
6    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

SYSTEMSThe Benefits and Costs of Writing a POSIX
Kernel in a High-Level Language
C O D Y C U T L E R , M . F R A N S K A A S H O E K , A N D R O B E R T M O R R I S

Cody Cutler is a PhD candidate
in computer science at MIT.
Cody loves baffling bugs,
performance optimization, and
building systems. ccutler@csail.

mit.edu

Frans Kaashoek is the Charles
Piper Professor in MIT’s EECS
department and a member
of CSAIL, where he co-leads
the Parallel and Distributed

Operating Systems Group (http://pdos.csail.
mit.edu/). Frans is a member of the National
Academy of Engineering and the American
Academy of Arts and Sciences, and is the
recipient of the ACM SIGOPS Mark Weiser
award and the 2010 ACM Prize in Computing.
He was a co-founder of Sightpath, Inc. and
Mazu Networks, Inc. His current research
focuses on multicore operating systems and
certification of system software. kaashoek@
mit.edu

Robert Morris is a Professor
of Computer Science at MIT.
rtm@csail.mit.edu

Biscuit is a POSIX-subset operating system kernel for x86_64 CPUs,
which we wrote from scratch over the last four years. Biscuit is a bit
more than a research toy. It can run Nginx and Redis with good per-

formance and has some important operating system features, like multicore
support, kernel-supported threads, a journaled file system, virtual memory,
a TCP/IP stack, and device drivers for AHCI SATA disks and Intel 10 Gb
network cards. Building Biscuit was a lot of fun and a lot of work.

Unlike most kernels, Biscuit is written in Go instead of C. C is the usual programming lan-
guage choice for kernels because it can deliver high performance via flexible low-level access
to memory and control over memory management (allocation and freeing). But C requires
care and experience to use safely, and even then low-level bugs are common. For example,
in 2017 at least 50 Linux kernel security vulnerabilities were reported that involved buffer
overflow or use-after-free bugs in C code [7].

High-level languages (HLLs) have the potential to eliminate or reduce the impact of some
common classes of bugs, particularly those having to do with memory and type safety. HLLs
can also reduce programmer effort, thanks to automatic memory management, type safety,
support for abstraction, and support for threads and synchronization.

However, OS designers have been skeptical about whether HLLs’ memory management and
abstraction are compatible with high-performance production kernels [9, 10]. Garbage col-
lection (GC), runtime safety checks, and abstraction all cost CPU cycles, and many suspect
that the benefits may not be worth the performance cost. For example, Rust [8] is partially
motivated by the idea that GC cannot be made efficient; instead, the Rust compiler analyzes
the program to partially automate freeing of memory.

Whether or not to use HLLs for kernels, then, requires an investigation of their performance
in that context. There has been little research exploring this question, so we set out to shed a
bit more light on it.

Our first step was to build a new POSIX-subset kernel, called Biscuit, in Go. Biscuit can run
many programs that also run on Linux (after recompilation), so we were able to compare
total application+kernel performance for Biscuit versus Linux. We did this for the Nginx and
Redis servers, both of which make intensive use of the kernel. We found that throughput on
Biscuit was within 10% of throughput on Linux, though this comparison should be taken
with a grain of salt: although we examined both kernels’ code and numerous CPU profiles to
verify that they executed the applications’ system calls in nearly the same way, we cannot
completely rule out the possibility that Linux’s performance was understated due to having
many more features than Biscuit. Nevertheless, we suspect the performance difference
between the two is approximately correct. To better focus on the HLL’s impact on perfor-
mance, we then measured the CPU overhead of Go’s HLL features while running our applica-
tions on Biscuit. The CPU overhead of HLL features was at most 15%, with GC accounting
for up to 3%. We presented these results in detail at the OSDI 2018 conference [11].

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  7

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

Paying a performance cost of 15% for the benefits of an HLL
seems worthwhile in non-performance-critical situations. Simi-
lar tradeoffs regularly occur in existing kernels; for example,
the Linux kernels included in Ubuntu and Debian have several
compile-time features for security and debugging enabled. These
features (hardened user copy, scheduling stats, and ftrace)
reduce performance (by up to 25% in one microbenchmark), but
most people probably don’t disable them. Go has a performance
cost, but it improves both security and programmability.

Readers may wonder why we used Go instead of Rust, given that
Rust has no GC and thus wouldn’t pay GC’s performance price.
We specifically wanted a language with GC in order to explore
whether GC simplifies concurrent code.

In the remainder of the article, we will discuss a few challenges
faced by HLL kernels, some benefits of HLL kernels, and reflect
on our experience building Biscuit.

HLL Kernel Challenges
This section discusses some common concerns about HLLs and
GC in kernels, and outlines what we learned about them while
building Biscuit.

A kernel in Go cannot recover from low-memory situations
since Go does not expose allocation failure. Linux and the
BSDs handle kernel heap RAM exhaustion (“out of memory,” or
OOM) by returning NULL from the allocator; the calling kernel
code must detect and handle the failure. Biscuit can’t do this
because Go implicitly allocates and does not have a way to indi-
cate allocation failure.

Biscuit therefore uses a different approach: each kernel opera-
tion (system call, interrupt, etc.) reserves the maximum amount
of heap RAM that the operation could possibly allocate before
executing the operation. If the reservation isn’t immediately
available, the code waits until it is, after waking a separate
thread that attempts to free heap memory by evicting from
caches and perhaps by killing memory-hogging processes. The
reservation guarantees that all allocations made by the opera-
tion cannot fail and thus no code is needed to detect and handle
their failure. Additionally, since Biscuit waits for memory before
executing the operation and thus while holding no locks, this
approach cannot deadlock, a problem that Linux has struggled
with [2, 3]. The challenging part is deciding how much memory
each operation should reserve.

Fortunately, Go was helpful in overcoming this challenge: it
turns out that it is easy to statically analyze Go code. We used
publicly available static analysis packages to write a tool that
inspects Biscuit’s source and performs an analysis similar to
escape analysis. The tool does most of the work of choosing res-
ervation sizes, with reasonably tight bounds, but some manual
effort is still required.

GC will use too much total CPU. The GC must follow the
pointers in all live heap objects, which typically requires a RAM
fetch per object. If there are millions of objects, the total time
required can be on the order of hundreds of milliseconds. How-
ever, there are a couple of reasons why the CPU cycles used by
the GC in practice is likely to be acceptably low.

Kernel heaps are typically small. Kernel heap objects are usually
small metadata describing resources like files, sockets, virtual
memory mappings, routing table entries, etc. The kernel heap
does not contain large data items, such as user memory pages
or file-cache pages. Few programs cause the kernel to accumu-
late millions of files, sockets, or noncontiguous virtual memory
mappings. Thus the kernel heap typically uses a relatively small
fraction of RAM even if user applications use many gigabytes of
user memory.

To understand kernel heap sizes, we inspected four of MIT’s big
time-sharing machines. All four run Ubuntu Linux, had at least
79 users logged in, and had at least 800 processes with between 9
and 16 GB of total resident memory. The total kernel heap RAM
(the sum of allocated and free kernel heap RAM) was less than
2 GB on each machine. On the OpenBSD desktop machine on
which the first author edited this article, the total resident user
memory is 1.4 GB, but the total kernel heap RAM is less than
170 MB.

One potential source of large kernel heaps is the vnode cache.
Careful eviction of the vnodes may keep the number of kernel
heap objects low without hurting application performance,
depending on the access pattern.

If a large kernel heap is necessary, one can provision extra RAM
to reduce the fraction of CPU time spent in GC. The collector
only has to run when the kernel heap has no free space. Thus
the amount of free heap RAM (and allocation rate) determines
the frequency of GCs: doubling the amount of free heap RAM
halves the frequency of GCs. Therefore, so long as a machine has
enough extra RAM that can be donated to the kernel heap, the
GCs can be made rare enough that total CPU cycles used by GC
will be low.

We suspect that dedicating extra memory to kernel heaps will
often be an acceptable cost: many applications probably wouldn’t
be affected if the RAM available to them or the buffer cache was
decreased by a few hundred megabytes.

Finally, it may be possible to further reduce the CPU overhead
even when there is little free heap RAM by modifying Go’s GC to
be generational. Generational collection is effective at reducing
GC overhead for most programs, and we suspect Biscuit would
benefit from it similarly.

8    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

GC pause times will be too long. Even if the interval between
collections can be made long, the collector must eventually execute.
If the collector causes kernel execution to pause for substantial
periods, it could delay latency-sensitive tasks such as redrawing
a moved mouse pointer or processing an urgent client request.

Go uses a technique called concurrent collection to reduce col-
lection pauses. The main idea is to split the GC work into small
units and interleave them with ordinary execution. The result is
that individual pauses caused by GC will last only for the dura-
tion of a unit of work. There are still two potential problems. One
is that smaller units of GC work are less efficient than larger
ones. The other problem is that spreading collection work out
over time increases the time that write barriers must be active.
Write barriers are code the compiler inserts before each write
that perform bookkeeping if a heap object is written during a col-
lection. Concurrent collection therefore trades decreased pause
times for decreased efficiency.

We measured the pauses caused by Biscuit’s GC while running
a kernel-intensive server, Nginx. The maximum single pause
incurred by kernel GC was 115 microseconds. A given client
request, however, may be delayed by multiple individual pauses.
So we also measured the total accumulated pauses during each
Nginx client request and found that the maximum was 582
microseconds. Such pauses are rare: less than 0.3% of Nginx
requests spent more than 100 microseconds executing GC work.

Some applications can’t tolerate even rare pauses of hundreds
of microseconds, but we suspect that many can. For example,
servers in one Google service had a 99th-percentile latency of 10
milliseconds [4].

The Go compiler will generate slower code than C compilers.
Readily available C compilers have been optimized for decades.
Go’s compiler is comparatively young and must generate addi-
tional instructions for safety checks (bounds checks, nil-pointer
checks, etc.) and write barriers.

We compared the performance of generated code from Go and
GCC by modifying Biscuit and Linux to have near-identical code
paths for two kernel-intensive microbenchmarks, pipe ping-pong,
and zero-fill-on-demand page faults. We found that the Go
versions were 15% and 5% slower than the C versions, respec-
tively. The main reason pipe ping-pong is slower in Go is that it
executes more instructions for safety checks and write barriers.
The performance of the page fault handler in Go is closer to that
of C because the generated instructions are less important: the
main bottlenecks are the fundamental CPU operations of enter-
ing/exiting the kernel and copying the zero page.

Thus, for these two examples of typical kernel code, Go produced
5% to 15% slower executable code than C. For many situations,
this is probably an acceptable price for the increased safety and
programmability of Go.

HLL Kernel Benefits
Increased productivity. One of the main benefits of writing
Biscuit in Go is the increased productivity over C. Unfortunately,
we don’t know a direct way of measuring productivity. Neverthe-
less, we believe Go significantly reduced the effort required to
build Biscuit. Some of our favorite language features are GC’ed
allocation, slices, defer, multi-value returns, closures, strings,
and maps. Individually, none of these features are transforma-
tive, but together they result in significantly simpler code.

HLL features can increase productivity, but we weren’t sure
whether a kernel would be able to make good use of them. We
compared the rate of use of several HLL features in Biscuit to
two other large Go projects, Moby (https://github.com/moby/
moby) and Golang (containing Go’s compiler, runtime, and
standard packages). Each bar in Figure 1 shows the number of
uses of a particular feature per thousands of lines of code in the
indicated project. Biscuit’s use of most of the HLL features is in
line with the other projects.

Memory safety. Manual memory management in C is error-
prone, and the consequences of bugs can be severe: 40 out of the
65 publicly available, execute-code CVEs found in Linux during
2017 were due to manual memory management bugs, and all of
them allow an attacker to execute malicious code in the kernel.
Had this buggy code been written in Biscuit, the GC and runtime
safety checks would have prevented malicious code execution in
all 40 cases.

Figure 1: Uses of Go HLL features in the Git repositories for Biscuit,
Golang, and Moby per 1,000 lines of code

www.usenix.org	   S P R I N G 20 19  VO L . 4 4 , N O. 1  9

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

func serve() {

 buf := new(request_t)

 read_next_request(buf)

 go func() {

 // log_request() occasionally

 // blocks on IO

 log_request(buf)

 }()

 process_request(buf)

}

Listing 1: A simple case where threads share data

Simpler concurrency. Garbage collection makes threaded
sharing of transient heap objects particularly convenient. For
example, consider the request processing code in Listing 1. A
network server calls the serve function to receive and process
the next request. The code calls log_request in a separate
thread in order to prevent file writes from delaying the process-
ing of the request. Each thread accesses buf while logging or
processing. The GC automatically ensures that buf will be freed
only after both threads have finished using it.

In contrast, this style of threaded programming can be awkward
in C, because of the need for code that decides when the last
thread has finished using the object. Consider writing List-
ing 1 in C. The C programmer would allocate buf via malloc.
Neither thread could simply free buf before returning since the
other thread may still be accessing buf. The programmer must
delay the call to free until both threads have finished accessing
buf. One solution would be to embed a reference count in buf,
manipulated with atomic instructions. This is eminently pos-
sible in C but requires more programmer thought than in Go, and
thus more chance of error.

Simpler lock-free sharing. GC is convenient in the above
example, but GC is more than convenient when threads share
data without locks (which is common in optimized kernels [5])
because the resulting code is significantly simpler than in C. In
C, each thread must increase and decrease the corresponding
reference count before and after accessing an object. Forgetting
to increase or decrease a reference count will result in corrupted
or leaked memory. Since threads may concurrently modify the
same reference counter, all modifications must be atomic with
respect to other counter accesses. Furthermore, the reference
counters themselves cannot be stored in the same memory as the
object that they protect, since then a thread may modify freed
memory. Thus the programmer needs to find the counter belong-
ing to each object.

The atomic operations to maintain reference counts can reduce
performance. This is the main reason why Linux uses RCU [5,
6] to safely free memory shared among threads. RCU requires
significantly fewer atomic operations and thus achieves good

performance, but it is not simple to use: code which accesses
memory managed by RCU must follow a list of rules (see https://
www.kernel.org/doc/Documentation/RCU/checklist.txt) and
be surrounded by a special prologue and epilogue. All such code
cannot sleep, schedule, or block in any way, in addition to follow-
ing a few other rules.

GC makes these programming difficulties disappear. Biscuit
code can share heap objects among threads without worrying
about when to free the objects. The reduction of programmer
effort is especially evident in the case of read-lock-free data
structures, which Biscuit uses in its directory cache, routing
table, and network interface table. The result is high performance
with less programmer effort, particularly in the directory cache.

Experience and Reflections
Biscuit was a really exciting project because we had no idea what
to expect of Go. Would Go make optimizing low-level code dif-
ficult or impossible? Can interrupt handlers tolerate GC pauses?
Is a language runtime with its own state and invariants com
patible with the degree of concurrency kernels have to handle?
When we started, we expected to spend at most a couple of
months on the project and quickly find an indisputable, concrete
reason why a fast kernel could not be built in Go. We did not
expect to end up with a kernel that runs Nginx and Redis on 10
Gb NICs with performance similar to Linux.

The focus of the project wasn’t always performance. At the
beginning, we hoped that Go’s good support for threads and
interthread communication and synchronization would allow
simpler or more powerful designs for kernel code. For example,
we hoped that a kernel in Go could make free use of transient
worker threads to parallelize operations on multicore hardware.
Unfortunately, we found few such situations. As a result, we
switched goals away from exploring new kernel architectures
and towards evaluating the effect of language choice and GC on
performance. Thus the design of Biscuit started to become more
and more traditional and similar to Linux in order to isolate per-
formance differences due to the language as opposed to differing
architectures.

Building an operating system is a huge amount of work, and it
took months before Biscuit could run even the most trivial of
programs. Biscuit currently has 58 system calls, and nearly all of
them are required to run Nginx, Redis, and CMailbench.

As much work as it took to allow Biscuit to run complex pro-
grams, the optimization effort to run the programs well was far
greater. We knew that Linux delivered good performance when
we started, but we were stunned at how much effort it took to
build a kernel whose performance was even within a factor of
two of Linux’s. Getting decent performance required implement-
ing some interesting optimizations: mapping kernel text with

10    S P R I N G 20 19  VO L . 4 4 , N O. 1 	 www.usenix.org

SYSTEMS
The Benefits and Costs of Writing a POSIX Kernel in a High-Level Language

large pages to reduce iTLB misses, implementing TCP timers
via streamlined timer-wheels, building a directory cache with
store-free lookups that is correct with racing eviction, etc. But
most were less interesting details: reducing lock contention by
dedicating a NIC TX queue to each CPU instead of sharing one
queue among all CPUs, avoiding unnecessary allocations or
function calls, carefully batching TCP ACKs, sometimes using
a linked list instead of an array, etc. Despite the effort, optimiz-
ing Biscuit’s performance was the most fun part of the project
and that’s mainly because it honed our performance debugging
skills. If we had to do it over again, we would write the code to
profile via the CPU performance-monitoring counters as early
as possible; those profiles were by far the most helpful tool for
debugging performance problems.

We are grateful for QEMU [1], which has been a critical tool
for building and testing Biscuit. We were amazed at how little
work it took to get Biscuit to successfully boot on real hardware
despite running it exclusively on QEMU up to that point. Real
hardware did expose a few bugs in Biscuit (E820 memory map
parsing, PCI interrupt routing, and the BIOS’s INT 13h imple-
mentation apparently doesn’t restore the interrupt flag), but it
was generally painless, and that speaks to the quality of QEMU’s
emulation.

Our overall experience has been that building a kernel in Go was
similar to building one in C: good kernel performance is more
about implementing the right optimizations and less about the
choice of programming language. Go didn’t prevent us from
implementing important kernel optimizations, which suggests
that Go is a good choice for kernel programming.

Conclusion
Our experience using Go to implement the Biscuit kernel has been
positive. Go’s high-level language features are helpful in the con-
text of a kernel. Examination of historical Linux kernel bugs due
to C suggests that a type- and memory-safe language such as Go
might avoid real-world bugs or handle them more cleanly than C.
The ability to statically analyze Go helped us implement defenses
against kernel heap exhaustion, a traditionally difficult task.

We measured some of the performance costs of Biscuit’s use
of Go’s HLL features on a set of kernel-intensive benchmarks.
The fraction of CPU time consumed by garbage collection and
safety checks is less than 15%. We compared the performance of
equivalent kernel code paths written in C and Go, finding that
the C version is about 15% faster.

The paper and Biscuit’s code are available at https://pdos.csail.
mit.edu/projects/biscuit.html.

References
[1] QEMU, the FAST! processor emulator, 2018: https://www​
.qemu.org.

[2] J. Corbet, “The Too Small to Fail Memory-Allocation Rule,”
LWN.net, December 2014: https://lwn.net/Articles/627419/.

[3] J. Corbet, “Revisiting Too Small to Fail,” LWN.net, May
2017: https://lwn.net/Articles/723317/.

[4] J. Dean and L. A. Barroso, “The Tail at Scale,” Communica-
tions of the ACM, vol. 56, no. 2, February 2013, pp. 74–80.

[5] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole, “RCU
Usage in the Linux Kernel: One Decade Later,” 2012.

[6] P. E. McKenney and J. D. Slingwine, “Read-Copy Update:
Using Execution History to Solve Concurrency Problems,”
in Parallel and Distributed Computing and Systems, 1998, pp.
509–518.

[7] MITRE Corporation, CVE Linux Kernel Vulnerability
Statistics, 2018: http://www.cvedetails.com/product/47​
/Linux-Linux-Kernel.html?vendor id=33.

[8] S. Klabnik and C. Nichols, The Rust Programming Lan-
guage (No Starch, 2018): https://doc.rust-lang.org/book/.

[9] A. S. Tanenbaum, Modern Operating Systems (Pearson
Prentice Hall, 2008), p. 71.

[10] L. Torvalds, On C++, January 2004: http://harmful.cat​
-v.org/software/c++/linus.

[11] C. Cutler, M. F. Kaashoek, R. T. Morris, “The Benefits and
Costs of Writing a POSIX Kernel in a High-Level Language,”
in Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’18), pp. 89–105:
https://www.usenix.org/system/files/osdi18-cutler.pdf.

https://www.qemu.org
https://www.qemu.org
https://lwn.net/Articles/627419/
https://lwn.net/Articles/723317/
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor
https://doc.rust-lang.org/book/
http://harmful.cat-v.org/software/c++/linus
http://harmful.cat-v.org/software/c++/linus
https://www.usenix.org/system/files/osdi18-cutler.pdf

