
The benefits and costs of writing a POSIX
kernel in a high-level language

Cody Cutler, M. Frans Kaashoek, Robert T. Morris

MIT CSAIL

1 / 38



Should we use high-level languages to build
OS kernels?

2 / 38



HLL Benefits

Easier to program
Simpler concurrency with GC
Prevents classes of kernel bugs

3 / 38



Kernel memory safety matters

Inspected Linux kernel execute code CVEs for 2017

40 CVEs due to just memory-safety bugs

HLL would have prevented code execution

4 / 38



Kernel memory safety matters

Inspected Linux kernel execute code CVEs for 2017

40 CVEs due to just memory-safety bugs

HLL would have prevented code execution

4 / 38



HLL downside: safety costs performance

Bounds, cast, nil-pointer checks
Reflection
Garbage collection

5 / 38



Goal: measure HLL impact

Pros:
Reduction of bugs
Simpler code

Cons:
HLL safety tax
GC CPU and memory overhead
GC pause times

6 / 38



Methodology

Build new HLL kernel, compare with Linux

Isolate HLL impact:

Same apps, POSIX interface, and monolithic organization

7 / 38



Previous work

Taos(ASPLOS’87), Spin(SOSP’95), Singularity(SOSP’07),
Tock(SOSP’17), J-kernel(ATC’98), KaffeOS(ATC’00),
House(ICFP’05),...

Explore new ideas
Different architectures

Several studies of HLL versus C for user programs
Kernels different from user programs

None measure HLL impact in a monolithic POSIX kernel

8 / 38



Previous work

Taos(ASPLOS’87), Spin(SOSP’95), Singularity(SOSP’07),
Tock(SOSP’17), J-kernel(ATC’98), KaffeOS(ATC’00),
House(ICFP’05),...

Explore new ideas
Different architectures

Several studies of HLL versus C for user programs
Kernels different from user programs

None measure HLL impact in a monolithic POSIX kernel

8 / 38



Contributions

BISCUIT, new x86-64 Go kernel
Runs unmodified Linux applications
with good performance

Measurements of HLL costs for NGINX, Redis, and CMailbench

Description of qualitative ways HLL helped

New scheme to deal with heap exhaustion

9 / 38



Which HLL?

Go is a good choice:
Easy to call asm
Compiled to machine code w/good compiler
Easy concurrency
Easy static analysis
GC

10 / 38



Go’s GC

Concurrent mark and sweep

Stop-the-world pauses of 10s of µs

11 / 38



BISCUIT overview

58 syscalls, LOC: 28k Go,
1.5k assembly (boot, entry/exit)

12 / 38



Features

Multicore
Threads
Journaled FS (7k LOC)
Virtual memory (2k LOC)
TCP/IP stack (5k LOC)
Drivers: AHCI and Intel 10G NIC (3k LOC)

13 / 38



No fundamental challenges due to HLL

But many implementation puzzles
Interrupts
Kernel threads are lightweight
Runtime on bare-metal
...

Surprising puzzle: heap exhaustion

14 / 38



No fundamental challenges due to HLL

But many implementation puzzles
Interrupts
Kernel threads are lightweight
Runtime on bare-metal
...

Surprising puzzle: heap exhaustion

14 / 38



Puzzle: Heap exhaustion

15 / 38



Puzzle: Heap exhaustion

15 / 38



Puzzle: Heap exhaustion

15 / 38



Puzzle: Heap exhaustion

15 / 38



Puzzle: Heap exhaustion

Can’t allocate heap memory =⇒ nothing works
All kernels face this problem

15 / 38



How to recover?

Strawman 1: Wait for memory in allocator?

May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

Difficult to get right
Can’t! Go doesn’t expose failed allocations
and implicitly allocates

Both cause problems for Linux; see “too small to fail” rule

16 / 38



How to recover?

Strawman 1: Wait for memory in allocator?

May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

Difficult to get right
Can’t! Go doesn’t expose failed allocations
and implicitly allocates

Both cause problems for Linux; see “too small to fail” rule

16 / 38



How to recover?

Strawman 1: Wait for memory in allocator?

May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

Difficult to get right
Can’t! Go doesn’t expose failed allocations
and implicitly allocates

Both cause problems for Linux; see “too small to fail” rule

16 / 38



How to recover?

Strawman 1: Wait for memory in allocator?

May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

Difficult to get right

Can’t! Go doesn’t expose failed allocations
and implicitly allocates

Both cause problems for Linux; see “too small to fail” rule

16 / 38



How to recover?

Strawman 1: Wait for memory in allocator?

May deadlock!

Strawman 2: Check/handle allocation failure, like C kernels?

Difficult to get right
Can’t! Go doesn’t expose failed allocations
and implicitly allocates

Both cause problems for Linux; see “too small to fail” rule

16 / 38



BISCUIT solution: reserve memory

To execute syscall...

17 / 38



BISCUIT solution: reserve memory

To execute syscall...

17 / 38



BISCUIT solution: reserve memory

To execute syscall...

17 / 38



BISCUIT solution: reserve memory

To execute syscall...

17 / 38



BISCUIT solution: reserve memory

To execute syscall...

17 / 38



BISCUIT solution: reserve memory

To execute syscall...

No checks, no error handling code, no deadlock

17 / 38



Reservations

HLL easy to analyze

Tool computes reservation via escape analysis
Using Go’s static analysis packages

≈ three days of expert effort to apply tool

18 / 38



Building BISCUIT was similar to other kernels

BISCUIT adopted many Linux optimizations:
large pages for kernel text
per-CPU NIC transmit queues
RCU-like directory cache
concurrent FS transactions
pad structs to remove false sharing

Good OS performance more about optimizations, less about HLL

19 / 38



Building BISCUIT was similar to other kernels

BISCUIT adopted many Linux optimizations:
large pages for kernel text
per-CPU NIC transmit queues
RCU-like directory cache
concurrent FS transactions
pad structs to remove false sharing

Good OS performance more about optimizations, less about HLL

19 / 38



Eval questions

Should we use high-level languages to build OS kernels?

1 Did BISCUIT benefit from HLL features?
2 Is BISCUIT performance in the same league as Linux?
3 What is the breakdown of HLL tax?
4 What is the performance cost of Go compared to C?

More experiments in paper

20 / 38



1: Qualitative benefits of HLL features

Simpler code with:

GC’ed allocation
defer

multi-valued return
closures
maps

21 / 38



HLL example benefits

Example 1: Memory safety

Example 2: Simpler concurrency

22 / 38



1: BISCUIT benefits from memory safety

Inspected fixes for all publicly-available execute code CVEs in
Linux kernel for 2017

Category # Outcome in Go

— 11 unknown
logic 14 same
use-after-free/double-free 8 disappear due to GC
out-of-bounds 32 panic or disappear due to GC

panic likely better than malicious code execution

23 / 38



1: BISCUIT benefits from simpler concurrency

Generally, concurrency with GC simpler

Particularly, GC greatly simplifies read-lock-free data structures

Challenge: In C, how to determine when last reader is done?

Main purpose of read-copy update (RCU) (PDCS’98)
Linux uses RCU, but it’s not easy

Code to start and end RCU sections
No sleeping/scheduling in RCU sections
...

In Go, no extra code — GC takes care of it

24 / 38



Experimental setup

Hardware:
4 core 2.8Ghz Xeon-X3460
16 GB RAM
Hyperthreads disabled

Eval application:

NGINX (1.11.5) – webserver
Redis (3.0.5) – key/value store
CMailbench – mail-server benchmark

25 / 38



Applications are kernel intensive

No idle time

79%-92% kernel time

In-memory FS

Run for a minute

512MB heap RAM for BISCUIT

26 / 38



2: Is BISCUIT perf in the same league as Linux?

Debian 9.4, Linux 4.9.82

Disabled expensive features:

page-table isolation
retpoline
kernel address space layout randomization
transparent huge-pages
...

27 / 38



2: Biscuit is in the same league

BISCUIT ops/s Linux ops/s Ratio

CMailbench (mem) 15,862 17,034 1.07
NGINX 88,592 94,492 1.07
Redis 711,792 775,317 1.09

28 / 38



2: Biscuit is in the same league

BISCUIT ops/s Linux ops/s Ratio

CMailbench (mem) 15,862 17,034 1.07
NGINX 88,592 94,492 1.07
Redis 711,792 775,317 1.09

28 / 38



HLL cost unclear from comparison

May understate Linux performance due to features:
NUMA awareness
Optimizations for large number of cores (>4)
...

Focus on HLL costs:

Measure CPU cycles BISCUIT pays for HLL tax
Compare code paths that differ only by language

29 / 38



3: What is the breakdown of HLL tax?

Measure HLL tax:
GC cycles
Prologue cycles
Write barrier cycles
Safety cycles

30 / 38



3: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

31 / 38



3: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

31 / 38



3: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

31 / 38



3: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

31 / 38



3: Prologue cycles are most expensive

GC GCs Prologue Write barrier Safety
cycles cycles cycles cycles

CMailbench 3% 42 6% < 1% 3%
NGINX 2% 32 6% < 1% 2%
Redis 1% 30 4% < 1% 2%

Benchmarks allocate kernel heap rapidly
but have little persistent kernel heap data

Cycles used by GC increase with size of live kernel heap
Dedicate 2 or 3× memory⇒ low GC cycles

31 / 38



4: What is the cost of Go compared to C?

Make code paths same in BISCUIT and Linux

Two code paths in paper
pipe ping-pong (systems calls, context switching)
page-fault handler (exceptions, VM)

Focus on pipe ping-pong:
LOC: 1.2k Go, 1.8k C
No allocation; no GC
Top-10 most expensive instructions match

32 / 38



4: C is 15% faster

C Go
(ops/s) (ops/s) Ratio

536,193 465,811 1.15

Prologue/safety-checks⇒ 16% more instructions

33 / 38



Should one use HLL for a new kernel?

The HLL worked well for kernel development

Performance is paramount⇒ use C (up to 15%)

Minimize memory use⇒ use C (↓ mem. budget, ↑ GC cost)

Safety is paramount⇒ use HLL (40 CVEs stopped)

Performance merely important⇒ use HLL (pay 15%, memory)

34 / 38



Questions?

The HLL worked well for kernel development

Performance is paramount⇒ use C (up to 15%)

Minimize memory use⇒ use C (↓ mem. budget, ↑ GC cost)

Safety is paramount⇒ use HLL (40 CVEs stopped)

Performance merely important⇒ use HLL (pay 15%, memory)

git clone https://github.com/mit-pdos/biscuit.git 35 / 38



36 / 38


