
Building Peer-to-Peer Systems
With Chord, a Distributed Lookup Service

Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger
Robert Morris, Ion Stoica

�
, Hari Balakrishnan

MIT Laboratory for Computer Science�
fdabek, emma, kaashoek, karger, rtm, hari � @lcs.mit.edu�������
	�������������������������������! "����#�%$��

Abstract

We argue that the core problem facing peer-to-peer sys-
tems is locating documents in a decentralized network and
propose Chord, a distributed lookup primitive. Chord pro-
vides an efficient method of locating documents while plac-
ing few constraints on the applications that use it. As proof
that Chord’s functionality is useful in the development of
peer-to-peer applications, we outline the implementation
of a peer-to-peer file sharing system based on Chord.

1 Introduction
The peer-to-peer architecture offers the promise of harness-
ing the resources of vast numbers of Internet hosts. The
primary challenge facing this architecture, we argue, is ef-
ficiently locating information distributed across these hosts
in a decentralized way. In this paper we present Chord, a
distributed lookup service that is both scalable and decen-
tralized and can be used as the basis for general purpose
peer-to-peer systems.

A review of the features included in recent peer-to-
peer systems yields a long list. These include redundant
storage, permanence, efficient data location, selection of
nearby servers, anonymity, search, authentication, and hier-
archical naming. Chord does not implement these services
directly but rather provides a flexible, high-performance
lookup primitive upon which such functionality can be ef-
ficiently layered. Our design philosophy is to separate the
lookup problem from additional functionality. By layering
additional features on top of a core lookup service, we be-
lieve overall systems will gain robustness and scalability.

In contrast, when these application-level features are an
integral part of the lookup service the cost is often lim-
ited scalability and diminished robustness. For example,
Freenet [5] [6] is designed to make it hard to detect which
hosts store a particular piece of data, but this feature pre-&

University of California, Berkeley. istoica@cs.berkeley.edu

This research was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Space and Naval Warfare Systems Center, San
Diego, under contract N66001-00-1-8933.

vents Freenet from guaranteeing the ability to retrieve data.
Chord is designed to offer the functionality necessary to

implement general-purpose systems while preserving max-
imum flexibility. Chord is an efficient distributed lookup
system based on consistent hashing [10]. It provides a
unique mapping between an identifier space and a set of
nodes. A node can be a host or a process identified by
an IP address and a port number; each node is associated
with a Chord identifer. Chord maps each identifier ' to the
node with the smallest identifier greater than ' . This node
is called the successor of ' .

By using an additional layer that translates high level
names into Chord identifiers, Chord may be used as a pow-
erful lookup service. We will outline the design of a dis-
tributed hash table (DHASH) layer and of a peer-to-peer
storage application based on the Chord primitive. Figure 1
shows the distribution of functionality in the storage appli-
cation.

Layer Function
Chord Maps identifiers to successor nodes
DHASH Associates values (blocks) with identifiers
Application Provides a file system interface

Figure 1: A layered Chord application

Chord is efficient: determining the successor of an iden-
tifier requires that (
)+*-,/.#021 messages be exchanged with
high probability where 0 is the number of servers in the
Chord network. Adding or removing a server from the net-
work can be accomplished, with high probability, at a cost
of (
)+*-,/.�3�021 messages.

The rest of this position paper outlines the algorithms
used to implement the Chord primitive (Section 2), de-
scribes how Chord can be used to build peer-to-peer storage
systems (Section 3), summarizes the current implementa-
tion status of the system (Section 4), identifies some open
research problems (Section 5), relates Chord to other work
(Section 6), and summarizes our conclusions (Section 7).



7

k      int.      successor

1      [3,4)         5
2      [4,6)         5
3      [6,2)         7

k      int.      successor

1      [6,7)         7
2      [7,1)         7
3      [1,5]         2

k      int.      successor

1      [0,1)         2
2      [1,3)         2
3      [3,7)         5

 = Node

 0
1

2

3

4

5

6

(a) Find successor

7

k     suc.

1       2
2       2
3       5

k     suc.

1       7
2       7
3       2

k     suc.

1      5
2      5
3      7

k     suc.

1       5
2       7
3       2

 = Node

 = New Node

do do 

 0
1

2

3
4

5

 6

(b) Initialize routing tables

7

k     suc.

1       5
2       7
3       2

 = Node

 = New Node

3      7

k     suc.

1       7
2       7
3       2

k     suc.

1       2
2       2

k     suc.

3      

1      
2      4

4

4
 0

1

2

3
4

 5

 6

(c) Update other routing tables

Figure 2: The Chord algorithm in a three-bit identifier space

2 Chord
Chord uses consistent hashing [10] to map nodes onto an� -bit circular identifer space. In particular, each identifier' is mapped to the node with the least identifier greater or
equal to ' in the circular identifier space. This node is called
the successor of ' .

To implement the successor function, all nodes main-
tain an � -entry routing table called the finger table. This
table stores information about other nodes in the system;
each entry contains a node identifier and its network ad-
dress (consisting of an IP address and a port number). The�

-th entry in the finger table of node � is the smallest node� that is greater than �����	��
� . Node � is also termed the
order-

�
successor of node � . The number of unique entries

in the finger table is (
)+*-,/.#021 . The finger table can also be
thought of in terms of � identifier intervals corresponding
to the � entries in the table: the order-

�
interval of a node �

is defined as ) )������ ��
� 1���,���������)������ � 1��
,�������� . Fig-
ure 2(a) shows a simple example in which � =3 and three
nodes 2, 5, and 7 are present. The immediate successor of
node 5 is the successor of )�� �!��" 1���,��#��$�%'& or node 7.

Each node also maintains a pointer to its immediate pre-
decessor. For symmetry, we also define the corresponding
immediate successor (identical to the first entry in the fin-
ger table). In total, each node must maintain a finger table
entry for up to (
)+*-,/.#021 other nodes; this represents a sig-
nificant advantage over standard consistent hashing which
requires each node to track almost all other nodes.

2.1 Evaluating the successor function
Since each node maintains information about only a small
subset of the nodes in the system, evaluating the successor
function requires communication between nodes at each
step of the protocol. The search for a node moves progres-
sively closer to identifying the successor with each step.

A search for the successor of ( initiated at node � begins
by determining if ( is between � and the immediate suc-
cessor of � . If so, the search terminates and the successor
of � is returned. Otherwise, � forwards the search request

to the largest node in its finger table that precedes ( ; call
this node � . The same procedure is repeated by � until the
search terminates.

For example, assume that the system is in a stable state
(all routing tables contain correct information) and a search
is initiated at node 2 of Figure 2(a) for the successor of
identifier 6. The largest node with an identifier smaller than
6 is 5. The target of the search, 6, is in the interval defined
by 5 and its successor (7); therefore 7 is returned value.

The algorithm is outlined above in recursive form: if a
search request requires multiple steps to complete, the )+*�,
step is initiated by the )-)/.�0 1 *�, node on behalf of the initia-
tor. The successor function may also be implemented iter-
atively. In an iterative implementation, the initiating node
is responsible for making requests for finger table infor-
mation at each stage of the protocol. Both implementation
styles offer advantages: an iterative approach is easier to
implement and relies less on intermediary nodes, while the
recursive approach lends itself more naturally to caching
and server selection (described in Section 3).

2.2 Node insertion
When a new node � joins the network it must initialize its
finger table; existing nodes must also update their tables to
reflect the existence of � (see Figure 2(b) and Figure 2(c)).

If the system is in a stable state, a new node � can ini-
tialize its finger table by querying an existing node for the
respective successors of the lower endpoints of the

�
inter-

vals in � ’s table. Although we omit the details here, nodes
whose routing information is invalidated by � ’s addition
can be determined using � ’s finger table and by following
predecessor pointers: these nodes are instructed by � to up-
date their tables.

2.3 Additional algorithm details
Several additional details of the Chord protocol are merely
mentioned here in the interest of brevity; a complete de-
scription of the Chord primitive is given by Stoica et
al. [17]. Removing a node from the network involves a sim-



void event register ((fn)(int))
ID next hop (ID j, ID k)

Figure 3: Exposing Chord layer information. The
event register function arranges for fn to be called
when a node with an ID near the registrant’s joins or leaves
the network. next hop performs one step of the evalua-
tion of the successor function and returns the intermediate
result (a finger table entry).

ilar series of steps as adding a node. Parallel joins, paral-
lel exits, and failures are handled by maintaining the in-
variant that all nodes are aware of their immediate succes-
sor and predecessor, and by allowing the remaining entries
of nodes’ finger tables to converge to the stable state over
time. Handling failures also requires that nodes store

�
suc-

cessors in addition to the immediate successor.

2.4 The chord library API
The Chord library is intended to be used in a layered de-
sign where it provides the base location functionality. Two
design principles facilitate the the use of Chord in a layered
architecture: minimum functionality and exposed informa-
tion. By minimizing the amount of functionality embedded
in Chord, we minimize the constraints we place on higher
levels which depend on Chord.

In our initial experiments with systems based on Chord,
we found that larger systems were constrained not because
Chord provides an inflexible feature set, but because higher
layers desired access to the internal state of Chord during
its computation.

To provide this access while still preserving the ab-
straction barrier we allow layers to register callback func-
tions for events they are interested in (see Figure 3) and
to evaluate the successor function one step at a time.
next hop(j, k) sends a message to node j asking j
for the smallest entry in its finger table greater than k. This
allows callers to control the step-by-step execution of the
Chord lookup algorithm.

For example, the DHASH layer (described in section 3.1)
uses the callback interface to move values when nodes join
or leave the system. DHASH also evaluates the successor
function step by step to perform caching on search paths.

3 Building on Chord
To illustrate the usefulness of the Chord API we will outline
the design of layers that could be built on the basic Chord
primitive. These layers would be useful in a larger peer-to-
peer file sharing application. This application should allow
a group of cooperating users to share their network and
disk resources. Possible users of the application might be
a group of open source developers who wish to make a

err t insert(void *key, void *value)
void * lookup(void *key)

Figure 4: The DHASH API (a) Inserts value under key (b)
returns value associated with key or NULL if key does not
exist

software distribution available, but individually do not have
network resources to meet demand.

3.1 Distributed hash service

Chord is not a storage system: it associates keys with nodes
rather than with values. A useful initial extension to this
system is a distributed hash table (DHASH). The API for
this layer is shown in Figure 4.
DHASH::insert can be implemented by hashing

key to produce a 160-bit Chord identifier
�

, and storing
value at the successor of

�
. A DHASH::lookup request

is handled analogously: key is hashed to form
�

and the
successor of

�
is queried for the value associated with key.

The transfer of value data to and from nodes is accom-
plished by an additional RPC interface which is separate
from that exported by Chord.

Values introduce a complication: when nodes leave or
join the system, the successor node of a given key may
change. To preserve the invariant that values are stored at
the successor of their associated keys, DHASH monitors the
arrival and departure of nodes using the callback interface
provided by Chord and moves values appropriately. For ex-
ample, if the value associated with key 7 is stored on node
10 and node 9 joins the system, that value will be trans-
ferred to node 9.

Because it is based on Chord, DHASH inherits Chord’s
desirable properties: performing a lookup operation re-
quires (
) * , .#0 1 RPCs to be issued and does not require
any centralized control. The DHASH layer imposes an ad-
ditional cost of transferring (
) �� 1 of the keys in the system
each time a node joins or leaves the system.

3.2 Achieving reliability

The DHASH layer can also exploit the properties of Chord
to achieve greater reliability and performance. To ensure
that lookup operations succeed in the face of unexpected
node failures, DHASH stores the value associated with a
given key not only at the immediate successor of that key,
but also at the next � successors. The parameter � may be
varied to achieve the desired level of redundant storage.

The tight coupling between DHASH’s approach to repli-
cation and Chord’s (both use knowledge of a node’s imme-
diate successors) is typical of the interaction we hope to see
between Chord and higher layers.



3.3 Improving performance
To improveDHASH lookup performance, we exploit a prop-
erty of the Chord lookup algorithm: the paths that searches
for a given successor (from different initiating nodes) take
through the Chord ring are likely to intersect. These in-
tersections are more likely to occur near the target of the
search where each step of the search algorithm makes a
smaller ‘hop’ through the identifier space and provide an
opportunity to cache data. On every successful lookup op-
eration of a pair ) � � � 1 , the target value, � , is cached at each
node in the path of nodes traversed to determine the succes-
sor of

�
(this path is returned by Chord’s successor func-

tion).
Subsequent lookup operations evaluate the successor

function step by step using the provided next hop
method and query each intermediate node for � ; the search
is terminated early if one of these nodes is able to return a
previously cached � .

As a result, values are “smeared” around the Chord ring
near corresponding successor nodes. Because the act of
retrieving a document caches it, popular documents are
cached more widely than unpopular documents; this is a
desirable side-effect of the cache design. Caching reduces
the path length required to fetch a value and therefore the
number of messages per operation: such a reduction is im-
portant given that we expect that latency of communication
between nodes to be a serious performance bottleneck fac-
ing this system.

3.4 Denial of service
The highly distributed nature of Chord helps it resist many
but not all denial of service attacks. For instance, Chord is
resistant to attacks that take out some network links since
nodes nearby in identifier space are unlikely to have any
network locality. Additional steps are taken to preclude
other attacks.

A Chord-based storage system could be attacked by in-
serting such a large volume of useless data into the system
that legitimate documents are flushed from storage. By ob-
serving that the density of nodes nearby any given node
provides an estimate of the number of nodes in the system
we can partially defend against this attack by limiting the
number of blocks any one node can store in the system.
We make a local decision to fix a block quota based on the
number of nodes in the system, effectively enforcing a fixed
quota for each user on the whole system.

Nodes that could pick their own identifiers could effec-
tively delete a piece of data from the system by positioning
themselves as the data’s successor and then failing to store
it when asked to. This attack can be prevented by requir-
ing that node identifiers correspond to a hash of a node’s IP
address, a fact which can be verified by other nodes in the
system.

Malicious nodes could fail to execute the Chord pro-
tocol properly resulting in arbitrarily incorrect behavior.
A single misbehaving node can be detected by verifying
its responses with those of other, presumably cooperative,
nodes. For instance, if a node

�
reports that its successor is� , we can query � for its predecessor which should be

�
. A

group of such nodes could cooperate to make a collection
of nodes appear to be a self-consistent Chord network while
excluding legitimate nodes. We have no decentralized so-
lution to this problem and rely instead on the legitimacy of
the initial ‘bootstrap’ node to avoid this attack.

3.5 Designing a storage system: balancing load
In using Chord as the core of a peer-to-peer storage system
we are faced with the problem of efficiently distributing
load among nodes despite wide variations in the popularity
of documents. In building this system we must consider
how to map documents to nodes and at what granularity
to store documents.

One might consider using DHASH directly as a peer-
to-peer storage system. In this design, the contents of a
document are directly inserted into the DHASH system
keyed by the hash of either the contents of the document
or, perhaps, a human readable name. If one document be-
comes highly popular, however, the burden of delivering
that document will not be distributed. The caching scheme
described in Section 3.3 helps for small documents, but is
not practical for very large documents.

An alternate approach uses DHASH as a layer of indi-
rection: DHASH maps document identifiers to a list of IP
addresses where that document was available. In this de-
sign DHASH functions analogously to the DNS system but
does not depend on a special set of root servers as DNS
does. Once an IP address is selected, documents are re-
trieved using some other transfer protocol (HTTP, SSL,
SFS etc.).

Maintaining a dynamically updated list of potential
servers for any document solves the problem of popular
documents by distributing load among all of the servers in
the list. However, this design requires that optimizations
such as caching and redundant storage be implemented
twice: once in the Chord stack and again in the transfer
protocol. We desire a tighter coupling between the solution
to the popular document problem and mechanisms of the
Chord protocol.

This coupling can be achieved by using Chord to map
pieces of documents (blocks), rather than whole docu-
ments, to servers. In this scheme, files are broken into
blocks and each block is inserted into the DHASH layer us-
ing the cryptographic hash of the block’s contents as a key.
A piece of meta-data, equivalent to an inode in a traditional
file system, is also inserted into the system to provide a sin-
gle name for the file. The equivalence to a file system can
be extending to include directories as well; in our prototype



implementation, names map to a directory of documents
which is mapped into the user’s local namespace when ac-
cessed.

This approach aggressively spreads a single large doc-
ument across many servers, thus distributing the load of
serving it. It also inherits the reliability and performance
enhancements of the DHASH layer with little or no addi-
tional effort. One might note that documents smaller than
the block size are still served by a single node: we count on
our caching scheme to distribute these documents and the
load of serving them if they become popular.

The major drawback of this scheme derives from the
same property that made it desirable: because we spread
a single document across many servers, for each document
we fetch we must pay the cost of several DHASH lookups
(and thus several evaluations of the successor function). A
naive implementation might require

��������� �	� �


 seconds to
fetch an

�
byte document where 0 is the number of servers

in the network, � is the block size and  is the average la-
tency of the network. We hope to hide most of this latency
through aggressive prefetching of data and by selecting a
server from the redundant set which is near (in the network)
the requesting node.

3.6 Authenticity
A Chord-based file system could achieve authenticity guar-
antees through the mechanisms of the SFS read-only
server [9]. In SFSRO, file system blocks are named by
the cryptographic hash of their contents, an inherently un-
forgeable identifier. To name file systems we adopt self-
certifying pathnames [14]: The block containing the root
inode of a file system is named by the public key of the
publisher and signed by that public key. The DHASH layer
can verify that the root inode is correctly signed by the key
under which it is inserted. This prevents unauthorized up-
dates to a file system. Naming file systems by public key
does not produce easily human readable file names; this is
not a serious shortcoming, however, in a hypertext environ-
ment, or one that is indexed or provides symbolic links.

4 Status
The system described is under development. The Chord
protocol has been designed, implemented, and tested1. Re-
sults of testing with up to 1,000 nodes on the Berkeley
Millennium Cluster demonstrate that Chord’s performance
scales well with the size of the system. We have also im-
plemented the DHASH layer and a file system; in the same
testing environment and on a geographically diverse net-
work both demonstrated good load balancing properties.

5 Open problems
A number of open problems face applications built on the
Chord framework.

1The delete operation has not been implemented yet

Our design deliberately separates questions of
anonymity and deniability from the location primi-
tive. These properties are difficult to add to the Chord
system given the strong mapping between a document and
the node which is responsible for serving that document.
We speculate than overlaying a mix-network [4] on Chord
might allow for anonymous publishing and reading.

Collecting an index of all documents stored in Chord is
a straightforward operation: an indexer might visit every
node in the Chord system by following successor pointers.
Storing an index and servicing queries without resort to a
central authority remains an open question, however. Alter-
natively we could provide a Chord to WWW gateway and
rely on existing WWW indexing services.

Directing requests to servers nearby in the network
topology is important to reducing the latency of requests.
To do so requires measuring the performance of servers
in the system. However, because Chord aggressively dis-
tributes documents to unrelated servers, in a large network
we are not likely to visit the same server multiple times; this
makes maintaining server performance metrics difficult.

6 Related work

There has been previous work in the area of decentral-
ized location systems. Chord is based on consistent hash-
ing [10]; its routing information may be thought of as a one-
dimensional analogue of the GRID [12] location system.
OceanStore [11] uses a distributed data location system de-
scribed by Plaxton et al. [7], which is more complicated
than Chord but offers proximity guarantees. CAN uses a�

-dimensional Cartesian coordinate space to implement a
distributed hash table data structure [16]. CAN operations
are easy to implement, but an aditional maintenance pro-
tocol is required to periodically remap the identifier space
onto nodes. The Chord algorithm is also very similar to the
location algorithm in PAST [15].

Anonymous storage systems such as Freenet [5], Pub-
lius [13] and the Free Haven Project [8] use encryption,
probabilistic routing, or secret-sharing schemes to guaran-
tee clients and publishers anonymity. This anonymity guar-
antee often leads to design compromises that limit reliabil-
ity and performance. Chord separates problems like these
from the design of routing and file transfer protocols.

Napster [2], Gnutella [1], and Ohaha [3] provide a non-
anonymous file sharing service similar to that of the shar-
ing application presented here. Chord’s location algorithm
is more efficient than Gnutella’s broadcast based routing;
the decentralized nature of Chord eliminates a single point
of failure present in Napster. The Ohaha system [3] uses
a consistent hashing-like algorithm for ID mapping, and a
Freenet-style method of document retrieval; it shares some
of the weaknesses of Freenet.



7 Conclusions
The performance and reliability of existing peer-to-peer
systems have been limited by inflexible architectures that
attempt to find one solution for many problems. By us-
ing the Chord primitive to separate the problem of location
from the problems of data distribution, authentication and
anonymity, peer-to-peer systems are able to decide where
to compromise and as a result offer better performance, re-
liability and authenticity.

References
[1] Gnutella website. http://gnutella.wego.com.

[2] Napster. http://www.napster.com.

[3] Ohaha. http://www.ohaha.com/design.html.

[4] David Chaum. Untraceable electronic mail, return addresses
and digital pseudonyms. Communications of the A.C.M.,
24(2):84–88, 1981.

[5] Ian Clarke. A distributed decentralised information storage
and retrieval system. Master’s thesis, University of Edin-
burgh, 1999.

[6] Ian Clarke, Oscar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Proceed-
ings of the Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, California, June 2000.
http://freenet.sourceforge.net.

[7] C.Plaxton, R. Rajaraman, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In
Proceedings of the ACM SPAA, pages 311–320, Newport,
Rhode Island, June 1997.

[8] Roger Dingledine, David Molnar, and Michael J. Freedman.
The Free Haven project: Distributed anonymous storage ser-
vice. In Proceedings of the Workshop on Design Issues in
Anonymity and Unobservability, July 2000.

[9] Kevin Fu, M. Frans Kaashoek, and David Mazières. Fast
and secure distributed read-only file system. In Proceedings
of the 4th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2000), pages 181–196, San
Diego, California, October 2000.

[10] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 654–663, May
1997.

[11] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao. Oceanstore: An architecture
for global-scale persistent storage. In Proceeedings of the
Ninth international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2000), Boston, MA, November 2000.

[12] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R.
Karger, and Robert Morris. A scalable location service
for geographic ad hoc routing. In Proceedings of the 6th
ACM International Conference on Mobile Computing and
Networking (MobiCom ’00), pages 120–130, Boston, Mas-
sachusetts, August 2000.

[13] Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor.
Publius: A robust, tamper-evident, censorship-resistant, web
publishing system. In Proc. 9th USENIX Security Sympo-
sium, pages 59–72, August 2000.

[14] David Mazières, Michael Kaminsky, M. Frans Kaashoek,
and Emmett Witchel. Separating key management from file
system security. In Proceedings of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP ’99), pages
124–139, Kiawah Island, South Carolina, December 1999.

[15] Antony Rowstron Peter Druschel. Past: Persistent and
anonymous storage in a peer-to-peer networking environ-
ment. In Proceedings of the 8th Conference on Hot Topics
in Operating Systems (HotOS 2001), May 2001.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content-addressable
network. In Proc. ACM SIGCOMM 2001, August 2001.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In
Proc. ACM SIGCOMM 2001, August 2001. An early
version appeared as LCS TR-819 available at http://
www.pdos.lcs.mit.edu/chord/papers.


