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Abstract

SMP Click is a software router that provides both flexibility
and high performance on stock multiprocessor PC hardware.
It achieves high performance using device, buffer, and queue
management techniques optimized for multiprocessor rout-
ing. It allows vendors or network administrators to configure
the router in a way that indicates parallelizable packet pro-
cessing tasks, and adaptively load-balances those tasks across
the available CPUs.

SMP Click’s absolute performance is high: it can forward
494,000 64-byte IP packets per second on a 2-CPU 500 MHz
Intel Xeon machine, compared to 302,000 packets per second
for uniprocessor Click. SMP Click also scales well for CPU
intensive tasks: 4-CPU SMP Click can encrypt and forward
87,000 64-byte packets per second using IPSec 3DES, com-
pared to 23,000 packets per second for uniprocessor Click.

1 Introduction

High performance routers have traditionally forwarded pack-
ets using special purpose hardware. However, many routers
are expected to perform packet processing tasks whose com-
plexity and variety are best suited to software. These tasks in-
clude encrypting virtual private network tunnels, network ad-
dress translation, and sophisticated packet queuing and sche-
duling disciplines. These tasks are likely to be too expensive
for a single CPU at high line rates. Many routers already in-
clude multiple CPUs to exploit parallelism among indepen-
dent network links [26], and the advent of routers with mul-
tiple tightly-coupled CPUs per link seems near [6, 10, 11].
This paper describes and analyses techniques to extract good
performance from multiprocessor PC routers with a variety
of packet processing workloads.

Published in the Proceedings of the USENIX 2001 Annual Technical Con-
ference, June 2001.

This research was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Space and Naval Warfare Systems Center, San
Diego, under contract N66001-00-1-8933.

In order to increase performance, a multiprocessor router
must find and exploit operations that can be carried out si-
multaneously. Potential parallelism arises naturally in loaded
routers as multiple packets queue up at inputs waiting to be
processed. However, good performance demands some care
in the way that packet processing tasks are divided among
multiple CPUs. Any single packet should be processed by as
few distinct CPUs as possible, to avoid cache conflicts. Each
mutable data structure, such as a queue or device driver state
record, should be touched by as few distinct CPUs as possi-
ble to avoid locking costs and cache conflicts. Similarly, if the
router keeps mutable state for a flow of packets, processing
for all packets of that flow should be done on the same CPU.
Finally, the number and costs of the tasks should permit bal-
ancing the processing load and avoiding idle CPUs. The best
way to split up a router’s work among the CPUs depends on
the router’s packet processing and on traffic patterns.

An ideal multiprocessor router would allow configuration
of its parallelization strategy in conjunction with configura-
tion of its packet processing behavior. This paper describes a
system, SMP Click, for doing so. SMP Click is derived from
the Click [14] modular router. Click routers are configured
with a language that declares packet processing modules and
the connections among them. SMP Click provides automatic
parallel execution of Click configurations, using hints from
the configuration structure to guide the parallelization. Thus
a router vendor or network administrator can easily tailor the
way that a multiprocessor router parallelizes its packet pro-
cessing tasks in order to maximize performance. This paper
describes how SMP Click works and how it supports config-
urable parallelization.

This paper contributes the following lessons about SMP
router design. First, no one approach to parallelization works
well for all router configurations. Second, parallelization tech-
niques can be effectively expressed at the level of router con-
figurations, and such configurations can be restructured to in-
crease performance. Finally, significant parallelism can often
be found even in untuned configurations.

The next section presents an overview of Click and de-
scribes the example configurations used in the rest of the pa-
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per. Section 3 describes SMP Click’s design goals. Section 4
details the challenges faced in its implementation along with
their solutions. Section 5 analyzes SMP Click’s performance
with configurations not tailored to multiprocessors. Section 6
presents several ways that SMP Click allows control over par-
allelism, along with the resulting performance improvements.
Section 7 describes related work, and Section 8 concludes the
paper.

2 Click

This section introduces the Click router toolkit. A complete
description is available in Kohler’s thesis [13]; the element
glossary in its Appendix A may be particularly helpful.

Click routers are built from modules called elements. El-
ements process packets; they control every aspect of router
packet processing. Router configurations are directed graphs
with elements as the vertices. The edges, called connections,
represent possible paths that packets may travel. Each ele-
ment belongs to an element class that determines the ele-
ment’s behavior. An element’s class specifies which code to
execute when the element processes a packet. Inside a run-
ning router, elements are represented as C++ objects and con-
nections are pointers to elements. A packet transfer from one
element to the next is implemented with a single virtual func-
tion call.

Each element also has input and output ports, which serve
as the endpoints for packet transfers. Every connection leads
from an output port on one element to an input port on an-
other. Only ports of the same kind can be connected together.
For example, a push port cannot be connected with a pull port.
An element can have zero or more of each kind of port. Dif-
ferent ports can have different semantics; for example, the
second output port is often reserved for erroneous packets.

Click supports two packet transfer mechanisms, called
push and pull processing. In push processing, a packet is gen-
erated at a source and passed downstream to its destination.
In pull processing, the destination element picks one of its
input ports and asks that source element to return a packet.
The source element returns a packet or a null pointer (which
indicates that no packet is available). Here, the destination el-
ement is in control—the dual of push processing.

Every queue in a Click configuration is explicit. Thus, a
configuration designer can control where queuing takes place
by deciding where to place Queue elements. This enables
valuable configurations like a single queue feeding multiple
interfaces. It also simplifies and speeds up packet transfer be-
tween elements, since there is no queuing cost.

Click provides a language for describing router configu-
rations. This language declaratively specifies how elements
should be connected together. To configure a router, the user
creates a Click-language file and passes it to the system. The
system parses the file, creates the corresponding router, tries

PollDevice(eth0)

PollDevice(eth1)

ToDevice(eth2)

Figure 1: A simple Click configuration.

to initialize it, and, if initialization is successful, installs it and
starts routing packets with it.

Figure 1 shows a simple Click configuration. In our con-
figuration diagrams, black ports are push and white ports are
pull; agnostic ports, which can connect to either push or pull
ports, are shown as push or pull ports with a double out-
line. This configuration reads packets from network interfaces
named eth0 and eth1, appends them to a queue, and transmits
them out interface eth2. The PollDevices initiate pushes along
the paths to the queue as packets arrive. The ToDevice initi-
ates pulls from the queue as the device hardware completes
previous packet transmissions.

2.1 An IP Router

Figure 2 shows a basic 2-interface IP router configuration.
Detailed knowledge of this configuration is not required to
understand this paper; it’s included to give a feel for the level
at which one configures a Click router.

The high-level flow of packets through Figure 2 is as fol-
lows. Each PollDevice element reads packets from an input
device. The Classifier separates ARP queries and responses
from incoming IP packets. Paint annotates each packet with
the index of the interface it arrived on, for later use in gen-
erating redirects. Strip removes the 14-byte Ethernet header,
leaving just an IP packet. CheckIPHeader verifies that the
IP checksum and length fields are valid. GetIPAddress ex-
tracts the packet’s destination address from the IP header.
LookupIPRoute separates the packets according to which out-
put interface they should be sent to; it also separates pack-
ets addressed to the router itself. The elements before the
LookupIPRoute perform per-interface input processing; the
elements after the LookupIPRoute perform per-interface out-
put processing.

The first stage in output processing is to drop any packet
sent to a broadcast Ethernet address, since forwarding it would
not be legal. CheckPaint detects a packet forwarded out the
same interface on which it arrived, and arranges to gener-
ate an ICMP Redirect. IPGWOptions processes hop-by-hop
IP header options. FixIPSrc rewrites the source address of
any packet generated by the router itself to be the address of
the outgoing interface. DecIPTTL checks and decrements the
TTL field, and IPFragmenter fragments large packets. ARP-
Querier finds the Ethernet address associated with the next
hop and prepends an Ethernet header; this may involve setting
aside the packet while sending out an ARP query. Finally, the
push path ends by depositing the packet in a Queue. ToDevice
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Figure 2: An IP router configuration with two network inter-
faces. This router implements RFC 1812 [2].

pulls packets out of the queue whenever the output device is
ready to send.

2.2 Configuration-level Parallelism

Control (i.e. a CPU thread) can enter a Click configuration at
one of only a few schedulable elements: at a PollDevice el-
ement, to check device hardware for new input packets and
start push processing; at a ToDevice, to initiate a pull for
the next available output packet and send it to device out-
put hardware; and at a PullToPush element which initiates a
pull through its input and pushes any resulting packet to its
output. Once a CPU thread starts pull or push processing for
a packet at a schedulable element, that thread must carry the
packet through the configuration until it reaches a Queue, a
ToDevice, or some other element that discards or otherwise
disposes of the packet. For convenience, let a push path be
a sequence elements that starts with a schedulable push ele-
ment, such as PollDevice, and ends with a Queue, and let a
pull path be a sequence of elements that starts with a Queue
and ends with a schedulable pull element, such as ToDevice.

These constraints on control flow mean that a Click con-
figuration conveys a good deal of information about potential
parallelism. CPUs executing completely disjoint paths will
not interfere with each other at all. CPUs carrying packets
along the same path may interfere with each other, though
parallelism may still be available if the path contains multiple
expensive elements.

A common situation arises when paths from a number
of PollDevice elements converge on a Queue, which in turn
feeds a ToDevice. The push paths from the PollDevices are
mostly disjoint, conflicting only at the last element Queue, so
each can be profitably executed by a separate CPU. In con-
trast, the pull path from the Queue to the ToDevice is usu-
ally short and would cause contention if executed on multiple
CPUs; in fact, SMP Click never executes any schedulable el-
ement on more than one CPU concurrently.

3 Design Goals

The most obvious design goal of SMP Click is to run Click
configurations on multiprocessor PC hardware. In order for
it to be useful, however, it must achieve a number of related
goals:

� SMP Click users should not need to think about syn-
chronization when writing configurations. Configura-
tions that work on a uniprocessor should also work cor-
rectly on multiprocessors.

� SMP Click should improve the performance of even
naive configurations, so that no special skills are re-
quired to take some advantage of it.
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Figure 3: A configuration fragment that splits packets into two
flows based on their destination IP addresses. Because the
new PullToPush element can be scheduled separately, two
threads can perform the expensive encryption operation.

� It should be easy to rewrite Click configurations to ex-
pose parallelism and thus increase performance.

The second goal is reasonable because most Click config-
urations inherently allow for some parallelism. Any config-
uration with multiple network interfaces can read from and
write to the different interfaces in parallel. Checking incom-
ing packets for correctness and even lookup of destinations in
routing tables can also often proceed in parallel for packets
from different interfaces. For example, almost all of Figure 2
can proceed in parallel for packets arriving from different in-
terfaces; contention first occurs either in the mutable ARP
table in ARPQuerier or in the queues.

In support of the last goal, SMP Click allows users to per-
form a variety of configuration transformations that might in-
crease parallelism, including the following:

� Pipeline paths. If a single push path contains multiple
expensive elements, it may be advantageous to break
up the path to allow pipelining on multiple CPUs. This
can be done by inserting a Queue and a PullToPush
element in the path. A PullToPush can be scheduled on
its own CPU, and thus can initiate the processing for
one pipeline stage.

� Split into separate flows. If a configuration contains
only one expensive element, the push path cannot be
pipelined. Sometimes the expensive element itself can
be replicated and executed in parallel on different pack-
ets, however. Incoming packets from the same flow usu-
ally need to be directed to the same replica, both to
preserve order within flows and because the replicated
element may maintain per-flow state. Figure 3 shows
a configuration fragment that splits flows. In this frag-
ment, the HashDemux element demultiplexes incoming
packets based on their destination IP addresses. The
new PullToPush element becomes an additional point
where a thread may enter the configuration to perform
expensive packet processing, such as encryption.

See Section 6 for examples of some of these transforma-
tions and their effects on performance.

4 Implementation

Uniprocessor Click, the predecessor to the work described
here, runs in a single thread inside the Linux kernel. It sched-
ules work by maintaining a work list of elements that want
CPU time. These elements are typically of types PollDevice,
ToDevice, and PullToPush. Since these elements poll for the
availability (or departure) of packets, and Click uses no inter-
rupts, they must be called periodically. All pushes and pulls
are initiated by elements on the worklist.

SMP Click retains much of the structure of uniproces-
sor Click, but involves changes in a number of areas. These
include scheduling the worklist on multiple CPUs, synchro-
nization to protect mutable data in re-entrant elements, and
special handling of devices, buffer free lists, and queues to
enhance parallelism.

4.1 CPU Scheduling

When it first starts, SMP Click creates a separate thread for
each processor. Each thread runs schedulable elements from
a private worklist in round-robin order, occasionally yield-
ing control to Linux so user processes can make progress.
This approach differs from most software routers built on top
of traditional operating systems in that packet processing is
not driven by packet arrival interrupts, hence device handling
cannot starve packet forwarding [17].

Each thread has a private worklist in order to avoid the
expensive synchronization operations associated with central-
ized worklists [1] and to allow processor affinity scheduling.
Load balancing among these private worklists, however, is
difficult to achieve for three reasons. One, Click never in-
terrupts an element while it is processing a packet, so time-
slicing is not possible. Two, since elements take different time
to execute, merely balancing the number of elements on each
worklist is not adequate. Three, because Click is not event
driven, an idle element cannot remove itself from a work-
list and rejoin the list later on when it is ready to process a
packet. Consequently, most schedulable elements remain on
the worklist even if they rarely have work to do. This means
SMP Click cannot use work-stealing algorithms [1, 5] that
steal work from other worklists when the local worklist emp-
ties.

SMP Click offers two solutions for load balancing. It pro-
vides an adaptive load balancing algorithm that schedules el-
ements onto different CPUs, providing good load balance. It
also allows ambitious users to statically schedule elements
based on SMP Click’s performance measurement tools. We
describe both approaches below.

4.1.1 Adaptive CPU Scheduling

When an SMP Click router starts, one worklist contains all
schedulable elements. Click maintains, for each schedulable
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element � , the average cost of that element,
���

. If adaptive
CPU scheduling is used, a global scheduler rebalances the as-
signment of elements to worklists periodically. The scheduler
sorts the schedulable elements in decreasing order based on���

. It then iterates through the sorted list, assigning each el-
ement to the worklist with the least amount of total work so
far.

The cost of an element is the average number of cycles
consumed by the push or pull processing initiated by this ele-
ment each time it is called. To obtain this number, SMP Click
periodically samples the number of cycles consumed by the
element when it is called. This sampling technique does not
introduce any noticeable performance overhead.

The CPU scheduling mechanism described here provides
three benefits. It balances useful work among the CPUs to
increase parallelism, it avoids contention over a single work
list, and it encourages affinity between particular tasks and
CPUs to reduce cache misses.

4.1.2 Static CPU Scheduling

Adaptive load balancing may not result in the best routing
performance due to its ignorance of cache miss costs. If two
elements that process the same packets (e.g. a PollDevice el-
ement and the ToDevice element that it sends packets to) are
scheduled onto different CPUs, the cost of processing each
packet increases due to cache misses. Thus, even if a bal-
anced load is achieved, the router may still perform worse
than when these two elements are scheduled onto the same
CPU.

Automatically instrumenting the packet processing code
to detect cache misses would involve reading hardware per-
formance counters, a costly operation. On the other hand,
with some knowledge about the costs of different paths, a
user can easily specify a good scheduling assignment for most
configurations. For example, a four-interface IP router has
eight schedulable elements: four PollDevice elements and four
ToDevice elements. Because the path initiated by the PollDe-
vice is more expensive than the path initiated by the ToDevice,
a good scheduling assignment on four CPUs would schedule
one PollDevice and one ToDevice on each CPU. Furthermore,
to reduce the cost of cache misses, PollDevice and ToDevice
elements that operate on the same interface should not be
scheduled together, since they never process the same pack-
ets.

Static scheduling can be specified in the form of a list of
assignments of schedulable elements to CPUs. In addition,
Click can be configured to measure and report the execution
time of packet processing paths.

4.2 Synchronization

Any element instance in SMP Click might be executed simul-
taneously on multiple CPUs, so every element must protect its

mutable data structures. The details are private to the imple-
mentation of each element type, since elements don’t use each
other’s data. A number of different approaches prove useful.

Many elements have no mutable state, and thus require no
special synchronization. A typical example is the Strip ele-
ment, which simply removes bytes from the head of a packet.

Some elements have state composed of just a counter. If
the counter is rarely incremented, as in the case of an error
counter, it can be updated with hardware atomic increment in-
structions. A typical example is the CheckIPHeader element,
which maintains a count of invalid packets.

Some mutable element state can be replicated per proces-
sor, so that it is never shared. For example, the IP routing ta-
ble lookup element keeps a private per-CPU cache of recently
used routes, rather than a single shared cache.

Some elements protect their state with spin-locks, imple-
mented with the x86 ���	��
� atomic exchange instruction. If a
CPU acquires a lock that was last held by the same CPU, the
������
� executes quickly out of that CPU’s cache; otherwise
the ������
�� involves a slow off-chip bus transaction. Thus,
for data which is only occasionally written, SMP Click uses
read/write locking in which each CPU has its own read lock,
and a writer has to acquire all the read locks. ARPQuerier and
IPRewriter use this technique to protect their tables.

An element instance that appears on the work list is ex-
ecuted by at most one CPU at a time. Thus PollDevice and
ToDevice elements need not take special pains to prevent more
than one CPU from communicating with the same device
hardware.

Device handling, the buffer free list, and queues need spe-
cial attention for high performance, detailed in subsequent
sections.

4.3 Device Handling

Click device drivers use polling rather than interrupts in or-
der to avoid interrupt overhead. An alternate approach might
have been to use the “interrupt coalescing” scheme supported
by the Intel Pro/1000 F gigabit Ethernet cards we used, which
lowers interrupt overhead by imposing a minimum delay be-
tween successive interrupts. The correct minimum delay pa-
rameter turns out to depend on the time required to com-
pletely process all packets that arrive on all interfaces be-
tween interrupts, which proved too difficult to predict. An-
other reason to prefer polling is that it eliminates the expense
of synchronization between threads and interrupt routines.

To maximize parallelism, SMP Click device drivers com-
pletely separate transmit and receive data structures. For ex-
ample, the transmit routines are responsible for freeing trans-
mitted packets, and the receive routines are responsible for
giving the device fresh empty buffers.

Polling a device that has no packets waiting needs to be
very fast. In practice this means that the device’s DMA de-
scriptors should reside in host memory (not in device mem-
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ory), and that the driver should be able to discover new pack-
ets just by looking at the descriptors. If the device is idle, the
CPU will have already cached these descriptors, and checking
them will be fast.

It is also important that the driver and the device should
never explicitly synchronize or directly communicate. The
host should not read or write on-device registers to exchange
information about new packets or free buffers; instead all such
communication should take place indirectly through DMA
descriptor contents. The Intel 21140 [7] is a good example of
such a design. Unfortunately, the Intel Pro/1000 devices used
for this paper’s experimental results require the driver to write
device registers to announce the addition of buffers to DMA
descriptors. The SMP Click drivers reduce this overhead by
batching such additions.

4.4 Buffer Management

Packet buffers in a router usually go through a repeating life-
cycle: they are allocated by a device driver, filled with incom-
ing data by a device, processed by the router, transmitted, and
then freed. SMP Click takes advantage of this regularity in a
number of ways.

SMP Click uses Linux’s ��� ������� s, which consist of a
descriptive structure (containing lengths etc.) and a separate
data buffer. �	� ������� data is contiguous, which makes it easy
to manipulate; lists of sub-buffers (as in BSD 
 ����� s [16]) are
mainly useful for host protocols in which headers and pay-
load may be stored separately.

The �	� ������� allocator in Linux 2.2.18 is expensive. Al-
locating (or freeing) an ��� ������� requires two locking oper-
ations, since the structure and the data buffer are allocated
separately. Since Linux has only one free list, it is likely that
an ��� ������� freed on one CPU will be allocated on another,
causing needless cache misses.

SMP Click avoids these costs by handling �	� ������� allo-
cation itself. It maintains a separate free list for each CPU,
implemented as a circular array. Each CPU frees only onto its
own free list, so freeing never requires locking. When a CPU
needs to allocate a packet, it tries to do so from its own free
list to benefit from the possibility that the buffer is already
cached. If its free list is empty, it allocates a packet from an-
other CPU’s free list. The other list is chosen in a way that
makes it likely that each CPU has at most one other CPU
allocating from its list. Since it is common for some CPUs
to be dedicated to receiving only, and some to transmitting
only, this matches up producers and consumers of free pack-
ets. Producers never need to lock, and consumers usually ac-
quire a lock that they were the last to hold, which is fast.

As an additional optimization, both allocation and freeing
are batched, decreasing free list manipulation costs. Batching
is possible since only device drivers ever free or allocate, and
they can arrange to defer such actions until they can perform
them on many device DMA descriptors at once.

4.5 Queues

Queue elements are the primary points at which packets move
from one CPU to another, so accesses to Queue data struc-
tures and enqueued packets are likely to cause cache misses.
In addition, multiple threads may enqueue and dequeue from
a Queue, so it must protect its data structures. In many com-
mon cases, however, these costs can be eliminated.

Most Queues are used to feed output devices. Two ToDe-
vices can share a single Queue, if they are feeding paral-
lel links to another router, but this is not a common situ-
ation. SMP Click automatically eliminates locking for de-
queues in the usual case in which only one ToDevice pulls
from a Queue. This is possible because a Queue is imple-
mented with a circular array of buffer pointers, and the en-
queue and dequeue operations modify different pointers into
that array.

Most Queues are fed by multiple PollDevices, and must
be prepared for concurrent enqueues. SMP Click enqueues
with an atomic compare and swap instruction to avoid some
locking overhead.

4.6 Batching and Prefetching

SMP Click processes packets in batches to reduce cache co-
herency misses, to amortize the cost of locks over multiple
packets, and to allow effective use of memory prefetch in-
structions. Batching is implemented by PollDevice, Queue,
and ToDevice elements; other elements and all inter-element
communication are one packet at a time.

PollDevice dequeues up to eight packets from the device
DMA queue at a time, then sends them one by one down the
push path. Batching the device dequeues allows the driver
to usefully prefetch DMA descriptors and packet contents,
which are not in the CPU cache since they were last written
by device DMA. Batching also allows the driver to allocate
new receive buffers in batches, amortizing the overhead of
locking the free list.

ToDevice tries to pull multiple packets from its upstream
Queue each time it is called by the scheduler. It enqueues
these packets onto the transmit DMA ring. After the entire
batch has been enqueued, ToDevice notifies the device of the
new packets. Batching allows the device driver to amortize
the cost of this notification over many packets. In addition,
ToDevice frees transmitted packets in groups.

Multiple packets must be enqueued in a Queue in order
for ToDevice batching to be effective. To ensure that the ToDe-
vice can pull several packets at a time from the Queue, the de-
queue code pretends that the queue is empty until either eight
packets have been enqueued, or a short time has elapsed. This
also allows the enqueuing CPU to keep the queue data struc-
tures in its cache while it enqueues a few packets; otherwise
the enqueuing and dequeuing CPUs would fight over those
cache entries.
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Figure 4: Maximum forwarding rates of the IP configuration.
The Uni column refers to uniprocessor Click running on a
uniprocessor Linux kernel. The xp columns refer to SMP Click
with x CPUs. SMP Click is not able to take advantage of more
than two CPUs with this configuration.

5 Performance of Naive Routers

This section examines SMP Click’s performance with some
configurations originally designed for use on uniprocessor
Click; the results reflect on SMP Click’s goal of increased
performance for untuned configurations.

5.1 Experimental Setup

The experimental setup consists of five Intel PCs running
Linux 2.2.18. One of the PCs acts as a router, with a sepa-
rate full-duplex point-to-point gigabit Ethernet link to each
of the other four “host” PCs. The host PCs send packets into
the router to be forwarded to the other host PCs. The router’s
IP routing table contains just the entries required for the four
hosts.

The router is a Dell PowerEdge 6300, with four 500 MHz
Intel Pentium III Xeon CPUs, an Intel 450NX chipset moth-
erboard, and 1GB of RAM. The hosts have dual 800 MHz
Pentium III CPUs, ServerWorks LE chipsets, and 256MB of
RAM. All the network devices are Intel Pro/1000 F gigabit
Ethernet cards, connected to the motherboards with 64 bit 66
MHz PCI.

All experiments use 64-byte IP packets. Each packet in-
cludes Ethernet, IP, UDP or TCP headers, a small payload,
and the 4-byte Ethernet CRC. When the 64-bit preamble and
96-bit inter-frame gap are added, a gigabit Ethernet link can
potentially carry up to 1,488,000 such packets per second.
Each host can send up to 876,000 packets per second, using
software that closely controls the send rate. The hosts can also
receive reliably at the same rate.

Task uni 1p 2p 3p 4p

Recv 0.25 0.25 0.29 0.38 0.62
Alloc Buf 0.10 0.11 0.13 0.55 0.21
Refill 0.10 0.10 0.11 0.11 0.12
Push 1.80 1.83 2.19 3.03 3.60

Pull 0.18 0.26 0.33 0.45 0.77
Xmit 0.46 0.56 0.67 0.92 1.28
Clean 0.26 0.26 0.33 0.47 0.70
Free Buf 0.13 0.13 0.13 0.29 0.23

Total 3.28 3.50 4.18 6.20 7.53

Table 1: Cost of forwarding a packet in microseconds, bro-
ken down by function. Recv refers to reading DMA descrip-
tors, Alloc Buf to allocation of new buffers, Refill to placing
new buffers in DMA descriptors, Push to push processing (in-
cluding enqueue), Pull to dequeue from the Queue, Xmit to
placing packets on the transmit DMA ring, Clean to remov-
ing transmitted packets from the ring, and Free Buf to freeing
them.

5.2 IP Performance

Figure 4 shows SMP Click’s performance when forwarding
IP packets with a four-interface version of the configuration
in Figure 2. In these experiments, each host sends IP packets
to the other three hosts for 60 seconds. The y-axis represents
the maximum loss-free forwarding rate (MLFFR). The x-axis
represents five experimental scenarios: uniprocessor Click on
uniprocessor Linux, and SMP Click on SMP Linux with one
to four CPUs. We ran two experiments with each scenario,
one with adaptive load balancing, one with static scheduling.
In the static scheduling experiments, each PollDevice was
scheduled on the same CPU as one of the three ToDevices that
it forwards packets to. With two CPUs, two PollDevices and
two ToDevices are scheduled on each CPU. With three CPUs,
two ToDevices and a PollDevice are scheduled on two of the
CPUs, with the remaining two PollDevices on the third. With
four CPUs, each CPU runs one PollDevice and one ToDevice.

Table 1 helps explain these results by showing the CPU-
time costs of forwarding a packet, measured with Intel Pen-
tium cycle counters. The actual forwarding rates are close to
those implied by the CPU time measurements. For example,
Table 1 shows that it takes 4.18 microseconds of CPU time
to forward a packet on a 2-CPU router, implying that each
CPU should be able to forward 239,234 packets per second,
and that the two CPUs together should be able to forward
478,468 packets per second; this is close to the actual rate of
444,000 to 492,000 packets per second measured in Figure 4.

As the number of CPUs increases, the per-packet CPU
time also increases. This is because synchronization and cache
misses impose costs that increase with the number of CPUs.
The largest increase occurs for push processing, which in-
cludes enqueuing on Queues; the reason is that more CPUs
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Task uni 1p 2p 3p 4p

Recv 0.5 0.5 0.5 0.5 0.5
Alloc Buf 0.0 0.0 0.0 0.4 0.0
Refill 0.2 0.2 0.2 0.2 0.2
Push 2.0 2.0 3.0 3.7 4.7

Pull 0.0 0.0 0.5 1.1 1.4
Xmit 0.5 0.5 0.8 1.1 1.3
Clean 0.5 0.5 1.1 1.7 1.7
Free Buf 0.0 0.0 0.1 0.6 0.2

Total 3.7 3.7 6.2 9.3 10.0

Table 2: Number of system bus operations per IP packet for-
warded; these correspond to cache misses and transfers of
locks between CPUs.

cause more contention between enqueuing and dequeuing.
The other expensive increases occur when allocating and free-
ing buffers, especially for the three CPU case. With three
CPUs, one of the CPUs does not have any ToDevice elements.
Thus it must allocate buffers from another CPU’s free list, re-
sulting in cache misses on the buffer data structure and on
the synchronized free list. Finally, Pull, Xmit, and Clean op-
erations operate on dequeued buffers. As the number of CPU
increases, they are more likely to have been touched last by
another CPU.

Table 2 illustrates contention between CPUs by showing
the number of system bus operations per packet. A bus oper-
ation is caused by an L2 cache miss, a write of shared/cached
data, or an acquisition of a lock by a CPU other than the CPU
that held it last. The cost of sharing Queues between enqueu-
ing and dequeuing CPUs is evident in the increased number
of bus operations on the Push and Pull lines as the number of
CPUs increases.

The reason that dynamic load balancing does not work
as well as static scheduling in Figure 4 is that the dynamic
scheduler sometimes puts the PollDevice and ToDevice of the
same interface on the same CPU. This misses opportunities
to do both push and pull processing for some packets on the
same CPU.

Some of the push and pull costs in Table 1 are due to
IP processing. By using a much simpler configuration, es-
sentially consisting of just device drivers, the potential per-
formance of the underlying machine can be estimated. With
a configuration that directly passes packets from each input
interface through a Queue to a statically paired output with
no intervening processing, SMP Click can forward 528,000
packets per second on one CPU and 566,000 packets per sec-
ond on two or four CPUs. Each packet is processed entirely
by a single CPU.

The above tests emphasize per-packet overheads, since
they use small packets. With 200 byte UDP packets, the IP
router has a MLFFR of 240,000 packets per second on four
CPUs, or 366 megabits per second. With 1024 byte UDP

Classifier(...)

IPsecESPEncap(20)

IPsecAuthSHA1(compute)

IPsecDES(encrypt,key1a)

IPsecDES(decrypt,key1b)

IPsecDES(encrypt,key1c)
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IPsecAuthSHA1(compute)

IPsecDES(encrypt,key2a)

IPsecDES(decrypt,key2b)

IPsecDES(encrypt,key2c)

IPEncap(...)

from CheckPaint(2)

to IPGWOptions

Figure 5: An IPSec VPN tunnel encryption configuration.

packets, the MLFFR is 90,000 packets per second on four
CPUs, or 703 megabits per second.

This section shows that, with the Click SMP architecture,
the benefits of parallelizing IP processing outweigh the costs
of synchronization and data movement between CPUs by a
relatively small margin. The next section demonstrates that
parallelization is much more attractive for more compute-
intensive packet processing.

5.3 Virtual Private Network Gateway

Figures 5 and 6 present Click configuration fragments that
implement part of IPSec [12]. Inserting these elements into
the IP router in Figure 2 produces a Virtual Private Network
(VPN) gateway. The intent is that Figure 5 be inserted into
the output processing of the router’s link to the outside world,
to authenticate, encrypt, and encapsulate packets sent along a
VPN tunnel to a similar remote router. Figure 6 performs the
inverse operations for packets arriving from the interface to
the outside world. The configurations shown use SHA-1 for
authentication and 3DES for encryption.

For space reasons, Figure 5 and 6 show configurations
with only two VPN tunnels, while our performance evalua-
tion uses eight. These tunnels are established statically, using
IPClassifier elements as the input and output security associ-
ation databases.

The traffic used to test the VPN configuration is gener-
ated as follows. Two hosts are “internal” hosts; the other two
are external hosts. Each internal host generates eight streams
of ordinary 64-byte IP packets, four to one external host, and
four to another. The VPN router authenticates, encrypts, en-
capsulates, and forwards these packets. Each external host
generates eight streams of encapsulated, authenticated, and
encrypted packets, four to each internal host. The VPN router
unencapsulates, decrypts, authenticates, and forwards these
packets as well.

Figure 7 shows the forwarding performance of the VPN
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Figure 6: An IPSec VPN tunnel decryption configuration.
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Figure 7: Performance of the IPSec VPN configurations. The
forwarding rate increases linearly with the number of CPUs.

router in 60 second experiments. The static CPU schedul-
ing experiments used the same scheduling assignment as the
IP router. The VPN scales better than the IP router because
computation performed on each packet is more expensive and
dominates the overhead of cache misses and synchronization.
For the same reason, adaptive load balancing works as well
as static scheduling.

The reason the performance is no higher with three CPUs
than with two is that one of the three CPUs has to handle
encryption and decryption for two input interfaces. That CPU
runs out of cycles, and starts dropping packets, when the other
two CPUs are still only half utilized. This limits the loss free
forwarding rate of the whole router.

As a crude comparison, a $10,000 commercial VPN box
with hardware assisted 3DES encryption was recently rated
at 27 Mbps for 64 byte packets (i.e. 55 Kpps) [21].

Strip(14)

CheckIPHeader(...)

DropBroadcasts

CheckPaint(2)

IPRewriter(...)

GetIPAddress(16) IPGWOptions(2.0.0.1)

to LookupIPRoute to FixIPSrc(2.0.0.1)

from Paint(2) from LookupIPRoute

packets from internal hostspackets from Internet

packets to internal hosts packets to Internet

Figure 8: A Network Address Translator (NAT) configuration.

5.4 NAT Performance

Figure 8 shows a configuration fragment that, when inserted
into the IP router configuration, implements a network ad-
dress translator [9]. The router sends packets from “inside”
hosts to external destinations to the upper-right input port of
the IPRewriter [15]. The IPRewriter changes these packets’
source IP addresses to an externally visible address, rewrites
the source TCP port numbers, and emits them out the lower-
right output port; from there they are transmitted to the ex-
ternal Internet. The IPRewriter dynamically maintains tables
that allow it to map all the packets of each connection in
a consistent way, and allow it to associate incoming pack-
ets from the outside world with the relevant connection. Be-
fore the routing table lookup, each incoming packet enters
the IPRewriter via the upper-left input port. The IPRewriter
changes the destination IP address and TCP port number to
that of the original connection, and sends the packet out on
the lower-left output port. The correct destination route is
then determined, using the updated destination IP address, by
LookupIPRoute.

An IPRewriter handles mappings for a single externally
visible IP address. It gives each connection its own externally
visible port number. The IPRewriter remembers which con-
nections have sent TCP FIN (connection close) messages, and
deletes any such connection from its tables after 30 seconds.
IPRewriter does this deletion incrementally: each time it sees
a TCP SYN (connection setup) message, it checks to see if
the oldest closed connection is 30 seconds old.

This deletion policy means that each port an IPRewriter
allocates cannot be used again for at least 30 seconds. An
IPRewriter uses ports 1024 through 65,535, and thus can han-
dle no more than 2,150 connections per second. To avoid
this limit, the experiments described here use a configuration
with 32 IPRewriter elements, each with its own IP address.
A HashDemux spreads the flows from the internal hosts over
the IPRewriters based on destination address. When a packet
arrives from the outside world, an IPClassifier decides which
IPRewriter to send it to, based on destination address.
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Figure 9: Performance of the NAT configuration under static
CPU scheduling. The forwarding rate increases with more
CPUs, but at the cost of some dropped packets.

The traffic used to test the NAT configuration in Figure 8
is generated as follows. Two hosts are considered internal
hosts, and two are external hosts. Each internal host main-
tains 100 concurrent connections to each of the external hosts.
For each connection, an internal host repeats the following: it
chooses random port numbers, sends a SYN packet, 8 64-byte
data packets, and a FIN packet, then starts over. The external
host echoes each packet, exchanging fields as appropriate.

Figure 9 shows the NAT’s packet forwarding performance
as the number of CPUs increases. Static scheduling is used,
and the assignments are the same as those in Section 5.2. The
experiments run for 90 seconds, of which only the last 60 are
included in the statistics; this allows time for the IPRewriter
tables to fill up and for entries to start being deleted.

Figure 9 shows that the MLFFR of the NAT does not in-
crease significantly with more processors, even though the
NAT requires more CPU time than IP forwarding alone. The
packet loss rate experienced by the NAT, however, remains
tiny for input rates substantially greater than the MLFFR. For
example, with 4 CPUs, the loss rate does not exceed 0.1%
until the offered load is above 270,000 packets per second.
We suspect the persistent tiny loss rate is caused by lock con-
tention. Contention for locks may occur when a PollDevice
attempts to push a packet through a rewriter while another
PollDevice is pushing a packet through the same rewriter,
but on a different CPU. With 32 rewriters, the possibility of
contention is small. However, each contention is potentially
costly: the cycles spent spin-waiting for the lock may delay
scheduling of a PollDevice and cause a device’s receive DMA
queue to overflow.

5.5 Enforcing Quality of Service

Figure 10 shows a configuration that provides a simple quality
of service guarantee. Inserted before the ARPQuerier element
in the IP router in Figure 2, this configuration fragment clas-
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Figure 10: A QoS configuration fragment, to be inserted be-
tween the IPFragmenter and ARPQuerier elements in Fig-
ure 2.

sifies packets into three priorities based on the IP header’s
Differentiated Services Code Point field (DSCP) [22]. Each
priority level is queued separately, and the PrioSched ele-
ment always sends packets from higher priority queues in
preference to lower. The configuration applies SHA-1 authen-
tication and 3DES encryption to the medium priority traffic,
much as described in Section 5.3. A PullToPush element ini-
tiates this processing, so it can be done on a CPU separately
from input and output processing. The PullToPush element
only pulls packets from upstream queues if the downstream
queue is not full; this helps the configuration enforce priority
when the output device is slow.

Figure 11 shows the uniprocessor performance of this con-
figuration. The traffic used to test this router consists of three
streams of UDP traffic from one host to another. The sender
sends a high-priority and a low-priority stream at a constant
70,000 and 50,000 packets per second, respectively. It sends
the third stream, of medium-priority traffic, with varying rate.

Figure 11 shows that as the input rate of medium prior-
ity traffic increases, the forwarding rate for high priority traf-
fic does not change. There is enough spare CPU time that
the medium priority traffic can be forwarded at up to 10,000
packets per second without disturbing the low priority traf-
fic. Above that rate the router devotes CPU time to encrypt
medium priority traffic at the expense of low-priority pro-
cessing, so the low priority forwarding rate decreases. The
specific mechanism is that the packet scheduling done by the
PrioSched implicitly schedules the CPU, since the PrioSched
decides which pull path the CPU executes. When the medium
priority input rate reaches 14,000 packets per second, the for-
warding rate levels off because all available CPU time has
been taken from the low priority traffic.

Figure 12 shows that on four CPUs, the same IP router
can sustain the low priority traffic even when the input rate
of medium priority traffic approaches 17,000 packets per sec-
ond. Furthermore, the maximum forwarding rate for medium
priority traffic reaches 21,000 packets per second. The router
uses dynamic scheduling. This causes three CPUs to handle
device interactions and IP header processing; the remaining
CPU runs the PullToPush element shown in Figure 10, and
thus performs the VPN encryption as well as moving packets
of all priorities through the configuration fragment.

These experiments show that SMP Click configurations
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Figure 11: Performance of the QoS router on one CPU. The
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Figure 12: Performance of the QoS router on four CPUs. The
extra CPUs improve performance over the uniprocessor re-
sults in Figure 11.

that express packet priority also naturally imply CPU prior-
ity. In addition, priority constraints do not prevent SMP Click
from obtaining a degree of increased performance from mul-
tiple CPUs.

6 Exposing Parallelism

Even if a router’s task has a good deal of potential parallelism,
any given configuration may fail to expose that parallelism.
Consider the VPN router in Section 5.3, but with only two in-
terfaces instead of four. Such a configuration has four schedu-
lable tasks. Most of the processing occurs in the push paths
initiated by the two PollDevice tasks, so the CPUs running the
ToDevice tasks may spend much of their time idle. A better
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Figure 13: Performance of the VPN configuration with only
two Ethernet devices. Processing separate flows in parallel
increases the 4-CPU performance by 45%.

balance of load across the CPUs would increase performance,
but the configuration doesn’t allow for it.

This section presents and evaluates configuration tuning
techniques that yield improvements in performance by expos-
ing more parallelism. One technique splits packets into mul-
tiple flows which can be processed in parallel. A second tech-
nique breaks expensive processing into pipeline stages that
can be executed in parallel. Finally, we show that configura-
tion rewriting need not affect quality of service guarantees.

6.1 Parallel Flow Processing

Figure 13 shows the performance of the VPN configuration
with only two Ethernet interfaces. Two hosts participate in
these experiments. One host sends unencrypted packets to
the router. The router encrypts the packets and forwards them
onto the other host. The second host sends encrypted pack-
ets to the router. The router decrypts these packets and for-
wards them to the first host. Since encryption and decryp-
tion only occur on packets going to and arriving from one of
the two devices, one PollDevice performs all the encryption
work, and one PollDevice performs all the decryption work.
This suggests that, on a four-CPU machine, the two CPUs
running ToDevices are mostly idle. Consequently, the con-
figuration doubles its performance on two processors, but its
performance on four processors does not improve. More par-
allelism could be created by moving expensive elements to
the pull paths, allowing ToDevice elements to share the ex-
pensive work. This turns out to be awkward; for example, at
that point the packets already have Ethernet headers.

We create more parallelism by splitting packets into mul-
tiple flows. Two sets of HashDemux, Queue, and PullToPush
elements are inserted before both the encryption and decryp-
tion elements in the VPN configuration, as suggested in Fig-
ure 3. This optimization creates two new schedulable ele-
ments: a PullToPush element that handles half of the pack-
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Figure 14: Pipelining allows decryption and encryption to pro-
ceed in parallel.

ets that need to be encrypted; and a PullToPush element that
handles half of the packets that need to be decrypted.

The black bars in Figure 13 show that this optimization
produces a 45% performance improvement on four CPUs over
the untuned configuration. The improvement is not higher be-
cause of the cost of moving each packet from one CPU to
another through the Queue.

This rewriting technique is not universal. For example, it
decreases the performance of a router that does just IP for-
warding between two interfaces. This is because the cost of
vanilla IP forwarding is already low enough that paralleliza-
tion cannot overcome the cost of the extra elements and cache
misses.

6.2 Pipelined Packet Processing

Consider a node in an overlay network consisting of a mesh
of encrypted VPN tunnels. Such a node may have to decrypt
a packet arriving on one tunnel, only to encrypt it again (with
a different key) when forwarding it out a second tunnel. Each
PollDevice would be responsible for both decryption and en-
cryption. On the other hand, the ToDevices would have rela-
tively little work. More parallelism could be created by split-
ting packets into multiple flows, as described in Section 5.3.
Parallelism can also be created by pipelining encryption and
decryption, as shown in Figure 14. The technique is to insert
a Queue and a PullToPush between the decryption and en-
cryption processing. With this optimization, each PollDevice
performs decryption in parallel with encryption performed by
the PullToPush.

Figure 15 shows the effectiveness of this technique. It al-
most doubles the performance of the 4-CPU machine, and
causes performance to scale almost linearly from one to four
CPUs.

6.3 Maintaining Quality of Service

The performance improvement with additional CPUs of the
QoS configuration described in Section 5.5 is limited, since
a single CPU executes the PullToPush and thus the encryp-
tion. One solution might be to add a new PullToPush dedi-
cated to the encryption of medium-priority traffic, leaving the
old PullToPush to process only high and low priority traffic.
Since a separate CPU could run the new PullToPush, perfor-
mance should improve.

Rewriting the configuration this way, however, would vi-
olate the intended packet priority semantics. The old PullTo-
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without pipelining. Pipelining nearly doubles the 4-CPU perfor-
mance.
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Figure 16: Splitting QoS processing into 3 streams.

Push would send low-priority packets even if there were a
backlog of medium-priority packets, since only the new Pull-
ToPush would be able to process medium-priority packets.
The intent of priority, however, is that low-priority packets
should only be sent if there are no high or medium priority
packets waiting.

A better approach is to replicate the whole QoS configu-
ration and run the replicas in parallel. We replicate the config-
uration three times, as shown in Figure 16. The HashDemux
element breaks packets into three streams; each stream has its
own priority scheduler. The three PullToPush elements run on
three CPUs, while the remaining CPU performs all the device
handling and IP header processing. While it is possible that
low priority packets are pushed through ARPQuerier on one
processor while there are a backlog of medium or high prior-
ity packets on another, such scenario is unlikely when there
are many flows with different destination IP addresses.

Figure 17 shows the effectiveness of this technique. The
new router can sustain the low priority traffic even when the
input rate of the medium priority VPN traffic exceeds 50,000
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Figure 17: Performance of the QoS router on four CPUs with
the new configuration in Figure 16. The performance is higher
than that shown in Figure 12, but still honors the priority rules.

packets per second. The maximum forwarding rate for the
medium priority traffic reaches 70,000 packets per second, a
factor of five improvement over the uniprocessor performance
shown in Figure 11.

7 Related Work

Commercial routers such as the Cisco 7500 [26] often con-
tain multiple CPUs to increase performance. The hardware of
such routers usually dedicates each CPU to a particular task.
This structure provides high performance for its intended task,
but allows little flexibility. For example, one line card’s CPU
cannot help in the processing of packets from a different line
card. Commercial SMP routers do exist. The Nortel Contivity
4500 VPN switch [23] uses dual SMP PC processors to en-
crypt and decrypt packets for multiple VPN tunnels in paral-
lel. Its hardware is similar to SMP Click’s, though its software
structure is not publically known.

In a different approach to multiprocessor routing, network
processors [10, 6] have appeared recently that integrate mul-
tiple RISC CPUs onto a single chip. These chips could be
placed on router line cards, replacing ASICS; their advantage
is that it is easier and faster to write software than to design
ASIC hardware. A variant of SMP Click could be used to
structure that software in a way that takes advantage of the
multiple CPUs. However, current generation network proces-
sors have a limited program memory in their processing ele-
ments, which limit their use to small pieces of tight code [25].

Previous work in the area of parallelizing host network
protocols [20, 19, 3, 24] has compared layer, packet, and con-
nection parallelism. One of their conclusions is that perfor-
mance is best if the packets of each connection are processed
on only one CPU, to avoid contention over per connection
data. To a first approximation this is a claim that a host’s
protocol processing tasks can be decomposed into symmetric

and independent per-connection tasks. This situation does not
generally hold in a router. If the router has no per-connection
state, then there is no symmetry and independence to exploit.
Worse, device handling is often a large fraction of the total
work, but cannot easily be divided up among many CPUs. For
these reasons, SMP Click needs to be able to exploit a wider
range of kinds of parallelism than host implementations.

Blackwell [4] and Nahum et al. [18] investigate the inter-
action of host protocol processing and caching on uniproces-
sors. They observe that instruction cache misses are often a
dominant factor in performance, and observe that batch pro-
cessing of multiple packets at each protocol layer can help.
In contrast, we observe very few instruction cache misses in
SMP Click, probably because IP forwarding is simpler than
host TCP processing. SMP Click nevertheless benefits from
batching, though the reason is that batching helps avoid con-
tention at the points where data must move between CPUs or
between CPU and device.

SMP Click’s device handling uses ideas explored in the
Osiris [8] network adaptor project to maximize concurrency
between CPU and device, in particular lock-free DMA queues
and avoidance of programmed I/O.

8 Conclusion

This paper makes the following points about parallelization
on multi-processor routers, in the context of SMP Click:

� Significant parallelism can often be found even in un-
tuned configurations.

� Parallelization techniques can be effectively expressed
at the level of router configurations, and such config-
urations can be restructured to enhance multiprocessor
performance.

� Most cache misses in SMP Click occur when pack-
ets or buffer data structure move between CPUs or be-
tween CPU and device. This is in contrast to experience
with host protocols, where instruction or protocol state
misses dominate.

� Cache misses are expensive. Adaptive load-balancing
the work on a multi-processor router may introduce
more cache misses when packets move between CPUs.
In most cases, a static scheduling assignment that min-
imizes the number of packets moving between CPUs
can be found.

� Good multiprocessor routing performance requires con-
currency in device interactions, both between CPUs and
devices and between input and output on the same de-
vice.
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� When packets need to move between CPUs, they should
do so in batches to reduce per-packet contention over-
head. Allocation and freeing of packet buffers is an im-
portant source of buffer data structure movement.

Availability

SMP Click can be downloaded from the Click project web
page, at � ����������� �����	� ��
� � ��� � � � 
�� � ��� 
 � � ������� � � .
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