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Abstract

Plat is a FIDO2 security key that uses privilege separation to protect the applica-
tion’s private keys even if bugs are present in bug-prone parts of its codebase. Plat’s
design encapsulates drivers and parsers in sandboxes that are isolated from the
secrets that are used to perform authentication.

To achieve privilege separation in the embedded context, Plat uses a new
WebAssembly-based toolchain for ARM microcontrollers to implement and enforce
isolation between individual components of an existing system without rewriting
drivers and application code. This toolchain includes special support for device
drivers, safely enabling isolated modules to access peripheral memory-mapped IO.

Plat’s privilege separation reduces the lines of code in the trusted code base by
60% from our 20,000-line reference implementation while adding only 319 new
trusted lines. Plat’s isolation strategy has acceptable performance overhead that
does not prevent interactive use, with the slowest step of an authentication jumping
from 277ms natively to 600ms when sandboxed.

Plat ensures the protection of its secret key, and thus the security of the accounts
it authenticates, in the presence of several classes of bugs.
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1

Introduction

1.1 Motivation

Passwords are used nearly everywhere on the web for authentication, from the

smallest internet forum to the Internal Revenue Service. While convenient and easy

to implement, passwords have a long history of security issues from weak passwords

and common password reuse to phishing vulnerability and server database leaks

[9, 28]. The FIDO2 standard, formed by a coalition of technology companies and

quickly gaining momentum as a new authentication protocol [8], aims to solve many

of these issues by replacing passwords with an automated public-key signature

exchange. In doing so, FIDO2 avoids the need for users to manually remember and

enter passwords, and thus eliminates many of passwords’ inherent security risks,

by reducing the security of web-based authentication to the security of a user’s

private key.

Deriving user identity from private key possession has the potential to provide

strong security guarantees. But it also places a new requirement on users and their

devices to manage and protect private keys. These keys are generally stored on

dedicated authenticator devices like the popular YubiKey [56] rather than directly

on the user’s PC. In addition to a convenient portability, these security keys offer

greatly improved security: they provide an API to the PC that allows it to obtain

signatures over challenges to satisfy the authentication protocol, but do not allow

the PC to read any part of the private key performing those signatures.

FIDO2 authenticators consist of much simpler hardware and software than a

user’s PC: instead of millions of lines of operating system code and a complex,

highly speculative processor, security keys consist of tens of thousands of lines of

code running on a simple embedded microcontroller. While this simplicity makes
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them less likely to have bugs, security keys—and similar devices like hardware

cryptocurrency wallets, which perform the same basic function—are still suscepti-

ble to bugs that compromise security [48]. For example, the USB packet handler

of the KeepKey hardware wallet had a missing length check that led to a buffer

overflow attack, allowing an attacker to overwrite stack memory on the device [37].

A base64 parsing library used in the BitBox01 cryptocurrency wallet incorrectly

handled invalid inputs and allowed an attacker to write to adjacent heap memory

[35]. Even software by the YubiKey’s manufacturer that implements U2F, a precur-

sor to FIDO2, contained a bug that caused information to be leaked over USB [39].

Vulnerabilities like these compromise the security of the keys and credentials that

consumers trust these devices to keep safe.

Though authenticators are simple compared to PCs, they still contain complex

code, from the USB stack to message parsing code, that may contain bugs. While

rewriting a project in a memory-safe language like Rust is likely to remove some

bugs, the barrier to do so is high and, no matter the language, it is very difficult to

remove all bugs from a system. Acknowledging this fact, this thesis builds Plat: a

security key that aims to achieve some notion of security even in the presence of

bugs and vulnerabilities.

1.2 Threat Model

Plat aims to provide security even when it is connected to a host PC that is com-

promised. Thus, the Plat threat model assumes that the connected host may be

compromised and send arbitrary data over the USB interface it shares with Plat.

This could include, among other behavior, disobeying the client-to-authenticator

protocol (CTAP) that governs the interaction, sending packets out of order, or even

sending malformed packets. We assume that bugs exploitable by this channel exist

and that these vulnerabilities are severe enough—as many memory corruption bugs

are—to allow arbitrary code execution.

Not included in our threat model are IO-based attacks that are not possible

via software control over the host machine. For example, vulnerabilities that are

exploited by sending out-of-range voltages over the USB D+ wire or by cutting

the USB device’s power precisely to enable a glitching attack are considered out of

scope. While any embedded device is susceptible to hardware attacks such as RF

emission analysis or even silicon-level techniques to reveal a secret stored in flash,

these require the adversary to physically possess the embedded device. Our threat
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model excludes these vulnerabilities as well.

1.3 Security Goals

In the presence of remotely exploitable bugs included in our threat model, Plat

aims to achieve several security goals:

G1. Secret Key Confidentiality: an attacker should not be able to learn any bits

of the secret key.

G2. Secret Key Integrity: an attacker should not be able to modify or erase the

secret key.

G3. User Signature Approval: every signature performed using the device secret

key should be approved by the user physically interacting with the device (e.g. by

pressing a button).

G4. Signature Counter Integrity: the signature counter described in the FIDO2

standard should monotonically increase with every signature performed by the

authenticator and should not change unless a signature is performed.

1.4 Privilege Separation using WebAssembly

In order to limit the impact of bugs in the authenticator software and achieve

our security goals in their presence, this thesis builds a FIDO2 security key that

employs privilege separation. Privilege separation is a powerful technique that

involves splitting up a codebase into several isolated pieces and giving each of those

pieces only the permissions necessary to perform their intended actions. This way,

a bug in any particular component allows the attacker control over only the parts

of the system that the component could already access.

Desktop software can and does take advantage of process-based isolation and

seccomp-enforced privilege separation to minimize the impact of bugs [24, 34].

This method of privilege separation relies on a virtual memory abstraction and a

context switch for each new isolation domain and even for desktops, process-based

isolation has high overhead. This overhead becomes significant for fine-grained

isolation at the library level [29]. Further, authenticators like Plat are typically

written without any underlying operating system and thus processes are altogether

unavailable.
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Software fault isolation (SFI) systems provide a solution by allowing isolation

without hardware support, and software and cloud providers have turned to Web-

Assembly [20] as the de facto mechanism for software fault isolation. WebAssembly

was created to allow performant execution of untrusted code on the web and solve

problems that arose in past attempts like asm.js and Native Client [55]. To than end,

WebAssembly’s design goals included safe, fast, and portable language semantics as

well as a safe and efficient representation. These goals turned out to be applicable

far beyond the web: WebAssembly today serves as a portable and lightweight binary

format that provides memory safety and control flow integrity without hardware

support when used as a compilation target for any language. This has allowed not

only the safe execution of untrusted code in the browser, but has also been used by

cloud providers like Fastly who use WebAssembly to enable safe serverless edge

compute with tenant code written in any language [16].

Table 1.1: CPU features of popular tokens & cryptocurrency wallets [2, 14, 21, 22,
40, 41, 42]. The underlying CPU architectures are parenthesized. Full MMU support
in embedded devices is rare, and many popular FIDO2 tokens are implemented on
platforms that do not support User/Kernel modes or memory isolation via an MPU.

Device CPU MMU? MPU? U/K Modes?

Feitan OpenSK nRF52840 (C-M4) ✗ ✓ ✓

YubiKey Neo LPC11U24 (C-M0) & A7005 (80C51) ✗ ✗ ✗

Google Titan LPC11U24 (C-M0) & A7005 (80C51) ✗ ✗ ✗

Ledger Nano S ST31H320 (C-M0) ✗ ✗ ✗

Trezor One STM32F205RET6 (C-M3) ✗ ✓ ✓

The process-based isolation used on desktop systems relies on virtual memory

provided by a Memory Management Unit (MMU). However, popular embedded

processors such as the ARM Cortex M4 do not include an MMU, instead offering

only a Memory Protection Unit (MPU) that allows setting permissions for a fixed

number of aligned memory regions. Other processors like the Cortex M0 offer

no memory protection at all. Even when an MPU is present, its restrictions mean

that it is rarely used in practice [58]. Table 1.1 highlights that among common

platforms for these hardware authenticators and similar devices, MPU support is

uncommon. Even on devices that have them, MPUs alone do not enable privilege

separation. Without the support of the process abstraction that is available on

desktop machines, privilege separation on embedded devices requires toolchain

support to compile and link each trust domain in a way that enables MPU use.
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Figure 1-1: The breadboard used to prototype Plat. The hardware consists of an
STM32L432KC development board, a push button, and a USB breakout board.

In order to implement privilege separation on a resource-constrained embedded

device lacking sophisticated memory protection hardware and operating system

abstractions, we turned to software fault isolation using WebAssembly.

1.5 Contributions

This thesis presents Plat, a FIDO2 security key that implements SFI-based privilege

separation by applying WebAssembly to the embedded systems context. Plat’s

design contains bugs and limits the damage that they can cause.

Plat is based on the open-source Solokey security key software [43]. We modify

their codebase in order to add privilege separation and use the same hardware as

the commercial Solokey uses. Plat’s prototyping hardware can be seen in Fig. 1-1.

This thesis makes several contributions:

• A toolchain for running WebAssembly modules on resource-constrained ARM

microcontrollers.

• An approach and tool for providing WebAssembly modules with restricted ac-

cess to peripheral MMIO registers, allowing the sandboxing of device drivers.

• Plat, a functioning privilege-separated FIDO2 token that provides goals G1

to G4 from Section 1.3 even in the presence of several classes of bugs.
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This thesis discusses the implementation of Plat and presents solutions to

challenges that arise when performing privilege separation of embedded devices

like Plat.
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2

Background & Related Work

2.1 Password Security

Used in everything from blanket forts created by children to websites that are the

faces of billion-dollar companies, passwords have long been the de-facto method

of access control. And indeed passwords can be quite powerful. In the case of

passcodes to unlock a smartphone, for example, passwords work very well. The

fact that the phone is a physical device and thus must be physically possessed by

someone who is or is not the owner enables strict rate-limiting policies that restrict

the allowable number of guesses enough that a 6-digit PIN is infeasible to guess

while easy to memorize.

For authentication to online systems, however, passwords have long been known

as a security weak point. As early as 1979, Morris and Thompson identified pass-

words as critical to the security of the original UNIX system and found that most

user’s passwords were “disappointing, except to the bad guy” [28], with 86% of

passwords studied falling within a few trivially guessable classes. Decades later,

little has changed: a 2007 study found that the average user has only 6 distinct

passwords [17] and a study of passwords compromised in database leaks found

that an attacker who tries only 10 guesses for each account on a service will be able

to compromise 1% of all accounts [9]. Designed to be entered manually, passwords

are trivially stolen: one survey found that 85% of surveyed organizations had been

subject to at least one successful phishing attempt in 2022 and that 8% of the 7500

respondents had given their password to an untrustworthy source [33]. Passwords

are not only inconvenient for users, but also for security professionals.

Many schemes have attempted to provide a replacement for passwords with-

out these shortcomings [10]. Password managers like 1Password [1] provide a
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backwards-compatible improvement by providing software to automate password

generation and entry, and many online services have implemented mandatory app-

or SMS-based two-factor authentication in addition to a password. Despite industry

interest, until recently no scheme has had success in replacing passwords altogether.

2.2 FIDO2WebAuthn

WebAuthn, created by the FIDO Alliance [4], is a standard for authentication that

aims solve these problems by using public-key cryptography to authenticate users

in a computationally unforgeable way without sending any sensitive data over the

network. With broad industry support from companies like Google and Apple

[5], with Google supporting it as a primary login method for Google accounts [8],

FIDO2 seems likely to largely replace passwords in the coming years.

FIDO2 WebAuthn provides strong security guarantees while avoiding vulner-

ability to phishing and database compromise by performing authentication via

public-key signatures performed by software or hardware authenticators. Since

these authenticators or not bound by human memory or cognition, they are able to

authenticate using private keys that are random enough to be essentially unguess-

able and able to generate authentications specific to the exact URL of the server,

or relying party, that the browser is connected to. Authenticators do not reuse

keys to make it easier to remember then, and an authenticator cannot be fooled

to authenticate a user to google.com when they are really visiting gooogle.com.

Further, the cryptography behind public-key signatures enables the authenticator

to prove to the relying party that it owns a certain private key without revealing the

private key itself—no long-term sensitive data is sent over the network to the server.

As shown in Fig. 2-1, the FIDO2 protocol dictates that the browser provides the

current hostname to the authenticator, removing the risk of phishing attacks, and

requires the authenticator to sign a random challenge that ensures each signature

can be used to authenticate only once. Thanks to this computational authentication

and public-key cryptography, FIDO2 WebAuthn obviates low-entropy passwords,

password reuse, phishing, and sensitive database leaks.

FIDO2 provides strong security guarantees, but it also centralizes the security of

a user’s accounts onto a single authenticator, making the authenticator a sensitive

target for attacks. The security of this authenticator is crucially important to the

security of FIDO2 overall.

While both platform authenticators—built in to a general-purpose device like
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Authenticator Browser Relying Party (ex.com)

sk,pk Register(𝑢=username)

𝑟1 = rand()
chalDB← (𝑢,𝑟1)Register(𝑟1)MakeCredential(ex.com, 𝑐 = 𝑟1)

Credential{id, pk, 𝑐} Credential{id, pk, 𝑐)}

check (𝑢,𝑐) in chalDB
userDB← (𝑢,id,pk)Success

Registration

sk,pk LogIn{𝑢=username}
𝑟2 = rand()
chalDB← (𝑢,𝑟2)
get (𝑢,id) from userDBAuthenticate(id, 𝑟2)GetAssertion(ex.com, id, 𝑐 = 𝑟2)

𝜎 = Signsk(ex.com, 𝑐) Credential{id, pk, 𝜎, 𝑐} Credential{id, pk, 𝜎, 𝑐}
ChkSigpk((ex.com, c),𝜎 )
check (𝑢,𝑟1) in chalDB
𝑡← makeToken()
sessionDB← (𝑢,𝑡)Success{𝑡}

Authentication

Figure 2-1: The FIDO2 WebAuthn registration and authentication protocols (simpli-
fied). Importantly, the Relying Party verifies that the authenticator’s signature covers
its own hostname and challenge (𝑟1), preventing phishing and man-in-the-middle
attacks. The signature serves as a single-use token issued by the authenticator,
which the server validates before issuing the browser a session token. No long-term
secrets are exchanged over the network.

a laptop or smartphone—and roaming authenticators—implemented as a separate

portable device—are supported by the FIDO2 spec, authenticators today are gener-

ally implemented as security keys. The YubiKey in Fig. 2-2, for example, is a FIDO2

security key that has sold over 22 million units [56]. In addition to a familiar lock-

and-key mental model and convenient portability across devices, implementing an

authenticator on separate hardware provides great security benefits by turning the

authenticator into a hardware security module.

2.3 Hardware Security Modules

Security vulnerabilities are rooted in bugs. While bugs are likely in all software,

it is much easier to reason about and test a small codebase than a large one for

correctness. For this reason, in production systems many security-critical operations

are factored out onto dedicated devices called hardware security modules (HSMs).

For instance, the Let’s Encrypt certificate authority stores its private keys on HSMs

that perform signatures but do not reveal the keys to an attacker [3] and Apple uses
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Figure 2-2: The YubiKey, the most popular commercial FIDO2 security key, comes
in a small USB-stick form factor and supports USB and NFC protocols for use with
PCs and mobile devices.

HSMs to enforce rate limiting for recovery of iCloud backups [25]. Isolating this

sensitive code onto separate physical hardware separates it from the millions of

lines of operating system and software code—and the bugs that are likely present

in them—running on a typical server. By carefully auditing the software running

on these HSMs, implementers can hope to remove most bugs.

HSMs greatly reduce their bug exposure by removing the operating system and

interfaces like networking. But HSMs still need to provide a small subset of the

functionality that an operating system would provide, and writing this low-level

code is difficult. Despite careful review, HSMs have suffered from bugs [15, 48, 57].

2.4 Embedded Security

Bugs in embedded devices are rarer than bugs in desktop and server systems

due to sheer size—embedded systems have far fewer lines of code than desktop

operating systems and software—but embedded systems still contain lots of code

that might be untrustworthy. Not only is most embedded software written in C, a

language that lacks safety features to prevent memory corruption and logic bugs,

but embedded software is often complex: communicating with peripherals such as

USB often involve packet parsing, bit wrangling to interface with control registers,

and other bug-prone tasks. And, in contrast to the desktop environment, embedded

systems make use of a wide range of processors, each supporting a different set of

peripherals and even multiple architectures. This means that embedded libraries

are target-specific and lack the widespread testing that desktop libraries enjoy. Past

work has sought to provide solutions to these difficulties.

TinyOS [26] provides an environment and programming model to simplify pro-
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gramming severely resource-constrained devices, including device drivers and an

efficient operating system implementation to allow for task-based programming—

without much focus on security. For the chips it supports, Tock [27] provides a full

operating system for embedded devices with support for processes (“applications”)

isolated by the MPU and, importantly, for memory-safe kernel modules and drivers

(“capsules”) with safety enforced by the Rust language. Tock prevents memory

errors in kernel space (via Rust), but applications can be written in any language

and themselves are not privilege separated—Tock prevents a buffer overflow in the

kernel space UART driver, but does not prevent logic errors on the application level

nor a buffer overflow in an application-level packet parser. To use a peripheral with

Tock, its driver must be rewritten in Rust and in the Tock programming model and

application code must be written to use Tock system calls—adapting an existing

project to use Tock would be a significant undertaking.

OpenSK [18] implements a FIDO2 token written as a single Rust Tock OS

application, rewriting common CTAP protocol drivers and other code in Rust to

achieve memory safety within the application in addition to the kernel space safety

that Tock provides.

Formal verification provides a more satisfying solution—full adherence to a

higher-level specification—for simple applications. Notary [6] implements a device

capable of running several security-key-like approval agents while ensuring that

each agent is isolated from the others by formally verifying a full CPU reset proce-

dure that runs between each isolation domain, but does not contain the damage

of possible bugs within a single agent. Knox [7] provides a security definition for

hardware security modules in general and a framework for formally verifying entire

implementations of HSMs that encompass both hardware and software. Provided

that the verification framework and specification are correct, this allows ensuring

with certainty that simple HSMs are completely bug-free. However, in its current

state Knox’s verification approach scales only to simple HSMs—Knox’s examples

use UART for I/O rather than USB—and supports only simple cryptography like

symmetric-key encryption and hashing: public-key operations like those required

for a FIDO2 token are not supported.

While valuable tools, none of these approaches provide a mechanism for contain-

ing damage from bugs within existing code without requiring substantial rewrites

of drivers and application code.
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2.4.1 Driver Security

In and out of the embedded context, device drivers are a common source of buggy

code and security vulnerabilities, particularly since even in sophisticated operating

systems like Linux they are run in the trusted kernel. Research has long tried

to move drivers out of the trusted code base. The Nexus operating system, which

executes drivers in user space, uses a Reference Validation Mechanism [54] to define

valid user space driver behavior using an expressive specification language and

ensure at runtime that a driver is behaving according to that spec, monitoring for

and preventing bugs that might allow a driver to escape its user-level permissions

or affect overall system availability. The Nexus RVM is able to monitor and validate

drivers for complex devices like an e1000 Ethernet card. KSplit [23] provides a

framework for isolating unmodified device drivers from the rest of the kernel using

software fault isolation, enabling automatic analysis of driver code and generation of

glue code to copy state between the kernel and driver process as necessary. KSplit’s

framework protects the kernel state from memory corruption and other bugs in

device drivers while avoiding unnecessary state copying to minimize overhead. Both

tools are very powerful, but are built for the desktop environment and introduce

large dependencies.

2.5 Privilege Separation

Privilege separation is a powerful technique for achieving security guarantees

even in the presence of bugs. A typical system without privilege separation runs

application code as a single unit with all parts equally privileged while including

a huge range of libraries that may be poorly tested or even malicious. Though a

base 64 parsing library may not require access to the file system or the network, for

example, a typical application would allow it to access the file system if it included

code to do so or a bug in its code allowed an attacker to instruct it to. Privilege

separation splits an application into several sandboxed components whose access to

the rest of the system is limited. Sandboxed components have their own memory

space and can call only functions within the component. Sandboxed components

can interact with the rest of the system only through explicitly defined APIs. The

APIs provided to each component should follow the principle of least privilege, giving

each sandboxed component only the permissions required to perform the task that

the application needs of it.
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In a well-privilege-separated system, the base 64 parser above might be in its

own sandbox with a very simple API, perhaps a single decode(...) function. The

library requires no access to system functions at all, and thus privilege separation is

able to provide strong guarantees about the system’s exposure to bugs in the parser:

even if an attacker is able to supply an argument to the parser that causes arbitrary

code execution—a severe but not unlikely vulnerability—the worst that the attacker

can do is cause the parser library to supply incorrect results. Since the parser is

inside a sandbox, its only interface to the outside world is through the API defined

for the sandbox. The sandbox will ensure that the module cannot corrupt state

or call functions that are not explicitly provided to it, preventing damage. Since

removing all bugs from an application is difficult, privilege separation provides an

effective layer of defense.

One of the main challenges in privilege-separating a system effectively is iso-

lating the components from each other at a fine enough granularity to improve

security but without negatively impacting performance. Privilege separation has

been implemented in several production systems with different isolation strategies.

OKWS [24] implements effective privilege separation of a web server where each

process has access only to strictly necessary resources, and OpenSSH [34] does so

in the widely used SSH server. Both OKWS and OpenSSH use Linux processes to

isolate components from each other. Seeking better performance and more fine-

grained isolation, RLBox [29] uses WebAssembly to achieve isolation and privilege

separation at the individual library level in the Firefox renderer, compiling un-

trusted libraries from C to WebAssembly and back into C before linking them with

the rest of the Firefox code to take advantage of WebAssembly’s memory safety

and control flow guarantees. This allows Firefox to avoid the overhead of context

switching while still protecting the main renderer process from bugs in untrusted

libraries.

2.6 WebAssembly

WebAssembly was designed as a performant and efficient compilation target for

use on the web [19]. Designed for running code from untrusted web servers, strong

isolation is critical for WebAssembly—as it is for JavaScript—and WebAssembly

is designed as a sandboxed language: by WebAssembly semantics, WebAssembly

programs run independently from the host environment that is running them, and

it is not possible to write a WebAssembly program that influences the behavior of
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the host environment except as explicitly allowed by APIs provided by the host

environment. While WebAssembly instructions provide byte-level load and store

access, enabling fast and simple translation to native code, WebAssembly programs

have access to their own memory space that is isolated from the rest of the host

system’s memory and the WebAssembly language allows sandboxed code to jump

only to other code within the sandbox. These memory safety and control flow

integrity semantics ensure that bugs or malicious code within a module cannot

compromise the host environment.

WebAssembly is well-supported by browser vendors like Google, Mozilla, and

Microsoft, and has been deployed by many web services that do CPU-heavy process-

ing in the browser. Figma, an online design software provider, saw a 3x improve-

ment in document load times after switching from JavaScript to WebAssembly [50].

But WebAssembly’s performance and strong security guarantees, along with its

design as a universal compilation target for many source languages, has made it

attractive beyond the browser as well. CDNs like Fastly and Cloudflare, who run

customer code on servers distributed across the globe, have found WebAssembly

convenient for providing isolation between customers without the overhead of VMs

or containers [16, 49].

WebAssembly semantics are described in terms of a virtual stack machine

with a dedicated linear memory region. To execute WebAssembly code on today’s

register-based processors, WebAssembly code must be translated into machine

instructions while preserving WebAssembly’s memory safety and control flow

integrity semantics. This translation can be done either ahead of time via a compiler,

like V8’s JIT compiler or Wasmtime, or at runtime by an interpreter like wasm3

[51]; in either case, the integrity of the sandbox depends on the correctness of the

translator—a bug in the compiler or runtime could be exploited by module code to

violate WebAssembly’s guarantees. vWasm and rWasm [11] seek to guarantee the

correctness of a WebAssembly compiler by relying on formal methods and, with

better performance, the correctness and safety of safe Rust code. HFI [30] explores

an extension to x86 that extends hardware support for WebAssembly and other SFI

schemes.

2.6.1 WebAssembly on Embedded Systems

WebAssembly’s safety guarantees and good support as a compilation target make

it attractive for use in embedded systems as well, especially as WebAssembly
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does not require the hardware support of other isolation mechanisms like process-

based isolation. eWasm [32] considers many of the challenges that WebAssembly

presents for embedded devices given its design for 64-bit desktop machines and

presents a performance-focused ahead-of-time compiler and runtime for Wasm

modules on embedded systems and an analysis of possible changes that could make

WebAssembly easier to use on embedded systems. Wasm3 [51] is an interpreter

designed for embedded platforms and has dealt with many of the same limitations

that eWasm and Plat have.
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3

Design Overview

Plat adds privilege separation to Solokey [43], an open-source FIDO2 security

key that is commercially available, while reusing nearly all of its code. Solokey is

implemented as a monolithic C application; Plat divides this monolith into several

trust domains called modules, each with only the privileges required to do their job.

Choosing good module boundaries is critical for privilege separation to be effective.

3.1 Effective Module Boundaries

Modules provide an API exposing certain functions to the host environment in which

the module runs, have access to a limited set of MMIO peripherals depending on the

module’s function, and can call a set of external function that the host environment

explicitly exposes to the module. Besides this limited interaction with the host,

modules are designed to sandbox the code inside: they prevent side effects outside

of the module regardless of the code that runs inside the module.

By limiting the functions exposed to a module and the MMIO peripherals the

module has access to, we can limit a module’s capability to cause harm. In the

original Solokey code, for example, chip-specific code running as part of the USB

driver has exactly the same permission level as highly tested cryptography code

that accesses sensitive secret keys: a buffer overflow within the USB stack could be

exploited to overwrite the secret key. By sandboxing code in modules and restricting

their access to the host environment, we can ensure that the USB driver can access

only the USB peripheral and no other memory. Even if there is a bug in the USB

driver code that leads to arbitrary code execution, an attacker’s capabilities will be

limited to those explicitly provided by the host: assuming the sandboxing system

is correct, the worst an attacker will be able to do is send messages of their choice
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over USB.

Since permissions for access to the host environment are defined on a per-module

basis, the definition of module boundaries crucially defines the effectiveness of

privilege separation. First, module boundaries should be chosen such that bug-

prone operations are isolated from those that are essential to achieve a system’s

security goals. Placing the entire application in a single module, for example, will

provide negligible security benefit since no isolation is provided to limit the impact

of a bug. Second, module boundaries should be chosen to require only a narrow

API across the module boundary. Every function that a module imports is a hole

in the otherwise secure sandbox and introduces opportunities for bugs, so the

integrity of the sandbox relies on the correctness of safety checks at every function

exposed to the module. Further, since modules each have their own memory space

and function arguments must be copied in and out of each module, complex data

structures are difficult to pass across module boundaries. It is essential to limit the

number and complexity of functions that cross this boundary.

Privilege separation boundaries in Plat are designed to limit the damage that

can be cause by bugs that we anticipate.

3.2 Designing Trust Domains in Plat

While all code may potentially have bugs, complex code and less heavily used code

is much more likely to contain bugs than relatively simple code or code that is

in widespread use. Driver code, which not only necessarily performs complicated

bit manipulation and parsing but is also written individually for every peripheral

device, is both complex and in limited use. Indeed, driver code is responsible for

a majority of the bugs in the Linux kernel [12]. In order to achieve our security

goals of G1 Secret Key Confidentiality, G2 Secret Key Integrity, G3 User Signature

Approval, and G4 Counter Integrity, we designed Plat with this expected bug

distribution in mind.

In particular, we expected bugs to be most likely in the USB stack of Plat, in

the CBOR parser used to encode and decode messages sent over USB, and in the

code responsible for parsing those decoded messages. Libraries like USB stacks and

parsers have been responsible for bugs in the past, these particular ones are not

very widely used, and these are simply the most complicated parts of the code base.

To achieve our security goals, this bug-prone code must be isolated with sand-

boxes from the state that we seek to protect: the master secret from which private
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Figure 3-1: We sandbox bug-prone driver code in the USB stack and complex FIDO2
parsing code, isolating each as much as possible from the cryptography code that
must access the secret key: neither module can access the master secret, and only the
FIDO2 module has any access to trusted crypto functionality and to the managed
state. In general, packets flow from the USB module to the FIDO2 module, which
generates a response and sends it to the USB module again. Sandboxed modules are
in blue , components that execute natively are in green , and hardware peripherals
are in gray .

keys are derived. This way, bugs in the bug-prone code can cause arbitrary damage

within a sandbox but an attacker that exploits one of these bugs will be unable to

escape the sandbox and read or modify the master secret.

As seen in Fig. 3-1, we protect this secret by creating two sandboxed modules:

one that contains the USB driver code and another that contains the FIDO2 logic

and CBOR parser that decodes, parses, and encodes messages from and to the host

PC. This ensures that even if bugs in those modules allow memory corruption and

arbitrary code execution, an attacker cannot modify memory or run code outside of

each module. We limit damage even within the bug-prone codebase by using two

modules instead of one: if the USB driver has a bug, an attacker will still be unable

to get even a signature from the Trusted Cryptography functions, and if the FIDO2

module has a bug the attacker will still be subject to FIDO2’s limited API to the

USB driver and the hardware. Plat implements a toolchain, discussed in Chapter 4,

to isolate these modules using WebAssembly.

Importantly, the cryptography code that accesses the master secret is not in-
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cluded in either of these modules. Instead, any code that requires access to the

secret key—what we call “trusted crypto”—remains directly compiled to native

code without any sandboxing as discussed in Section 6.1.

Very high-level control flow—the main loop of the device—is also compiled

directly to native code. Seen in Fig. 3-2, this main loop continually forwards packets

that are read from the USB HID module to the FIDO2 module for processing. The

FIDO2 module sends responses to these packets by calling the USB module’s send

function directly.

1 while(1)
2 {
3 ... // send heartbeats if necessary
4

5 if (usbhid_recv(hidmsg) > 0) // reads from USB HID module
6 {
7 ctaphid_handle_packet(hidmsg); // sends packet to FIDO2 module
8 memset(hidmsg, 0, sizeof(hidmsg));
9 }
10 ctaphid_check_timeouts();
11 }

Figure 3-2: The main loop of the SoloKey code simply reads HID packets from
USB and passes them to the FIDO2 module for processing. In response, the FIDO2
module makes calls to usbhid_send to return packets to the host.

The module containing the USB driver requires access to the USB peripheral’s

memory-mapped IO. To enable this, Plat implements a peripheral proxy, described

in Chapter 5, that validates and permits access to peripheral memory by each

module.

The master secret and other non-confidential state such as the authenticator’s

PIN code and the signature counter are stored persistently in Flash memory. Because

of this, allowing the FIDO2 module to directly access to the Flash peripheral MMIO

via the peripheral proxy would allow an attacker to violate our security goals:

they could simply read the secret from Flash. Instead, Plat also implements a state
manager, detailed in Section 6.2, that allows indirect access to the persistent state

while preventing the FIDO2 module from accessing the master secret.

This design also allows Plat to ensure G3 User Signature Approval and G4

Counter Integrity. The trusted cryptography code includes checks for user presence

and code to increment the signature counter, ensuring that bugs within the module

cannot interfere with these processes. Plat provides read-only access to the signa-

ture counter to the FIDO2 module, ensuring that an attacker cannot change the
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underlying flash storage.

More fine-grained isolation, or other divisions altogether, are possible, but every

isolation level requires a self-contained module with a clearly defined API. The

module choice that Plat uses allows a narrow API between modules by following

existing divisions in the Solokey source where possible and allows us to sandbox

likely sources of bugs while protecting critical cryptography code and state.
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4

Achieving Isolation with
WebAssembly

We use WebAssembly to sandbox the C code in each module, taking advantage

of its active development, its widespread support as a compilation target, and,

most importantly, its strong isolation guarantees. While WebAssembly is a great

fit for the conceptual needs of our application and its design as a multi-platform

instruction format [19] means that it can run on many targets, it was not designed

to run on resource-constrained embedded microcontrollers. This thesis presents

a toolchain to sandbox C code by compiling it to WebAssembly and running the

WebAssembly module on an embedded ARM processor, achieving the isolation that

we require to implement privilege separation. We achieve this by compiling the

WebAssembly to native code using a trusted compiler and compiling the generated

C source to native code to generate a single binary.

4.1 Running WebAssembly on ARM

Despite the reality that WebAssembly was not designed with small embedded

processors as a target, there is sufficient platform-agnostic tooling, in addition to

limited prior work [32, 51] to develop a toolchain. This toolchain combines source

code from the different modules and from trusted code (that will run natively with

full permissions) into a single binary that can be flashed onto the microcontroller.

Assuming that the tools and compilers used to generate it are correct, the resulting

binary will enforce WebAssembly’s isolation guarantees for the sandboxed modules.

In order to allow the reuse of existing SoloKey code and to simplify Plat’s

toolchain, Plat uses C as the programming language for both module and trusted
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module.c

ctaphid.c

ctap.c

...

FIDO2 Module

clang --target=wasm

mod_fido2.wasm

wasm2c

module.c

usbd_usbd_hid.c

stm32l4xx_usb.c

...

USBModule

clang --target=wasm

mod_usb.wasm

wasm2c

main.c mod_fido2_if.c

mod_fido2_if.c lib/ ...

Trusted

mod_fido2_w2c.c mod_usb_w2c.c

gcc_arm_none_eabi

.elf binary

Figure 4-1: The toolchain to combine module and trusted source into a single ARM
binary. C source code for each module is first compiled to WebAssembly using
clang, then back into C with safeguards in place using wasm2c. Trusted source code
is finally compiled together with sandboxed source code (files ending with _w2c.c)
using gcc to produce a single binary.

source code, including the sandboxing infrastructure itself. As shown in Fig. 4-1,

Plat’s toolchain uses C at multiple steps, as both a source language and a compilation

target.

To isolate the modules, the first step of the compilation process is to compile the

C module source code into a WebAssembly module. To do this, our system uses the

WebAssembly backend for LLVM together with clang. Most initial development

work on WebAssembly proofs-of-concept have used Rust—whose compiler is LLVM-

based—as a source language, so this backend is quite well supported. Compiling

C code in this way generates platform-agnostic WebAssembly binaries: the .wasm

files in Fig. 4-1.

The run the generated WebAssembly binaries, we use wasm2c to generate C code

from each WebAssembly binary. Provided that we trust the wasm2c compiler, this
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generated C implements WebAssembly semantics and provides WebAssembly’s

safety guarantees, so can be compiled along with the rest of the trusted C codebase.

This allows us to avoid the code size overhead of a universal WebAssembly inter-

preter like Wasm3 [51] alongside already large WebAssembly binaries and allows

simpler compilation than would be possible using a dedicated WebAssembly to

ARM compiler like aWsm [32]. wasm2c generates C code, shown as the *_w2c.c files

in Fig. 4-1, that can be compiled along with the non-sandboxed trusted portions of

the C codebase.

After using clang and wasm2c to generate C files encoding the sandboxed mod-

ules, all that is left is a C codebase comprising the generated C and the trusted C

source that will not be sandboxed. The final step is to compile this C code into a

binary that can be flashed onto the microcontroller. For this, we use the standard

gcc-arm-none-eabi compiler.

4.2 Linking WebAssembly Modules

Plat’s FIDO2 module is structured such that its entry point is a single function,

ctaphid_handle_packet. This entry point performs all necessary processing on

the received packets and, as needed, calls usbhid_send to transmit packets back

to the host PC in response. In Plat’s privilege-separated design, the main loop

that calls this entry point is part of the host environment, so the FIDO2 module

needs to export ctaphid_handle_packet so that the host environment can call it.

The usbhid_send function is implemented and exported by the USB HID module,

and thus the FIDO2 module must import that function from the USB HID module.

WebAssembly supports imports and exports to the host environment by default, but

does not support linking between modules. Native support for this inter-module

linking with support for complex type conversion at module boundaries is planned

as part of the WebAssembly component model proposal [52], but is very much a

work in progress and is still in the proposal stage with no full implementations.

Plat requires only basic linking between modules, which is simple to build on top

of wasm2c.

In order to use imported functions within and export functions from a module,

we take advantage of LLVM’s support for import_name and export_name attributes

on C functions. By marking declarations and implementations as in Fig. 4-2, we

instruct LLVM to define the relevant functions as imports and exports in the gener-

ated WebAssembly. Importantly, imports and exports must be declared statically
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and imports must be explicitly wired up by the host: a module cannot import a new

function at runtime, and functions that a module declares as an import but the host

does not define will lead to an compilation error.

1 __attribute__((import_name("usbhid_send")))
2 void usbhid_send(uint8_t * msg);
3

4 __attribute__((export_name("ctaphid_handle_packet")))
5 void ctaphid_handle_packet(uint8_t * buf);
6

7 static void ctaphid_write(CTAPHID_WRITE_BUFFER * wb, void * _data, int
len)

8 {
9 ...
10 usbhid_send(wb->buf);
11 ...
12 }

ctaphid.c (module source)

1 static void w2c_ctaphid_write(Z_fido2_instance_t* instance , u32 w2c_p0,
u32 w2c_p1, u32 w2c_p2) {

2 ...
3 w2c_i2 -= w2c_i3;
4 w2c_i0 = w2c_memset(instance, w2c_i0, w2c_i1, w2c_i2);
5 w2c_i0 = w2c_p0;
6 (*Z_envZ_usbhid_send)(instance->Z_env_instance, w2c_i0);
7 ...
8 }
9

10 /* export: ’ctaphid_handle_packet’ */
11 u32 Z_fido2Z_ctaphid_handle_packet(Z_fido2_instance_t* instance , u32

w2c_p0) {
12 // this function calls w2c_ctaphid_write to send packets to the host
13 return w2c_ctaphid_handle_packet(instance , w2c_p0);
14 }

fido2_w2c.c (generated by wasm2c)

Figure 4-2: Wasm2c’s handling of module imports and exports for the FIDO2
module. The FIDO2 module imports usbhid_send to send USB packets to the host
PC. When compiled with clang and was2c, this code generates calls to a function
Z_envZ_usbhid_send that must be implemented by the host environment.

The wasm2c compiler handles module imports and exports by defining man-

gled versions of the import and export names. To call a function exported by a

module, the host environment calls the generated name, and to allow a module

to import a function, the host must define a function with the name generated

by wasm2c. Fig. 4-2 shows a snippet of ctaphid.c, one of the source files for the
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FIDO2 module, that declares usbhid_send to be an import from the environment

and ctaphid_handle_packet to be exported to the environment. It also defines

ctaphid_write, which uses the imported usbhid_send to send data to the host

PC. When the FIDO2 module is compiled to a WebAssembly binary using clang

and then to sandboxed C code with wasm2c, wasm2c produces C code, as shown in

fido2_w2c.c in the figure, that makes a call to Z_envZ_usbhid_send. In order for

the host to run this module, it must define a function with this name to allow the

module to import usbhid_send. With this import defined, the host environment

can make calls to the generated function Z_fido2Z_ctaphid_handle_packet to

call the entry point of the module.

Fig. 4-2 demonstrates that wasm2c supports single-module imports and exports

cleanly. For our privilege-separation use case, however, we require that modules can

call each other. WebAssembly and wasm2c do not support directly linking modules.

However, it is easy to work around this with a bit of glue code.

The FIDO2 module in Fig. 4-2 imports usbhid_send from the environment.

Since this function is implemented in the USB HID module in Plat, this import

needs to be provided by the USB HID module. As shown in Fig. 4-3, we can enable

this by defining the Z_envZ_usbhid_send function called by the generated code

to call the Z_usb_hidZ_usbhid_send function that is exported by the USB HID

module.

1 #define PKT_BUF_SIZE 64
2 void Z_envZ_usbhid_send(struct Z_env_instance_t* env, u32 msgGuest) {
3 return usbhid_send(translateGuestOffset(env, msgGuest , PKT_BUF_SIZE)

);
4 }
5

6 void usbhid_send(uint8_t * msg) {
7 memcpy(inBuffer, msg, INOUT_BUF_SIZE);
8 Z_usb_hidZ_usbhid_send(&usb_instance,‚translateHostAddr(&usb_env, inBuffer));
9 }

Figure 4-3: To allow the FIDO2 module to import usbhid_send from the USB
HID module, we define FIDO2’s import to call USB HID’s export. Note that
usb_instance is a pointer to the Z_usb_hid_instance_t struct for the USB HID
module. We store pointers to these structs globally for every module.

This adds a bit of extra implementation work since we need to define a glue

layer that maps the import of one function to an export of another, but is otherwise

quite simple. By defining functions in this way, we can enable inter-module linking

in wasm2c despite a lack of explicit support.
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4.3 Safely Handling Pointer Arguments

WebAssembly natively supports only integer arguments to imported and exported

functions. For any nontrivial application, this is not sufficient: it is necessary to

pass at least serialized blobs of data in and out of a WebAssembly module. In

our approach, we do so by passing pointers into module functions directly and

having modules pass pointers back. Modules, however, cannot access all of physical

memory, and when the C code inside the module gets compiled, memory from its

perspective begins at the beginning of module memory: a given address refers to

entirely different physical memory locations depending on whether it is used inside

or outside of the sandbox. The module requires pointers into its own memory space,

while the host can use only pointers relative to all of physical memory. We refer

to pointers into module memory as offsets and pointers into physical memory as

addresses. These reference frame differences cause two distinct challenges when

calling exported module functions and when providing functions to modules for

import.

To handle both of these challenges, Plat implements two translation functions,

translateHostAddr and translateGuestOffset, shown in Fig. 4-4, to convert

physical memory addresses into module offsets and module offsets into physical

memory addresses respectively.

The former is used for the host to call exported module functions, since data

that the host would like to pass into a guest module must reside inside the guest’s

memory space. As shown in Fig. 4-5, we define a simple heap allocator inside

each module that allows the host environment to dynamically allocate a memory

region inside module memory and receive the offset within module memory at

which the allocated region begins. By converting valid module offsets into physical

memory addresses, translateHostAddr allows the host to convert the offset of the

allocated memory region inside the module into a valid physical memory address

and copy data into the module. It can then pass the offset as an argument into

the module function, where it will be interpreted as a pointer. Plat wraps each

exported function in an interface function, as shown in Fig. 4-5, to abstract away this

translation complexity for calling code in the host environment. With this interface

function in place, the host code calls the exported module function exactly the

same way that it would have if the function were not in a module at all.

The latter translation function is necessary when a module calls an imported

function that takes pointer arguments. The calling module will supply offsets into
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1 typedef struct Z_env_instance_t {
2 int module_class;
3 uint8_t** memory_base;
4 uint32_t* memory_length;
5 } Z_env_instance_t;

1 uint32_t translateHostAddr(Z_env_instance_t* env, void *hostAddr) {
2 if (
3 hostAddr < *(env->memory_base) ||
4 hostAddr >= (*(env->memory_base) + *(env->memory_length))
5 ) {
6 // error, host addr not in sandbox
7 while (1);
8 } else {
9 return (uint32_t) hostAddr - *(env->memory_base);
10 }
11 }

1 void * translateGuestOffset(Z_env_instance_t* env, uint32_t guestOffset,
uint32_t len) {

2 if (
3 guestOffset < *(env->memory_length) && // beginning in sandbox
4 guestOffset + len >= guestOffset && // len doesn’t cause overflow
5 guestOffset + len < *(env->memory_length) // end in sandbox
6 ) {
7 // safe to translate
8 return (uint32_t) *(env->memory_base) + guestOffset;
9 } else {
10 // invalid inputs or some part of buffer is OOB; trap
11 while(1);
12 }
13 }

Figure 4-4: Since the host environment and modules have different memory spaces,
Plat translates between physical memory addresses and module memory offsets in
order to call functions. To ensure safety, these translation functions make use
of the base address and length of the calling module that is included in the
Z_env_instance_t struct. Every call from a module to an imported function passes
an instance of this struct as the first function argument.
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1 void init_usb_hid() {
2 Z_usb_hid_init_module();
3

4 Z_usb_hid_instantiate(&usb_instance , &usb_env);
5

6 // make input/output buffers; save their location in physical memory
7 inBuffer = translateGuestOffset(&usb_env,

Z_usb_hidZ_allocate(&usb_instance, INOUT_BUF_SIZE), INOUT_BUF_SIZE);
8 outBuffer = translateGuestOffset(&usb_env,

Z_usb_hidZ_allocate(&usb_instance, INOUT_BUF_SIZE), INOUT_BUF_SIZE);
9 }
10

11 void usbhid_send(uint8_t * msg) {
12 memcpy(inBuffer, msg, INOUT_BUF_SIZE);
13 Z_usb_hidZ_usbhid_send(&usb_instance , translateHostAddr(&usb_env,

inBuffer));
14 }

Figure 4-5: When calling a module function, such as usbhid_send, an interface
layer copies data into a region allocated for each argument. After translating the
region’s address from host memory space to the guest memory space, the interface
function passes the offset at which the data is located in module memory as a
pointer argument to the exported function.

its own memory space as pointers. The host environment has access to module

memory, so explicit copying of arguments from module memory into host memory

is not necessary here, but care must be taken to validate the offsets provided by the

module and to translate those offsets into physical memory addresses. As shown in

Fig. 4-6, for example, the imported SHA256 function updates the current context

with a given memory region. To allow this, the interface function first translates the

provided guest offset to a host memory address then passes the offset and length to

the underlying function without any copying.

1 /* import: ’env’ ’t_crypto_sha256_update’ */
2 void Z_envZ_t_crypto_sha256_update(struct Z_env_instance_t* env, u32

dGuestOffset, u32 len) {
3 uint8_t* data = (uint8_t*)translateGuestOffset(env, dGuestOffset, len);
4 return crypto_sha256_update(data, len);
5 }

Figure 4-6: When a module calls an imported function with a pointer argument,
the interface layer checks that the entire memory range that the host function may
access is within the bounds of module memory. This verification is performed by the
function that translates the module-provided offset to a physical memory address:
the translation will trap if the range is invalid.
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Importantly, the arguments provided by the module are untrusted. A bug or

vulnerability within the module may cause these to be any value, and we cannot

trust that the module is providing valid offsets into its own memory. And since these

offsets will be used by the host to determine which physical memory addresses it

can access, missing or incorrect checks can compromise the integrity of the sandbox.

If, when calling the SHA256 function from Fig. 4-6, the module provided arguments

for dGuestOffset or len that cause any part of the source region to be outside of the

bounds of module memory, the host would read potentially sensitive data outside

of the module and provide it to the module as part of the hashed result. If instead

of SHA256 the imported function were something like memcpy, the module could

use this to read and write arbitrary memory locations and escape the sandbox.

To prevent defining imported functions that allow this kind of sandbox escape,

translateGuestOffset verifies that the provided offset and length of memory to

be read is within module boundaries before converting the offset to a physical

memory location. If any part of the memory region to be converted is out of bounds,

the translation function will trap and prevent a sandbox escape; otherwise, the

function will convert the offset to a physical memory address and return the result.

To minimize the opportunity for bugs, all definitions of imported functions that

receive a pointer argument from the module use translateGuestOffset to check

that the memory region to be accessed by the host is within module memory and,

if so, translate the offset to a physical address. Instead of many checks distributed

throughout the many definitions of imported functions, using one common function

for translation means fewer chances for bugs and a single piece of code to carefully

reason about to achieve correctness.

This approach allows passing data structures of arbitrary length across the

module boundary. It does not handle all use cases—for example, complex data

structures with internal pointers would be difficult to handle with this approach

due to the need to copy and translate pointers inside the data structure. Past

work, such as RLBox’s automatic pointer swizzling [29], handles this much more

comprehensively at the cost of additional complexity. Rather than supporting

the transport of complex data structures across the module boundary, we choose

boundaries for privilege separation that do not require this kind of complex function

argument, making our simple approach sufficient for our needs.
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4.4 Memory Management

WebAssembly is not designed for embedded devices, but its design as a universal

compilation target works quite well for most uses. It becomes clear that it was

not meant to target resource-constrained systems, however, when trying to fit

a WebAssembly module’s memory in a small embedded RAM. WebAssembly’s

module memory is allocated in terms of pages, chunks of memory that are defined

in the WebAssembly spec to be 64K bytes long. This means that no matter how

simple the code inside a module, the current WebAssembly spec requires that

module to be allocated at minimum 64K bytes of memory. This is convenient for

runtime developers working on desktop CPUs, as it allows them to align module

memory with page boundaries and use page table hardware to trap on out-of-

bounds memory accesses.

However, most microcontrollers have very little RAM available and certainly do

not have dedicated page table hardware. The nRF52840 chip used for our initial

testing, quite a high-end chip, has 256K [31] of RAM. Most common embedded

CPUs have far less: the STM32L432 chip used in the Solokey and that we use for

Plat itself, for example, has only 64K [45] of SRAM available. If any other data is

stored in memory at all, this is not enough memory for even a single WebAssembly

page. To make it practical to run multiple modules simultaneously on an embedded

platform, Plat must deviate slightly from the WebAssembly specification.

Prior work such as eWasm [32] has shrunk the granularity at which memory can

be allocated in order to make it practical to fit modules in an embedded context. We

follow suit, with some modifications to fit the off-the-shelf wasm2c compiler we are

using. wasm2c supports modifying the WebAssembly page size easily. In our initial

single-module tests, the modules we tested used less than 64K of memory and thus

(after slight tweaks to the compiler settings to use memory more tightly) used a

single page of memory. To make these single modules fit, we simply shrunk the

page size from 64K to 32K—still enough to fit all memory that the module needed,

but small enough to leave plenty of memory to use in the trusted code. Though

the C-to-Wasm compiler is not aware of this change, it does not allocate anything

in the upper half of the allocated 64K and thus the generated code never makes

any memory accesses there. Since, like most code targeting embedded devices, the

sandboxed C code does not perform any dynamic memory allocation, it is safe to

check the memory usage at compile term and trim the module memory to remove

the unused portion of the 64K page.
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This approach does not extend beyond a single module. Since memory demands

of each module are different, setting the page size in this way means that each

module must be allocated enough memory to fit the demands of the larger module.

If the two modules required 33K and 10K, for example, they should be able to fit

in 64K of RAM. But by having each take a single page and modifying the page

size globally, each module must be allocated at least 33K—too much to fit in a 64K

RAM.

Instead, Plat’s toolchain shrinks the runtime page size all the way to 1024 bytes.

Since a single 1024B page is no longer be large enough to store an entire module’s

data, each module needs additional pages allocated initially to fit all its data. But

the number of pages allocated to the module initially is defined by LLVM: after

laying out objects according to its link order, LLVM divides the space needed by the

WebAssembly page size to determine the necessary number of pages and includes

that number in the binary, from where wasm2c reads it when determining how

many pages to allocate initially. LLVM has the WebAssembly page size hard-coded

into the source code: without recompiling LLVM, there is no way to tell LLVM that

Plat uses a 1024B page size, and as such, LLVM-generated WebAssembly binaries

by default list only a single page required for our modules that require several.

Further, large amounts of static data in each module means that modules must

have all their memory available when they are created: it would not be possible

to have the module grow its memory after startup. Plat’s toolchain works around

this problem by using the --initial-memory flag to the Wasm LLD port [53]. After

manually determining the desired number of initial pages 𝑛 for a module, we pass

the compiler 𝑛 × 64K as the initial memory size. When LLVM performs its internal

division by page size, this causes LLVM to include the desired number of pages in

the WebAssembly binary it generates and thus causes wasm2c to allocate enough

memory on module startup.

With this modification, we can control the size of each module’s memory inde-

pendently with 1K granularity, allowing us to tightly pack multiple modules into a

small memory space with limited overhead.
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5

Peripheral Driver Sandboxing

One crucial part of Plat’s embedded privilege separation plan is to isolate the USB

driver. Drivers have historically had many bugs, not only in embedded devices

but also in systems like Linux [13, 47]. On embedded systems similar to a security

key, the USB driver and surrounding code in particular has been a source of bugs

[36, 37], so we sought to limit the damage these bugs can cause by sandboxing the

entire USB stack. This way, bugs in the USB driver could corrupt the USB driver

and even cause arbitrary code execution inside the sandbox, but by the guarantees

of WebAssembly could not corrupt important memory outside of the driver or

read sensitive data like private keys from outside of module memory. Plat provides

special support for sandboxing drivers.

Drivers typically interact with device peripherals using memory-mapped IO:

the device has a set of registers that are mapped into physical memory at specific

addresses, and the driver reads and writes these registers to configure and control

the peripheral. From within a WebAssembly module, of course, this is impossible:

WebAssembly allows access to only a small region of module memory that is ab-

stracted away from the underlying physical memory. While WebAssembly supports

loads and stores to memory, all memory locations must be relative to and within

this module memory. There is no way for a WebAssembly module to specify that it

would like to read or write a specific physical memory location.

And indeed this is by design: most applications of WebAssembly do not require

this direct physical memory access, and in systems with ASLR even allowing the

module to learn a physical memory address would be a security issue [29]. However,

sandboxing a driver certainly requires this level of access.

Plat implements a generally applicable peripheral proxy to allow drivers to

be contained in a WebAssembly module. This peripheral proxy along with inter-
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rupt handling comprise most of what is needed to sandbox a USB stack for Plat’s

STM32L432 chip.

5.1 STM32L432 USB Peripheral

The USB peripheral hardware on the STM32L432 chip that Plat uses proved conve-

nient for privilege separation. With the data transfer rates that USB enables, direct

memory access, or DMA, is virtually required in a USB peripheral. DMA allows

a CPU peripheral to read and write memory directly, avoiding the need to read

data byte-by-byte from a peripheral’s registers. In many microcontrollers this could

have made our approach difficult to adapt, as DMA hardware would often be able

to violate our sandboxing restrictions by writing anywhere in global memory. This

would have been especially difficult if the peripheral’s data structures involved

complex in-memory pointers that are followed by DMA hardware as it reads from

memory, as is common in packet-based peripherals like networking and USB. DMA

hardware is able to access any physical memory location, and will access memory

based on its configuration registers and the data structures it supports. If the data

structures are simple, it is straightforward to ensure that a driver will not cause

the DMA hardware to access sensitive data. But as data structures become more

complex and involve more layers of indirection, it becomes more difficult to reason

about how each of the driver’s writes to memory will influence the DMA hardware’s

behavior. DMA is discussed further in Section 5.3.

The STM32L432’s USB peripheral indeed uses a form of DMA, and uses exactly

these in-memory pointers to point to packet memory, but it does so in a way that is

much easier to reason about: the USB peripheral has a dedicated memory region,

separate from the main RAM, that is accessible by both the main CPU and by the

USB peripheral. This memory region is mapped in the peripheral address space,

and the USB peripheral cannot access any memory outside of this USB memory.

USB packets must be written to and read from this region in order for them to

be sent: it is not possible to instruct the USB peripheral to read a packet from an

arbitrary memory location in RAM. Thanks to this design, we avoid reasoning about

values written to memory and instead can achieve functionality and security by

reasoning only about the addresses the driver accesses.
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5.2 Peripheral Proxy

To allow the USB driver to access peripheral MMIO, Plat’s peripheral proxy imple-

ments a set of functions that allow reading or writing a small set of physical memory

locations that correspond to certain device peripherals. Unlike the memory accesses

supported by WebAssembly natively, these are not be indexed from the start of

WebAssembly memory; instead, this imported function takes physical memory ad-

dresses. This is powerful, but gives an obvious vector to circumvent WebAssembly’s

guarantees: if naively implemented, at attacker with control over the driver module

could use these functions to hijack control flow outside the module or read the se-

cret key. In order to preserve isolation, these memory accesses are carefully checked

to ensure that they read and write only from and to peripheral MMIO locations.

If, due to a bug or other vulnerability, the driver tries to access other memory, the

address checking code will trap and stop any further exploitation.

As shown in Fig. 5-1, the definitions of these functions are quite simple: they

take in a physical address and optionally a value to write, check that the address

is valid for the calling module’s driver type (stored in env), and read or write the

value if permitted. This simplicity is very important, since a bug in these memory

access functions could compromise the sandboxing of the modules.

The address checking functionality is of crucial importance. Since bugs in the

address checking code can similarly compromise the integrity of the sandbox, it

is very important that the address checking code does not allow access to any

addresses outside of the necessary peripheral MMIO. To reduce implementation

effort and minimize the possibility of bugs in conditionals, we generate the checking

code from a simple YAML specification, as seen in Fig. 5-2, which defines accessible

peripherals for the two modules in Plat. Memory regions can be read directly from

the processor datasheet and entered in to the YAML file with minimal opportunity

for error. Though the range checks we generate using this specification are simple,

programmatically generating them avoids possible errors in comparison and logic

and enables easy modifications.

Fig. 5-2 shows that the USB HID module is allowed access to the USB, RCC, and

PWR peripherals. The USB entry includes both the USB module’s configuration

registers and the dedicated USB memory region. RCC and PWR are peripherals

that allow control over clock control and power gating for all peripherals, and are

necessary for the USB driver to configure itself. While access to RCC and PWR does

allow the USB HID module some access beyond that strictly necessary to perform
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1 void mem_trap() {
2 while (1);
3 }
4

5 uint32_t Z_envZ_memReadWord(Z_env_instance_t* env, uint32_t addr) {
6 if (checkAddr(env, addr, false, 0))
7 return (uint32_t) *(uint32_t *) addr;
8 mem_trap();
9 return 0;
10 }
11

12 uint32_t Z_envZ_memWriteWord(Z_env_instance_t* env, uint32_t addr,
uint32_t value) {

13 if (checkAddr(env, addr, true, value)) {
14 *((uint32_t *) addr) = value;
15 return 0;
16 }
17 mem_trap();
18 return 0;
19 }
20

21 ...

Figure 5-1: Full-word (32 bit) versions of proxy functions that allow safety-checked
access to physical memory addresses. Parallel functions exist for half-word and byte
granularities. The checkAddr function, from Fig. 5-2, limits access to only explicitly
allowed peripherals.

its function, we do not anticipate this to be a security risk—though admittedly it

is difficult to reason about and a more complete solution would be best. A slight

modification to the checkAddr infrastructure to support specification of bit-level

access to these registers would allow limiting the module’s access to exactly the

bitfields corresponding to the USB driver and would remove this risk.

This infrastructure allows memory accesses from a sandboxed module, but not

via the standard WebAssembly load/store instructions which operate relative to

module memory. Instead, we need to modify driver code to perform peripheral

memory accesses via the memReadXXX and memWriteXXX functions shown in Fig. 5-1.

While this modification can be tedious, it is the only modification necessary to

allow a device driver to run inside a module. For instance, the line USBx->CNTR =

0, which clears the USB control register, becomes memReadWord(&USBx->CNTR, 0)

when sandboxing the USB driver. We use a set of convenience macros, discussed

further in Section 8.2, to simplify this process.
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1 device-classes:
2 - name: USB
3 allowed-regions:
4 - start: 0x4000_6800
5 end: 0x4000_6BFF
6 - start: 0x4000_6C00
7 end: 0x4000_6FFF
8 - name: RCC
9 allowed-regions:
10 - start: 0x4002_1000
11 end: 0x4002_13FF
12 - name: PWR
13 allowed-regions:
14 - start: 0x4000_7000
15 end: 0x4000_73FF
16

17 modules:
18 - name: USBHID
19 allowed-classes:
20 - USB
21 - RCC
22 - PWR
23 - name: FIDO2
24 allowed-classes: []

device.yaml (source)

1 bool checkAddr(struct
Z_env_instance_t * env, uint32_t
addr, bool write, uint32_t
write_val) {

2

3 switch (env->module_class) {
4 case MODULE_CLASS_USBHID:
5 return (
6 // USB
7 (addr >= 0x40006800 && addr <

0x40006bff) ||
8 (addr >= 0x40006c00 && addr <

0x40006fff) ||
9 // RCC
10 (addr >= 0x40021000 && addr <

0x400213ff) ||
11 // PWR
12 (addr >= 0x40007000 && addr <

0x400073ff)
13 );
14 break;
15 case MODULE_CLASS_FIDO2:
16 return (
17 false
18 );
19 break;
20 default:
21 return false;
22 break;
23 }
24 }

checkAddr.c (generated)

Figure 5-2: YAML-formatted input (left), seen here for our FIDO2 security key,
specifies peripheral memory regions and permits individual modules to access
those regions. This input is used to generate a series of checks (right) to determine
if a given memory access is permissible. For non-driver modules such as FIDO2,
we allow access to no drivers, prohibiting all memory accesses via the peripheral
proxy.
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5.2.1 Interrupt Vectoring

It is common for real-time device drivers to use interrupts to promptly handle

various events, and the USB driver for the STM32L432 is no different. The USB

stack uses an interrupt to read packets from the USB memory region as they are

received. In the original Solokey code, the USB stack implemented a function to be

called whenever a USB interrupt occurs.

To support this in the module context, Plat’s USB WebAssembly module exports

the interrupt handler, and the module interface code defines the necessary symbol

to vector the USB interrupt to the exported module function, as shown in Fig. 5-3.

To configure and manage its interrupt, the USB stack requires access to the ARM

core MMIO via the ARM CMSIS library. Instead of providing the USB HID module

access to the entire range of core MMIO via the peripheral proxy, which would

give the USB module significant unnecessary and possibly dangerous privileges,

we provide the CMSIS interrupt management functions that the module needs as

imports and check that the module configures only USB interrupts in the interface

function. The module can use these functions exactly as if the module has native

access to the core MMIO, but cannot access other ARM core functionality that it

could have had we provided direct access to the core MMIO.

1 void USB_IRQHandler() {
2 Z_usb_hidZ_USB_IRQHandler(&usb_instance);
3 }

Figure 5-3: The hardware USB interrupt vector points to a wrapper around the
exported interrupt handler.

5.3 DMA Support

The approach discussed so far handles only peripherals with dedicated memory

regions through which all IO happens. This is sufficient for Plat itself due to the

STM32L432’s USB Peripheral design, which uses dual-port memory for packet

buffers instead of DMA, but in common use on many microcontrollers many periph-

erals are controlled via direct memory access (DMA): after some initial configuration

via special registers, the peripheral reads directly from a region of memory without

intervention, allowing the main CPU to dedicate resources to other tasks.

Before implementing Plat, our initial work was to explore the feasibility of
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sandboxing a device driver inside WebAssembly. Using an nRF52840 development

board, which contains a powerful Cortex M4 chip and many peripherals, we im-

plemented a sandboxed UART driver for two UART peripherals: standard UART,

which supports a streaming interface where the application feeds a single byte at a

time into the input register, and UARTE, which supports a DMA interface. Thus,

this thesis includes a plan for handling DMA peripherals for systems like the nRF’s

EasyDMA.

Importantly, DMA adds additional complexity to the peripheral proxy’s address-

checking. Consider, for example, the UART with EasyDMA (UARTE) peripheral on

the nRF52840 chip [31]. This peripheral includes TXD.PTR and TXD.MAXCNT registers

for transmission and equivalent registers for receiving. After configuring TXD.PTR

with a memory address, TXD.MAXCNT with a number of bytes to send, and finally

triggering the STARTTX task via another register, the UARTE peripheral will act

fully on its own. It will, independently from the CPU, read from memory starting

at the address in TXD.PTR and send each byte over the wire.

A driver for this UARTE peripheral must write to TXD.PTR and TXD.MAXCNT—it

is the only interface to the peripheral—but these registers can cause the peripheral

to transmit data from anywhere in memory, potentially allowing a sandbox escape.

In order to preserve our module isolation and ensure that the driver can access

or send only data that was explicitly copied into module memory, more complex

reasoning is required. Instead of inspecting only the address of a memory write

as we were able to for non-DMA peripherals, we now need to create some model

of the peripheral and consider the addresses that the (TXD.PTR, TXD.MAXCNT) pair

allow the peripheral to access via DMA.

We implemented such a device model for EasyDMA on the nRF52840, which

powers most of the chip’s complex peripherals from UARTE to USB and even the

2.4GHz radio. All use a similar pointer-plus-length set of inputs, which is very

convenient for this kind of checking. After modifying the specification format to

allow specifying EasyDMA pointer/length register pairs, as seen in Fig. 5-4 for

nRF52840’s UARTE peripheral, we extended the check-generation code to consider

the value being written as well as the address on writes. As shown in Fig. 5-5, the

modified checkAddr code determines if the value to be written is part of a PTR or

MAXCNT register and retrieves the current value of the other half of the pair. If the

new pointer-plus-length pair would allow the peripheral’s DMA to access memory

beyond sandbox bounds, the checking code will disallow the write, preventing any

change to the peripheral’s behavior. Since reads to these registers cannot change
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1 device-classes:
2 - name: UARTE
3 allowed-regions:
4 - start: 0x40002000
5 end: 0x40002570
6 dma-registers:
7 - name: rxd
8 base: 0x40002534
9 max-length: 0x40002538
10 - name: txd
11 base: 0x40002544
12 max-length: 0x40002548

Figure 5-4: An extended version of the check-generation infrastructure supports
specifying EasyDMA pointer/length register pairs. These pairs are used to generate
address-checking code that considers the value being written as well as the address
itself in order to ensure out-of-bounds memory accesses are disallowed.

the peripheral’s behavior, there is no special checking for memory reads.

This approach works for the nRF52840’s peripherals thanks to their easy-to-

reason-about EasyDMA setup. However, not all peripherals on all chips are so

simple. It is common to have much more complex configurations that, for example,

have the pointer register point to a descriptor in memory that itself contains another

pointer and so on, forming a linked list that is followed by the DMA hardware. For

peripherals like this, a more involved model would be necessary, and past work

[54] has explored checking driver behavior for complex peripherals.

Since the STM32L432 chip we used to implement the FIDO2 key uses a ded-

icated memory region shared between the USB peripheral and the application

processor, even the simple DMA support that we implemented is unnecessary to

sandbox the USB driver in Plat.
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1 bool checkAddr(struct Z_env_instance_t * env, uint32_t addr, bool write, uint32_t
write_val) {

2 switch (env->device_class) {
3 case DEVICE_CLASS_UARTE:
4 if (write) {
5 bool is_dma = true;
6 uint32_t dma_reg_index = 0;
7 uint32_t base_val;
8 uint32_t length_val;
9 switch (addr) {
10 case 0x40002534:
11 dma_reg_index = 0;
12 base_val = write_val;
13 length_val = *(uint32_t *) 0x40002538;
14 break;
15 case 0x40002538:
16 dma_reg_index = 0;
17 base_val = *(uint32_t *) 0x40002534;
18 length_val = write_val;
19 break;
20

21 // ... another pair of base / length registers ...
22

23 default:
24 is_dma = false;
25 break;
26 }
27

28 if (is_dma) {
29 // check that DMA region base and length are within sandbox bounds
30 uint32_t sandbox_start = (uint32_t) *env->memory_base;
31 if (
32 (base_val > (uint32_t) sandbox_start &&
33 (base_val + length_val < sandbox_start + *env->memory_length))
34 ) {
35 return true;
36 } else {
37 return false;
38 }
39 }
40 }
41 return (
42 // reads and non-dma writes use standard bounds checking
43 (addr >= 0x40002000 && addr < 0x40002570)
44 );
45 break;
46 default:
47 return false;
48 break;
49 }
50 }

Figure 5-5: The extended check-generation infrastructure generates more sophis-
ticated checks from EasyDMA register pairs and requires an additional input of
the value to be written. Checking for memory reads are unchanged, but memory
writes now have special handling to identify whether a base or length register is
being written, read both new values of the modified pair, and ensure that the full
DMA region is within module memory.
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6

Secret State Protection

Plat’s primary security goal is to protect the master secret from which all key data

is derived. To achieve this, Plat splits the original Solokey FIDO2 library in two

parts. Complex parsing and logic code is sandboxed in the FIDO2 module, and

any cryptography code that touches the master secret or keys derived from it is

run without sandboxing (Section 6.1). However, for the device to function through

regular power resets caused by unplugging the security key, both the master secret

and other non-sensitive data controlled by the FIDO2 module must be stored in

persistent Flash memory. To ensure the protection of the master secret despite this

shared storage, Plat implements a trusted state manager (Section 6.2) that safely

controls access to persistent state.

6.1 Trusted Cryptography

The FIDO2 library necessarily performs quite a bit of cryptography. Not only does

it need to sign the challenges that are the core of the WebAuthn protocol, but it also

must hash the user’s PIN, encrypt messages before sending them over USB, perform

attestations, and more. In the Solokey codebase that Plat is built on top of, this

cryptography code is a part of the library. However, in order to minimize the impact

of possible bugs, our privilege separation goal requires ensuring that the module

code cannot access the private key used for sensitive cryptography operations. Thus,

we separate the cryptography code from the rest of the FIDO2 library code: while

the majority of the library code is inside a WebAssembly module, the cryptography

code runs natively as trusted code and the private key is stored outside of module

memory, accessible only by trusted code.

This protects the secret key, but widens the boundary between the FIDO2
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module and the trusted code: instead of needing only a few functions to enable

hardware-specific behavior as imports, the FIDO2 module now needs to import

every cryptography function that uses the secret key. This includes signature func-

tions, but also includes functions for things like hashing and computing HMACs

that support adding the secret key to the hash context.

However, not all cryptography computations need access to the public key. Some

cryptography, such as simple hashing or performing an encryption key agreement

with the host PC, requires only short-term secrets that we are not concerned about

protecting. To minimize the size of the trusted code base and thus the exposure to

bugs, we place only the cryptography code that requires access to the secret in the

trusted environment. As much cryptography as possible is run inside the module,

where the impact of bugs is still limited.

To enable this, we distinguish between standard cryptography functions, which

use a crypto_ prefix, and trusted cryptography functions, which use a t_crypto_

prefix. Trusted cryptography functions are imported functions that are computed

outside of the module and have access to the secret key. Non-trusted cryptography

functions are computed inside the module, and do not have access to the secret key.

If the module needs to compute a SHA256 hash of some unprotected data, it uses

the in-module cryptography functions, but if it needs to compute a signature using

the secret key, it must use the trusted cryptography functions.

In addition to protecting the master secret, separating these trusted cryptogra-

phy functions from the majority of the FIDO2 module also allows Plat to enforce

goals G3 and G4’s restrictions on signatures: before Plat allows a module to re-

quest a signature, it ensures that the user has pressed the authenticator’s button to

approve the signature and increments the signature counter.

6.2 Persistent State Manager

Persistent storage in flash memory presents a particular challenge. In the Solokey

code, all persistent state for the authenticator is stored in a single flash region.

When the FIDO2 library wants to restore this state on startup, it calls a function

authenticator_read_state that fills in an in-memory struct after reading the data

from flash. The original FIDO2 library code then reads the master secret from this

struct and passes it to the cryptography code for later use.

Our privilege separation plan, however, requires that the master secret never

enters the FIDO2 module. To achieve this, we could either remove the master secret
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Flash

{
  pin_initialized: 
  pin_hash:
  pin_salt:
  
  transport_secret:
  master_secret:
}

State
Manager

{
  pin_initialized: 
  pin_hash:
  pin_salt:
  
  transport_secret:
  master_secret:
}

master_secret: 

FIDO2
Module

Trusted
Crypto

Figure 6-1: When the FIDO2 module requests to read the authenticator state from
flash, the master secret used to generate the private key is first masked out of
the state and loaded into the trusted cryptography module. This way, the FIDO2
module has access to sign data with the key but cannot access the key directly.

from the flash region accessed by authenticator_read_state, storing it elsewhere,

or interpose on authenticator_read_state to remove the sensitive master secret

from the data provided to the module. To minimize the need to modify existing

code, we opt for the latter approach. As illustrated in Fig. 6-1, the interface function

that provides the authenticator_read_state reads all data from flash, but before

copying the data into module memory masks out the master secret, replacing it

with zeros. The authenticator_read_state interface function passes the master

secret to the trusted cryptography code without exposing it to the module.

Plat’s state management system also provides the FIDO2 module with read-

only access to the signature counter, preventing an attacker that compromises the

module from modifying the signature counter.
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7

Evaluation

We evaluate our privilege-separated FIDO2 token in terms of its security in the

face of bugs as well and analyze several metrics about code size and performance.

We compare Plat’s performance on these benchmarks against the original SoloKey

code, which we modify to remove its bootloader removed for simplicity and con-

sistency with Plat. In Section 7.1 we measure the performance implications of our

privilege separation approach and explore what it takes to get good performance.

In Section 7.2 we measure the size of the trusted computing base with and without

sandboxing enabled, and in Section 7.3 we compare the binary size of Plat and

SoloKey. Section 7.4 shows the set of functions that each module imports and ex-

ports while Section 7.5 explores how this API and our privilege separation strategy

would hold up in the face of several classes of bugs.

7.1 Performance

Privilege separation inherently adds overhead as it requires isolating trust domains

from each other, and our approach of doing so with software fault isolation via

WebAssembly includes additional overhead due to bounds checking and translation

from WebAssembly’s portable bytecode format. To quantify this overhead, we

instrument the SoloKey and Plat FIDO2 module source code to time the individual

steps of the registration and authentication interaction.

As seen in Table 7.1, while there was no significant difference in timing between

SoloKey and Plat for the actual registration and authentication operations (“Make

Credential” and “Get Assertion” respectively), the setup steps for these operations

(“Get Key Agreement” and “Get Pin Token”) both took over twice as long in the

privilege-separated Plat than in the original SoloKey code.
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Table 7.1: The timing of major operations in registration and authentication op-
erations in native SoloKey and on the privilege-separated Plat key, with all opti-
mizations enabled for each. Public-key cryptography operations are highlighted:
in-sandbox operations are in yellow , while trusted operations that execute outside

the sandbox are in pink .

Time (ms)

Step SoloKey (Native) Plat (Sandboxed Modules)

Get Authenticator Info 0 0

Get Key Agreement 218 542
Compute Public Key 207 530
Other 11 12

Get Pin Token 277 600
ECDH Shared Secret 208 529
Hash Shared Secret 0 0
Encrypt Pin Token 0 1
Other 69 71

Make Credential 382 398
Parse Request 1 3
Verify PIN Authenticity 1 1
Make Auth Data 215 221

HMAC Token 0 1
Calc. & Public Key 124 129
Other 91 92

Sign Auth Data 138 146
Attach Attestation 0 0
Other 30 27

Get Assertion 166 180
Make Auth Data 6 9
Sign Auth Data 138 142
Other 22 29
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While the timing of all steps is accounted for primarily by the underlying

cryptographic operations, two (in yellow) see a significant slowdown while two (in

pink) do not. Importantly, the operations that did not see a slowdown are trusted

cryptography operations: they involve the master secret, and thus require calls to

functions that the module imports. The cryptographic computations themselves

occur in the host, compiled directly from the source to the binary. The operations

that did see a slowdown, on the other hand, such as the ECDH key agreement used

to establish a key for symmetric encryption of the PIN between the host PC and

the authenticator, do not require access to the master secret and thus are computed

within the module without a call to the host. The source code for these cryptography

operations is passed through the full C→Wasm→ C→ asm toolchain.

7.1.1 Detailed Cryptography Performance Evaluation

In order to investigate the reason for this large difference in timing between sand-

boxed cryptography code and native cryptography code, we created a simplified

system that contained two copies of the same cryptography code: one that we

sandboxed using Plat’s toolchain by compiling it from C to WebAssembly and

back to C, and another running natively outside of a sandbox. In both cases, we

use the same library implementation of the Elliptic-Curve Diffie-Hellman (ECDH)

key agreement calculation, as this crypto code runs inside the sandbox in Plat

and is a significant source of slowdown. With these two copies, we ran a series of

experiments to determine the effects of compiler optimizations on the runtime of

ECDH.

Table 7.2 shows the performance of the native and sandboxed cryptography

respectively at various optimization levels. The native code is able to achieve its

best performance through the use of hand-optimized assembly, enabled by setting

-DuECC_PLATFORM=5 at compile time. An inherent disadvantage of compiling to

a portable format such as WebAssembly is the inability to include handwritten

platform-specific optimizations, so we also compare the portable version of the cryp-

tography code: that written in pure C without inline assembly. With the portable

versions of each code, each with the maximum level of optimization supported by

each, the Wasm-sandboxed version took about 2.5x as long as the non-sandboxed C

version.

Using the maximally optimized WebAssembly code, the operation still exe-

cutes quickly enough for the interactive use we require for Plat. However, this
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Table 7.2: Performance of ECDH key agreement for sandboxed and native imple-
mentations. We compare a sandboxed ECDH implementation compiled using Plat’s
WebAssembly toolchain to both the C implementation and the hand-optimized
ARM assembly implementation provided by the uECC library. The WebAssembly-
sandboxed ECDH code achieves usable performance, but requires heavy optimiza-
tion both of the generated WebAssembly binary and of the binary compiled form
the wasm2c-generated code with GCC. The highlighted cells reflect the best perfor-
mance we achieved with portable source code.

GCC Opt. Level

Source Type -O0 -Os -O3

wasm2c (Clang -00) 40966 13121 4319
wasm2c (Clang -0s) 5697 1500 646
wasm2c (Clang -03) — 993 511

Native C 1410 312 210
ARM Assembly 197 139 125

requires trusting GCC’s optimization passes to preserve correctness. For critical

applications, this is not always a safe assumption: compiler bugs have been found

in optimization passes [46]. Running GCC at -O0 to avoid optimizer bugs that may

introduce vulnerabilities, the best achievable performance for the hand-optimized

assembly is hardly slower than the optimized version at 197ms, and even the native

C code allows a workable 1410ms. Running the sandboxed ECDH operation, it

is still safe to run Clang optimizations as the emitted code is still guaranteed to

maintain WebAssembly’s guarantees. But even with -Os in Clang, the best level of

optimization that produces a binary small enough for our chip, the best achievable

performance is a quite slow 5697ms. Good performance for wasm2c-emitted code

simply requires an optimizing compiler. This reliance on GCC compiler optimiza-

tions for our wasm2c-based toolchain limits flexibility when preparing for possible

compiler bugs.

In contrast to production WebAssembly runtimes built for browsers and servers

which use page-table based techniques to implement bounds checks in hardware,

our toolchain with wasm2c performs bounds checks naively with a simple condi-

tional before each memory access. This is necessary on our embedded platform,

which does not have hardware support for page tables, but adds significant over-

head. In order to determine the source of the slowdown we saw, we modified the

wasm2c-generated source for the cryptography module to skip these bounds checks,

instead simply assuming that each passes. With bounds checks disabled, our fully
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optimized, Wasm-sandboxed ECDH operation took 295ms. This number is much

closer to the 210ms elapsed during a non-sandboxed ECDH operation, showing

that these bounds checks are responsible for much of the slowdown over native

code.

Table 7.3: Comparison of ECDH compiled directly from C to ARM vs. ECDH com-
piled via Plat’s sandboxing toolchain with and without bounds checking. Bounds
checking is responsible for most of WebAssembly’s slowdown.

Platform Bounds Checks Time (ms)

Native N/A 210
Sandboxed Enabled 511
Sandboxed Disabled 295

Another necessary overhead of our current modularization toolchain is caused

by the fact that module memory has its own address space. Because of this, every in-

module memory access incurs a runtime translation to the corresponding physical

memory location. This is likely responsible for additional overhead.

This analysis shows that while the performance of cryptography code sand-

boxed by Plat’s toolchain is slower than natively compiled code, much of the slow-

down comes from the bounds checks required by WebAssembly. WebAssembly’s

instruction format itself and the required transcompilation does not seem to be as

significant of a factor as these bounds checks are.

7.2 TCB Size

In order to get an estimate of by how much Plat shrinks the size of the trusted

computing base, we count lines of C code that are compiled with each approach.

Table 7.4 shows that by moving the FIDO2 code and the USB stack code into

privilege separated modules, and therefore out of the TCB, we reduce the number

of lines of code that are ultimately trusted by over half. The FIDO2 module consists

of 9025 lines of C code that are now isolated to their own sandbox, and the USB

stack module contains 5843 lines of C code that are given access to only the USB

peripheral. The sandboxing infrastructure, including runtime support for wasm2c

and interface functions to module imports and exports, and some duplicated code

in modules and in the trusted source, add additional lines of code to Plat that is

not required in SoloKey, but most duplicated code is removed by the compiler.

For example, the full cryptography library is included both inside and outside of
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Table 7.4: Lines of C source code compiled in original SoloKey code and in Plat.
Plat reduces the TCB size by over half, but has more total LOC than SoloKey due to
sandboxing infrastructure and some duplicated code in and out of modules. This
analysis does not include header files.

Codebase Sandboxed LOC Trusted LOC

SoloKey 0 19996

Plat 14868 8142
Trusted Crypto 0 2122
Startup & Libraries 0 4134
Wasm Runtime 0 299
FIDO2 Module 9025 1096
USB HID Module 5843 176

the module. Newly written code—the interface functions for module imports and

exports—contributes around 319 lines of trusted code to Plat.

Though lines of code is not a perfect indication of bug exposure, this analysis

demonstrates that Plat indeed has a significantly smaller trusted code base than the

original SoloKey code. Certainly some of this code is more bug-prone than others,

and we believe that we have sandboxed the most bug-prone code. But bugs are

possible in any code, and thus this significant reduction in trusted lines of code is

likely to correspond to a decrease in bugs in the trusted code base.

7.3 Total Code Size

As embedded systems are nearly always resource-constrained, the size of the com-

piled binary is of large importance. Our sandboxing approach has some inherent

sources of overhead: for example, cryptography code that has trusted and untrusted

versions, such as SHA256, is included both inside and outside of the module.

Bounds checks must also be inserted at every memory access, increasing code size

significantly: with range checks disabled for both modules, the same code with the

same optimizations options shrunk by over 30%. Table 7.5 shows how privilege

separation and our compilation process affect code size.

For embedded systems, which are typically dedicated to a single purpose, it

is typically not absolute code size that matters. Rather, of primary importance is

whether the binary will fit in the target device’s flash memory. In our case, we were

able to fit Plat on our target device while getting good performance, so did not seek
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Table 7.5: Binary size of original SoloKey vs. Plat. There are a large set of possible
optimization options to tweak; we present a set of options that achieves good
performance and good code size by using -Os for most code and -O3 for intensive
cryptography code. In Plat, we use -O3 for compiling the wasm2c-generated C code
for the FIDO2 module that contains cryptography code and -Os Ellesmere.

Project Code Size (bytes)

SoloKey (w/o Bootloader) 143820
Plat 215656
Plat (no module bounds checks) 164360

to reduce code size further. Finer-grained optimization controls could likely result

in a smaller overall binary size for platforms that require it.

7.4 Module API

Each function that is exposed to the module is a hole in the module’s sandbox and

provides the module with additional permissions to perform actions that affect the

host environment. Table 7.6 and Table 7.7 list the full set of imports and exports

for the USB HID and FIDO2 modules respectively. Both modules achieve a simple

interface and have access only to functions tightly related to their core purpose.

7.5 Bug Analysis

The advantage of Plat’s privilege separation over the original monolithic SoloKey

code is protection from bugs in untrustworthy parts of the system. To explore the

effectiveness of this privilege separation, we consider several possible negative

outcomes that could result from a bug and the security goals that prevent them:

• Secret Key Compromise: the worst-case scenario for a device like a security

key is an attacker learning the secret key. This would allow the attacker to

authenticate as the user any time they like. Goal G1, Secret Key Confidentiality,

prevents this outcome.

• Permanent Token Corruption: If an attacker is able to modify the master

secret, they will be able to permanently disable the token, locking the user

out of their accounts. Goal G2, Secret Key Integrity, requires that an attacker

is unable to modify the secret key.

67



Table 7.6: The full set of imported and exported functions for the USB HID module.
The USB HID module allows quite a narrow interface, with only four exposed
module functions plus the allocator. Beyond the peripheral proxy, it requires access
only to safety-checked version of the CMSIS functions to configure its interrupts.

Imports Exports

NVIC_EnableIRQ usbhid_init
NVIC_GetPriorityGrouping usbhid_recv
NVIC_SetPriority usbhid_send
memReadHalfWord USB_IRQHandler
memReadWord allocate
memWriteHalfWord
memWriteWord

Table 7.7: The full set of imported and exported functions for the FIDO2 module.
While the FIDO2 module exposes only a few functions to the environment, it
requires an array of trusted cryptography functions as imports.

Imports Exports

authenticator_read_state allocate
authenticator_write_state ctap_init
ctap_atomic_count ctaphid_init
ctap_generate_rng ctaphid_check_timeouts
ctap_user_presence_test ctaphid_update_status
debugMarker ctaphid_handle_packet
millis
t_crypto_ecc256_derive_public_key
t_crypto_ecc256_init
t_crypto_ecc256_load_attestation_key
t_crypto_ecc256_load_key
t_crypto_ecc256_sign
t_crypto_ed25519_derive_public_key
t_crypto_ed25519_load_key
t_crypto_ed25519_sign
t_crypto_sha256_hmac_final
t_crypto_sha256_hmac_init
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• Bypass User Verification: authenticators rely partly on their ability to guar-

antee user presence via a button press for security. If an attacker is able to

bypass this verification and has control of the user’s computer, they could

authenticate as a user without their permission. Goal G3, User Signature Ap-

proval, requires that only one signature can be performed for a single button

press, minimizing this risk.

• Corrupt Signature Counter: the FIDO2 specification includes a monotonically

increasing signature counter that should be incremented with every authenti-

cation. An attacker that is able to decrease this signature counter could break

the user’s authenticator and an attacker who is able to artificially increase the

counter could clone the authenticator. Goal G4, Signature Counter Integrity,

prevents both of these possibilities by stating that the counter should be

incremented only when a signature is approved.

Each of these outcomes are prevented by the security goals introduced in Sec-

tion 1.3. We evaluate whether Plat achieves each of the security goals for several

classes of bugs:

• USB stack buffer overflow: the USB code is complex and performs many

copying and other buffer operations. A buffer overflow or memory read/write

vulnerability in the USB stack could allow reading or writing unintended

memory locations and even lead to remote code execution.

• CBOR parsing buffer overflow: the FIDO2 standard uses the Concise Binary

Object Representation (CBOR) to encode its messages. If some of the encoding

or decoding code contains a buffer overflow or other vulnerability such as the

malformed struct in [39], adjacent memory could be leaked or modified. Simi-

lar bugs have been seen in the NibbleAndAHalf base64 parser used in several

projects [35]. Buffer overflows could also lead to remote code execution.

• Stack overflow in FIDO2: a similar vulnerability as the stack overflow in [38]

could lead to remote code execution.

• Non-constant-time cryptography: a cryptography implementation with error

or oversight could reveal bits of the secret via timing channels.

• Incorrect cryptography use: faulty uses of cryptography can lead to, e.g., a

padding oracle attack that reveals encrypted contents.
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• RF side channels: an attacker with possession of the device may be able to

reveal information about the private key via physical side channel analysis.

• Insufficient Hardware Randomness: as YubiKey experienced in 2019 [57], a

hardware issue resulting in reduced randomness for key generation could

make it possible for an attacker to guess secrets.

Table 7.8: Possible outcomes of various potential bugs for SoloKey and Plat. For
each bug and security goal, a ■ indicates that both SoloKey and Plat maintain the
security goal, a □ indicates that neither does, and a ▲ indicates that Plat maintains
the security goal while SoloKey does not. There are no instances where SoloKey
maintains the goal but Plat does not. While Plat protects the secret key and en-
forces button presses in the face of bugs within a module when SoloKey does not,
neither protects against timing attacks, incorrect use of cryptography, or hardware
vulnerabilities.
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USB Stack Buffer Overflow ▲ ▲ ▲ ▲
CBOR Parsing Buffer Overflow ▲ ▲ ▲ ▲
Packet Handling Stack Overflow ▲ ▲ ▲ ▲
Non-constant-time Cryptography □ ■ ■ ■
Incorrect Crypto Usage □ ■ ■ ■
RF Side Channels □ ■ ■ ■
Insufficient Hardware Randomness □ ■ ■ ■

Table 7.8 shows that Plat offers effective defense against software vulnerabilities

within a module: even in the face of buffer overflows potentially leading to arbitrary

code execution or logic errors, Plat protects the secret key, enforces user presence

for signatures, and ensures that the signature counter monotonically increases. De-

pending on the specific vulnerability, SoloKey’s lack of privilege separation means

that any of these vulnerabilities can compromise the whole system. For software

bugs in the trusted host environment or for timing or hardware side channel vulner-

abilities, however, neither Plat nor SoloKey offer protection. Finer-grained privilege
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separation would help in decreasing the size of the TCB and thus of these unad-

dressed software bugs, but more sophisticated verification techniques and careful

engineering are necessary to limit the likelihood of side channel vulnerabilities.
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8

Discussion

We worked around several challenges when implementing Plat, from fitting Web-

Assembly modules onto embedded flash storage despite optimization for desktops

to making necessary changes for sandboxing and finding bugs during our imple-

mentation.

8.1 WebAssembly Page Size

WebAssembly is convenient for use on embedded platforms due to its design as a

universal compilation target. While the WebAssembly bytecode format is equally

as well-suited for embedded processors as it is desktop ones, the fixed page size of

64Kb as set in the standard is a major problem for many embedded processors—

especially when trying to run multiple WebAssembly modules alongside each other.

This 64Kb is the least common multiple of minimum pages sizes on most desktop

processors, and was set to enable page-table based bounds checking on MMU-

enabled desktop machines. While this enables good bounds-checking performance

for desktops, it is a showstopper for embedded devices—most of which barely have

64K of memory in total.

The workarounds discussed in Section 4.4 that Plat and similar work uses to

avoid this incompatibility require little hacking of the WebAssembly runtime and

compilation process. These small tweaks provide a 1Kb granularity for module

memory size provide much more flexibility when using WebAssembly in the em-

bedded realm, even allowing simultaneous execution of WebAssembly modules.

A modification to the WebAssembly specification to allow smaller page sizes as

an option—preserving a 64Kb size as the default for good desktop performance—

would go far in enabling WebAssembly’s use on embedded platforms.
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8.2 Memory Access Replacement

Our current approach requires that sandboxed driver code treats accesses to periph-

eral memory entirely differently from accesses to data memory: instead of using

simple C pointer dereferencing to read a driver memory location, for example, our

approach requires that the driver calls a function like memReadWordwith the desired

address. The main challenge when sandboxing the USB HID stack, especially when

compared to earlier tests of sandboxing UART drivers, was finding these accesses to

peripheral memory and replacing them with calls to our memory access functions.

1 #define READ_WORD(REG) memReadWord(&REG)
2 #define WRITE_WORD(REG, VAL) memWriteWord((uint32_t*) &REG, (uint32_t)

VAL)
3 #define READ_HWORD(REG) memReadHalfWord((uint16_t*) &REG)
4 #define WRITE_HWORD(REG, VAL) memWriteHalfWord((uint16_t*) &REG, (

uint16_t) VAL)
5 #define READ_BYTE(REG) memReadByte(&REG)
6 #define WRITE_BYTE(REG, VAL) memWriteByte(&REG, (uint8_t) VAL)
7

8 #define ASSIGNAND_HWORD(REG, VAL) WRITE_HWORD(REG, READ_HWORD(REG)&VAL)
9 #define ASSIGNOR_HWORD(REG, VAL) WRITE_HWORD(REG, READ_HWORD(REG)|VAL)

Figure 8-1: Macros defined in USB HID module source code to simplify the process
of replacing peripheral memory accesses with memRead and memWrite function calls.

A majority of the memory accesses were fairly simple to find: they were of

the form USBx->FIELD or hpcd->Instance->FIELD. A basic find-and-replace regex

combined with the convenience macros seen in Fig. 8-1 made replacing these

memory accesses with function calls simple. But not all access to USB peripheral

memory followed this convenient pattern: additional accesses were relative to a base

address stored deep inside a struct or hidden away in a macro definition, making

them difficult to find. Tracking down every memory access was a slow process of

running the code until a trap due to an out-of-bounds memory access, tracking

down the line of module C code that caused that out-of-bounds access, replacing

the memory access in that line, and repeating several times.

More sophisticated analysis of the code than that which was possible with a

simple regular expression could likely streamline this process. For example, Fig. 8-2

shows an instance of an access to peripheral memory that our regular-expression-

based approach did not find and that had to be manually identified by tracing

memory access traps. A static analysis approach with a model of C semantics,

particularly one with support for taint tracking, could automate this replacement.
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1 ...
2 uint32_t BaseAddr = (uint32_t)USBx;
3 uint32_t i, temp;
4 uint16_t *pdwVal;
5 uint8_t *pBuf = pbUsrBuf;
6

7 pdwVal = (uint16_t *)(BaseAddr + 0x400U + ((uint32_t)wPMABufAddr *
PMA_ACCESS));

8

9 for (i = n; i != 0U; i--)
10 {
11 temp = *pdwVal;
12 ...
13 if (PMA_ACCESS > 1U)
14 {
15 pdwVal++;
16 }
17 }
18 ...

Figure 8-2: An instance of a memory access that our regular-expression-based
replacement did not catch, in red. The chain of sources of the “tainted” pointer
to the USB memory region are in purple. More sophisticated replacement that
understands C semantics would make this replacement straightforward.

Once identified, the convenience macros from Fig. 8-1 make the replacement simple:

wrapping *pdwVal into READ_HWORD(*pdwVal) solves the problem.

8.3 Debugging

A major pain point in Plat’s implementation was our toolchain’s lack of debug-

ging support. Plat’s toolchain involves several layers: first we compile from C to

WebAssembly using clang, then from WebAssembly to C using wasm2c, and finally

we compile the generated C to ARM assembly using gcc. The debugging support

for the final C to ARM assembly step, of course, is quite robust: GCC generates

debugging symbols that allow lining up individual ARM instructions with the

source code that generated them. And debugging support in WebAssembly itself

has been improving and has support for DWARF symbols as well [44], though only

browser debuggers support these. However, the intermediate wasm2c step provides

no debugging support at all, and when debugging the running code with gdb it is

only possible to see the quite unreadable wasm2c-generated source.

To work around this, we inserted calls to an imported debugMarker function in

the module source code. Even though it is a no-op, this imported function cannot

75



be optimized out by clang since clang does not have knowledge of the imported

function definitions. As shown in Fig. 8-3, this causes the calls to debugMarker to

be emitted by wasm2c. Since the wasm2c output is available while debugging at

runtime, instrumenting the code with these markers allows us to align the current

position in the program with original C source code. This provides a method

debugging even inside modules, where access to print statements may not be

available.

1 ...
2 w2c_i0 = w2c_l6;
3 w2c_i0 = w2c_add_cid(instance, w2c_i0);
4 w2c_B16:;
5 w2c_i0 = 10040u;
6 w2c_i0 = (*Z_envZ_debugMarker)(instance->Z_env_instance, w2c_i0);
7 w2c_i0 = w2c_p0;
8 w2c_i0 = i32_load(&instance->w2c_memory , (u64)(w2c_i0));
9 ...

fido2_w2c.c

1 ...
2 add_cid(pkt->cid);
3 }
4 }
5

6 debugMarker(10040);
7 if (cid_exists(pkt->cid))
8 {
9 ...

ctaphid.c

Figure 8-3: Though the C code generated by wasm2c is essentially unreadable, in-
serting calls to an imported function (in red) provided enough cross-correlation
between generated C code and source C code to enable debugging for Plat’s imple-
mentation.
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9

Conclusion

The Plat FIDO2 security key safeguards itself against bugs in its subsystems by

isolating components like its USB driver and its parsers from core cryptography

components that manage sensitive state. This thesis presents a toolchain and set of

solutions for implementing this privilege separation for existing code on embedded

systems, using WebAssembly as an intermediate format to provide safety guarantees.

In addition to classical privilege separation, Plat’s design includes solutions for

challenges specific to the embedded environment, including delegating direct

access to peripheral Memory-Mapped IO and managing persistent state that must

be divided across trust domains.

9.1 Future Work

While Plat’s toolchain is designed to be flexible, we have implemented only a single

device—Plat—with the toolchain. Many of the included tools, such as the peripheral

proxy infrastructure, could be extended to support broader use cases—and new

tools altogether could make parts of the process much simpler. The implementation

of additional privilege-separated devices using this framework would also certainly

reveal further advantages and shortcomings of Plat’s approach.

Though privilege separation is a powerful strategy, its use has been limited in

deployed systems. Outside of the absolute most critical systems like web browsers,

systems typically implement privilege separation only between large components

such as individual services of a large company’s web infrastructure. Good support

does not currently exist for privilege-separating applications at the module or

library level. Language-level support for privilege separation that removes the need

for manual toolchain configuration and interface functions to link modules could
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increase the accessibility of privilege separation for small-scale systems.

Since Plat is based on existing software, its modules implement the API of

the contained code. If designed from scratch, a modular approach to privilege

separation could present other interesting possibilities. For instance, a common

message-passing interface between all modules would enable the transparent inser-

tion of a logging service between two modules and allow the system to guarantee

that regardless of bugs in either module, malicious actions are recorded for later

auditing.

Our analyses found that while there was significant slowdown in computation-

heavy operations when sandboxed with WebAssembly, most of this overhead is

caused by bounds checking. eWasm explored opportunities to minimize this over-

head on existing hardware, but future explorations into modifications to embedded

hardware to support fine-grained privilege separation could prove interesting.

9.2 Summary

Privilege separation has the capability to convert devastating bugs into trivial ones

by means of “damage control”, but is difficult to implement effectively. Plat explores

privilege separation in the new context of embedded devices, addressing the unique

challenges that come with bare-metal execution and demonstrating that for many

applications the overhead that comes with sandboxing is reasonable. We hope to

see more systems adopt privilege separation as an additional layer of defense and

hope for improved tools to make it easy to do so in the future.
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