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Biscuit is a POSIX-subset operating system kernel for x86_64 CPUs, 
which we wrote from scratch over the last four years. Biscuit is a bit 
more than a research toy. It can run Nginx and Redis with good per-

formance and has some important operating system features, like multicore 
support, kernel-supported threads, a journaled file system, virtual memory, 
a TCP/IP stack, and device drivers for AHCI SATA disks and Intel 10 Gb 
network cards. Building Biscuit was a lot of fun and a lot of work.

Unlike most kernels, Biscuit is written in Go instead of C. C is the usual programming lan-
guage choice for kernels because it can deliver high performance via flexible low-level access 
to memory and control over memory management (allocation and freeing). But C requires 
care and experience to use safely, and even then low-level bugs are common. For example, 
in 2017 at least 50 Linux kernel security vulnerabilities were reported that involved buffer 
overflow or use-after-free bugs in C code [7].

High-level languages (HLLs) have the potential to eliminate or reduce the impact of some 
common classes of bugs, particularly those having to do with memory and type safety. HLLs 
can also reduce programmer effort, thanks to automatic memory management, type safety, 
support for abstraction, and support for threads and synchronization.

However, OS designers have been skeptical about whether HLLs’ memory management and 
abstraction are compatible with high-performance production kernels [9, 10]. Garbage col-
lection (GC), runtime safety checks, and abstraction all cost CPU cycles, and many suspect 
that the benefits may not be worth the performance cost. For example, Rust [8] is partially 
motivated by the idea that GC cannot be made efficient; instead, the Rust compiler analyzes 
the program to partially automate freeing of memory.

Whether or not to use HLLs for kernels, then, requires an investigation of their performance 
in that context. There has been little research exploring this question, so we set out to shed a 
bit more light on it.

Our first step was to build a new POSIX-subset kernel, called Biscuit, in Go. Biscuit can run 
many programs that also run on Linux (after recompilation), so we were able to compare 
total application+kernel performance for Biscuit versus Linux. We did this for the Nginx and 
Redis servers, both of which make intensive use of the kernel. We found that throughput on 
Biscuit was within 10% of throughput on Linux, though this comparison should be taken 
with a grain of salt: although we examined both kernels’ code and numerous CPU profiles to 
verify that they executed the applications’ system calls in nearly the same way, we cannot 
completely rule out the possibility that Linux’s performance was understated due to having 
many more features than Biscuit. Nevertheless, we suspect the performance difference 
between the two is approximately correct. To better focus on the HLL’s impact on perfor-
mance, we then measured the CPU overhead of Go’s HLL features while running our applica-
tions on Biscuit. The CPU overhead of HLL features was at most 15%, with GC accounting 
for up to 3%. We presented these results in detail at the OSDI 2018 conference [11].
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Paying a performance cost of 15% for the benefits of an HLL 
seems worthwhile in non-performance-critical situations. Simi-
lar tradeoffs regularly occur in existing kernels; for example, 
the Linux kernels included in Ubuntu and Debian have several 
compile-time features for security and debugging enabled. These 
features (hardened user copy, scheduling stats, and ftrace) 
reduce performance (by up to 25% in one microbenchmark), but 
most people probably don’t disable them. Go has a performance 
cost, but it improves both security and programmability.

Readers may wonder why we used Go instead of Rust, given that 
Rust has no GC and thus wouldn’t pay GC’s performance price. 
We specifically wanted a language with GC in order to explore 
whether GC simplifies concurrent code.

In the remainder of the article, we will discuss a few challenges 
faced by HLL kernels, some benefits of HLL kernels, and reflect 
on our experience building Biscuit.

HLL Kernel Challenges
This section discusses some common concerns about HLLs and 
GC in kernels, and outlines what we learned about them while 
building Biscuit.

A kernel in Go cannot recover from low-memory situations 
since Go does not expose allocation failure. Linux and the 
BSDs handle kernel heap RAM exhaustion (“out of memory,” or 
OOM) by returning NULL from the allocator; the calling kernel 
code must detect and handle the failure. Biscuit can’t do this 
because Go implicitly allocates and does not have a way to indi-
cate allocation failure.

Biscuit therefore uses a different approach: each kernel opera-
tion (system call, interrupt, etc.) reserves the maximum amount 
of heap RAM that the operation could possibly allocate before 
executing the operation. If the reservation isn’t immediately 
available, the code waits until it is, after waking a separate 
thread that attempts to free heap memory by evicting from 
caches and perhaps by killing memory-hogging processes. The 
reservation guarantees that all allocations made by the opera-
tion cannot fail and thus no code is needed to detect and handle 
their failure. Additionally, since Biscuit waits for memory before 
executing the operation and thus while holding no locks, this 
approach cannot deadlock, a problem that Linux has struggled 
with [2, 3]. The challenging part is deciding how much memory 
each operation should reserve.

Fortunately, Go was helpful in overcoming this challenge: it 
turns out that it is easy to statically analyze Go code. We used 
publicly available static analysis packages to write a tool that 
inspects Biscuit’s source and performs an analysis similar to 
escape analysis. The tool does most of the work of choosing res-
ervation sizes, with reasonably tight bounds, but some manual 
effort is still required.

GC will use too much total CPU. The GC must follow the 
pointers in all live heap objects, which typically requires a RAM 
fetch per object. If there are millions of objects, the total time 
required can be on the order of hundreds of milliseconds. How-
ever, there are a couple of reasons why the CPU cycles used by 
the GC in practice is likely to be acceptably low.

Kernel heaps are typically small. Kernel heap objects are usually 
small metadata describing resources like files, sockets, virtual 
memory mappings, routing table entries, etc. The kernel heap 
does not contain large data items, such as user memory pages 
or file-cache pages. Few programs cause the kernel to accumu-
late millions of files, sockets, or noncontiguous virtual memory 
mappings. Thus the kernel heap typically uses a relatively small 
fraction of RAM even if user applications use many gigabytes of 
user memory. 

To understand kernel heap sizes, we inspected four of MIT’s big 
time-sharing machines. All four run Ubuntu Linux, had at least 
79 users logged in, and had at least 800 processes with between 9 
and 16 GB of total resident memory. The total kernel heap RAM 
(the sum of allocated and free kernel heap RAM) was less than 
2 GB on each machine. On the OpenBSD desktop machine on 
which the first author edited this article, the total resident user 
memory is 1.4 GB, but the total kernel heap RAM is less than 
170 MB.

One potential source of large kernel heaps is the vnode cache. 
Careful eviction of the vnodes may keep the number of kernel 
heap objects low without hurting application performance, 
depending on the access pattern.

If a large kernel heap is necessary, one can provision extra RAM 
to reduce the fraction of CPU time spent in GC. The collector 
only has to run when the kernel heap has no free space. Thus 
the amount of free heap RAM (and allocation rate) determines 
the frequency of GCs: doubling the amount of free heap RAM 
halves the frequency of GCs. Therefore, so long as a machine has 
enough extra RAM that can be donated to the kernel heap, the 
GCs can be made rare enough that total CPU cycles used by GC 
will be low.

We suspect that dedicating extra memory to kernel heaps will 
often be an acceptable cost: many applications probably wouldn’t 
be affected if the RAM available to them or the buffer cache was 
decreased by a few hundred megabytes.

Finally, it may be possible to further reduce the CPU overhead 
even when there is little free heap RAM by modifying Go’s GC to 
be generational. Generational collection is effective at reducing 
GC overhead for most programs, and we suspect Biscuit would 
benefit from it similarly.
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GC pause times will be too long. Even if the interval between 
collections can be made long, the collector must eventually execute. 
If the collector causes kernel execution to pause for substantial 
periods, it could delay latency-sensitive tasks such as redrawing 
a moved mouse pointer or processing an urgent client request.

Go uses a technique called concurrent collection to reduce col-
lection pauses. The main idea is to split the GC work into small 
units and interleave them with ordinary execution. The result is 
that individual pauses caused by GC will last only for the dura-
tion of a unit of work. There are still two potential problems. One 
is that smaller units of GC work are less efficient than larger 
ones. The other problem is that spreading collection work out 
over time increases the time that write barriers must be active. 
Write barriers are code the compiler inserts before each write 
that perform bookkeeping if a heap object is written during a col-
lection. Concurrent collection therefore trades decreased pause 
times for decreased efficiency.

We measured the pauses caused by Biscuit’s GC while running 
a kernel-intensive server, Nginx. The maximum single pause 
incurred by kernel GC was 115 microseconds. A given client 
request, however, may be delayed by multiple individual pauses. 
So we also measured the total accumulated pauses during each 
Nginx client request and found that the maximum was 582 
microseconds. Such pauses are rare: less than 0.3% of Nginx 
requests spent more than 100 microseconds executing GC work.

Some applications can’t tolerate even rare pauses of hundreds 
of microseconds, but we suspect that many can. For example, 
servers in one Google service had a 99th-percentile latency of 10 
milliseconds [4].

The Go compiler will generate slower code than C compilers. 
Readily available C compilers have been optimized for decades. 
Go’s compiler is comparatively young and must generate addi-
tional instructions for safety checks (bounds checks, nil-pointer 
checks, etc.) and write barriers.

We compared the performance of generated code from Go and 
GCC by modifying Biscuit and Linux to have near-identical code 
paths for two kernel-intensive microbenchmarks, pipe ping-pong, 
and zero-fill-on-demand page faults. We found that the Go 
versions were 15% and 5% slower than the C versions, respec-
tively. The main reason pipe ping-pong is slower in Go is that it 
executes more instructions for safety checks and write barriers. 
The performance of the page fault handler in Go is closer to that 
of C because the generated instructions are less important: the 
main bottlenecks are the fundamental CPU operations of enter-
ing/exiting the kernel and copying the zero page.

Thus, for these two examples of typical kernel code, Go produced 
5% to 15% slower executable code than C. For many situations, 
this is probably an acceptable price for the increased safety and 
programmability of Go.

HLL Kernel Benefits
Increased productivity. One of the main benefits of writing 
Biscuit in Go is the increased productivity over C. Unfortunately, 
we don’t know a direct way of measuring productivity. Neverthe-
less, we believe Go significantly reduced the effort required to 
build Biscuit. Some of our favorite language features are GC’ed 
allocation, slices, defer, multi-value returns, closures, strings, 
and maps. Individually, none of these features are transforma-
tive, but together they result in significantly simpler code.

HLL features can increase productivity, but we weren’t sure 
whether a kernel would be able to make good use of them. We 
compared the rate of use of several HLL features in Biscuit to 
two other large Go projects, Moby (https://github.com/moby/
moby) and Golang (containing Go’s compiler, runtime, and 
standard packages). Each bar in Figure 1 shows the number of 
uses of a particular feature per thousands of lines of code in the 
indicated project. Biscuit’s use of most of the HLL features is in 
line with the other projects.

Memory safety. Manual memory management in C is error-
prone, and the consequences of bugs can be severe: 40 out of the 
65 publicly available, execute-code CVEs found in Linux during 
2017 were due to manual memory management bugs, and all of 
them allow an attacker to execute malicious code in the kernel. 
Had this buggy code been written in Biscuit, the GC and runtime 
safety checks would have prevented malicious code execution in 
all 40 cases.

Figure 1: Uses of Go HLL features in the Git repositories for Biscuit, 
Golang, and Moby per 1,000 lines of code
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func serve() {

    buf := new(request_t)

    read_next_request(buf)

    go func() {

        // log_request() occasionally

        // blocks on IO

        log_request(buf)

    }()

    process_request(buf)

}

Listing 1: A simple case where threads share data

Simpler concurrency. Garbage collection makes threaded 
sharing of transient heap objects particularly convenient. For 
example, consider the request processing code in Listing 1. A 
network server calls the serve function to receive and process 
the next request. The code calls log_request in a separate 
thread in order to prevent file writes from delaying the process-
ing of the request. Each thread accesses buf while logging or 
processing. The GC automatically ensures that buf will be freed 
only after both threads have finished using it.

In contrast, this style of threaded programming can be awkward 
in C, because of the need for code that decides when the last 
thread has finished using the object. Consider writing List-
ing 1 in C. The C programmer would allocate buf via malloc. 
Neither thread could simply free buf before returning since the 
other thread may still be accessing buf. The programmer must 
delay the call to free until both threads have finished accessing 
buf. One solution would be to embed a reference count in buf, 
manipulated with atomic instructions. This is eminently pos-
sible in C but requires more programmer thought than in Go, and 
thus more chance of error.

Simpler lock-free sharing. GC is convenient in the above 
example, but GC is more than convenient when threads share 
data without locks (which is common in optimized kernels [5]) 
because the resulting code is significantly simpler than in C. In 
C, each thread must increase and decrease the corresponding 
reference count before and after accessing an object. Forgetting 
to increase or decrease a reference count will result in corrupted 
or leaked memory. Since threads may concurrently modify the 
same reference counter, all modifications must be atomic with 
respect to other counter accesses. Furthermore, the reference 
counters themselves cannot be stored in the same memory as the 
object that they protect, since then a thread may modify freed 
memory. Thus the programmer needs to find the counter belong-
ing to each object.

The atomic operations to maintain reference counts can reduce 
performance. This is the main reason why Linux uses RCU [5, 
6] to safely free memory shared among threads. RCU requires 
significantly fewer atomic operations and thus achieves good 

performance, but it is not simple to use: code which accesses 
memory managed by RCU must follow a list of rules (see https://
www.kernel.org/doc/Documentation/RCU/checklist.txt) and 
be surrounded by a special prologue and epilogue. All such code 
cannot sleep, schedule, or block in any way, in addition to follow-
ing a few other rules.

GC makes these programming difficulties disappear. Biscuit 
code can share heap objects among threads without worrying 
about when to free the objects. The reduction of programmer 
effort is especially evident in the case of read-lock-free data 
structures, which Biscuit uses in its directory cache, routing 
table, and network interface table. The result is high performance 
with less programmer effort, particularly in the directory cache. 

Experience and Reflections
Biscuit was a really exciting project because we had no idea what 
to expect of Go. Would Go make optimizing low-level code dif-
ficult or impossible? Can interrupt handlers tolerate GC pauses? 
Is a language runtime with its own state and invariants com
patible with the degree of concurrency kernels have to handle? 
When we started, we expected to spend at most a couple of 
months on the project and quickly find an indisputable, concrete 
reason why a fast kernel could not be built in Go. We did not 
expect to end up with a kernel that runs Nginx and Redis on 10 
Gb NICs with performance similar to Linux.

The focus of the project wasn’t always performance. At the 
beginning, we hoped that Go’s good support for threads and 
interthread communication and synchronization would allow 
simpler or more powerful designs for kernel code. For example, 
we hoped that a kernel in Go could make free use of transient 
worker threads to parallelize operations on multicore hardware. 
Unfortunately, we found few such situations. As a result, we 
switched goals away from exploring new kernel architectures 
and towards evaluating the effect of language choice and GC on 
performance. Thus the design of Biscuit started to become more 
and more traditional and similar to Linux in order to isolate per-
formance differences due to the language as opposed to differing 
architectures.

Building an operating system is a huge amount of work, and it 
took months before Biscuit could run even the most trivial of 
programs. Biscuit currently has 58 system calls, and nearly all of 
them are required to run Nginx, Redis, and CMailbench.

As much work as it took to allow Biscuit to run complex pro-
grams, the optimization effort to run the programs well was far 
greater. We knew that Linux delivered good performance when 
we started, but we were stunned at how much effort it took to 
build a kernel whose performance was even within a factor of 
two of Linux’s. Getting decent performance required implement-
ing some interesting optimizations: mapping kernel text with 
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large pages to reduce iTLB misses, implementing TCP timers 
via streamlined timer-wheels, building a directory cache with 
store-free lookups that is correct with racing eviction, etc. But 
most were less interesting details: reducing lock contention by 
dedicating a NIC TX queue to each CPU instead of sharing one 
queue among all CPUs, avoiding unnecessary allocations or 
function calls, carefully batching TCP ACKs, sometimes using 
a linked list instead of an array, etc. Despite the effort, optimiz-
ing Biscuit’s performance was the most fun part of the project 
and that’s mainly because it honed our performance debugging 
skills. If we had to do it over again, we would write the code to 
profile via the CPU performance-monitoring counters as early 
as possible; those profiles were by far the most helpful tool for 
debugging performance problems.

We are grateful for QEMU [1], which has been a critical tool 
for building and testing Biscuit. We were amazed at how little 
work it took to get Biscuit to successfully boot on real hardware 
despite running it exclusively on QEMU up to that point. Real 
hardware did expose a few bugs in Biscuit (E820 memory map 
parsing, PCI interrupt routing, and the BIOS’s INT 13h imple-
mentation apparently doesn’t restore the interrupt flag), but it 
was generally painless, and that speaks to the quality of QEMU’s 
emulation.

Our overall experience has been that building a kernel in Go was 
similar to building one in C: good kernel performance is more 
about implementing the right optimizations and less about the 
choice of programming language. Go didn’t prevent us from 
implementing important kernel optimizations, which suggests 
that Go is a good choice for kernel programming.

Conclusion
Our experience using Go to implement the Biscuit kernel has been 
positive. Go’s high-level language features are helpful in the con-
text of a kernel. Examination of historical Linux kernel bugs due 
to C suggests that a type- and memory-safe language such as Go 
might avoid real-world bugs or handle them more cleanly than C. 
The ability to statically analyze Go helped us implement defenses 
against kernel heap exhaustion, a traditionally difficult task.

We measured some of the performance costs of Biscuit’s use 
of Go’s HLL features on a set of kernel-intensive benchmarks. 
The fraction of CPU time consumed by garbage collection and 
safety checks is less than 15%. We compared the performance of 
equivalent kernel code paths written in C and Go, finding that 
the C version is about 15% faster.

The paper and Biscuit’s code are available at https://pdos.csail.
mit.edu/projects/biscuit.html. 
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