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Abstract

Hare is a new multikernel operating system that provides a single system image for
multicore processors without cache coherence. Hare allows applications on different
cores to share files, directories, file descriptors, sockets, and processes. The main
challenge in designing Hare is to support shared abstractions faithfully enough to
run applications that run on traditional shared-memory operating systems with few
modifications, and to do so while scaling with an increasing number of cores.

To achieve this goal, Hare must support shared abstractions (e.g., file descriptors
shared between processes) that appear consistent to processes running on any core,
but without relying on hardware cache coherence between cores. Moreover, Hare
must implement these abstractions in a way that scales (e.g., sharded directories
across servers to allow concurrent operations in that directory). Hare achieves this
goal through a combination of new protocols (e.g., a 3-phase commit protocol to
implement directory operations correctly and scalably) and leveraging properties of
non-cache coherent multiprocessors (e.g., atomic low-latency message delivery and
shared DRAM).

An evaluation on a 40-core machine demonstrates that Hare can run many chal-
lenging Linux applications (including a mail server and a Linux kernel build) with
minimal or no modifications. The results also show these applications achieve good
scalability on Hare, and that Hare’s techniques are important to achieving scalability.
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Chapter 1

Introduction

A current trend in modern computer architectures is increasing core counts, meaning

that future architectures may contain many cores in a single machine. However, not

all hardware features can scale easily due to complexity and power constraints. As

a consequence, there are processors which provide limited or no support for some

architectural features such as cache coherence among cores.

This thesis describes an operating system and file system designed for multicore

architectures which do not support cache coherence between cores. Even though the

hardware does not provide cache coherence, the operating system supports a broad

range of POSIX style applications in a scalable manner, while providing consistency

for shared files, directories, sockets, file descriptors and migrated processes.

This chapter provides an overview for the system. It describes the architectures

the operating system is designed to support. Next, it describes the approach of using

a multikernel design to run applications and provide operating system services on

this hardware. With this, the problems which arise when trying to provide exist-

ing interfaces to applications using the multikernel approach. Finally, the research

contributions that Hare uses to solve these problems.
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Figure 1-1: A multicore processor design with private processor caches, a shared
DRAM, but without cache coherence in hardware.

1.1 Non-Cache-Coherent Multicore Processors

As the number of cores increases in a processor, there are certain features that do

not scale easily. Caches provide a small area of memory that provides significantly

faster access times than DRAM. When there are multiple cores in a machine, cache

coherence ensures that the data contained in each of the caches is consistent with

main memory across all cores. At a high level, this means if a core reads a memory

location that has been written by another core, then the reader will observe the most

recent changes made by the writer. Maintaining cache coherence across all cores can

be expensive both in complexity as well as power as the number of cores increases,

because sophisticated protocols are necessary to provide consistency at scale. As a

consequence, several architectures currently available such as Intel’s SCC [11], IBM

Cell’s SPE [10], the TI OMAP4 SoC [14], the Intel Xeon Phi [22] and GPGPUs do

not support cache coherence, and future architectures as well may not support this

feature.

Figure 1-1 depicts a logical representation of the hardware architecture that this

thesis targets. This diagram is a representative design of the common features found

in many existing commodity architectures that lack cache coherence. Cores commu-

nicate with each other using messages, while supporting reads and writes to a shared

DRAM. Processors cache the results of such reads and writes in their private caches,

but do not provide cache coherence between the cores.

In the absence of cache coherence, there is potential for cores to read stale data
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from the cache which is not consistent. For example, if one core writes to a memory

location and that write is cached, other cores will not see that update until it is flushed

and invalidated. As a consequence, specific steps need to be taken by the software

to ensure that this inconsistency does not result in bugs or unintended program

behavior. Writing software to take advantage of such architectures therefore presents

new challenges.

The operating system provides good context for exploring the challenges of writing

software for architectures that lack cache-coherent shared-memory for several reasons.

First, the operating system is an important piece of software with several challeng-

ing aspects such as scheduling processes between cores and consistently managing

per-process state. Second, most applications rely on the operating system to provide

shared abstractions for features such as process management, file access and net-

working. For example, if one process writes to a file, then reads by a different process

from that file should return data from that write. Third, existing applications indicate

typical workloads for operating systems which can direct the design of the system.

Fourth, the operating system requires non-trivial sharing between applications and

services that must be provided without relying on cache coherence.

1.2 Approach: Multikernel Operating Systems

Multikernel operating systems [2, 30] have been proposed as an alternative to tradi-

tional shared-memory operating systems for manycore processors. Multikernel oper-

ating systems run an independent kernel on each core, and these kernels communicate

using messages to implement operating system services and provide synchronization.

In the context of this thesis, the kernel refers to trusted software that provides an in-

terface to device drivers, per-core operating system state as well as low-level features

like memory management. One advantage of this design is that the operating system

is viewed as a distributed system, which closely matches the underlying hardware.

Additionally, since all sharing is explicit, multikernels have the potential to avoid scal-

ability bottlenecks that have plagued shared-memory kernel designs [4]. Lastly, by
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using a design that mimics a distributed system, known techniques can be adapted

from distributed systems research and employed to provide interfaces in a correct,

scalable manner.

Due to the fact that multikernels communicate only through message passing,

they are particularly suitable for multicore processors without cache-coherent shared-

memory. The independent kernels are solely responsible for managing their own core

as data structures are private, or independent from kernels running on other cores.

This separation means that issues such as reading stale data in a cache does not arise

for the kernel.

1.3 Problem: Sharing in Multikernel Operating

Systems

A challenge for multikernels is to implement services that do require sharing. For

example, many applications rely on a shared file system, but a multikernel cannot

rely on cache-coherent shared memory to implement a buffer cache, inode table, etc.

This thesis contributes a scalable design for implementing a POSIX file system on a

multikernel operating system. In previous work [3] we have explored a solution for

sharing network sockets this context, however this thesis focuses mainly on the file

system.

Previous multikernel operating systems implement file services using a distributed

file system for local-area networks and data centers. For example, Barrelfish runs an

NFS [28] backed file system [2]. Processes share files by making NFS RPCs to an

NFS server. There are several drawbacks to this approach including performance and

limited application support. First, the file server itself can be a bottleneck for meta-

data updates (such as creating or renaming files). Sharding may allow concurrency

for operations in different directories, however operations within a single directory

are serialized. Second, there is no mechanism for clients in traditional distributed

filesystems to share file descriptors, which limits processes that share file descriptors
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to running on a single core. Third, the clients are not designed to take advantage

of the presence of non-cache-coherent shared DRAM. This results in reduced capac-

ity for the buffer cache because blocks are duplicated by separate clients, and as a

consequence, reduced performance for applications using this approach.

Because of these limitations, the operating system cannot take advantage of much

of the parallelism provided by the hardware. Applications are limited to a single core

or may suffer poor performance when run across many cores.

1.4 Goal: Single System Image

From the perspective of distributed systems, a single system image is a system inter-

face for applications that presents the logical view of a unified system. In the context

of multikernel operating systems, a single system image implies access to system re-

sources such as the file system and networking stack from any core with the same

semantics that would be provided on a traditional shared-memory operating system.

This also means that running processes on separate cores and sharing abstractions

such as file descriptors between these processes is supported across the independent

kernels.

In the absence of a single-system-image interface, applications running on a multi-

kernel operating system are forced to view the operating system and the abstractions

it provides as a distributed system. This scenario can be difficult to program as the

application coordinate access to shared data structures which frequently requires dis-

tributing them across several cores in order to achieve good scalability. However, once

the data has been distributed, the application is then responsible for explicitly coor-

dinating accesses and updates to these data structures as the availability of locking

to provide mutual exclusion is not available in a multikernel design. In this regard,

it is advantageous to limit the distributed system interface to the operating system

kernel.

In order to avoid the difficulties of programming applications as a distributed

system with explicit coordination, the goal of this thesis is to provide a single system
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image across the multicore processes despite independent kernels and lack of cache

coherence. This allows the application programmer to build applications much as they

would on a traditional shared-memory operating system. Using familiar interfaces

with the same semantics allows the application to run as it would if the architecture

supported cache coherence. As a result, many existing applications are able to run

unmodified while new applications can be written without learning the specifics of

the underlying messaging protocol.

This thesis targets supporting a single system image that implements the POSIX

API [13] faithfully enough to run a broad range of applications across all of the cores.

In particular, abstractions that are commonly shared between different applications

such as files, directories, file descriptors, pipes and network sockets are all supported in

a manner in which they may be accessed from applications running on any core. The

main challenge in providing a single system image on a multikernel operating system

is ensuring a sufficient level of consistency for shared data structures between the

application and the operating system through the messaging layer. Certain aspects

of operating system abstractions, such as path resolution, must be explicitly cached

in software for performance while new protocols are needed to ensure that this cached

information is consistent enough to provide a faithful POSIX interface.

1.5 Hare System Overview

This thesis contributes a multikernel operating system and file system design (called

Hare) that supports the standard POSIX file system interface in a scalable manner

across many cores. In Hare, each core runs a kernel with a Hare client library. Pro-

cesses make POSIX system calls, and the local client library sends remote procedure

calls (RPCs) to one or more server processes to implement the POSIX call. The

central challenge in Hare’s design is providing coherence for file system data struc-

tures without relying on cache-coherent shared memory. Hare addresses this challenge

through a combination of new protocols and implementation techniques.

Hare’s design has three novel aspects compared to networked distributed file sys-
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tems. First, Hare partitions the buffer cache and stores each partition in DRAM.

When a process accesses a file, its local client library can read and write the buffer

cache directly; since DRAM accesses are not cache-coherent, this provides close-to-

open consistency [12, 19].

Second, to allow for scalable directory operations, Hare distributes directory en-

tries in the same directory to different servers, using hashing. Each server stores the

metadata for its directory entries. Each Hare client library caches the results of di-

rectory lookup operations to avoid server communication on each path lookup. When

a client library must list all of the entries in a directory, it issues RPCs to servers in

parallel to reduce the latency of listing the directory.

Third, Hare supports sharing of file descriptors between processes. When a parent

process spawns a child process, the child can use the file descriptors opened by the

parent, even if the client runs on a different core. File descriptor state is stored in a

Hare file server, and all file descriptor operations are implemented as RPCs to that

server. For performance, the file descriptor is typically co-located with the server

storing the corresponding file.

We have implemented Hare by logically running a Linux kernel on each core,

interposing on Linux system calls, and redirecting those system calls to a local Hare

client library. This implementation strategy forced us to implement a sufficiently

complete POSIX file system so that Hare can run many Linux applications with few

modifications, including building the Linux kernel, running a mail server, etc.

We evaluate Hare on a 40-core off-the-shelf machine. This machine provides cache-

coherent shared memory. Like previous multikernel operating systems, Hare uses

cache coherence purely to pass messages from one core to another. Whenever Hare

uses shared DRAM to store data, it explicitly manages cache consistency in software.

We run complete application benchmarks on Hare (such as compiling the Linux kernel

and a mailserver benchmark), many common Unix utilities, scripting languages like

bash and python as well as microbenchmarks to test specific aspects of Hare’s design.

Many of the parallel benchmarks as well as full applications such as the mailserver

benchmark and build of the Linux kernel run in a scalable manner.
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We find that some benchmarks scale well while other scale moderately. The main

reason that some scale moderately is that Hare’s directory operations must contact all

servers. We also find that the individual techniques that Hare uses are important to

achieve good scalability. Finally, we find that performance of Hare on a small number

of cores is reasonable: on some benchmarks Hare is up to 3.4× slower than Linux,

however in many cases it is faster than UNFS3 which represents a more realistic

comparison for the architectures that Hare targets.

1.6 Thesis Contributions

The main research contributions of this thesis include the following:

• The design and implementation of Hare: A scalable multikernel operating system

and filesystem which supports the following:

– Sharing of files, file descriptors and directories.

– Process migration through the exec call.

– A POSIX style interface which supports a broad range of applications.

• Protocols to provide a single system image:

– Close-to-open consistency with strong consistency for shared file descriptors.

– A three-phase commit protocol to ensure consistency when removing distributed

directories.

– An invalidation protocol to allow consistent caching of directory lookup oper-

ations.

• Optimizations for performance and scalability:

– A mechanism for distributing individual directories across multiple servers.

– Using a shared buffer cache to improve capacity and performance.

– Broadcast directory operations which allows listing and removal to happen

concurrently on multiple servers.
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– A directory lookup cache that can reduce the number of lookup operations.

• An evaluation on commodity hardware that demonstrates the following:

– Support for a broad range of applications.

– Scalability up to the maximum number of cores across a variety of applications

and benchmarks.

– Competitive performance on a small number of cores.

– The necessity of techniques and optimizations in order to achieve good perfor-

mance.

– That techniques used in Hare could improve performance for some workloads

in traditional shared-memory operating systems.

Although the Hare prototype implements a wide range of POSIX calls, it has

some limitations that we plan to remove in future work. The most notable is that

while our evaluation shows that changing the number of servers dynamically based

on workload can improve performance, Hare does not support this feature yet. We

believe that implementing support for this feature should not affect the conclusions

of this thesis.

1.7 Thesis Roadmap

The rest of the thesis is organized as follows. Chapter 2 relates Hare to previous

file system designs. Chapter 3 describes Hare’s design. Chapter 4 details Hare’s

implementation. Chapter 5 evaluates Hare experimentally. Chapter 6 describes our

plans for future work as well as some open discussion topics. Chapter 7 summarizes

our conclusions.
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Chapter 2

Related Work

Hare is the first multikernel operating system that provides a single system image in

a scalable manner, without relying on cache coherence. Hare’s design builds on ideas

found in previous multikernels and file systems, but contributes a new design point.

Hare takes advantage of the properties of a non-cache-coherent machine to imple-

ment shared file system abstractions correctly, efficiently, and scalably. In particular,

Hare’s design contributes several new protocols for implementing shared files, shared

directories, shared file descriptors, and migrating processes.

2.1 LAN Distributed File Systems

Hare’s design resembles networked distributed file systems such as NFS [19] and

AFS [12], and borrows some techniques from these designs (e.g., directory caching,

close-to-open consistency, etc). Sprite supports transparent process migration [8] to

extend the Sprite file system to multiple nodes. The primary differences are that Hare

can exploit a shared DRAM to maintain a single buffer cache, that directory entries

from a single directory are distributed across servers, and that file descriptors can be

shared among clients. This allows Hare to run a much broader range of applications

in a scalable manner than network file systems on our target architecture.
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2.2 Datacenter and Cluster File Systems

Datacenter and cluster file systems are designed to support parallel file workloads. A

major difference is that the Metadata Server (MDS) in these designs is typically a

single entity, as in Lustre [6] and the Google File System [9], which creates a potential

bottleneck for metadata operations. The Flat Datacenter Storage (FDS) [18] solution

uses a Tract Locator Table to perform lookups. This design avoids the MDS on the

critical path, but FDS is a blob store and not a general file system. Blizzard [17] builds

a file system on top of FDS as a block store, but does not allow multiple clients to share

the same file system. Ceph [29] uses a distributed approach to metadata management

by using Dynamic Subtree Partitioning to divide and replicate the metadata among a

cluster of Metadata Servers. As with traditional distributed file systems, they cannot

exploit a shared DRAM and don’t support sharing of file descriptors across clients.

Shared-disk file systems such as Redhat’s GFS [21, 31] and IBM’s GPFS [24]

enable multiple nodes to share a single file system at the disk block level. Such

designs typically store each directory on a single disk block, creating a bottleneck for

concurrent directory operations. Furthermore, such designs cannot take advantage

of a shared buffer cache or a shared directory cache, and cannot support shared file

descriptors between processes.

2.3 File Systems for SMP Kernels

Another potential approach to designing a file system for multikernel operating sys-

tems might be to adopt the design from existing SMP kernels, such as Linux. These

designs, however, rely on cache coherence and locking of shared data structures,

which multikernel operating systems cannot assume. Furthermore, the SMP designs

have been plagued by scalability bottlenecks due to locks on directories and reference

counting of shared file system objects [5].

HFS [15] is a system designed for SMP architectures that allows the applica-

tion to have fine-grained control of how files are organized and accessed to improve
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performance based on a workload’s access pattern. This system is focused on file lay-

out without addressing parallelism for directory operations. Furthermore, it exposes

modified interfaces as opposed to providing the POSIX API.

In other realms, such as databases, it has been suggested to treat the multicore

as a cluster, and to run separate copies of the service on different cores, partitioning

the data across the cores [23]. This technique makes data movement between the

individual partitions difficult, whereas a design like Hare can update a directory

entry while leaving file data in place, and access the data through shared-memory

(with explicit cache writeback and invalidation in software to provide the required

consistency).

2.4 Multikernel Designs

Hare’s split design between a client library and multiple file system servers is inspired

by the file system in the fos [30] multikernel. The fos design, however, is limited to

read-only workloads [30]. Barrelfish uses a standard distributed file system, NFS [27].

Hare extends these designs with support for multiple servers supporting read/write

workloads while also adding more support for the POSIX API, in particular sharing

of file descriptors between processes running on separate cores.

K2 [16] is designed for machines with separate domains that have no cache co-

herence between them. Their design targets mobile platforms with several domains

each of which consists of multiple cores, though the design targets a low number of

domains. Hare instead targets an architecture where each coherence domain con-

sists of a single core. Since K2 relies on distributed shared memory for sharing OS

data structures across coherency domains, workloads which perform many operations

in the same directory will experience a bottleneck when run in different domains.

Hare does not use distributed shared memory, but relies on new protocols specifically

designed for shared files, directories, etc to achieve good performance and scalability.

Cerberus [26] is designed to scale to many cores by instantiating several virtual

machines and providing the view of a single system image through messaging. Hare
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takes the contrasting approach of solving scalability challenges within the operating

system. Due to the reliance on the underlying operating system which makes use

of cache coherence, Cerberus does not provide a solution on architectures which lack

this feature. Hare can run on any system which provides support for message passing,

obviating the need for a virtual machine monitor. Hare also differs from Cerberus in its

support for fine-grained directory distribution, whereas Cerberus delegates directories

to a specific domain.

2.5 File Systems for Heterogeneous Architectures

GPUfs [25] is similar to Hare in that it uses a shared DRAM between a GPU and

the host processor to implement a distributed file system. Hare differs from GPUfs

in handling directories, file offsets, and other shared state exposed in the POSIX

interface. Furthermore, GPUfs is focused purely on accessing file contents through

a restricted interface without supporting shared file descriptors. Without sharing of

file descriptors, pipes and redirection as well as make’s job server will not function,

limiting the number of supported applications.

28



Chapter 3

Design

Hare’s goal is to run a wide variety of POSIX applications out-of-the-box on a ma-

chine with non-cache-coherent shared memory, while achieving good performance and

scalability. This means providing a single system image as expected by applications

using the POSIX API, which amounts to providing shared abstractions like a single

scheduler, a shared file system, a network stack, and so on, across all cores. This

goal is challenging because of the lack of cache coherence: Hare cannot rely on the

hardware to keep shared data structures such as the buffer cache, the inode tables,

and the directory caches, consistent across cores. The focus of this thesis is on imple-

menting a shared file system and shared processes; Hare’s network stack is described

in a separate technical report [3].

3.1 Why a New Design?

One might think that the above challenge is straightforwardly met by viewing the

multikernel as a distributed system, and running a distributed file system on the

multikernel operating system. In fact, early multikernel designs advocated this solu-

tion and supported it [2]. However, this approach fails to support many important

applications because it does not provide single-system-image semantics across the

cores.

Consider a situation where a file descriptor is shared between a parent and child
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1 dup2 ( open ( ” f i l e ” , . . . ) , 1) ;
2

3 i f ( f o rk ( ) == 0) // ch i l d
4 exec ( ” echo” , [ ” echo” , ” h e l l o ” ] ) ;
5

6 wait ( ) ; // parent
7 p r i n t f ( ”world .\n” ) ;

code/fd share.c

Figure 3-1: Example of file descriptor sharing not supported by NFS.

fork(): [...] Each of the child’s file descriptors shall refer
to the same open file description with the corresponding
file descriptor of the parent.

exec(): [...] File descriptors open in the calling process
image shall remain open in the new process image [...]

Figure 3-2: Excerpt from POSIX API specification [13] regarding sharing file descrip-
tors across fork() and exec() calls.

process as provided in Figure 3-1. This idiom appears in many applications such as

extracting a compressed file using tar or configuring a build system using autoconf.

According the POSIX API specification [13] (as provided by Figure 3-2), the under-

lying file description should be shared. This means that aspects related to the file

descriptor such as the file offset should remain consistent between the two processes.

However, since there is no mechanism for NFS clients to share file descriptions, appli-

cations using this idiom are limited to a single core. In the example provided, the file

contents should be the text “hello\nworld.\n”, however if the offset is not consistent

between the two processes then the parent’s write could shadow the child’s.

Networked file systems typically lack support for accessing unlinked files through

already-opened file descriptors, especially if the file is open on one machine and is

unlinked on another machine. Consider the situation where one process opens a file

while another process writes to and then removes that file. An example of such

behavior is provided in Figure 3-3. This situation arises during a typical compilation

process. According to the POSIX [13] specification (provided in Figure 3-4), the file

data should remain valid for the original process that opened the file. Networked file
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1 fd = open ( ”d/ f i l e ” , . . . ) ;
2 // s c r i p t runs
3 r e t = read ( fd , buf , 1024) ;

code/orphan.c

1 #!/ bin / sh
2 echo ” h e l l o world” >> d/ f i l e
3 rm −r d

code/orphan.sh

Figure 3-3: Example of orphan file use not supported by NFS.

If one or more processes have the file open when the
last link is removed, the link shall be removed before
unlink() returns, but the removal of the file contents
shall be postponed until all references to the file are
closed.

Figure 3-4: Excerpt from POSIX API specification [13] regarding orphan files after
unlink() calls.

systems typically do not support this idiom, as they cannot rely on client machines

to remain online and reliably close all outstanding open files. This is due to the fact

that client machines are not trusted and may crash without notifying the server.

To avoid these limitations, and to provide a single system image, Hare leverages

several properties of the target architecture. First, Hare runs with a single failure

domain between the file servers, applications and client libraries. This is reasonable

to assume because both the clients and the servers are part of the same machine’s

operating system. Second, Hare leverages fast and reliable message delivery between

cores. Third, Hare exploits the presence of non-cache-coherent shared memory for

efficient access to bulk shared data.

3.2 Overview

Figure 3-5 illustrates Hare’s overall design. Hare consists of a set of server and ap-

plication processes running on a multikernel operating system. Each core runs an

independent kernel. The kernels and user-level processes communicate using message

passing. The server processes implement most of Hare, but each kernel has a Hare

client library that performs some operations, such as accessing the buffer cache di-

rectly. To protect the buffer cache, the client library runs inside its local kernel. All
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the kernels trust the other kernels to enforce this protection.

Figure 3-5: Hare design.

Hare’s design does not support a persistent on-disk file system, and instead pro-

vides an in-memory file system. We made this choice because implementing a scalable

in-memory file system is the most challenging aspect of designing a multikernel file

system, since it requires dealing with shared state across cores. We are instead fo-

cused on the steady-state behavior of the system after blocks have been read from

disk. Any operations that read or write data on disk would be orders of magnitude

slower than in-memory accesses, and could be serialized by processors that are closest

to the disk I/O controllers.

The scheduling server is responsible for spawning new processes on its local core,

waiting for these processes to exit, and returning their exit status back to their original

parents. Additionally, the scheduling server is responsible for propagating signals

between the child process and the original parent. To this end, the scheduling server

maintains a mapping between the channels for the original process that called exec()

and the new child process that has been spawned locally.

Figure 3-6 shows the data structures used by Hare’s file system. The file server

processes maintain file system state and perform operations on file system metadata.

The data structures that comprise the file system are either distributed or partitioned

between the file servers. Each client library keeps track of which server to contact in

order to perform operations on files, directories, or open file descriptors. For example,

to open a file, the client library needs to know both the file’s inode number, and the

server storing that inode. The client library obtains both the inode number and the

32



server ID from the directory entry corresponding to the file. A designated server

stores the root directory entry.

Figure 3-6: Data structures used by Hare’s file system.

In the rest of this chapter, we will discuss Hare’s file system and process manage-

ment in more detail, focusing on how shared state is managed in Hare.

3.3 File Data

The buffer cache stores file blocks, but not file metadata. The buffer cache is divided

into blocks which file servers allocate to files on demand. Each server maintains a

list of free buffer cache blocks; free blocks are partitioned among all of the file servers

in the system. When a file requires more blocks, the server allocates them from its

local free list; if the server is out of free blocks, it can steal from other file servers

(although stealing is not implemented in our prototype).

The client library uses shared-memory addresses to directly read and write blocks

in the buffer cache. If an application process opens a file, it traps into its local kernel,

and its client library sends a message to the file server in charge of that file. If

the standard POSIX permission checks pass, the server responds to the client library

with the block-list associated with that file. When an application invokes a read() or

write() system call, the application’s local client library reads and writes the buffer
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cache directly provided the blocks are known, otherwise it requests the associated

blocks before performing the operation.

The challenge in accessing the shared buffer cache from multiple cores lies in the

fact that each core has a non-coherent private cache. As a result, if the application

on core 1 writes to a file, and then an application on core 2 reads the same file, the

file’s data might be in core 1’s private cache, or even if it was flushed to DRAM, core

2’s cache could still have a stale copy.

3.3.1 Solution: Invalidation and Writeback Protocol

To address this problem, Hare performs explicit invalidation and writeback. To avoid

having to invalidate and writeback cache data at every file read and write, Hare em-

ploys a weaker consistency model, namely, close-to-open consistency [12, 19]. When

an application first opens a file, the client library invalidates the local processor’s

cache for the blocks of that file, since they may have been modified by another core.

When an application closes the file descriptor, or calls fsync() on it, its client li-

brary forces a writeback for any dirty blocks of that file in the local processor cache

to shared DRAM. This solution ensures that when a file is opened on any core, the

application will observe the latest changes to that file since the last close.

Although close-to-open semantics do not require Hare to ensure data consistency

in the face of concurrent file operations, Hare must make sure its own data structures

are not corrupted when multiple cores manipulate the same file. In particular, if one

core is writing to a file and another core truncates that file, reusing the file’s buffer

cache blocks can lead to data corruption in an unrelated file, because the client library

on the first core may still write to these buffer cache blocks. To prevent this, Hare

defers buffer cache block reuse until all file descriptors to the truncated file have been

closed, as we describe in Section 3.5.

Note that networked distributed file systems don’t have the option of having a

shared buffer cache. Thus, if several processes on different machine on a network read

the same file, the blocks of the file are replicated in the memory of several machines.

Adopting the same design on a single shared memory system would waste DRAM, by
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storing multiple copies of the same popular data. Hare ensures that each file block is

stored only once in shared DRAM.

3.4 Directories

Parallel applications often create files in a shared directory. To avoid contention

between operations on different files in the same directory, Hare allows the application

to create a distributed directory by using a flag during directory creation time. Hare

then distributes the entries for this directory across the file system servers. When an

application creates a file in the distributed directory dir, the client library determines

which server to contact to add the directory entry using the following hash function:

hash(dir, name) % NSERVERS → server id (3.1)

where name is the name of the file or directory in the directory dir. To avoid re-

hashing directory entries when their parent directory is renamed, Hare uses an inode

number to identify each directory (and file) in the file system, which does not change

when it is renamed. In the above hash computation, dir refers to the inode number

of the parent directory.

This hashing function ensures that directory entries of distributed directories are

evenly spread across all file servers. This allows applications to perform multiple

operations (e.g., creating files, destroying inodes, and adding and removing directory

entries) on a distributed directory in parallel, as long as the file names hash to different

servers.

In the current design, the number of servers (NSERVERS) is a constant. As we will

show in Chapter 5, it can be worthwhile to dynamically change the number of servers

to achieve better performance. However, the optimal number of servers is dependent

on the application workload.

One complication with distributing directories arises during an rmdir() operation,

which must atomically remove the directory, but only if it is empty. Since the directory
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entries of a distributed directory are spread across multiple file servers, performing

an rmdir() operation on a distributed directory can race with another application

creating a file in the same directory.

3.4.1 Solution: Three-phase Commit Protocol

To prevent the race between an rmdir() operation and file creation in that directory,

Hare implements rmdir() using a three-phase commit protocol. The core of this

protocol is the standard two-phase commit protocol. The client library performing

rmdir() first needs to ensure that the directory is empty; to do so, it sends a message

to all file servers, asking them to mark the directory for deletion, which succeeds

if there are no remaining directory entries. If all servers succeed, the client library

sends out a COMMIT message, causing the servers to delete that directory. If any server

indicates that the directory is not empty, the client library sends an ABORT message to

the servers, which removes the deletion mark on the directory. While the directory is

marked for deletion, file creation and other directory operations are delayed until the

server receives a COMMIT or ABORT message. The last complication with this protocol

arises from concurrent rmdir() operations on the same directory. If the concurrent

operations contact the file servers in a different order, there is a potential for deadlock.

To avoid this potential deadlock scenario, Hare introduces a third phase, before the

above two phases, where the client library initially contacts the directory’s home

server (which stores the directory’s inode) to serialize all rmdir() operations for that

directory.

Note that Hare handles directory entries differently from most networked file sys-

tems. In most distributed file systems, all entries in a directory are stored at a single

server, because the round-trip time to the server is high, and it is often worthwhile

to download the entire directory contents in one round-trip. Distributing directory

entries across servers in a networked file system would also require an atomic com-

mit protocol for rmdir() operations, which is costly and requires a highly available

coordinator for the protocol.
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3.5 File Descriptors

File descriptors are used to keep track of the read/write offset for an open file descrip-

tor, which poses a challenge for Hare when several processes share a file descriptor.

In a cache-coherent system, it is simply a matter of storing the file descriptor data

structure with its associated lock in shared-memory to coordinate updates. With-

out cache coherency, though, Hare needs a mechanism to guarantee that the shared

file descriptor information remains consistent. For example, suppose a process calls

open() on a file and receives a file descriptor, then calls fork() to create a child

process. At this point write() or read() calls must update the offset for the shared

file descriptor in both processes.

A second scenario which poses a challenge for Hare is related to unlinked files.

According to the POSIX API specification, a process can read and write to a file

through an open file descriptor after file has been unlinked.

3.5.1 Solution: Hybrid File Descriptor Tracking

To solve this problem, Hare stores some file descriptor state at the file servers. For

each open file, the server responsible for that file’s inode tracks the open file descriptors

and an associated reference count. The file server ensures that when a file is unlinked,

the inode and corresponding file data will remain valid until the last file descriptor

for that file is closed.

The file descriptor’s offset is sometimes stored in the client library, and sometimes

stored on the file server, for performance considerations. When the file descriptor

is not shared between processes (“local” state), the client library maintains the file

descriptor offset, and can perform read and write operations without contacting the

file server. On the other hand, if multiple processes share a file descriptor (“shared”

state), the offset is migrated to the file server, and all read() and write() operations

go through the server, to ensure consistency. The file descriptor changes from local

to shared state when a process forks and sends a message to the server to increment

the reference count; it changes back to local state when the reference count at the
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server decreases to one. Although this technique could present a potential bottleneck,

sharing of file descriptors is typically limited to a small number of processes for most

applications.

Traditional distributed file systems, including NFS and AFS, have trouble han-

dling this scenario, especially if the client accessing the file runs on a different node

than the client performing the unlink, because it’s impractical to track all open files,

especially in the face of client node failures. Hare is able to address this problem

because all client libraries are trusted to inform the server when file descriptors are

closed (thereby avoiding leaking of unlinked files) , and communication for each file

open and close is relatively cheaper.

3.6 Processes

In order to take advantage of many cores provided by hardware, Hare applications

must be able to spawn processes on those cores. A scheduler in a traditional shared

memory operating system can simply steal processes from another core’s run queue.

However, in Hare, it is difficult to migrate a process from one core to another through

stealing as each core has an independent kernel with its own data structures, memory

allocators, etc. As a consequence, migrating a running process would require the two

kernels to carefully coordinate hand-off for all data structures associated with that

process.

3.6.1 Solution: Remote Execution Protocol

Hare’s insight is that exec() provides a narrow point at which it is easy to migrate

a process to another core. In particular, the entire state of the process at the time it

invokes exec() is summarized by the arguments to exec() and the calling process’s

open file descriptors. To take advantage of this, Hare can implement the exec() call

as an RPC to a scheduler running on another core, so that the process finishes the

exec() call on that core before resuming execution.

Each core runs a scheduling server, which listens for RPCs to perform exec()
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operations. When a process calls exec(), the client library implements a scheduling

policy for deciding which core to choose for running the new process image. Our

prototype supports both a random and a round-robin policy, with round-robin state

propagated from parent to child, which proves to be sufficient for our applications and

benchmarks. After choosing a destination core, the client library sends the arguments,

file descriptor information, and process environment to the new core’s scheduling

server. The scheduling server then starts a new process on the destination core (by

forking itself), configures the new process based on the RPC’s arguments, and calls

exec() in the local kernel to load the target process image.

Running a process on another core creates three challenges. First, when the

process exits, the parent on the original core needs to be informed. Second, signals

need to be propagated between the new and original core. Third, the process might

have had some local file descriptors (e.g., to the console or other file descriptors

specific to that core’s kernel) that are not valid in the new core’s kernel.

To address this challenge, Hare uses a proxy process. The original process that

called exec() turns into a proxy once it sends the RPC to the scheduling server. The

scheduling server will, in turn, wait for the new process to terminate; if it does, it will

send a message back to the proxy, causing the proxy to exit, and thereby providing

the exit status to the proxy’s parent process. If the process running on the new

core tries to access any file descriptors that were specific to its original core’s kernel,

the accesses are turned into messages back to the proxy process, which performs the

operation where the file descriptor is valid. Finally, if the proxy process receives any

signals, it relays them to the new process through the associated scheduling server.

3.7 Techniques and Optimizations

Hare implements several optimizations to improve performance, for which an evalu-

ation of performance is provided in Chapter 5.
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3.7.1 Directory lookup and caching

Hare caches the results of directory lookups, because lookups involve one RPC per

pathname component, and lookups are frequent. Pathname lookups proceed itera-

tively, issuing the following RPC to each directory server in turn:

lookup(dir, name)→ 〈server, inode〉 (3.2)

where dir and inode are inode numbers, name is the file name being looked up, and

server is the ID of the server storing name’s inode. The file server returns both the

inode number and the server ID, as inodes do not identify the server; each directory

entry in Hare therefore stores both the inode number and the server of the file or

directory.

Hare must ensure that it does not use stale directory cache entries. Which may

arise when a file is renamed or removed. To do this, Hare relies on file servers to

send invalidations to client libraries during these operations, much like callbacks in

AFS [12]. The file server tracks the client libraries that have a particular name cached;

a client library is added to the file server’s tracking list when it performs a lookup

RPC or creates a directory entry. During a remove, rmdir or unlink operation, the

invalidation message is sent to all client libraries which have cached that lookup.

The key challenge in achieving good performance with invalidations is to avoid the

latency of invalidation callbacks. In a distributed system, the server has to wait for

clients to acknowledge the invalidation; otherwise, the invalidation may arrive much

later, and in the meantime, the client’s cache will be inconsistent.

3.7.2 Solution: Atomic message delivery

To address this challenge, Hare relies on an atomic message delivery property from its

messaging layer. In particular, when the send() function completes (which delivers

a message), the message is guaranteed to be present in the receiver’s queue. To take

advantage of this property, Hare’s directory lookup function first checks the incoming

queue for invalidation messages, and processes all invalidations before performing a
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lookup using the cache. This allows the server to proceed as soon as it has sent

invalidations to all outstanding clients (i.e., send() returned), without waiting for an

acknowledgment from the client libraries.

3.7.3 Directory broadcast

As described in Section 3.4, the hash function distributes directory entries across

several servers to allow applications to perform directory operations on a shared

directory in parallel. However, some operations like readdir() must contact all

servers. To speed up the execution of such operations, Hare’s client libraries contact

all directory servers in parallel. This enables a single client to overlap the RPC latency,

and to take advantage of multiple file servers that can execute the corresponding

readdir operation in parallel, even for a single readdir() call.

3.7.4 Message coalescing

As the file system is distributed among multiple servers, a single operation may

involve several messages (e.g. an open() call may need to create an inode, add a

directory entry, as well as open a file descriptor pointing to the file). When multiple

messages need to be sent to the same server for an operation, the messages are

coalesced into a single message. In particular, Hare often places the file descriptor

on the server that is storing the file inode, in order to coalesce file descriptor and file

metadata RPCs. This technique can overlap multiple RPCs, which reduces latency

and improves performance.

3.7.5 Creation affinity

Modern multicore processors have NUMA characteristics [2]. Therefore, Hare uses

Creation Affinity heuristics when creating a file: when an application creates a file,

the local client library will choose a close-by server to store that file. If Hare is creating

a file, and the directory entry maps to a nearby server (on the same socket), Hare

will place the file’s inode on that same server. If the directory entry maps to a server
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on another socket, Hare will choose a file server on the local socket to store the file’s

inode. Each client library has a designated local server it uses in this situation, to

avoid all clients storing files on the same local server. These heuristics allow the client

library to reduce the latency required to perform file operations. Creation Affinity

requires client libraries to know the latencies for communicating with each of the

servers, which can be measured at boot time.
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Chapter 4

Implementation

Hare’s implementation follows the design depicted in Figure 3-5. The kernel that

Hare runs on top of is Linux, which provides support for local system calls which

do not require sharing. Hare interposes on system calls using the linux-gate.so

mechanism [20] to intercept the application’s system calls and determine whether the

call should be handled by Hare or passed on to the local kernel. Hare implements most

of the system calls required for file system operations, as well as several for spawning

child processes and managing pipes. A list of supported system calls is provided in

Table 4.1. The RPC messages that the client library uses to provide these system

calls is provided in Table 4.2. By using Linux for the per-core kernel, we are able

to obtain a more direct comparison of relative performance as well as leverage an

existing implementation for per-core functionality such as the timesharing scheduler

and interrupt management. We have not placed the client library into the kernel

since it complicates the development environment, although it would allow multiple

processes on the same core to share the directory lookup cache.

Hare does not rely on the underlying kernel for any state sharing between cores,

and instead implements all cross-core communication and synchronization through its

own message passing layer [3], which uses polling, and through the buffer cache. The

buffer cache is statically partitioned among the servers, and totals 2 GB in our setup

which proves to be a sufficient size to hold all file data across our experiments. the

applications as well as the server processes are each pinned to a core in order to limit
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Category System calls

Directory operations access, creat, getdents, getdents64, mkdir,
mkdirat, open, openat, readlink, rename,
rmdir, symlink, symlinkat, unlink, un-
linkat

File descriptor operations close, dup, dup2, dup3, llseek
Process operations chdir, clone, execve, exit group, fchdir,

getcwd, pipe, socketcall
File data fdatasync, ftruncate, mmap2, munmap,

read, truncate, truncate64, write
File metadata chmod, chown, faccessat, fchmod, fch-

modat, fchown, fchown32, fchownat, fc-
ntl, fcntl64, fsetxattr, fstat, fstat64, fs-
tatat64, fsync, ioctl, lchown, lchown32,
lstat, lstat64, stat, stat64, utime, utimen-
sat

Table 4.1: List of system calls handled by Hare’s client library.

Category RPCs

Directory operations MKDIR, RMDIR, DIRENT, ADD MAP,
RM MAP, RESOLVE, SYMLINK,
READLINK

File descriptor operations OPEN, DUP, LSEEK, CLOSE
Process operations CONNECT, DISCONNECT, EXEC
File data CREATE, DESTROY, READ, WRITE,

TRUNC, BLOCKS, FLUSH
File metadata CHMOD, CHOWN, FSTAT, UTIMENS

Table 4.2: List of Hare RPCs. Note that CONNECT and DISCONNECT are implicit
through the messaging library. ADD MAP and RM MAP add and remove directory
entries.
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any unintended use of shared memory. Hare uses a modification to the Linux kernel

to provide PCID support. The PCID feature on the Intel architecture allows the TLB

to be colored based on process identifiers, which allows the kernel to avoid flushing

the TLB during a context switch. This results in lower context switch overhead which

can result in faster messaging when a server is sharing a core with the application.

Using Linux as a multikernel has simplified the development of Hare: we can

use debugging tools such as gdb, can copy files between Hare and Linux, and run

applications without building a custom loader. Hare supports reading and writing

files that live on the host OS by redirecting file system calls for a few directories

to Linux. A client library additionally maintains a mapping of file descriptors that

correspond to either the Hare or the underlying host kernel (e.g. console, sockets,

virtual file systems, etc) to disambiguate system calls made on these file descriptors.

Lines of code for various portions of the system are provided in Figure 4-1; Hare

is implemented in C/C++.

Component Approx. SLOC

Messaging 1,536
Syscall Interception 2,542
Client Library 2,607
File System Server 5,960
Scheduling 930

Total 13,575

Figure 4-1: SLOC breakdown for Hare components.
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Chapter 5

Evaluation

This chapter evaluates the performance of Hare across several workloads to answer

the following questions. First, what POSIX applications can Hare support? Second,

what is the performance of Hare? Third, how important are Hare’s techniques to

overall performance? Fourth, can Hare’s design show benefits on machines with cache

coherence?

5.1 Experimental Setup

All of the results in this chapter are gathered on a PowerEdge 910 server containing

four Intel Xeon E7-4850 10-core processors, for a total of 40 cores. This machine

provides cache-coherent shared memory in hardware, which enables us to answer the

last evaluation question, although Hare does not take advantage of cache coherence

(other than for implementing message passing). The machines run Ubuntu Server

13.04 i686 with Linux kernel 3.5.0. All experiments start with an empty directory

cache in all client libraries.

5.2 POSIX Applications

One of Hare’s main goals is to support POSIX style applications, therefore it is

important to consider which applications can run on the system. Although Hare does

47



not support threads and fork() calls must run locally, Hare can still run a variety of

applications with little to no modifications. Some of these are benchmarks designed

to stress a portion of the system, while others employ a broader range of operations.

All of the applications can run on Hare as well as Linux unmodified. Several of

the applications were modified slightly to control the sharing policy of directories

(i.e. to distribute shared directories) or to use exec() in addition to fork() calls

to allow migration of processes across cores. Additionally a placement policy was

chosen for each of the applications (random placement for build linux and punzip

and round-robin for the remainder of the workloads), though the placement policy is

decided within the Hare client library and therefore does not require modifying the

application.

The benchmarks shown in Table 5.1 perform a wide range of file system operations;

Figure 5-1 shows the breakdown of file system operations, as a percentage of the total,

for each of the benchmarks. This shows the wide variety of workloads present in Hare’s

benchmarks. Benchmarks such as mailbench, fsstress issue many different operations,

while some of the microbenchmarks such as renames and directories are limited to

just a few operations and are designed to stress a specific portion of the system.

In Table 5.2, the requirements and operation count for each of the workloads used

to evaluate the system is depicted. From this table, it is clear that supporting sharing

of various abstractions across cores is required to support a wide range of workloads.

Additionally from the high number of operations issued one can gather that these

tests significantly stress the system indicating the stability of the prototype.

From Figure 5-1, it is clear that the breakdown of operations is significantly dif-

ferent across the various benchmarks. In addition to the breakdown provided, it is

also important to note the number of operations being issued and various ways that

the workloads access files and directories varies. For instance the larger benchmark

build linux issues on the order of 1.3M operations with the other tests issuing tens to

hundreds of thousand operations. Tests such as extract, punzip and build linux make

use of pipes and the make system used to build the kernel relies on a shared pipe,

implemented in Hare, in order to coordinate its job server. The broad range of appli-
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Application Description

creates Each process creates a file, via open() followed by close(), and
then removes the file, repeating the process 65535 times.

writes A benchmark that performs 10 writes per file, at 4096 bytes per
write (block-size of the buffer cache) for 65535 iterations. In
this benchmark, the processes perform the writes on files in the
same directory.

renames Each process creates a file and then moves that file for 56k iter-
ations in the same parent directory.

directories Each process creates and then removes a unique directory 128k
times.

rm (dense) Removal of a dense directory tree that contains 2 top-level di-
rectories and 3 sub-levels with 10 directories and 2000 files per
sub-level.

rm (sparse) Removal of a sparse directory tree that contains 1 top-level di-
rectory and 14 sub-levels of directories with 2 subdirectories per
level.

pfind (dense) A parallel find executed on the dense file tree described above.
Each process walks the tree in a breadth first manner, random-
izing the order as it recurses to avoid any herding effects.

pfind (sparse) A parallel find executed on the sparse file tree describe above.
extract A sequential decompression of the Linux 3.0 kernel .
punzip Parallel unzip which unzips 20 copies of the manpages on the

machine. Each unzip process is given 1000 files to extract at
once.

mailbench A mail server from the sv6 operating system [5, 7]. This ap-
plication creates a few directories and passes messages through
temporary files to the queue manager. A few slight modifica-
tions were made to the application to avoid exec() calls and
some unnecessary fork() calls. This increases the performance
of the benchmark on both Linux and Hare, as well as further
stressing the file system.

fsstress A synthetic file service benchmark originally used to test the
performance of NFS. The application repeatedly chooses a file
system operation at random and executes it. The number of
operations is set to 65525.

build linux A parallel build of the Linux 3.0 kernel.

Table 5.1: Applications and microbenchmarks used to evaluate Hare’s performance.
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Shared
Application files dirs fds pipes #ops

creates
√ √

× × 9M × n
writes ×

√
× × 1.4M × n

renames ×
√

× × 6M × n
directories ×

√
× × 5.7M × n

pfind (dense) ×
√

× × 2.6M × n
pfind (sparse) × × × × 300k × n
rm (dense) ×

√
× × 1M

rm (sparse) × × × × 40K
extract

√
×

√
× 400K

punzip
√ √ √

× 300K
mailbench

√ √
× × 700K × n

fsstress × × × × 350K × n
build linux

√ √ √ √
1.3M

Table 5.2: Sharing properties of workloads used to evaluate Hare’s performance. n
represents the level of parallelism for the workload.

cations and the various ways in which they access the system demonstrate that Hare

supports a full featured API which can support a variety of real world applications.

5.3 Performance

To understand Hare’s performance, we evaluate Hare’s scalability, compare timeshar-

ing and dedicated-core configurations, and measure Hare’s sequential performance.

5.3.1 Scalability

To evaluate Hare’s scalability, we measure the speedup that the benchmarks achieve

when running on a different total number of cores. We use a single -core Hare config-

uration as the baseline and increase the parallelism of the test as well as the number

of Hare servers up to the maximum number of cores in the system. Figure 5-2 shows

the results.

The results demonstrate that for many applications, Hare scales well with an

increasing number of cores. As seen in the figure, the benchmark that shows the
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Figure 5-1: Operation breakdown per application / benchmark.

least scalability is the pfind sparse benchmark. In this test the client applications are

recursively listing directories in a sparse tree. As the directories are not distributed

in this test and there are relatively few subdirectories, each of the clients will contact

the servers in the same order. This results in a bottleneck at individual servers due

to a herding effect because all n clients will walk the directory tree in the same order.

The remaining tests, on the other hand, show good scalability up to 40 cores and

promise of further scalability to higher core counts.

5.3.2 Split Configuration

In addition to running the filesystem server on all cores, Hare may also be config-

ured to isolate several cores that can be devoted to the filesystem server while the

remaining cores run the application and scheduling server. As will be described in

Section 5.3.3, there are some performance penalties associated with timesharing cores

between servers and applications, though the split-configuration limits the number of
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Figure 5-2: Speedup of benchmarks as more cores are added, relative to their through-
put when using a single core.

cores than an application may scale to.

Figure 5-3 presents the performance of Hare in the following configurations: run-

ning the server and application on all 40 cores (timeshare), running the server on 20

cores and the application on the remaining 20 cores (20/20 split) and finally choos-

ing the optimal split for all 40 cores between application cores and filesystem server

cores (best). The optimal number of servers is presented above the bar for the best

configurations, and is determined by running the experiment in all possible config-

urations and picking the best performing configuration. Each of the configurations

is normalized against the timeshare configuration which was used for the scalability

results presented in Figure 5-2.

From these results, it is clear that Hare can achieve better performance if the

optimal number of servers is known a priori. The results also show, however, that

the optimal number of servers is highly dependent on the application and its specific

workload, making it difficult to choose ahead of time. Since choosing the optimal
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Figure 5-3: Performance of Hare in both split and combined configurations.

number is difficult in practice, we use the timesharing configuration for results pre-

sented in this chapter unless otherwise noted. This configuration achieves reasonable

performance without per-application fine-tuning and provides a fair comparison for

the results presented in Section 5.3.1.

5.3.3 Hare Sequential Performance

Now that it has been established that Hare scales with increasing core counts, it

is important to consider the baseline that is used for the scalability results. To

evaluate Hare’s sequential performance (single-core baseline), we compare it to that

of Linux’s ramfs running on a small number of cores. In the simplest configuration,

Hare may run on a single core, timesharing between the application and the server.

Additionally, Hare may be configured to run in a split configuration where application

process(es) run alongside the scheduling server on one core while the filesystem server

runs on another core. In the split configuration, Hare’s performance can be improved
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significantly as the time spent performing individual operations is comparable to

the cost of a context switch. When running in the split configuration, there are no

other processes sharing the core with the filesystem server, and therefore the context

switch overhead is eliminated. An additional performance penalty is also incurred

due to cache pollution when the application and file server share a core. We note,

however, that the split configuration uses twice as many resources to perform the

same operations. Lastly, we have seen a noticeable performance penalty from TLB

flushes on context switches, however Hare is able to avoid these by using the PCID

feature of the processor to color the TLB of applications and servers independently

to avoid flushing the TLB during a context switch.

We also compare Hare’s performance with that of UNFS3 [1], a user-space NFS

server which runs on a single core accessed via the loopback device. This comparison

more closely represents a state-of-the-art solution that would be viable on a machine

which does not support cache coherence and furthermore exemplifies the setup used

in Barrelfish OS [2]. The UNFS3 configuration is run on a single core.

Figure 5-4 shows the performance of our benchmarks in these configurations.

These results show that Hare is significantly faster than that of UNFS3 due to the

high cost of messaging through the loopback interface. When compared to Linux

ramfs, Hare is slower (up to 3.4×), though the ramfs solution is not a viable candi-

date for architectures which lack cache coherence. Our benchmarks achieve a median

throughput of 0.39× when running on Hare when compared to Linux on a single core.

Much of Hare’s performance on microbenchmarks comes from the cost of send-

ing RPC messages between the client library and the file server. For example, in

the renames benchmark, each rename() operation translates into two RPC calls:

ADD MAP and RM MAP, which take 2434 and 1767 cycles respectively when mea-

sured from the client library, while only taking 1211 and 756 cycles at the server when

run on separate cores. Since no other application cores have looked up this file, the

server does not send any directory cache invalidations. As a consequence, the mes-

saging overhead is roughly 1000 cycles per operation. The UNFS3 configuration will

suffer a similar overhead from using the loopback device for RPC messages. In either
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Figure 5-4: Normalized throughput for small number of cores for a variety of appli-
cations running on Linux relative to Hare.

case, the performance of a multikernel design is dependent on the performance of

the messaging subsystem and hardware support could greatly increase the sequential

performance.

In order to determine the component of the system most affected by running

on a separate core we evaluate the performance of the rename() call across many

iterations. When running on a single core the call takes 7.204 µs while running on

separate cores the call takes 4.171 µs. Adding timestamp counters to various sections

of code reveals an increase of 3.78× and 2.93× for the sending and receiving portion

of the operation, respectively. Using perf demonstrates that a higher portion of the

time is spent in context switching code as well as a higher number of L1-icache misses

both contributing to the decrease in performance when running on a single core.
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5.4 Technique Importance

To evaluate the importance of individual techniques in Hare’s design, we selectively

turn each technique off, and compare the performance of all our benchmarks on both

this modified system and the full Hare design, running both configurations across all

40 cores.

5.4.1 Directory Distribution

Figure 5-5 shows the effect of directory distribution on Hare’s performance. When

a directory is distributed, the entries are spread across all servers, however in the

common case the entries are all stored at a single server. Directory entries for different

directories are always spread across servers. This decision is made by the application

programmer by setting a flag at directory creation time or via an environment variable

which applies the flag to all directories created by an application. Applications which

perform many concurrent operations within the same directory benefit the most from

directory distribution and therefore use this flag. The applications which use this flag

include creates, renames, pfind dense, mailbench and build linux.

From the results we can see that applications which exhibit this behavior can

benefit greatly from distributing the directory entries across servers as they do not

bottleneck on a single server for concurrent operations. Additionally, workloads that

involve readdir() on a directory which contains many entries (e.g. pfind dense) ben-

efit from obtaining the directory listings from several servers in parallel. Conversely,

obtaining a directory listing with few entries (e.g. pfind sparse) can suffer from dis-

tributing directory entries, therefore this benchmark leaves this feature turned off.

On the other hand, rmdir() requires the client library to contact all servers to

ensure that there are no directory entries in the directory that is to be removed before

executing the operation. As a consequence, workloads such as rm sparse and fsstress

which perform many rmdir() operations on directories with few children perform

worse with directory distribution enabled and likewise run without this feature. This

demonstrates that allowing applications to choose whether to use Directory Distribu-
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tion on a per-directory basis can achieve better performance.

Figure 5-5: Performance of Hare with and without Directory Distribution.

5.4.2 Directory Broadcast

As mentioned above, Directory Distribution can improve performance when several

operations are being executed concurrently in the same directory. One drawback to

using this technique is that some operations will be required to contact all servers,

such as rmdir() and readdir(). Hare uses Directory Broadcast to send out such

operations to all servers in parallel. Figure 5-6 shows the effect of this optimization,

compared to a version of Hare that uses sequential RPCs to each file server for di-

rectory operations. As expected, benchmarks that perform many directory listings,

such as pfind (dense) and pfind (sparse), as well as the directories test which removes

many directories, benefit the most from this technique. On the other hand, directory

broadcast can hurt performance only when repeatedly removing a directory that is

not empty, as occurs in fsstress. However, since each of the fsstress processes per-
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form operations in different subtrees, fsstress turns off Directory Distribution, and

therefore directory broadcast is not used.

Figure 5-6: Performance of Hare with and without Directory Broadcast.

5.4.3 Direct Access to Buffer Cache

Figure 5-7 shows the performance of Hare compared to a version where the client

library does not directly read and write to a shared buffer cache, and instead performs

these calls through RPCs to the file server.

The performance advantage provided by directly accessing the buffer cache is

most visible in tests which perform a high amount of file i/o operations such as

writes, extract, punzip and build linux. Direct access to the buffer cache allows the

client library to access it independently of the server and other applications, providing

better scalability and throughput. Furthermore, it avoids excessive RPC calls which

provides a significant performance advantage by alleviating congestion at the file

server.
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Figure 5-7: Performance of Hare with and without direct access from the client library
to the buffer cache.

Another design for the buffer cache could be to use an independent cache on each

core rather than a shared buffer cache across all cores. We chose to use a unified buffer

cache to reduce capacity misses introduced by sharing the same blocks on multiple

cores. To evaluate such effects, the build linux test is used as a representative workload

as it has a larger working-set size. On this test we found that the number of misses

is 2.2× greater when the buffer cache is not shared. As these misses would require

loading blocks from disk, this increase can have a significant performance penalty.

Additionally, direct access to the buffer cache is never a hindrance to performance

and therefore should be used if available.

5.4.4 Directory Cache

Figure 5-8 shows the performance of Hare with and without the directory caching op-

timization. Many of the benchmarks demonstrate improved performance by caching

directory lookups. The benchmarks which benefit the most perform multiple opera-
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tions on the same file or directory such as renames, punzip or fsstress. In the case

of mailbench and fsstress, each iteration will be executed on a file in a subdirectory

which will require an extra lookup if the directory cache is disabled. The rm dense

workload experiences a performance penalty with this optimization as it will cache

lookups without using them. Overall, considering the performance advantage across

all tests, it is advantageous to use this technique.

Figure 5-8: Performance of Hare with and without the Directory Cache.

5.5 Hare On Cache Coherent Machines

Figure 5-9 shows the speedup of the parallel tests on both Hare and Linux for 40 cores

relative to single-core performance. Some tests scale better on Hare while others

scale better on Linux. Although the Linux design is not suitable to run directly

on hardware which does not support cache coherence, some of the design points

that allow Hare to scale well while running on a machine that does support cache

coherent shared memory could potentially be applied to the Linux kernel to improve
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performance. Particularly, tests which perform many directory operations in the same

parent directory show significantly better scalability on Hare. Traditional shared-

memory operating systems could potentially benefit from employing the equivalent of

distributed directories to increase performance for applications which perform many

operations within the same directory.

Figure 5-9: Relative speedup for parallel tests running across 40 cores for Hare and
Linux respectively.
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Chapter 6

Discussion and Open Problems

The previous chapter demonstrated that Hare can achieve reasonable performance

and good scalability for a wide range of POSIX applications and microbenchmarks.

Furthermore, Hare’s specific techniques are important to achieve good performance

for this wide range of benchmarks. However, there still remains several opportunities

to improve the system. This chapter discusses the open problems related to the design

of Hare that may be considered for future work. Additionally, several open discussion

topics which arise from designing, implementing and evaluating Hare are discussed.

Each of these are provided in the following sections.

6.1 Open Problems

There are a few portions of the design and implementation of Hare that can be

improved in future work. The common aspect to all of these future directions is a

need to dynamically change the state of the system make a decision based on the

current state of the system and a prediction about future behavior. These decisions

are non-trivial make as the current state of the system is globally distributed. Each

of these open problems is described below.
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6.1.1 Dynamic Server Resizing

The results also show that achieving the best scalability requires properly partitioning

the cores between the application and the file servers. In Hare’s current design, this

partitioning choice remains fixed after the system starts, but this may not be practical

in a real deployment. A future direction of Hare is to dynamically increase and

decrease the number of file servers depending on the load. File data would not be

affected, since it can remain in the shared buffer cache. However, adding or removing

file servers would require migrating file descriptors and inodes between servers, and

would require changing the hash function or using consistent hashing. Additionally,

this solution requires a scheme for determining the load on the system and when

changing the number of fileservers will improve system throughput. Though the

mechanism for migrating file descriptors solved with the use of an indirection table,

the other issues in incorporating such support remain non-trivial.

6.1.2 Dynamic Directory Distribution

The mechanism employed by an application to control whether a directory is dis-

tributed or stored at a single server is through a flag when creating a directory.

Although it is frequently obvious to the application programmer which directories

should be distributed as they are shared between processes, it would be more con-

venient if the system could determine this behavior live and dynamically change the

distributed nature of the directory. Heuristics such as the number of entries or the

number of operations in a given timeframe could be used to determine when a direc-

tory should be distributed. When the system decides to distribute a directory, the

entries need to be passed to the other servers and the client caches need to be cleared

for each entry from that directory.

6.1.3 Smarter Scheduling Placement Policies

For the benchmarks and applications used to evaluate Hare, one of two scheduling

placement policies proves to be sufficient: random or round-robin. In a full system,
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other competing factors such as the load on a given core could influence this decision.

One approach to solving this is to have the servers periodically exchange their load

with each other, providing an approximate view of the load in the system. Using

this information the client library could choose the least loaded core. Without sup-

port for live process migration, however, this decision can have a negative effect on

performance if made incorrectly for long-lived processes.

6.2 Discussion

The following sections discuss some considerations about the design of Hare providing

insights gained during the building and evaluation of the system. In particular, the

assumption of a shared DRAM when it is possible for it to be partitioned in hardware,

the usefulness of caching file data and finally the trade-offs of building distributed

systems using the message passing versus shared memory interface.

6.2.1 Shared vs Partitioned DRAM

One assumption made by Hare’s design is the existence of a shared DRAM. It is

possible, however, for the DRAM to be partitioned into several individual regions of

memory. Hare’s design is amenable to such an architectural configuration as demon-

strated by the results in Section 5.4.3, where the client reads and writes file data via

messages to the appropriate server instead of using direct access. As demonstrated

by these results there is a performance penalty due to both the overhead of messag-

ing as well as added contention at the server. In the situation where the DRAM is

partitioned, a better solution than always sending RPCs to a server would be to use

a hybrid approach where direct access is used for file accesses when the data is stored

on a local DRAM and sending messages to the server when it is not. This hybrid

design would be a straightforward change to the system: the client library could make

the decision based on the addresses of the blocks of the file. The performance would

likely fall in-between the two scenarios presented in the evaluation chapter. In such

a configuration, a stronger effort to take advantage of the Creation Affinity heuristic
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could prove to be beneficial to avoid remote reads and writes where possible.

6.2.2 Caching File Data

One important consideration in Hare’s design is in regards to the usefulness of caching

file data. Processors need to both flush as well as invalidate file data when closing a file

descriptor to ensure proper consistency. A common access pattern for an application

is to simply read or write a file in a linear fashion. As a consequence, for many

workloads the application is not benefiting from caching of file data as it is simply

populating the cache, then flushing it without accessing it again. There are still

advantages to having a cache, however, as server data structures and application

data structures will typically be used many times. Therefore, in the common case the

best usage of the cache would be obtained by performing the reads and writes on file

data directly to the DRAM without any caching and reserving the private cache for

application and server data structures that remain private. Note, though, that the

linear access pattern does not encompass all applications as there are workloads that

exhibit non-sequential read or write patterns such as the linker during a compilation

process, retrieving a file using the BitTorrent protocol, editing an image, etc... In

these situations it is more likely for the application to take advantage caching file

data. Further analysis needs to be done to determine what the typical access pattern

is for applications running on the target architecture combined with the consequences

of filling the cache with file data that isn’t accessed again. It may also be possible

for the hardware to control the caching of memory accesses so the decision could be

made dynamically.

6.2.3 Shared Memory vs Message Passing

A multikernel design employs the use of message passing for communication between

servers which provide operating system services and applications. Hare provides an

interface that allows shared abstractions like files, directories and file descriptors to

be shared between application processes. As a consequence, a question that has been
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discussed many times in the past arises from this thesis in regards to the advan-

tages and disadvantages when using message-passing or shared-memory interfaces

to develop scalable distributed systems. In particular, the trade-offs related to this

question can be affected by the fast messaging afforded by modern architectures in

addition to the complexity of maintaining cache-coherence for a high number of cores.

At a high-level, writing software correctly using shared memory can be fairly

straightforward as it is typically just a matter of placing a lock around data structures

to prevent multiple processes from accessing that data structure at the same time. A

contention issue arises, however, when multiple processes attempt to acquire the lock

at the same time. Typically this problem is solved decreasing the granularity of the

lock. This approach may introduce new issues as aspects such as lock order can result

in deadlock scenarios. Furthermore, there is a limit to how fine-grained locks may be

before locking overhead itself may become an issue. One approach to dealing with

these issues is to use lock-free data structures. However, these can be quite difficult

to program correctly and are frequently architecture dependent.

Using message passing is an alternative approach to building scalable parallel sys-

tems with different a different set of trade-offs. From an initial design, it is not simply

a matter of placing a lock around a data structure. Instead a server is responsible for

maintaining consistency for the data and applications send messages to that server

to modify or retrieve the data. This approach can be more difficult to implement

as the information that must be exchanged between the application and server must

be marshalled and de-marshalled on both ends as part of the RPC. However this

difficulty has a subtle added benefit. In making the sharing explicit, it becomes ob-

vious to the programmer when and where the sharing happens and how much of the

data is being shared. In particular, it is clear when a single server may become a

bottleneck or when a high number of messages will be required or a high amount of

data will be transferred to accomplish a given operation. As a result, considerations

for performance in terms of scalability may be incorporated into the design early on.

In message-passing systems, data may be cached by separate processes to avoid

additional RPCs, which results in independent copies that may be accessed concur-
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rently. However, the consistency of this cache must be managed explicitly to ensure

that reading stale data does not result in undesirable program behavior.

An additional drawback to using a message passing interface is that there is still

a potential for deadlock depending on message ordering. This can be solved by

limiting the messaging patterns. In Hare, a design decision made early on was to

avoid having servers message each other. Though this can be limiting and places

more responsibility in the client library, we are afforded this decision because the

client library is in the same fault domain as the servers. Because the servers do not

message each other and the client libraries do not message each other, the message

patterns do not present a potential for deadlock. Hare does not use a strict RPC

messaging pattern for all operations, however. For instance, removing a directory,

will result in the server messaging other clients for invalidations. If the server were

required to wait for a response from the client, there could be a potential deadlock

scenario when multiple clients remove directories. However, Hare assumes reliable

message delivery which allows the server to enqueue the message without waiting for

a response from the client. This allows the invalidations to be incorporated without

a potential for deadlock.

Though the trade-offs make it unclear as to which method may be preferred when

building a distributed system, this thesis is a testament to the fact that it can be

accomplished in a performant and scalable manner. The file system built on Hare

was designed and implemented in roughly one year. This file system supports a broad

range of applications using a POSIX interface, it is distributed and scales well with

reasonable performance. Using a message passing approach influenced the design

in such a way that performance considerations such as caching and scalability were

incorporated as part of the design of the system. The design was influenced from the

beginning based on the fact that data structures were not shared by default, forcing

us to consider explicit caching of information and distributing shared structures from

the initial inception, resulting in a scalable design from the start.
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Chapter 7

Conclusion

Hare is a novel multikernel operating system that provides a single system image

through a unique file system design. It is designed to run on architectures which

do not support cache-coherent shared memory. It allows the sharing of common

abstractions such as shared files, directories, pipes and file descriptors as well as

supporting process migration, all through the familiar POSIX API.

Hare can run many challenging workloads including benchmarks which stress in-

dividual aspects of the system, many common Unix utilities, scripting languages such

as bash and python as well as full applications such as a build of the Linux kernel and

a mailserver benchmark. Furthermore, Hare can run these applications with minimal

or no changes.

Hare achieves good performance and scalability through a combination of new

protocols for maintaining consistency and exploiting hardware features of the target

architecture, such as shared DRAM, atomic message delivery, and a single fault do-

main. Hare uses techniques such as distributing directories and directory lookup

caching to improve performance. Hare also contributes new protocols such as a

three-phase commit protocol for guaranteeing atomic directory removal as well as

an invalidation protocol to ensure that directory lookup caches are consistent.

Our results demonstrate that Hare’s techniques are key to achieving good per-

formance. Hare shows good scalability across a broad range of workloads up to 40

cores, with most workloads demonstrating promise for further scalability at higher
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core counts. Our results also show that Hare’s techniques may also be beneficial to

existing shared-memory multiprocessor operating systems.
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