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Abstract
Secure Multi-Party Computation (MPC) allows mutually dis-
trusting parties to run joint computations without revealing
private data. Current MPC algorithms scale poorly with data
size, which makes MPC on “big data” prohibitively slow and
inhibits its practical use.

Many relational analytics queries can maintain MPC’s end-
to-end security guarantee without using cryptographic MPC
techniques for all operations. Conclave is a query compiler
that accelerates such queries by transforming them into a
combination of data-parallel, local cleartext processing and
small MPC steps. When parties trust others with specific sub-
sets of the data, Conclave applies new hybrid MPC-cleartext
protocols to run additional steps outside of MPC and improve
scalability further.

Our Conclave prototype generates code for cleartext pro-
cessing in Python and Spark, and for secure MPC using
the Sharemind and Obliv-C frameworks. Conclave scales
to data sets between three and six orders of magnitude larger
than state-of-the-art MPC frameworks support on their own.
Thanks to its hybrid protocols and additional optimizations,
Conclave also substantially outperforms SMCQL, the most
similar existing system.
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1 Introduction
Many businesses run analytics over “big data” to draw in-
sights or to satisfy regulatory requirements. Such computa-
tions cannot currently combine proprietary, private data sets
from multiple sources, whose sharing is restricted by law
and by justifiable privacy concerns. However, running joint
analytics over large private data sets is valuable: for example,
drug companies, medical researchers, and hospitals can bene-
fit from jointly measuring the incidence of illnesses without
revealing private patient data [3; 46; 66]; banks and financial
regulators can assess systemic risk without revealing their
private portfolios [8; 50]; and antitrust regulators can measure
monopolies using companies’ revenue data.

Secure Multi-Party Computation (MPC) is a class of cryp-
tographic techniques that allow for secure computation over
sensitive data sets. In MPC, a set of participants compute
jointly over the data they hold individually, while federating
trust among the computing parties. As long as some parties —
typically a majority, or any one party — honestly follow the
protocol, no party learns anything beyond the final output
of the computation. In particular, MPC protects input and
intermediate data, as well as meta-data about them, such as
value frequency distributions.

Unfortunately, implementing a performant secure MPC
currently requires domain-specific expertise that makes it
impractical for most data analysts. Moreover, existing algo-
rithmic techniques and software frameworks for secure MPC
scale poorly with data size, even for small numbers of parties
(§2). These limitations have led researchers to build oblivi-
ous query processors that generate and execute secure query
plans [3; 66]. These query processors improve the accessibil-
ity of MPC, as they allow data analysts to write convenient
relational queries; they also improve MPC performance by se-
curely doing part of the computation outside of MPC. For ex-
ample, SMCQL [3] performs local preprocessing and “slices”
the overall MPC into several smaller MPCs to reduce input
data size, while Opaque [66] relies on Intel SGX hardware to
compute securely “in-the-clear”.

This paper presents Conclave, an MPC-enabled query com-
piler that makes MPC on “big data” accessible and efficient.
Data analysts write relational queries as if they had access to
all parties’ data in the clear, and Conclave turns the queries
into a combination of efficient, local processing steps and
secure MPC steps. As a result, Conclave delivers results with
near-interactive response times — i.e., a few minutes — for
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input data several orders of magnitude larger than existing
systems can support. Like prior systems [3; 46; 47], Conclave
is designed to withstand passive (“semi-honest”) adversaries.

Three key ideas help Conclave scale. First, Conclave anal-
yses the queries to apply transformations that reduce run-
time without compromising security guarantees, even though
they burden individual parties with extra local work. Second,
Conclave uses optional, coarse-grained annotations on input
relations to apply new, hybrid protocols that combine clear-
text and MPC processing to gain further speedups especially
for operations that are notoriously slow under MPC, such
as joins and grouped aggregations. Third, Conclave gener-
ates code that combines scalable, insecure data-processing
systems (e.g., Spark [64]) with secure, but slow, cross-party
MPC systems (e.g., Sharemind [12] or Obliv-C [65]).

Conclave’s optimizations are largely complementary to
those introduced by SMCQL [3], the most similar related
system. Conclave introduces new hybrid protocols that im-
prove the efficiency of joins and aggregations over private
key columns in a server-aided setting [38; 40], as well as
additional query transformations that speed up the MPC steps.
Moreover, Conclave generates code for both garbled-circuit
and secret-sharing MPC frameworks, as well as for data-
parallel local processing systems. Secret-sharing MPC back-
ends are better suited to the arithmetic operations prevalent
in relational queries, and thus outperform SMCQL’s garbled-
circuit backend; data-parallel local processing allows Con-
clave to support larger inputs.

In summary, this paper makes four key contributions:
1. query analysis techniques that derive which parts of a

relational query must be executed under MPC using
only coarse-grained annotations (§4, §5.1);

2. transformations that move expensive oblivious opera-
tions outside the MPC while preserving security guar-
antees (§5.2, §5.4);

3. new hybrid MPC–cleartext protocols that improve per-
formance of MPC joins and aggregations using existing
partial trust between parties (§5.3); and

4. our Conclave prototype, which applies these ideas to
generate efficient code for execution using Python,
Spark [64], Obliv-C [65] and Sharemind [12] (§6).

We measured the performance of our prototype using mi-
crobenchmarks and end-to-end analytics queries (§7). Even
with minimal annotations on input relations and basic opti-
mizations, Conclave scales queries to inputs orders of magni-
tude larger than existing MPC frameworks support on their
own. When users annotate specific input columns, our new hy-
brid MPC–cleartext protocols speed up join and aggregation
operators by 7× or more compared to execution in Share-
mind [12], a fast, commercial MPC framework. Compared to
SMCQL, Conclave’s extra optimizations help scale a medi-
cal research query to orders of magnitude larger inputs with
comparable security guarantees.

Nevertheless, our prototype has some limitations. It de-
fends only against passive adversaries, though Conclave’s
approach of minimizing MPC is compatible with stronger
threat models. While our prototype reimplements some of
SMCQL’s techniques for fair comparison, it does not support
all; an ideal system would combine the two systems’ tech-
niques. Finally, our prototype supports only the Obliv-C and
Sharemind MPC frameworks, which limit MPC steps to two
or three parties, but adding support for further frameworks
requires only modest effort.

2 Motivation and background

MPC jointly executes an agreed-upon computation across
several parties’ private data without a trusted party. MPC has
served purposes from detecting VAT tax fraud by analyzing
business transactions [10], to setting sugar beet prices via auc-
tion [13], relating graduation rates to employment [11], and
evaluating the gender pay gap across businesses [7]. These
applications all compute on hundreds to thousands of records,
but many useful computations on large data that might benefit
from MPC are currently infeasible.

2.1 Use cases for MPC on “big data”

We sketch two example applications of MPC that would be
worthwhile if MPC could run efficiently on large data.

Credit card regulation. A government regulator (in the
U.S., the OCC [59]) who oversees consumer credit reporting
agencies (in the U.S., e.g., TransUnion) may wish to estimate
the average credit score by geographic area (e.g., ZIP code).
The government regulator holds the social security numbers
(SSNs) and census ZIP code of potential card holders; credit
reporting agencies, by contrast, have the SSNs of card hold-
ers, their credit lines, and their credit ratings. By law, the
government regulator cannot share the residence information.
Likewise, credit reporting agencies cannot share raw portfo-
lios for fear of leaking information to competitors through
carelessness or compromise, so MPC is needed. The input to
this query is large: there are over 450M SSNs [60] and 167M
credit cards [57] currently issued in the U.S.

Market concentration. Competition law requires govern-
ments to regulate markets to prevent oligopolies or monop-
olies. Regulators often use the Herfindahl-Hirschman Index
(HHI) — the sum of squared market shares of companies
active in a marketplace — to decide whether scrutiny is war-
ranted [58, §5.3]. Public revenue data is coarse-grained, and
the market shares of privately-held companies are difficult
to obtain. For example, airport transfers in New York City
constitute a marketplace, for which an effective HHI con-
siders only the revenue derived from airport transfers in the
market shares. Airport transfers made up 3.5% of 175M an-
nual NYC yellow cab trips in 2014; many trips were serviced
by other vehicle-for-hire (VFH) companies [48]. While the
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Figure 1. Existing MPC frameworks only scale to small data sets for common relational operators, e.g., aggregations and joins.
By contrast, Spark runs these operators on tens of millions of records in seconds (note the log-scale x-axis).

HHI computation inputs are small (a single number per com-
pany), computing them requires filtering and aggregating over
millions of trip records that companies keep private.

2.2 Security guarantees

MPC guarantees the privacy of a computation’s input and
intermediate data. Specifically, MPC reveals no more about
each party’s input data than can be inferred from the final,
publicly revealed output of the computation. MPC also guar-
antees correctness of the output revealed to each party, and
can provide integrity properties [43].

MPC provides these guarantees under a specific model
of its adversary (i.e., dishonest participant). Commonly, the
adversary is presumed to be passive, respecting the protocol
but trying to learn other participants’ data (the “semi-honest”
model), or actively malicious, deviating from the protocol’s
rules to expose private data or compromise the integrity of out-
puts. Generic techniques for information-theoretically secure
MPC require an honest majority [6; 52] whereas techniques
that leverage computational assumptions only require a single
honest party (an “anytrust” model) [28; 62]. Relaxing secu-
rity guarantees makes MPC faster: honest (super-)majority
techniques perform better than anytrust ones [1; 12; 24], and
a passive adversary can be withstood with at least 7× lower
overhead than an actively malicious adversary [2].

2.3 MPC techniques and scalability

Two MPC techniques dominate today: garbled circuits and
secret sharing. Cryptographers have made efforts to scale
these to many parties [15; 17–19], but scalability to large
data remains a challenge. In this work, we focus on scaling to
large data sizes, and assume a fixed, small number of parties.

In garbled circuits [62], one party encrypts each input bit
to create a “wire label”. Then, it converts the computation
into a circuit of binary gates, each expressed as a “garbled
truth table” comprising a few ciphertexts. A single evaluator
party receives the circuit and the encrypted wire labels for
all input bits. At each gate, the evaluator combines the inputs
to produce an encrypted output using the garbled truth table.
Garbled circuits require no communication between parties
during evaluation, but their state is far larger than the input

data (e.g., 80–128× for typical security parameters), which
makes processing of large data impractical.

Secret sharing [55], by contrast, splits each sensitive input
(i.e., each integer, rather than each bit) into “secret shares”,
which in combination yield the original data. In a common en-
coding, secret shares cancel out into the cleartext value when
added together. Each computing party works on one secret
share; additions happen locally and without communication,
but multiplications require interaction before or during the
evaluation [4–6]. Secret sharing only multiplies state size by
the number of shares, but the communication (i.e., network
I/O) during computation limits scalability. Batching commu-
nication helps reduce overheads, but a multiplication still
requires sending at least one bit between parties [1].

Scalability in practice. Figure 1 compares the performance
of three relational operators in MPC frameworks based on
secret-sharing (Sharemind [12]) and garbled-circuits (Obliv-
C [65]) to insecure plaintext execution. Each experiment in-
puts random integers and runs a single operator. The MPC
frameworks run with two (Obliv-C) or three (Sharemind)
parties, who in aggregate contribute the record count on the
log-scale x-axis; insecure computation runs a single Spark job
on the combined inputs. MPC scales poorly for aggregations
(Figure 1a) and joins (Figure 1b). These operators require
communication in secret sharing, and Obliv-C’s state grows
fast (e.g., the join runs out of memory at 30k records). Even a
projection (Figure 1c), which requires only a single pass over
the input and no communication, fails to scale in practice.
Again, Obliv-C’s circuit state growth limits its performance
(it runs out of memory at 300k records), and Sharemind takes
over 10 minutes beyond 3M input records (≈37 MB) due
to overheads of secret-sharing and in its storage layer. Thus,
MPC in practice only scales to a few thousand input records.

These results are consistent with prior studies: Sharemind
takes 200s to sort 16,000 elements [36], and DJoin takes an
hour to join 15,000 records [46]. Current MPC systems there-
fore seem unlikely to scale to even moderate-sized data sets.
In particular, the poor performance of joins and aggregations
is concerning: more than 60% of privacy-sensitive analytics
queries use joins, and over 34% contain aggregations [35,



§2]. Short of new cryptographic techniques, the only way
run MPCs on large data may therefore be to avoid using its
cryptographic techniques unless absolutely necessary.

3 Conclave overview
Conclave builds on the insight that the end-to-end security
guarantees of MPC often hold even if parts of a query run out-
side MPC. Intuitively, for example, any operation computed
using only a party’s local inputs and publicly available data
can run outside MPC, as can any operation that applies only
reversible operations and reveals their result.

Conclave’s guiding principle is to do as little as possi-
ble and as much as necessary under MPC: in other words,
Conclave minimizes the computation under MPC until no
further reduction is possible. This helps scale MPC to large
data by using cheaper algorithms, local computation, and
data-parallel processing systems for crucial parts of the query.

3.1 Threat model

Like many practical MPC systems, Conclave focuses on with-
standing a passive, semi-honest adversary. The adversary can
observe all network communication during execution of the
protocol, and can also statically (i.e., before the protocol be-
gins) choose to compromise some parties to view data stored
in their local file system and memory. Because the adversary
can monitor the computation’s control flow and memory ac-
cess patterns, the MPC must use oblivious operations that
avoid data-dependent control flow and hide access patterns.
Yet, all parties — including compromised ones — faithfully
execute the MPC protocol and submit valid input data.

In this paper, we restrict our attention to semi-honest se-
curity. In our extended technical report [61], we also sketch
how Conclave can be extended to provide security against
malicious adversaries.

3.2 Security guarantees and assumptions

Conclave is a query compiler that generates code for execu-
tion in external MPC systems (“backends”). Consequently,
Conclave inherits the security guarantees and assumptions of
the MPC backend used, but must also uphold them. In par-
ticular, Conclave hides all private data processed, along with
meta-data such as value frequencies. Conclave provides these
guarantees against the same threshold of colluding adversarial
parties that its MPC backend can tolerate.

Consistent with MPC literature, Conclave treats the sizes of
all input relations as public, and hides the sizes of intermedi-
ate relations processed under MPC. However, after Conclave
rewrites a query to move operations out of MPC, the sizes of
inputs to the remaining MPC may differ from the original in-
put sizes. Depending on the query, this may leak information.
Conclave’s rewrites are safe if the sizes of the new MPC in-
put relations are data-independent. For data-dependent sizes,
Conclave only proceeds with a rewrite if all affected parties
have authorized it, choosing a slower query plan otherwise.

1 import conclave as cc
2 pA, pB, pC = cc.Party("mpc.ftc.gov"), \
3 cc.Party("mpc.a.com"), cc.Party("mpc.b.cash")
4 demo_schema = [Column("ssn", cc.INT, trust=[]),
5 Column("zip", cc.INT, trust=[])]
6 demographics = cc.newTable(demo_schema, at=pA)
7 # banks trust the regulator to compute on SSNs
8 bank_schema = [Column("ssn", cc.INT, trust=[pA]),
9 Column("score", cc.INT, trust=[])]

10 scores1 = cc.newTable(bank_schema, at=pB)
11 scores2 = cc.newTable(bank_schema, at=pC)
12 scores = cc.concat([scores1, scores2])
13 # query to compute average credit score by ZIP
14 joined = demographics.join(scores, left=["ssn"],
15 right=["ssn"])
16 by_zip = joined.aggregate("count", cc.COUNT,
17 group=["zip"])
18 total_sc = joined.aggregate("total", cc.SUM,
19 group=["zip"])
20 avg_scores = \
21 total_sc.join(by_zip, left=["zip"], right=["zip"])
22 .divide("avg_score", "total", by="count")
23 # regulator gets the average credit score by ZIP
24 avg_scores.writeToCSV(to=[pA])

Listing 1. Credit card regulation query in Conclave’s LINQ-
style frontend with input relations locations (lines 6, 10–11),
and an optional trust annotation (line 8).

Additionally, Conclave provides hybrid protocols that pro-
vide parties with the option to trade some security for better
performance. These hybrid protocols outsource work for clear-
text processing at a chosen party, and selectively reveal some
data to it. Conclave applies such value-leaking rewrites only
if parties supply explicit input annotations and Conclave can
derive an authorization.

Hybrid protocols essentially create a “server-aided” setting
[38; 40] with leakage: the aiding selectively-trusted party
(STP) catalyzes the MPC by performing otherwise expensive
operations outside of MPC’s cryptographic guarantees. Only
a single STP can exist in a Conclave execution; all other
participants are regular parties. Which party takes on the role
of an STP depends on the specific trust assumptions of a given
deployment; one of the data contributors may act as an STP,
but it may also be a party without inputs whose sole role is to
assist the MPC. Conclave retains MPC’s security guarantees
against any adversary who compromises the STP alone or a
subset of regular parties that the MPC backend can withstand.
Conclave makes no guarantees against an adversary who
compromises both regular parties and the STP.

4 Specifying Conclave queries
Conclave compiles a relational query into executable code.
It is similar to plaintext-only big data query compilers (e.g.,
Hive [56], Pig [49], or Scope [16]) and “workflow managers”,
like Apache Oozie [33] or Musketeer [26]. Like these systems,
Conclave transforms the query into a directed acyclic graph
(DAG) of relational operators, and it executes this DAG on
one or more backend systems. Unlike prior query compilers,



1 import conclave as cc
2 pA, pB, pC = cc.Party("mpc.a.com"), \
3 cc.Party("mpc.b.com"), cc.Party("mpc.c.org")
4 # 3 parties each contribute inputs with same schema
5 schema = [Column("companyID", cc.INT, trust=[]),
6 # ...
7 Column("price", cc.INT, trust=[])]
8 inputA = cc.newTable(schema, at=pA)
9 inputB = cc.newTable(schema, at=pB)

10 inputC = cc.newTable(schema, at=pC)
11 # create multi-party input relation
12 taxi_data = cc.concat([inputA, inputB, inputC])
13 # relational query
14 rev = taxi_data.project(["companyID", "price"])
15 .aggregate("local_rev", cc.SUM,
16 group=["companyID"], over="price")
17 .project([0, "local_rev"])
18 market_size = rev.aggregate("total_rev", cc.SUM,
19 over="local_rev")
20 share = rev.join(market_size, left=["companyID"],
21 right=["companyID"])
22 .divide("m_share", "local_rev",
23 by="total_rev")
24 hhi = share.multiply(share, "ms_squared", "m_share")
25 .aggregate("hhi", cc.SUM, on="ms_squared")
26 # finally, party A gets the resulting HHI value
27 hhi.writeToCSV(to=[pA])

Listing 2. Market concentration query in Conclave’s LINQ-
style frontend. Note the owner annotations on the input tables
(lines 8–10) and the final result (line 27).

Conclave’s query rewrite rules must preserve MPC’s security
guarantees while aiming to improve performance.

4.1 Assumptions

Conclave assumes that analysts write relational queries us-
ing SQL or LINQ [45], that parties agree via out-of-band
mechanisms on the query to run, and that all parties faithfully
execute the protocol. Parties locally store input data with the
schema expected by the query. Each party runs (i) a local
Conclave agent that communicates with the other parties and
manages local and MPC jobs, (ii) a local MPC endpoint (e.g.,
an Obliv-C or Sharemind node), all on private infrastructure
and (iii) optionally, a parallel data processing system (e.g.,
Spark). Absent a parallel data processing system, Conclave
runs local computation in sequential Python.

4.2 Query specification

Conclave queries can be written in any way that compiles to
a directed acyclic graph (DAG) of operators. Listings 1 and
2 show the credit ratings and market concentration queries
from §2.1 in a DryadLINQ-like language [63].

Even though the input data to a Conclave query is dis-
tributed across multiple parties, Conclave largely abstracts
this fact away from analysts. Instead, the analysts specify the
query’s core as though it was a relational query on a single
database stored at a trusted party (lines 14–22 of Listing 1
and lines 14–25 of Listing 2).

The only difference to a simple query is that each input
relation has an “owner”, viz., the party storing it, supplied
via an at annotation (lines 6–11 and 5–10). This information
helps Conclave both locate the data and derive where oper-
ations combine data across parties. By combining per-party
input relations using a duplicate-preserving set union operator
(concat, lines 12 and 12), analysts can create compound rela-
tions across parties and use them in the query. In addition to
inputs, analysts also annotate each output relation with one or
more recipient parties (to). These parties receive the cleartext
result of executing the query (lines 24 and 27).

Conclave’s high-level, declarative query specification con-
trasts with existing MPC frameworks, which usually pro-
vide Turing-complete languages (e.g., SecreC [34] or Obliv-
C [65]). Such interfaces are expressive, but are often un-
familiar to data analysts and require fine-grained security
annotations of intermediate variables.

4.3 Optional trust annotations

In addition to mandatory input locations, Conclave also sup-
ports optional, light-weight trust annotations that help it ap-
ply further optimizations. These annotations specify parties
who are authorized to learn values in specific input schema
columns in the clear to compute more efficiently on them.

The intuition behind trust annotations is that the sensitivity
of data within a relation often varies by column. Consider a
relation that holds information about a company’s branches: it
may have public address and zip columns (as this information
is readily available from public sources), but privately-owned
columns manager or turnover. Other columns may be private,
but the owning party might be happy to reveal them to a spe-
cific selectively-trusted party (STP), such as a government
regulator. For example, in the credit card regulation query
(Listing 1), the government regulator already holds demo-
graphic information organized by SSN, and the credit card
companies may be willing to reveal the SSNs of their cus-
tomers to the regulator (though not to the other parties, who
are competitors). Hence, the parties agree to make the regula-
tor an STP for the ssn column of the credit card companies’
customer relations (see Listing 1, line 8). Such selective re-
vealing of columns helps Conclave avoid, or shrink, expensive
MPC steps and substantially improves performance.

A trust annotation associates a column definition with a
trust set of one or more parties. Any party in the trust set can
be an STP for computing on the annotated column. This party
may obtain the cleartext data for this column and combine it —
locally and in the clear — with public columns, other columns
with an overlapping trust set, and columns it privately owns.
A party storing an input relation is implicitly in the trust set
for all its columns, as are recipients of an output relation.
Finally, a public column has all parties in its trust set.
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5 Query compilation

The annotations on input and output relations enable Conclave
to determine which parts of the query DAG must run under
MPC. Conclave automates this reasoning to free data analysts
from manual labor and to avoid subtle mistakes. Its goal is to
execute as many operators as possible outside of MPC, and
to reduce data volume processed under MPC where possible,
while maintaining MPC’s security guarantees. To achieve
this, Conclave applies a combination of static analysis, query
rewriting transformations, and partitioning heuristics.

Conclave compiles a query in six stages (partly illustrated
in Figure 2); all parties run these stages deterministically.

1. Conclave starts with a query plan consisting of a sin-
gle, large MPC. First, it propagates input relation loca-
tions to intermediate relations to determine where data
crosses party boundaries (§5.1).

2. Using this information, Conclave then rewrites the
query into an equivalent query with fewer operators
under MPC. This results in a DAG with a clique of
inner operators under MPC, and with efficient cleartext
operators at the roots and leaves (§5.2).

3. Conclave then propagates the trust annotations from
input relations through the DAG, and combines them
according to inference rules in order to determine when
parts of operators can run outside MPC.

4. Subsequently, and propagated trust annotations permit-
ting, Conclave splits the monolithic inner MPC into
several smaller MPCs and local steps by adding hybrid
protocol operators in place of operators that can run
partially outside MPC (§5.3).

5. Conclave further minimizes the use of expensive obliv-
ious sub-protocols, such as sorts, by moving these op-
erations into local processing or replacing them with
cheaper equivalents if possible (§5.4).

6. Finally, Conclave partitions the query by splitting the
DAG at each transition between local and MPC opera-
tions, generates code for the resulting sub-DAGs, and
executes them on the respective backends.

Note that all transformations that Conclave applies do im-
prove end-to-end query runtime, but they do not strictly re-
duce the overall work. In fact, some transformations create
additional local processing work for parties, or they reduce
the efficiency of local cleartext processing in exchange for
doing less work under MPC. For example, a join between
an intermediate relation and a public relation (e.g., a rela-
tion mapping ZIP codes to geolocations) might process fewer
records if it runs late in the query (e.g., after filters and aggre-
gations). Conventional query optimizers would apply filters
before joins, but this may force the join into MPC, which is
much slower than a local join of the input data against the
public relation. Hence, doing the join several times (once per
party) and against more rows actually speeds up the query.

5.1 Propagating annotations

The input and output relation annotations give Conclave in-
formation about the roots and leaves of the DAG. Conclave
propagates this information through the DAG in two passes,
which infer the execution constraints on its operators.

The first pass propagates input locations down the DAG in
a topological order traversal, and propagates output locations
back up the graph in a reverse topological order traversal. For
each intermediate operator, the propagation derives the owner
of its result relation. A party “owns” a relation if it can derive
it locally given only its own data. Input and output relations
are owned by the parties that store them.

Relation ownership propagates along edges according to
inference rules. The output of a unary (i.e., single-input) op-
erator inherits the ownership of its input relation directly. The
owner of the output relation of a multi-input operator depends
on ownership of its input relations. If all input relations have



the same owner, that owner propagates to the output relation;
if they have different owners, the output relation has no owner.
This process captures the fact that no single party can com-
pute output that combines different parties’ data. Operators
with output relations that lack an owner must run under MPC.

In a second pass, Conclave determines the trust set (cf.
§4.3) for each intermediate relation’s columns. A party is
“trusted” with an intermediate result column if it is entrusted
with enough input data in order to calculate that column in
the clear. Propagating this notion of trust enables Conclave
to use hybrid protocols to compute intermediate relations,
while ensuring that no more information is leaked than was
explicitly authorized via the parties’ trust annotations on their
input schema. Columns within the same relation may have
different trust sets, because knowing one column of a relation
does not imply the ability to calculate any other columns.

The trust set for each input column is defined by the trust
annotation. Conclave propagates these trust annotations down
the DAG in topological order. For each result column c of
each operator o, Conclave determines which of o’s operand
columns contribute toward the calculation of c. Conclave
sets the trust set of c as the intersection of trust sets of these
operand columns. The dependencies between operand and
result columns are defined by operator semantics in two ways.
First, a result column depends on all operand columns that
directly contribute rows to it. For example, the first result col-
umn of a concat depends on the first column of each concate-
nated relation, since its rows are derived from those operand
columns. Second, a result column depends on all operand
columns that affect how its rows are combined, filtered, or
reordered. For example, the computed column of a sum de-
pends both on the column aggregated over and the group-by
columns, since the group-by columns determine how the
aggregated column rows are combined. Likewise, all result
columns of a join depend on the join key columns, which de-
termine whether a row is part of the output. Conclave encodes
column dependencies for all operator types it supports.

This propagation algorithm helps Conclave maintain an
important security invariant: Conclave only reveals a column
to a party if the column can be derived from input columns
that the party is authorized to learn. We use this guarantee to
ensure that Conclave’s use of hybrid protocols is safe.

5.2 Finding the MPC frontier

Conclave starts planning the query with the entire DAG in a
single, large MPC. It then pulls operators that can run on local
cleartext data out of MPC, and splits other operators into local
preprocessing operators and a smaller MPC step. These trans-
formations push the MPC frontier — i.e., the boundary be-
tween MPC operators and local cleartext operators — deeper
into the DAG, where a clique of operators remains under
MPC. The transformations have little to no impact on the
cryptographic security guaranteed by Conclave’s backend.

MPC frontier push-down. Starting from the input rela-
tions, Conclave pushes the MPC frontier down the DAG as
far as possible while preserving correctness and security. Af-
ter the ownership propagation pass, each relation is either (i)
a singleton relation with a unique owner; or (ii) a partitioned
relation without an owner. In a partitioned relation, multiple
parties hold a subset (i.e., partition) of the relation. Conclave
traverses the DAG from each singleton input relation and
pulls operators out of MPC until it encounters an operator
with a partitioned output, which it must process under MPC.

Queries often combine inputs from multiple parties into a
single, partitioned relation via a concat operator. This creates
a “virtual” input relation that contains data from all parties
(e.g., scores on line 12 of Listing 1, and taxi_data on line
12 of Listing 2). While convenient, this forces Conclave to
enter MPC early, since the output of a concat operator is a
partitioned relation. To avoid this, Conclave pushes concat
operators down past any operators that are distributive over
input partitions: i.e., for operator op and relations RpA to RpN
owned by pA to pN,

op(RpA | ... | RpN ) ≡ op(RpA) | ... | op(RpN ).

For example, the projection over taxi_data in the market
concentration query (Listing 2, line 13) is distributive, as
applying it locally to inputA, inputB, and inputC produces
the same result and leaks no more information than running
it under MPC. Consequently, Conclave can push the MPC
frontier further down.

Other operators, however, do not trivially distribute over
the inputs of a concat. For example, to split an aggregation
that groups a partitioned relation by key, Conclave adds per-
party aggregations over singleton relations, followed by a
secondary aggregation. This transformation may have secu-
rity implications, which we discuss at the end of this section.
While the secondary aggregation must remain under MPC,
Conclave can pull the local preaggregations out of MPC and
significantly reduce the MPC’s input data size. Moreover,
Conclave can push the operator clique of concat and the sec-
ondary aggregation (which now forms the MPC frontier)
past other distributive operators. In the market concentration
query, Conclave pushes the MPC frontier to right above the
market_size relation (Line 17, Listing 2), at which point the
data amount to only few integers per party.

MPC frontier push-up. In certain cases, Conclave can
also push the MPC boundary up from the output relations
(i.e., the DAG’s leaves). Some relational operators are re-
versible, i.e., given their output, it is possible to reconstruct
the input without additional information. For example, mul-
tiplication of column values by a fixed non-zero scalar has
this property. For a reversible operator, the output of the op-
eration fundamentally leaks its input, and hence it need not
run under MPC. Instead, Conclave reveals the reversible op-
erator’s input relation to the final recipients for local cleartext
multiplication, even if the input has a different owner.



Conclave’s MPC push-up pass starts at output relations and
lifts the MPC frontier through reversible operators. Key ex-
amples are arithmetic operations and reordering projections;
additionally, while aggregations are generally not reversible,
special cases are. If count occurs as a leaf operator, then it in-
herently reveals the group-by key frequencies, and Conclave
can rewrite it to an MPC projection and a cleartext count.
The projection removes all columns apart from the group-by
columns (under MPC), and the recipients count the keys in
the clear. As projections are more scalable under MPC than
aggregations (§2.3), this improves performance.

Security implications. Conclave’s push-down and push-
up query transformations can affect security guarantees. With-
out any transformations (i.e., if the entire query remains
within the MPC frontier), Conclave directly inherits the se-
curity guarantees provided by its MPC backend. Conclave’s
push-up operations have no impact on security because they
are reversible, and thus the input to the operator is simulat-
able from its output. However, push-downs do have a security
implication: they change the lengths of inputs to the MPC
backend. For instance, splitting an aggregation into a local
step and an MPC step (even as part of a “secondary aggrega-
tion” as described above) results in the parties learning the
count of distinct group-by column values contributed by each
party, as opposed to the total number of records per party. For
this reason, Conclave requires the consent of parties to make
any push-down transformations that result in data-dependent
cardinalities at the input to secure MPC.

In the appendix, we formally prove that the leaked input
length information is the only security implication of Con-
clave’s MPC frontier changes (see Theorem A.1).

5.3 Hybrid operators

In this rewrite pass, Conclave splits work-intensive operators,
such as joins and aggregations, into hybrid operators. Hy-
brid operators outsource expensive portions of an operator
to a selectively-trusted party (STP) by revealing some input
columns to the STP. Hybrid operator execution thus involves
local computation at the STP and MPC steps across all parties.
Conclave only applies this transformation if the query’s trust
annotations relax input columns’ privacy constraints.

In the context of hybrid operators, a party is either the STP,
or a regular, untrusted party. Conclave exposes the plaintext
values of some columns to the STP, and the size of the result
(i.e., row count) to all parties; otherwise, it maintains full
MPC guarantees for these columns towards the untrusted
parties, and towards all parties for all other columns.

Conclave currently supports three hybrid operators: a hy-
brid join, a public join, and a hybrid aggregation.

Hybrid join. Conclave can transform a regular MPC join
into a hybrid join if the key columns of both sides of the join
have intersecting trust sets, i.e., they share an STP. This STP
learns the key columns on both sides of the join and computes,
in the clear, which keys match. The STP hence determines

which rows in the secret-shared relations are in the join result
without learning any other column values.

The protocol proceeds as follows (Figure 3):
1. The parties obliviously shuffle the input relations under

MPC (lines 1–2 of Figure 3).
2. The parties project away all columns other than the join

key columns, and reveal the resulting key-column-only
relations to the STP (lines 3 and 5).

3. For each key-column relation, the STP enumerates the
rows (lines 4 and 6). The enumeration assigns a unique
identifier to each input row, which Conclave later uses
to link the joined results back to rows in the secret-
shared, shuffled input relations still protected by MPC.

4. The STP performs a cleartext join on the enumerated
key-column relations (line 7). This produces a set of
rows that each contain the join key and two unique row
identifiers for the left and right rows joined.

5. The STP projects the row identifier columns for the left
and right relations into two new relations and secret-
shares these to the untrusted parties (lines 8–11).

6. Back under MPC, the parties perform an oblivious in-
dexing protocol (the select operator) akin to the one
by Laud [42] for each shuffled input relation (lines 12
and 13). Given a set of secret indexes, the indexing
protocol obliviously selects the rows at the correspond-
ing positions from a relation. Using the index relations
and shuffled inputs, the parties select the left and right
rows comprising the result, producing two relations
left_rows and right_rows.

7. The parties concatenate the two relations column-wise
and obliviously reshuffle the result (lines 14–16).

The hybrid join gives an asymptotic improvement over a
standard MPC join: the oblivious indexing protocol in Step 6
requires 𝒪((n +m) log (n +m)) non-linear operations, where
n is the input size andm the result size, whereas an MPC join
requires 𝒪(n2) non-linear operations (but assumes no STP).

Public join. Conclave can use the public join operator if
the join key columns of both sides of an MPC join are public.
This is the case if both columns’ trust annotations include all
parties, and hence any party may learn the key column values
(though not other column values). The public join proceeds
exactly as the hybrid join but without the oblivious indexing
and shuffle steps: the parties send the join key columns to
a randomly selected party; the party enumerates and joins
the rows, and finally sends the joined index relation to all
parties, who compute the joined result. Even though some
MPC frameworks have built-in cleartext processing capabili-
ties, Conclave uses this approach since it allows the use of a
data-parallel framework (e.g., Spark) for local work.

Hybrid aggregation. Conclave can transform an MPC
aggregation into a hybrid aggregation if the trust set on the
group-by column contains an STP.

Conclave’s hybrid aggregation protocol adapts the sorting-
based MPC protocol by Jónsson et al. [36]. In the original



def hybridJoin(left: Relation, right: Relation, left_key_col: Column, right_key_col: Column, STP: Party):

MPC1 left.shuffle()
2 right.shuffle()
3 left_keys = left.project([left_key_col]) revealTo(STP)

5 right_keys = right.project([right_key_col]) revealTo(STP)

STP (in cleartext)
4 left.enumerate() #[a, 0], [b, 1], ...

6 right.enumerate() #[c, 0], [a, 1], ...
7 joined = left.join(right) #[a, 0, 1]
8 joined.project([left_idx]) #[0], ...inputToMPC

10 joined.project([right_idx]) #[1], ...inputToMPC
9 left_indexes

11 right_indexes
12 left_rows = left.select(left_indexes)
13 right_rows = right.select(right_indexes)
14 for (l, r) in (left_rows, right_rows):
15 joined.append(l.concat(r))
16 return joined.shuffle()

Figure 3. For the hybrid join, Conclave augments MPC with local computation to speed up execution. The protocol performs
oblivious shuffles (lines 1–2) followed by a cleartext enumeration, a join, and a projection (lines 4–10) outside MPC (at the
STP), and finishes with inexpensive oblivious indexing to reconstruct the join result under MPC (lines 12–16). The revealTo and
inputToMPC operations move data in and out of MPC; revealTo reveals secret data to a specific party, while inputToMPC inputs a
local dataset into MPC, for instance via secret-sharing.

protocol, the parties arrange the rows into key-groups by
sorting on the key, obliviously accumulate the aggregate for
each key-group into its last entry, and discard the other entries.
In the hybrid version, the STP can perform the sort in the
clear and assist the other parties in the accumulation step. It
proceeds as follows:

1. The parties obliviously shuffle the input and reveal the
shuffled group-by column to the STP. We refer to the
entries in the group-by column as keys.

2. Locally, the STP enumerates the revealed keys, produc-
ing a relation with a key column and an index column.
The STP sorts the relation on the key column. This
groups together all rows with equal keys, and creates
a mapping for each row in the sorted relation to its
original position via the indexes.

3. The STP scans over the relation and computes an equal-
ity flag for each row that indicates whether the keys for
this row and the previous row are equal.

4. The STP projects away the key column from the sorted
relation, leaving only the indexes. The STP sends the
indexes to the other parties in the clear.

5. The STP secret-shares the equality flags.
6. Using the plain-text ordering information, the untrusted

parties reorder the rows of the shuffled relation so that
the rows are sorted by group-by column values.

7. Under MPC, the parties scan over the result. For each
entry, they obliviously aggregate the previous value into
the current if the corresponding secret equality flag is
one. This accumulates the aggregate for each key group
into the group’s last entry. At each entry, the parties also
store the secret equality flag for the last comparison; the
flag is set unless the entry is the last one in the group.

8. The parties shuffle the result and reveal the equality
flags; they discard all entries with the flag set.

The hybrid aggregation improves asymptotically over the reg-
ular MPC protocol: the oblivious sorting step of the original
protocol requires 𝒪(n log2 n) oblivious comparisons; in con-
trast, the hybrid aggregation performs the sort in the clear and
only needs an oblivious shuffle which can be realized with
𝒪(n logn) multiplications. However, the hybrid aggregation
leaks the size of the result to all untrusted parties.

Security implications. Conclave’s hybrid operators intro-
duce two new types of leakage: the STP learns authorized
columns and all parties (regular and STP) observe the cardi-
nalities of inputs and outputs to the hybrid relation. Conclave
only uses hybrid operators if it can derive appropriate autho-
rizations for this leakage from input column annotations.

In the appendix, we prove that, modulo this leakage, Con-
clave continues to achieve MPC’s simulation-based security
guarantee when using hybrid operators (Theorem A.3). At a
high level, we prove this by partitioning the computation into
three distinct MPC stages — before, during, and after the hy-
brid operator — using the fact that simulation-based security
definitions provide sequential composition. We show that the
leakage stated above makes the view of the STP simple to
simulate and has little impact on Conclave’s security against
a coalition of regular parties.

5.4 Reducing oblivious operations

Conclave’s relational operator implementations rely on MPC
“sub-protocols” such as oblivious sorts and shuffles (e.g., the
aggregation protocol by Jónsson et al. [36] uses sorts).

These operations, especially sorts, are expensive under
MPC, since they must remain control-flow agnostic. How-
ever, if an operator produces a sorted relation, subsequent
sorts can in some cases be eliminated. For instance, if a query
consists of an order-by operation followed by an oblivious ag-
gregation, it is unnecessary to sort as part of the aggregation,
as the relation is already in the correct order. Conclave thus



minimizes the use of oblivious sorts by traversing the DAG,
tracking the columns by which intermediate relations are
sorted (if any), and eliminating redundant sorts. Some opera-
tions, such as shuffles, do not preserve row order; Conclave’s
propagation therefore also tracks when a sorted relation is
permuted and marks the result as unsorted. This optimization
yields especially high performance gains when a relation is
sorted in the clear (for instance by a public column) as it
allows Conclave, depending on the query, to avoid oblivious
sorting altogether.

6 Implementation
We implemented Conclave as a query compiler architected
similarly to “big data” workflow managers like Musketeer [26].
Our prototype consists of 8,000 lines of Python, and currently
integrates sequential Python and data-parallel Spark [64] as
cleartext backends, and Sharemind [12] and Obliv-C [65] as
MPC backends. As Conclave’s interfaces are generic, adding
other backends requires modest implementation effort.

Our prototype supports table schema definitions, relational
operators (join, aggregate, project, filter) as well as enumera-
tion, arithmetic on columns and scalars. This captures many
practical queries: Conclave’s current query support appears,
for example, sufficient to express 88% of 8M sensitive real-
world queries at Uber [35].

We implemented the same standard MPC algorithms for
joins (a Cartesian product approach) and aggregations [36] in
both Sharemind and Obliv-C.

7 Evaluation
We evaluate Conclave using our motivating queries (§2) as
well as microbenchmarks. We seek to answer:

1. How does the runtime of realistic queries running on
Conclave scale as data size grows? (§7.1, §7.3)

2. What impact on performance do Conclave’s trust anno-
tations and hybrid operators have? (§7.2)

3. How does Conclave compare to SMCQL [3], a state-
of-the-art query processor for MPC? (§7.4)

Setup. Unless otherwise specified, we run our experiments
with three parties; each party runs a four-node cluster that
consists of three Spark VMs and one Sharemind VM. The
Spark VMs have 2 vCPUs (2.4 GHz) and 4 GB RAM, and run
Ubuntu 14.04 with Spark 2.2 and Hadoop 2.6. The Sharemind
VM has 4 vCPUs (2.4 GHz) and 8 GB RAM, and runs Debian
Squeeze and Sharemind 2016.12.
Metrics. All our graphs increase the data size on the x-axis by
five to eight orders of magnitude, and plot query runtime on
they-axis. Less is better in all graphs, and we use a log10-scale
x-axis to be able to show the scalability limits of different
systems on the same graph.

7.1 Market concentration query

The market concentration query computes the Herfindahl Hir-
schman Index (HHI) [31] over the market shares of several
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Figure 4. Conclave runs the market concentration query in
<20 minutes for 1B input records; under Sharemind MPC,
the query cannot scale past 10k input records.

vehicle-for-hire (VFH) companies, whose sales books we
model using six years of public NYC taxi trip fare informa-
tion [54]. We randomly divide the trips across three imaginary
VFH companies and filter out any trips with a zero fare, result-
ing in a total 1.3 billion trips across all parties. We subsample
different numbers of rows from the input data, and measure
the query execution time for different input sizes.

The query contains both an aggregation and a self-join,
and the runtime of these expensive operators dominates all
others. Consequently, we expect the query to scale poorly
when run entirely under MPC in Sharemind, but for Conclave
to improve its performance by precomputing the aggregation.
Figure 4 shows that Sharemind indeed takes over an hour to
complete the query at 100k input rows, while Conclave scales
roughly linearly in the size of the input data. This comes be-
cause Conclave pushes the MPC frontier past aggregations for
the per-party revenue. All data-intensive processing happens
outside MPC in local Spark jobs, and only a few records enter
the final MPC, which consequently completes quickly.

Finally, we run the same query insecurely on the joint
data using a single, nine-node Spark cluster that processes all
parties’ combined data. In this insecure setting, we observe
similar performance. Up to 10M, this insecure setup is slightly
slower than Conclave, as it runs one job rather than three
parallel jobs, but at 1.3B records, insecure Spark benefits
from the additional parallelism of the joint nine-node cluster
and completes quicker.

The market concentration query benefits from Conclave
pushing down the MPC frontier and splitting the initial aggre-
gation, but does not use hybrid protocols.

7.2 Hybrid operator performance

Conclave transforms queries to use hybrid protocols if a
selectively-trusted party participates (§5.3). We measure the
impact of these hybrid protocols with queries with only a
single join or aggregation, and a growing amount of synthetic
input data. We annotate the input relations’ columns with
STPs, allowing Conclave to apply hybrid operator transfor-
mations, and measure query runtimes. We expect Conclave’s
hybrid operators to reduce query runtimes, even though the
rewritten query contains additional operators.
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(a) Hybrid join.
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Figure 5. Conclave’s hybrid operators help scale joins and
aggregations to large data by combining MPC and cleartext
compute; At 10k records per party, Sharemind alone takes ten
minutes (aggregation) and over twenty minutes (join).
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Figure 6. Conclave scales to two orders of magnitude more
data on the credit card regulation query than pure Sharemind
due to its hybrid join and aggregation.

Figure 5 confirms this. Without an STP, Conclave must run
the query entirely under MPC, which exhibits performance
similar to earlier benchmarks (§2.3). Conclave’s hybrid join
improves asymptotically over the MPC join; it replaces 𝒪(n2)
non-linear operations under MPC with oblivious shuffles and
indexing protocols, which require 𝒪((n + m) log (n + m))

non-linear operations, for input size n and join output size
m. Consequently, using a hybrid join operator substantially
improves scalability: a hybrid join on 200k records takes just
over ten minutes. (At 2M input records, Sharemind runs out
of memory while executing the MPC part of the hybrid join.)

The public variant of the join operator scales even better
since it avoids the use of MPC altogether (hence, it completes
at 2M records). The public join’s bottleneck is the local join.

The hybrid aggregation demonstrates similar speedups to
the hybrid join. This is due to an asymptotic improvement:
an oblivious shuffle with 𝒪(n logn) complexity replaces a
sorting-network that requires 𝒪(n log2 n) comparisons. In ad-
dition to the asymptotic improvement, the hybrid aggregation
also avoids oblivious comparison and equality operations,
which are slow in secret-sharing MPC.

7.3 Credit card regulation query

Conclave’s hybrid operators offer substantial benefits for
queries whose performance is dominated by aggregations and
joins (a common case). The credit card regulation query is an
example: it first joins the regulator’s demographic information

with the credit scores, and then computes an aggregate (viz.,
the average score grouped by ZIP code). The credit card com-
panies trust the regulator, but not their competitors, with the
SSNs of their customers, and the regulator wishes to keep the
mapping from SSNs to ZIP codes private. Hence, Conclave
can apply both the hybrid join and the hybrid aggregation
operator transformations to this query. Even though these
optimizations increase query complexity, we expect them to
reduce runtime, as both the join and the aggregation work can
now happen outside MPC.

Figure 6 confirms this. Running the query entirely under
MPC in Sharemind fails to scale beyond 3,000 total records;
at 30k, the query does not complete within two hours. This
comes despite the Sharemind baseline using a join imple-
mentation that leaks output size, matching the leakage of
Conclave’s hybrid join operator. With Conclave’s hybrid op-
erators, however, the query processes 300k records in under
25 minutes. The experiment highlights that hybrid operators
are crucial to obtaining good performance for this query. The
query’s first operator is a join, so Conclave cannot push the
MPC frontier down and, without hybrid operators, would
have to run the entire query under MPC.

7.4 Comparison with SMCQL

Finally, we compare Conclave with the most similar state-
of-the-art system, SMCQL [3]. SMCQL and Conclave make
different, complementary optimizations to speed up MPC
on for relational queries. To compare, we configure Con-
clave to be as similar to SMCQL as possible. We disable
the MPC frontier pushdown past local filters over private
columns (to match SMCQL’s security guarantee), and man-
ually implement SMCQL’s optimizations, which compose
with Conclave’s optimizations.

SMCQL relies on the ObliVM [44] garbled-circuit frame-
work for MPC. ObliVM supports only two-party computa-
tions and is slower than Sharemind, particularly on large data.
This difference is not fundamental: SMCQL could generate
code for Sharemind. Conclave uses the Sharemind backend
in these experiments, and has two parties provide input, while
the third participates in the MPC without inputs. Conclave
and SMCQL make comparable security guarantees, with the
exception that their backends’ corruption thresholds differ
(ObliVM: one of two, Sharemind: one of three). Because
SMCQL requires more memory, the experiments use larger
VMs with 32 GB RAM and 8 vCPUs.

We benchmark the aspirin count and comorbidity queries
from the SMCQL paper. We omit running the third query
(recurrent c. diff.), as Conclave does not yet support window
aggregates, but summarize the performance we would expect.

Aspirin Count [3, §2.2.1]. The query joins two input re-
lations, diagnoses and medications on public, anonymized pa-
tient IDs, filters by patient diagnosis and prescribed medi-
cation (both private columns), and counts the results. These
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Figure 7. Conclave outperforms SMCQL on the aspirin count
and comorbidity queries [3, §2.2.1]. For aspirin count, Con-
clave’s optimizations lift additional work out of MPC. At
200k records, SMCQL ran for over an hour for both queries.

inputs to the join are partitioned across two hospitals, i.e.,
each party holds part of diagnoses and part of medications.

SMCQL’s “slicing” partitions the data on the public patient
ID column. Slices with patient IDs only one party has are
processed locally at that party, while the other slices must
be processed under MPC. For this experiment, we manually
implement SMCQL’s slicing and combine it with Conclave’s
public join. We generated input data with a 2% overlap be-
tween the parties’ uniformly-random patient IDs, similar to
the HealthLNK data [3, §7.2]. We measure query runtime for
increasing numbers of input records per party.

Figure 7a shows that Conclave consistently outperforms
SMCQL, and that it scales better. At 40k rows, Conclave
completes in 3.7 seconds, while SMCQL takes 14.3 minutes;
SMCQL does not finish within an hour for 400k or more rows,
while Conclave takes under two minutes. Finally, Conclave
processes 4M input records in 8 minutes.1 This improvement
is due Conclave’s public join and its sort elimination optimiza-
tion. By combining the public join with slicing, Conclave can
compute the initial join in the clear, and sends only rows for
patient IDs present at both parties into MPC. By contrast,
SMCQL still runs the join and the subsequent operations
obliviously for each private slice, which has quadratic cost in
the size of the slice.

Sort elimination allows Conclave to avoid an expensive
oblivious sort step otherwise required for the distinct count.
Conclave performs the sort in the clear, as part of the public
join; since all operations under MPC are order-preserving no
subsequent sorts are necessary. This reduces the complexity
of the MPC from 𝒪(n logn) to 𝒪(n). SMCQL could likewise
benefit from this optimization.

1Bater et al. also benchmarked aspirin count for larger inputs of 42M
diagnoses and 23M medications using eight servers to parallelize sliced
MPCs, taking 23 hours to complete the query [3, §7.3]. Conclave can like-
wise run additional Sharemind servers, but we lacked the resources to do so.
We expect Conclave to still outperform SMCQL on the full data set.

Comorbidity. For this query, Conclave and SMCQL ap-
ply identical optimizations (viz., MPC-pushdown), and Con-
clave’s improves over SMCQL in Figure 7b only because of
its more efficient MPC backend (Sharemind vs. ObliVM).

Recurrent c. diff. This query is amenable to Conclave’s
public join optimization, but Conclave lacks a windowed
aggregation operator it needs. Based on our results for aspirin
count (cf. Figure 7a), we expect Conclave’s public join (in
combination with slicing) to match or exceed the performance
from SMCQL’s sliced-mode execution.

8 Related Work
We now highlight elements of Conclave that relate to other
approaches to building privacy-protecting systems. We omit
prior work in MPC algorithms, frameworks, and deployments
already discussed in §2. Instead, we survey efforts that have
made innovations in “mixed mode” operations, query rewrit-
ing, and query scalability for MPC.

MPC with mixed mode operation. Wysteria [53] per-
forms mixed mode computations that move between MPC
and local work. Wysteria programs are written in a DSL that
creates the programmer illusion of a single thread of control.
However, the programmer must still manually annotate which
blocks of the computation run under MPC, and which blocks
are to be carried out locally. These annotations are much more
fine-grained than Conclave’s input annotations, and require
MPC proficiency. By contrast, Conclave targets data analysts
with minimal MPC knowledge, and focuses on automation.
Conclave automatically optimizes queries to reduce the use of
MPC, for instance via the MPC pushdown, whereas Wysteria
requires the programmer to manually identify and implement
such optimizations via the aforementioned per-block anno-
tations. Furthermore, Conclave supports parallel cleartext
processing using existing frameworks like Spark.

Query rewriting and MPC alternatives. There are sev-
eral efforts to optimize MPC via query rewriting, like Con-
clave does, at different levels of abstraction. Kerschbaum [41]
operates at the circuit level, transforming a manually assem-
bled circuit into a different one with faster execution under
MPC (e.g., using the distributive law to reduce the number of
multiplications). Other systems perform query rewriting at the
relational algebra level, such as SMCQL [3] and Opaque [66].
SMCQL, like Conclave, uses column-level annotations, but
differentiates only between public and private columns. How-
ever, SMCQL shares some optimization, such as parts of the
MPC frontier push-down, with Conclave, and supports other
complementary optimizations (slicing and secure semi-joins).
Conclave’s annotations are more expressive, and Conclave’s
hybrid protocols allow for additional performance improve-
ments. Opaque, by contrast, runs most computation in the
clear inside a protected Intel SGX enclave as an alternative
to MPC; its query rewriting focuses on reducing the number
of oblivious sorts required in distributed computation across
multiple SGX machines. Similarly, Prochlo [9] combines the



use of SGX, secret-sharing based techniques, and differential
privacy [21] to implement large-scale application usage moni-
toring. In contrast to Conclave, Prochlo targets a setting where
a large number of parties, i.e., users, contribute data to the
computation. It furthermore relies on specialized hardware,
and does not match MPC’s full privacy guarantees.

Protected databases and scalability. The protected data-
base community has produced decades of research on scaling
secure query execution to the gigabyte-to-terabyte range [14;
23; 29]. This includes work on optimizations for boolean
keyword search [22; 51], as well as large, general subsets of
relational algebra [37]. These works largely target querying
a single protected database, as opposed to Conclave’s dis-
tributed scenario. Investigations into the scalability of secure
MPC often involve laborious hand-optimization by groups of
cryptographers on specific queries like set intersection [32;
39], linear algebra [25], or matching [20].

Inference and privacy. MPC protects sensitive state dur-
ing computation but provides no restriction on the ability to
infer sensitive inputs from the provided outputs. Differen-
tial privacy (DP) [21] provably ensures that the output of an
analysis reveals nothing about any individual input, but often
uses a trusted curator to perform the analysis. Several prior
systems have combined MPC and DP to avoid the threat of
parties jointly reconstructing sensitive input data. DJoin [46]
does so for SQL-style relational operations (with query rewrit-
ing, but without Conclave’s automation and hybrid protocols),
DStress [50] does so for graph analysis, and He et al. [30]
do so for private record linkage. Conclave does not currently
leverage DP, but adding it would require no fundamental
changes to the query compilation.

9 Conclusion and future work
Conclave speeds up secure MPCs on “big data” by rewrit-
ing queries to minimize expensive processing under MPC.
Conclave runs queries in minutes that were impractical with
previous MPC frameworks or would have required domain-
specific knowledge to implement.

In the future, we plan to integrate other MPC backends into
Conclave, and to make Conclave choose the most performant
MPC protocol for a query. We are also interested in whether
verifiable computation techniques can be combined with Con-
clave, and whether Conclave can use adaptive padding to
avoid leaking relation sizes on the MPC boundary.

Conclave is open-source and available at:
https://github.com/multiparty/conclave.
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A Security analysis
To prove Conclave’s security guarantees, we analyze the se-
curity of Conclave’s push-down, push-up, and hybrid trans-
formations individually and collectively.

A.1 Definitions

A secure MPC protocol π securely computes function f sub-
ject to a (monotone-decreasing) adversary structure ∆ if π
enables parties with inputs ®x to learn f (®x) while ensuring that
no sufficiently small colluding subset of parties can learn any
additional “useful” information from everything they view
during the protocol. We codify this statement in pieces.

First, an adversarial set of colluding parties 𝒞 is deemed to
be permissible if 𝒞 ∈ ∆; these are the only adversaries that
π vouches to withstand. Second, the view of an adversary
is defined as the state of all colluding parties in 𝒞 together
with the set of all network messages they observe. Third,
we simultaneously guarantee MPC’s correctness and security
by requiring that 𝒞’s view can be simulated given only the
colluding parties’ inputs (®x𝒞 = {xi : i ∈ 𝒞}) and the size of all
parties’ inputs (®ℓ, where ℓi = |xi |); ergo, 𝒞 cannot learn more
information than this from its own view. Formally, we require
that for all permissible adversaries 𝒞, there exists a simulator
𝒮 such that the following two ensembles are computationally
indistinguishable [27] when the distinguisher and 𝒮 run in
time polynomial in the security parameter:

⟨®x𝒞, ®ℓ, outπ , viewπ
𝒞 ⟩ ≈ ⟨®x𝒞, ®ℓ, f (®x),𝒮(®x𝒞, ®ℓ, [f (®x)])⟩. (1)

Correctness follows because outπ = f (®x) and security stems
from the fact that the adversary’s view contains “no more
information” than the adversary’s own input and the length of
the honest parties’ inputs. If the adversarial set 𝒞 includes the
receiving party, then 𝒮 is also given f (®x) since the adversary
is supposed to learn it through the execution of π .

A.2 Semi-Honest Security without Hybrid Operators

Without hybrid operators, the execution of Conclave on some
function д proceeds in three phases as shown in Figure 2.

• Local pre-processing d: each party calculates di (xi ).
• A single MPC calculation over a set of operators f that

ultimately reveals some value y to the receiving party.
• Local post-processing u: receiving party outputs z =
u(y), where u is an invertible function.

Conclave’s push-down and push-up transformations choose
the local pre- and post-processing operators.

The security of this transformation can be proved via a stan-
dard composition argument that applies to all secret sharing
or garbled circuit-based MPC protocols.

Theorem A.1. Consider Conclave with an MPC backend
that provides semi-honest secure computation under adver-
sary structure ∆. Suppose Conclave splits the function to

https://github.com/multiparty/conclave


be computed д = u ◦ f ◦ d into a set of local per-party
pre-processing operators {di }, an operator f intended for
secure computation, and a local post-processing operation
u performed by the receiving party. Then, Conclave securely
computes д as per equation (1) with the same adversary struc-
ture ∆, except that the protocol reveals the input lengths of f
and not д (i.e., ℓi = |di (xi )|).

Proof. See our extended technical report [61]. □

A.3 Hybrid Operators Stand-Alone Security

In this section, we provide simulation-based proofs of semi-
honest static security for the hybrid join and hybrid aggrega-
tion protocols (§5.3). The proofs are partitioned based upon
whether the colluding set includes the selectively-trusted party
(STP). If so, then recall that the STP must operate alone; it is
not permitted to collude with other participants. Our extended
technical report [61] includes full proof details and discussion
of the public join.

Theorem A.2. Suppose that Conclave uses a secure MPC
backend whose adversary structure ∆ includes {STP} ∈ ∆ but
STP < δ for any other set δ ∈ ∆, and it supports secure proto-
cols for oblivious shuffles and indexing. Then the algorithm
for each hybrid operator in §5.3 results in a standalone secure
computation of its corresponding operator as per equation
(1), subject to the following leakage: the STP learns the join
or aggregation key column, and all parties learn the number
of rows for the input and result of the operator.

Proof sketch. The STP only receives information in one step
of each algorithm (step 2 of the hybrid join or step 1 of
the hybrid aggregation), and the simulator can emulate this
message by randomly permuting the join/aggregation key
columns it receives as leakage. Additionally, we can simulate
the view of a colluding set of regular parties in the MPC
steps of the protocols (steps 5–7 for hybrid join or steps 5–8
for hybrid aggregation) by running the simulator provided
by Conclave’s MPC backend. We must provide the backend
simulator with the lengths of intermediate state during the
MPC steps of the hybrid operator, which we can calculate
from the length leakage stated within the theorem. □

A.4 Semi-Honest Security with Hybrid Operators

To complete the security analysis of Conclave in the semi-
honest setting, we augment the composition argument to ac-
count for the presence of hybrid operators. In its full gen-
erality, Conclave’s static analysis splits the function д to be
computed into the following series of 2k + 1 functions:

д = u ◦ ek ◦ ek−1 ◦ · · · ◦ e2 ◦ f 2 ◦ e1 ◦ f 1 ◦ d, (2)

where d and u denote local pre- and post-processing, the f j

functions are intended for (generic) secure computation using
the Conclave backend, and the e j functions are hybrid opera-
tors. We assume without loss of generality that the distributed

computation begins and ends with non-hybrid MPC steps,
which might be identity function operators.

To invoke composition when several operators in a row are
processed using secure computation, we “lift” the functions
to their equivalents that operate over shared state. That is:

• d̂ = local pre-processing and randomized sharing.
• Each ê j and f̂ j receives a sharing of the corresponding

input for e j or f j , respectively, and produces a random
sharing of the corresponding output.

• û = reconstruction and local post-processing by the
receiving party.

Like most MPC protocols, the backends for Conclave are
reactive and permit calculations directly over the shares. That
is, they can securely compute the f̂ j or ê j functions over an
already-shared state, without the need to perform an initial
sharing of inputs or reconstruction of the output. We use this
observation in the following theorem.

Theorem A.3. Consider Conclave with an MPC backend
that provides semi-honest secure computation under adver-
sary structure ∆ such that {STP} ∈ ∆ and furthermore this
is the only set in ∆ that includes the STP. Suppose also that
Conclave’s backend is reactive, with well-defined algorithms
to share and reconstruct state and with all intermediate state
during a calculation being shared among the participants.
Given a function д that Conclave partitions into the sequence
of operators in equation (2), Conclave securely computes д
as per equation (1) in the server-aided setting with adver-
sary structure ∆ subject to the following leakage: every party
learns the input and output lengths of d and all e j , and the
regular and selectively-trusted parties receive the stand-alone
leakage of each constituent hybrid operator ê j .

Proof. See our extended technical report [61]. □

The union of all leakages stated in Theorem A.3 can po-
tentially be large; its potential for harm in practice depends
strongly on the parties’ privacy concerns about their input
data, as well as on the number and type of hybrid operators
invoked. That having been said, our annotation propagation
method ensures that even the composition of all leakages of
intermediate state to the STP is no worse than simply reveal-
ing all of the columns that the regular parties are willing to
share with the STP. That is, applying our recursive definition
of trust sets to Theorem A.3 yields the following corollary.

Corollary A.4. Suppose Conclave and its MPC backend sat-
isfy all of the requirements listed in Theorem A.3 and that
Conclave is tasked to compute function д as given in equation
(1). Then, Conclave securely computes function д subject to
the following leakage: every party learns the input and output
lengths of d and all e j , and the STP receives the contents of
all input columns annotated by the regular parties.

A proof of this claim, like many others in this appendix,
can be found in our extended technical report [61].
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