
Leakage models are a leaky abstraction: the case for
cycle-level verification of constant-time cryptography

Anish Athalye
M. Frans Kaashoek
Nickolai Zeldovich

MIT CSAIL

Joseph Tassarotti
New York University

Abstract
We propose abandoning leakage models for verifying timing
properties of cryptographic software, instead directly veri-
fying software with respect to a hardware implementation
at the RTL level. Early experiments include verifying that
an Ed25519 implementation running on a 6-stage pipelined
processor executes in a constant number of cycles. Many
challenges remain, including scaling up to modern out-of-
order speculative cores and extending the approach to reason
about library code outside the context of a whole application.

1 Introduction
Formal verification is a promising approach for ruling out
timing side channels in cryptography. The end goal is to
ensure that cryptographic software runs in constant wall-
clock time when executed by hardware, in order to defend
against timing attacks [7].

Today’s formally-verified cryptographic software falls short
of this goal because it assumes a leakage model [2] where
there is a gap between the leakage model and the actual
hardware behavior. Fiat Crypto [10] uses a code generation
approach that emits straight-line code using instructions
that are assumed to have an input-independent execution
time. HACL [20] uses the type system to only allow cer-
tain primitive operations on secrets, which are assumed to
be implemented by the underlying hardware in constant
time. Almeida et al. [1] define a leakage model that includes
branches and memory access locations, and verification en-
sures that a leakage trace is independent of secrets. Vale [6]
defines a similar leakage model but also includes the in-
puts to an assumed set of variable-latency instructions. Ev-
erCrypt [16] inherits the assumptions of HACL and Vale.

In proposing a leakage model, these approaches make sim-
plifying assumptions about the underlying hardware that are
either unverified or even untrue on modern processors. For
example, HACL’s interface for secrets omits integer division,
because that operation is not constant-time on most archi-
tectures; but it does not avoid integer multiplication, which
can also be variable-time on some ARM and i386 platforms.

The gap between the hardware model and the actual hard-
ware behavior allows bugs to slip through. For example,
OpenSSL contained crypto code that was provably secure un-
der a baseline leakage model (where the adversary observes
program counter addresses and memory access addresses)

but insecure under a model that accounts for time-variable
arithmetic operators [3].
Recent work has proposed more sophisticated leakage

models [9, 11, 13] and validated hardware against these
models through fuzzing [8, 14, 15], sometimes revealing
gaps between leakage models and hardware implementa-
tions. Today’s verified cryptographic software is not verified
against these sophisticated leakage models. In concurrent
work, Wang et al. [19] formally verify simple open-source
RISC-V processors against leakage contracts.
We propose an alternative approach for obtaining end-

to-end timing guarantees: verifying the timing behavior of
software directly against the hardware. This cycle-level ap-
proach verifies software against a particular processor im-
plementation for which the complete cycle-level behavior is
known and made visible to the verification tool.

To evaluate the approach, we built Chroniton, a tool that
uses full-circuit symbolic execution to analyze timing behav-
ior of crypto code running on hardware. Early experiments
show promise: Chroniton can verify that an off-the-shelf
implementation of Ed25519 running on the biRISC-V signs
messages in a constant number of cycles, independent of
the private key. A major open challenge remains: how to
use such a cycle-level approach to verify timing behavior of
individual functions, e.g., a signature operation, that can be
used in an application that is unknown at verification time.
We have open-sourced Chroniton and the case studies at
https://github.com/anishathalye/chroniton.

2 Approach
We propose analyzing the timing behavior of software with
respect to a particular hardware implementation rather than
a model of the hardware, eschewing the traditional hard-
ware/software separation enabled by the ISA boundary and
leveraged by most verification approaches. The benefit is
that our approach does not require making assumptions
about the hardware’s timing behavior. Because the analysis
needs to be repeated for every hardware target, we aim for
a highly-automated approach.

We reason about a processor running a complete program
that includes some cryptographic code, like Figure 1.

Tools like Icarus Verilog and Verilator are capable of cycle-
accurate simulations of processors running such code. These
simulators operate on concrete values: every bit is a 0 or a 1,

https://github.com/anishathalye/chroniton


Athalye et al.

#include "ed25519.h"

#define MSG_SIZE 100
unsigned char pk[32], sk[64], buf[MSG_SIZE], sig[64];

void main() {
ed25519_sign(sig, buf, sizeof(buf), pk, sk);

}

Figure 1. A program that invokes cryptographic functional-
ity. Before main() runs, assembly code boots up the proces-
sor and sets up an environment for C code.

so they are not directly useful for verifying timing properties,
such as how execution time depends on the private key.
We use a cycle-accurate symbolic hardware simulator to

reason about processors executing cryptographic code. Us-
ing a symbolic simulator, we can mark state elements in
the circuit, e.g., locations in the processor’s memory such
as those corresponding to sk[] and pk[], as symbolic vari-
ables, and then symbolically execute the entire circuit and
determine whether the circuit’s execution time depends on
these symbolic variables.
Symbolic simulation can reason about the number of cy-

cles a circuit, starting from any symbolic starting state, takes
to reach a state satisfying a property such as main() return-
ing.We apply this to reason about the execution of a program
from start to finish, where the processor starts from a fairly
constrained state or is reset before running the program to
completion. This fits certain classes of devices, such as hard-
ware security modules (HSMs) or cryptographic accelerators
like the OpenTitan Big Number Accelerator1 (OTBN). The
OTBN clears state and runs each cryptographic operation
without interruption from start to finish. HSMs can also be
architected and verified in this way [5].

The approach requires that the complete hardware imple-
mentation (e.g., Verilog code) of the processor is available
to the verification tool. It only reasons about a single clock
domain. Reasoning about timing in terms of cycles does not
rule out vulnerabilities arising from dynamic voltage and
frequency scaling, like Hertzbleed [18].

3 Implementation
We implemented a verification tool called Chroniton, which
consists of about 100 lines of Rosette [17] code. It builds on
the Verilog-to-Rosette toolchain from Notary [4, 12], which
translates circuits written in Verilog into cycle-accurate Rosette
models supporting symbolic execution.

1https://opentitan.org/book/hw/ip/otbn/index.html

4 Evaluation
We applied Chroniton to verifying constant-time execution
of an off-the-shelf Ed25519 signature routine2 on a variety
of simple off-the-shelf RISC-V processors / SoCs:

• PicoRV32 (https://github.com/YosysHQ/picorv32): an
extremely simple size-optimized CPU

• biRISC-V (https://github.com/ultraembedded/biriscv):
a 6-stage pipelined dual-issue embedded CPU

We set up the processors to run the code in Figure 1, mark-
ing the circuit state corresponding to the private key as
symbolic, and used Chroniton to symbolically execute over
millions of simulated hardware cycles to verify that the code
runs in a constant number of cycles, regardless of the pri-
vate key. Chroniton, on the slowest example (the biRISC-V),
took 24 hours to verify the constant-time property. We also
used Chroniton to verify an X25519 implementation on a
simplified version of the OTBN accelerator, where Chroniton
takes 10 hours to verify the constant-time property. We have
not yet applied our tool/approach to modern desktop/server-
class processors, which are significantly more complicated
than the simple embedded processors we used.

5 Discussion and Open Problems
Our approach reasons about the timing properties of a cir-
cuit, including its hardware and software, starting from a
particular (partially symbolic) state. We apply it to whole
programs, which include cryptographic code, and reason
about execution from start to finish.

We hope to extend the approach to cryptographic routines
in isolation, such that we can verify library code against hard-
ware and then use it in an application that is unknown at
verification time. Currently, Chroniton naturally supports
bug-finding but not verification in this setting: a crypto li-
brary developer (e.g., the developer of an Ed25519 library)
can verify that a particular application that invokes library
code runs in constant time (like the code in Figure 1). Chroni-
ton proves that the application runs in constant time, which
increases confidence in the constant-timedness of the library
code, but it doesn’t prove that the library code runs in con-
stant time on the given hardware in all contexts.
Chroniton supports marking parts of a circuit’s state as

symbolic, so e.g., a processor’s branch predictor state could
be made symbolic, but for sophisticated processors, it’s not
clear how to set up the circuit state to capture all possible con-
texts without being under-constrained. We hope to extend
Chroniton such that it supports proving properties about
timing behavior of library code on hardware.

2https://github.com/orlp/ed25519

https://opentitan.org/book/hw/ip/otbn/index.html
https://github.com/YosysHQ/picorv32
https://github.com/ultraembedded/biriscv
https://github.com/orlp/ed25519


Leakage models are a leaky abstraction: the case for cycle-level verification of constant-time cryptography

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François

Dupressoir. 2016. Verifiable Side-Channel Security of Cryptographic
Implementations: Constant-Time MEE-CBC. In Proceedings of the 23rd
International Conference on Fast Software Encryption (FSE). Bochum,
Germany, 163–184.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. 2016. Verifying Constant-Time Imple-
mentations. In Proceedings of the 25th USENIX Security Symposium.
Austin, TX, 53–70.

[3] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, and Swarn Priya. 2022. Enforcing Fine-grained
Constant-time Policies. In Proceedings of the 29th ACM Conference
on Computer and Communications Security (CCS). Los Angeles, CA,
83–96.

[4] Anish Athalye, Adam Belay, M. Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. 2019. Notary: A Device for Secure Transaction
Approval. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP). Huntsville, Ontario, Canada, 97–113.

[5] Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. 2022.
Verifying Hardware Security Modules with Information-Preserving
Refinement. In Proceedings of the 16th USENIX Symposium onOperating
Systems Design and Implementation (OSDI). Carlsbad, CA, 503–519.

[6] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. 2017. Vale: Verifying High-Performance Cryptographic
Assembly Code. In Proceedings of the 26th USENIX Security Symposium.
Vancouver, Canada, 917–934.

[7] David Brumley and Dan Boneh. 2003. Remote Timing Attacks Are
Practical. In Proceedings of the 12th USENIX Security Symposium. Wash-
ington, DC, 1–13.

[8] Pablo Buiras, Hamed Nemati, Andreas Lindner, and Roberto Guanciale.
2021. Validation of Side-Channel Models via Observation Refinement.
In Proceedings of the 42th IEEE/ACM International Symposium on Mi-
croarchitecture. Athens, Greece, 578–591.

[9] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time
Foundations for the New Spectre Era. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). London, United Kingdom, 913–926.

[10] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam
Chlipala. 2019. Simple High-Level Code For Cryptographic Arithmetic
– With Proofs, Without Compromises. In Proceedings of the 40th IEEE
Symposium on Security and Privacy. San Francisco, CA, 73–90.

[11] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021.
Hardware-Software Contracts for Secure Speculation. In Proceedings of
the 42nd IEEE Symposium on Security and Privacy. Virtual conference,
1868–1883.

[12] Noah Moroze, Anish Athalye, M. Frans Kaashoek, and Nickolai Zel-
dovich. 2021. rtlv: push-button verification of software on hardware.
In Proceedings of the 5th Workshop on Computer Architecture Research
with RISC-V (CARRV). Virtual conference.

[13] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trip-
pel. 2022. Axiomatic Hardware-Software Contracts for Security. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA). New York, NY, 72–86.

[14] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein.
2022. Revizor: Testing Black-Box CPUs against Speculation Contracts.
In Proceedings of the 27th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
Lausanne, Switzerland, 226–239.

[15] Oleksii Oleksenko, Marco Guarnieri, Boris Kopf, and Mark Silberstein.
2023. Hide and Seek with Spectres: Efficient discovery of speculative
information leaks with random testing. In Proceedings of the 44th IEEE

Symposium on Security and Privacy. San Francisco, CA, 1737–1752.
[16] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Haw-

blitzel, Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beur-
douche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, Na-
talia Kulatova, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph Wintersteiger, and Santiago Zanella-Beguelin. 2020. Ev-
erCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In
Proceedings of the 41st IEEE Symposium on Security and Privacy. San
Francisco, CA, 983–1002.

[17] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic
Virtual Machine for Solver-Aided Host Languages. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Edinburgh, United Kingdom, 530–541.

[18] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner. 2022.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing
Attacks on x86. In Proceedings of the 31st USENIX Security Symposium.
Boston, MA, 679–697.

[19] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke,
and Marco Guarnieri. 2023. Specification and Verification of Side-
channel Security for Open-source Processors via Leakage Contracts.
https://arxiv.org/abs/2305.06979.

[20] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A Verified
Modern Cryptographic Library. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS). Dallas,
TX.

https://arxiv.org/abs/2305.06979

	Abstract
	1 Introduction
	2 Approach
	3 Implementation
	4 Evaluation
	5 Discussion and Open Problems
	References

