify proofs, but has
unacceptably poor performance in Go.

To avoid this performance problem we use an axiomatized
interface to Go byte slices ([]byte in Go) whenever raw data
is required, including file data and paths, and then modify
these slices in-place. It was possible to axiomatize this API
without any changes to Dafny; we use a standard Dafny fea-
ture of extern classes to specify a Dafny class Bytes in terms
of ghost state of type seq<byte> but then implement it as in
Go as a thin wrapper around the native []byte type. This API
is trusted, so we test it: for example to catch off-by-one errors
in the specification, we wrote tests like []byte{1,2,3}[2]
and ran them in Go and (equivalent) Dafny.

The on-disk data structures—inodes, indirect blocks, and
directories—are represented in memory in their serialized
form and modified by updating this representation directly,
avoiding copies to move between representations. These were
first written with slower purely functional code, which was
then migrated to imperative code that used the functional code
as a specification.

Dafny’s default integer type int is unbounded and com-
piled to big-integer operations. We used Dafny’s nativeType
support to instead define a type of 64-bit integers (that is, nat-
ural numbers less than 264) and compile this to Go’s uint64.
This requires overflow reasoning, but automation makes this
palatable in the proof and the performance gain is significant.

8 Development effort
We implemented DaisyNFS in a combination of Go and
Dafny, with proofs in the Perennial framework (which is
a library in the Coq proof assistant, heavily based on Iris [23])
and inline in Dafny. The Go side uses GoJournal, which we

extend with a transaction system and concurrent allocator.
The implementation is publicly available.1

The lines of proof, code, and specification for the layers
of the system are summarized in Figure 12. GoJournal is
prior work but included for comparison purposes. The GoTxn
correctness proof, Theorem 2, is relatively large because
code executed in atomically blocks can include many Go
operations modeled by Perennial, and the proof has cases to
handle each operation. However the result of the proof is a
relatively concise specification as a plain Coq statement that
doesn’t refer to the Perennial logic.

The file-system operations are implemented in Dafny,
which helped us verify a relatively complete system without
too much tedium. The proof-to-code ratio (where code is the
number of lines extracted by Dafny’s /printMode:NoGhost
flag) is about 2× for the file system code. The proof sum-
marizes the implementation well, with about 1/7th as many
lines of specification as code (about half that specification is
quite verbose and concerns error codes and attributes). For
efficiency, the Dafny code has trusted interfaces to primitives
like byte slices and integer-to-byte encoding. Together these
are written in 558 lines of trusted Dafny code. Finally, to
complete the NFS server required around 1,000 lines of Go
code, about half of which bridge between the Dafny method
signatures and the actual NFS structs.

Similar to VeriBetrKV [18], we followed a discipline of
identifying and addressing timeouts in the proof. As a result,
the overall build is fast: compiling the proofs takes only 12
minutes on a slow machine in continuous integration and 4
minutes on a laptop using eight CPU cores.

9 Evaluation
In this section we evaluate DaisyNFS along the dimensions
of performance (§9.1 and §9.2), correctness (§9.3), and ease
of change (§9.4).

9.1 Performance
To evaluate the performance of DaisyNFS, we ran three bench-
marks: the LFS smallfile and largefile benchmarks, and a
development workload that consists of git clone from a lo-
cal repository followed by running make. These are the same
benchmarks used by DFSCQ [10] (a state-of-the art sequen-
tial verified file system) and for an unverified NFS server
implemented on top of GoJournal [9]. To evaluate the benefit
of concurrency, we also evaluate against a “seq txn” variant of
DaisyNFS that replaces its per-address locking with a single
global transaction lock. In non-concurrent workloads, this
variant performs slightly better, demonstrating the overhead
of fine-grained locking.

As a baseline, this evaluation uses a Linux NFS server
exporting an ext4 file system mounted with data=journal

1The Dafny implementation of DaisyNFS is at
github.com/mit-pdos/daisy-nfsd. It imports the transaction
system from github.com/mit-pdos/go-journal.

12

https://github.com/mit-pdos/daisy-nfsd
https://github.com/mit-pdos/go-journal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

smallfile largefile app

18
97

 fi
le

/s

23
2

M
B

/s

0.
42

2
ap

p/
s

R
el

at
iv

e
th

ro
ug

hp
ut

Linux
Linux (log bypass)

DaisyNFS
DaisyNFS (seq txn)

Figure 13: Performance of Linux NFS and DaisyNFS for smallfile,
largefile, and app workloads, on an NVMe disk. DaisyNFS achieves
comparable performance to ext4 in data=journal mode.

mode. The NFS server lets us compare fairly since both go
through the Linux NFS client and use the same underlying
protocol. Using data=journal forces all data to go through
the journal and disables log-bypass writes, which ensures that
ext4 and DaisyNFS both guarantee NFS RPCs are committed
durably when they return. The evaluation also presents results
with ext4’s log-bypass optimization (in data=ordered mode),
which gets better performance for some benchmarks but can
lose recently written data if the system crashes.

All of these benchmarks were run using Linux 5.15 and
Go 1.18.1 on an Amazon EC2 i3.metal instance, which has 72
cores, 512 GB of RAM, and a local 1.9 TB NVMe SSD. To
reduce variability we limit the experiment to a single 36-core
socket, disable turbo boost, and disable processor sleep states;
the coefficient of variation for all experiments is under 5% so
we omit error bars for visual clarity.

The results are shown in Figure 13. DaisyNFS gets about
60% the throughput of Linux on the smallfile benchmark,
which is intended to be metadata-heavy. The smallfile bench-
mark repeatedly creates a file, writes 100 bytes to it and syncs
the file, then deletes it. Performance is lower than with Linux
due to less efficient use of the drive; we used blktrace to con-
firm that Linux issues fewer I/O requests per iteration and that
those writes are entirely sequential, unlike with DaisyNFS.
Performance is comparable when run on an in-memory disk
(not shown in the graph).

DaisyNFS gets comparable throughput to Linux on the
largefile benchmark, which is intended to measure bulk data
writes. The benchmark creates a 300 MB file by appending
repeatedly, then syncs it. Note that in this benchmark ext4 is
60% faster with its log-bypass optimization due to no longer
writing all data through the journal. For this workload, the
Linux NFS client buffers the entire append process until the
final sync, at which point it issues the writes in many chunks
in parallel. These RPCs are challenging to support efficiently
because they do not arrive at the server in order, so some are
past the end of the file. The semantics of such a write are
to fill the gap with zeros, but both DaisyNFS and Linux get

0

2k

4k

6k

8k

10k

12k

14k

 0 4 8 12 16 20 24 28 32 36

fi
le

s
/

se
c

clients

Linux NFS
DaisyNFS

DaisyNFS (seq txn)

Figure 14: Combined throughput of the smallfile microbenchmark run-
ning on an NVMe disk while varying the number of concurrent clients.
DaisyNFS’s performance scales with the number of cores, though not as well
as Linux; both eventually saturate the disk and scale sub-linearly.

good performance despite this because they implicitly encode
those zeros without even allocating a block.

DaisyNFS achieves good performance on the app work-
load, which consists of running git clone on the xv6 repo
followed by make. xv6 is an operating system, so building it
requires running the usual development tools—gcc, ld, ar—
but also running dd to generate a kernel image. Builds take
about 3s (of which about 1.2s are spent compiling and not in
the file system), which are reported as a throughput number
so higher is better.

9.2 Scalability
DaisyNFS executes NFS operations concurrently to achieve
better performance with multiple cores. The transaction sys-
tem is built on GoJournal, which already demonstrated scal-
ability. Here we report a similar experiment to demonstrate
that DaisyNFS can take advantage of GoJournal’s scalability,
after accounting for the transaction system’s two-phase lock-
ing and any overhead added by the transactions themselves.
The benchmark used is the smallfile benchmark from §9.1,
with a varying number of cores. Because this experiment runs
on a physical drive, other threads have a chance to prepare
transactions while the journal is committing to disk.

The results are shown in Figure 14. The graph shows that
DaisyNFS gets higher throughput with more clients, though
its scalability is not as good as the Linux NFS server and its
peak throughput is 60% that of Linux. DaisyNFS scales sub-
linearly due to a lock in GoJournal that serializes installation
of writes into disk blocks at commit time. As expected, with
a global transaction lock performance does not improve with
more clients.

9.3 Testing the trusted code and spec
For the NFS server to satisfy Theorem 1, we trust that (1)
the Dafny code is a “safe” use of the transaction system, (2)
sequential refinement is correctly encoded into Dafny, (3) the
libraries for Go primitives are correctly specified in Dafny,
and (4) the unverified Go code calling the Dafny methods

13

Bug Why?

XDR decoder for strings can allocate 232 bytes Unverified
File handle parser panics if wrong length Unverified
WRITE panics if not enough input bytes Unverified
Directory REMOVE panics in dynamic type cast Unverified
Panic on unexpected enum value Unverified
Concurrent writes can conflict Unverified
The names . and .. are allowed Not in RFC 1813
RENAME can create circular directories Not in RFC 1813
CREATE/MKDIR allow empty name Specification
Proof assumes caller provides bounded inode Specification
RENAME allows overwrite where spec does not Specification

Figure 15: Bugs found by testing at the NFS protocol level.

and implementing the NFS wire protocol is correct. Finally,
the user must follow the assumed execution model and run
initialization from an empty disk, run recovery after each boot,
and the disk should preserve written data and not corrupt it.

Beyond satisfying this formal theorem statement, we want
two more things from the implementation and specification:
first that the specification as formalized actually reflects the
RFC, and second we would like DaisyNFS to be compat-
ible with existing clients, including implementing enough
of the RFC’s functionality. These fall outside the scope of
verification so we cover them with testing.

To evaluate the file system we mounted it using the Linux
NFS client and ran the fsstress and fsx-linux tests, two suites
used for testing the Linux kernel. In order to look for bugs
in crash safety and recovery, we also ran CrashMonkey [30],
which found no bugs after running all supported 2-operation
tests.

While elsewhere in this paper we interact with DaisyNFS
via the Linux client, a collaborator (but not an author) tested it
more directly using an NFS-specific testing tool.2 This testing
produces a wider range of requests than are possible via the
Linux client. This process helped us find and fix several bugs
in the unverified parts of DaisyNFS and in the specification
itself. These are reported in Figure 15.

Two of the specification bugs are particularly interesting.
The bounded inode bug was due to an ino argument of type
Ino; this type is a Dafny subset type, thus adding an implicit
precondition that ino < NUM_INODES, which is violated by the
(unverified) Go code. The fix is to instead use a uint64 and
check the bound in verified code. The RENAME bug was due
to having an incomplete specification (and implementation)
that did not capture that RENAME should only overwrite
when the source and destination are compatible.

9.4 Incremental improvements
DaisyNFS was implemented and verified over the course
of three months by one of the authors, until it had support

2This framework is part of an unrelated research project so we unfortu-
nately lack space to give details on the methodology itself.

for enough of NFS to run. We added several features incre-
mentally after the initial prototype worked, both to improve
performance and to support more functionality. Some of
the interesting changes are listed in Figure 16. To improve
performance, we switched to operating on the serialized rep-
resentation of directories directly (decoding fields on demand
and encoding in-place) and then added also multi-block di-
rectories. We added support for attributes so that the file
system stores the mode, uid/gid, and modification timestamp
for files and directories. Finally, we implemented the free-
ing plan described in §7.1.2, which required additional code
through the whole stack (but by design no changes to the
file-system invariant). We believe additional features such
as symbolic links could be added incrementally with modest
effort because of sequential reasoning and proof automation.

Feature Time Lines

In-place directory updates 2 days 600
Multi-block directories 5 days 800
NFS attributes 4 days 500
Freeing space (§7.1.2) 3 days 1400

Figure 16: Incremental improvements were implemented quickly and with-
out much code (which includes both implementation and proof).

10 Conclusion
This paper presented DaisyNFS, a verified crash-safe, con-
current file system. DaisyNFS was built with verification in
mind in two parts: a transaction system called GoTxn, and a
file system on top implemented with one transaction per oper-
ation. This design allowed us to use the sharpest tool for each
part: Perennial for concurrency and crash-safety reasoning
and Dafny for sequential reasoning with much proof automa-
tion inside a transaction. The specification of the transaction
system was designed to support sequential reasoning from
Dafny. Overall this approach results in proof overhead of
about 2× for the file system part (vs. 20× for the transac-
tion system), allowing us to verify and build a functional file
system with good performance.

Acknowledgments
Many people helped improve this paper, including the anony-
mous reviewers, the PDOS students who gave feedback,
Henry Corrigan-Gibbs, and our shepherd, Manos Kapritsos.
James Wilcox provided expert debugging assistance. Robert
Morris tested DaisyNFS and reported the bugs in Figure 15.
This research was supported by NSF awards CNS-1563763
and CCF-1836712.

References
[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan

Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987. ISBN 0-
201-10715-5.

14

[2] Stefan Bodenmüller, Gerhard Schellhorn, Martin Bitter-
lich, and Wolfgang Reif. Flashix: Modular verification
of a concurrent and crash-safe flash file system. In Logic,
Computation and Rigorous Methods, pages 239–265.
Springer International Publishing, 2021. Festschrift for
Egon Börger’s 75th Birthday.

[3] Stephen Brookes. A semantics for concurrent separation
logic. Theoretical Computer Science, 375(1–3), May
2007. Festschrift for John C. Reynolds’s 70th Birthday.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
version 3 protocol specification. RFC 1813, Network
Working Group, June 1995.

[5] Tej Chajed. Verifying a concurrent, crash-safe file
system with sequential reasoning. PhD thesis, Mas-
sachusetts Institute of Technology, May 2022.

[6] Tej Chajed, M. Frans Kaashoek, Butler Lampson, and
Nickolai Zeldovich. Verifying concurrent software us-
ing movers in CSPEC. In Proceedings of the 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 307–322, Carlsbad, CA,
October 2018.

[7] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Argosy: Verifying layered storage
systems with recovery refinement. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
1037–1051, Phoenix, AZ, June 2019.

[8] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying concurrent, crash-safe
systems with Perennial. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
pages 243–258, Huntsville, Ontario, Canada, October
2019.

[9] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,
M. Frans Kaashoek, and Nickolai Zeldovich. GoJournal:
a verified, concurrent, crash-safe journaling system. In
Proceedings of the 15th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), Virtual,
July 2021.

[10] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie
Wang, Atalay İleri, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Verifying a high-performance
crash-safe file system using a tree specification. In
Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), pages 270–286, Shanghai,
China, October 2017.

[11] Dmitri Chkliaev, Jozef Hooman, and Peter van der Stok.
Serializability preserving extensions of concurrency con-
trol protocols. In Proceedings of the 3rd International

Andrei Ershov Memorial Conference on Perspectives of
System Informatics (PSI), pages 180–193, Novosibirsk,
Russia, July 1999.

[12] Russ Cox, M. Frans Kaashoek, and Robert T. Mor-
ris. Xv6, a simple Unix-like teaching operating system,
2016. http://pdos.csail.mit.edu/6.828/xv6.

[13] Matthew Curtis-Maury, Vinay Devadas, Vania Fang, and
Aditya Kulkarni. To waffinity and beyond: A scalable
architecture for incremental parallelization of file system
code. In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
page 419–434, Carlsbad, CA, October 2018.

[14] Luke Dalessandro, Michael F. Spear, and Michael L.
Scott. NOrec: Streamlining STM by abolishing owner-
ship records. In Proceedings of the 15th ACM Sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP), page 67–78, Bangalore, India, January
2010.

[15] Thomas Dinsdale-Young, Mike Dodds, Philippa Gard-
ner, Matthew J. Parkinson, and Viktor Vafeiadis. Con-
current abstract predicates. In Proceedings of the 24th
European Conference on Object-Oriented Program-
ming (ECOOP), pages 504–528, Maribor, Slovenia,
June 2010.

[16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (New-
man) Wu, Jieung Kim, Vilhelm Sjöberg, and David
Costanzo. CertiKOS: An extensible architecture for
building certified concurrent OS kernels. In Proceedings
of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 653–669,
Savannah, GA, November 2016.

[17] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu,
Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David
Costanzo, and Tahina Ramananandro. Certified con-
current abstraction layers. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 646–661,
Philadelphia, PA, June 2018.

[18] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon
Howell, Rob Johnson, and Bryan Parno. Storage sys-
tems are distributed systems (so verify them that way!).
In Proceedings of the 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
pages 99–115, Banff, Alberta, Canada, November 2020.

[19] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Ja-
cob R. Lorch, Bryan Parno, Michael L. Roberts, Sri-
nath Setty, and Brian Zill. IronFleet: Proving practi-
cal distributed systems correct. In Proceedings of the
25th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 1–17, Monterey, CA, October 2015.

15

http://pdos.csail.mit.edu/6.828/xv6

[20] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Ser-
dar Tasiran. Automated and modular refinement rea-
soning for concurrent programs. In Proceedings of the
27th International Conference on Computer Aided Veri-
fication (CAV), pages 449–465, San Francisco, CA, July
2015.

[21] Dave Hitz, Michael Malcolm, and James Lau. File sys-
tem design for an NFS file server appliance. In Proceed-
ings of the Winter 1994 USENIX Technical Conference,
San Francisco, CA, January 1994.

[22] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proceedings
of the 13th USENIX Conference on File and Storage
Technologies (FAST), pages 301–315, Santa Clara, CA,
February 2015.

[23] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper
Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. In Proceedings of the
42nd ACM Symposium on Principles of Programming
Languages (POPL), Mumbai, India, January 2015.

[24] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,
Ales Bizjak, Lars Birkedal, and Derek Dreyer. Iris
from the ground up: a modular foundation for higher-
order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[25] Alex Konradi. Performance optimization of the VDFS
verified file system. Master’s thesis, Massachusetts In-
stitute of Technology, June 2017.

[26] K. Rustan M. Leino. Dafny: An automatic program
verifier for functional correctness. In Proceedings of the
16th International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR),
pages 348–370, Dakar, Senegal, April–May 2010.

[27] Mohsen Lesani, Victor Luchangco, and Mark Moir. A
framework for formally verifying software transactional
memory algorithms. In Proceedings of the 23rd Interna-
tional Conference on Concurrency Theory (CONCUR),
page 516–530, Newcastle upon Tyne, UK, September
2012.

[28] Richard J. Lipton. Reduction: A method of proving
properties of parallel programs. Communications of the
ACM, 18(12), December 1975.

[29] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R.
Wilcox, and Xueyuan Zhao. Armada: Low-effort ver-
ification of high-performance concurrent program. In
Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 197–210, London, United Kingdom,
June 2020.

[30] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. Finding
crash-consistency bugs with bounded black-box crash
testing. In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), Carlsbad, CA, October 2018.

[31] Jörg Pfähler. A Modular Verification Methodology for
Caching and Lock-Based Concurrency in File Systems.
PhD thesis, Universität Augsburg, 2018.

[32] David Harver Pollak. Reasoning about two-phase lock-
ing concurrency control. Master’s thesis, Imperial Col-
lege London, June 2017.

[33] Gerhard Schellhorn, Gidon Ernst, Jorg Pfähler, Dominik
Haneberg, and Wolfgang Reif. Development of a veri-
fied flash file system. In Proceedings of the ABZ Con-
ference, pages 9–24, Toulouse, France, June 2014.

[34] Ilya Sergey, Aleksandar Nanevski, and Anindya Baner-
jee. Mechanized verification of fine-grained concurrent
programs. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 77–87, Portland, OR, June
2015.

[35] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and
Hakim Weatherspoon. Isotope: Transactional isolation
for block storage. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST),
pages 23–37, Santa Clara, CA, February 2016.

[36] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak,
and Xi Wang. Push-button verification of file sys-
tems via crash refinement. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, Savannah, GA,
November 2016.

[37] The Coq Development Team. The Coq Proof Assistant,
version 8.15, January 2022. URL https://doi.org/
10.5281/zenodo.5846982.

[38] Aaron Turon, Derek Dreyer, and Lars Birkedal. Uni-
fying refinement and Hoare-style reasoning in a logic
for higher-order concurrency. In Proceedings of the

16

https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982

18th ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 377–390, Boston,
MA, September 2013.

[39] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui
Gu, and Haibo Chen. Using concurrent relational logic
with helper for verifying the AtomFS file system. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Huntsville, Ontario, Canada,
October 2019.

17

	Introduction
	Related work
	Verifying storage systems
	Concurrency verification
	Verified two-phase locking
	Unverified file systems

	System design
	Dafny file system
	Transaction system

	Specifying DaisyNFS
	Formalizing NFS
	Specifying correctness for DaisyNFS

	Verification approach
	Simulation transfer
	Putting simulation transfer together with Dafny proofs

	Verifying the transaction system
	GoTxn's implementation
	Verifying two-phase locking with local reasoning

	Verifying the Dafny implementation
	Implementing the file system using transactions
	Avoiding deadlock in renames
	Freeing space

	Achieving good performance

	Development effort
	Evaluation
	Performance
	Scalability
	Testing the trusted code and spec
	Incremental improvements

	Conclusion

