
Understanding and Improving the Performance of Mitigating Transient
Execution Attacks

by

Jonathan Behrens

B.S., Cornell University (2016)
S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2022

©2022 Massachusetts Institute of Technology. All rights reserved

Signature of Author..
Department of Electrical Engineering and Computer Science

January 26, 2022

Certified by ...
M. Frans Kaashoek

Charles Piper Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Co-Certified by ..
Adam Belay

Assistant Professor of Electrical Engineering and Computer Science
Thesis Co-Supervisor

Accepted by ..
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Understanding and Improving the Performance of Mitigating
Transient Execution Attacks

by
Jonathan Behrens

Submitted to the Department of Electrical Engineering and Computer Science on Jan-
uary 26, 2022 in Partial Fullfillment of the Requirements for the Degree of Doctor of
Philosophy in Electrical Engineering and Computer Science.

ABSTRACT

This thesis makes two contributions: (1) a measurement study of the performance evo-
lution of mitigations against transient execution attacks over generations of processors, and
(2) the WARD kernel design, which eliminates as much as half the overhead of mitigations
on older processors.

The measurement study maps end-to-end overheads to the specific mitigations that
cause them. It reveals that hardware fixes for several transient execution attacks have
reduced overheads on OS heavy workloads by a factor of ten. However, overheads for
JavaScript applications have remained roughly flat because they are caused by mitigations
for attacks that even the most recent processors are still vulnerable to. Finally, the study
shows that a few mitigations account for most performance costs.

WARD is a novel operating system architecture that is resilient to transient execution
attacks, yet avoids expensive software mitigations that existing operating systems employ
when running on pre-2018 processors. It leverages a new hardware/software contract
termed the Unmapped Speculation Contract, which describes limits on the speculative
behavior of processors.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Adam Belay
Title: Assistant Professor of Electrical Engineering and Computer Science

Acknowledgments

I want to extend my thanks to my advisors Frans Kaashoek and Adam Belay for their

guidance and mentorship, to my other committee members Nickolai Zeldovich and Mengjia

Yan for their valuable feedback, and to all the past and present members of PDOS who I

have learned so much from over these years. Thank you.

I would also like to thank all of my collaborators including Jack Cook, Jules Drean,

Anton Cao, Cel Skeggs, Amy Ousterhout, Joshua Fried, Hari Balakrishnan, Jon Gjengset,

Malte Schwarzkopf, Lara Timbó Araújo, Martin Ek, Eddie Kohler, Robert Morris, Sagar

Jha, Ken Birman, and Edward Tremel. Your insights and support have meant a ton.

I am extraordinarily thankful to my friends and family have supported me every step of

this journey. You have shaped my experiences, given me meaning and purpose, and helped

me drive positive change. I would not be where I am today without you.

⋆ ⋆ ⋆

This dissertation includes work from the following papers:

• Efficiently mitigating transient execution attacks using the unmapped speculation con-

tract. Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek,

and Nickolai Zeldovich. OSDI 2020.

• Performance Evolution of Mitigating Transient Execution Attacks. Jonathan Behrens,

Adam Belay, and M. Frans Kaashoek. To appear. EuroSys 2022.

Contents

1 Introduction 11

1.1 Transient Execution Attacks . 12

1.1.1 Example Attack . 12

1.1.2 Other Attacks . 14

1.1.3 Threat Model . 14

1.2 Evolution of Mitigation Cost . 16

1.3 Ward . 17

1.4 Contributions . 18

1.5 Outline . 19

2 Performance Analysis 20

2.1 Attacks and Mitigations . 22

2.1.1 Meltdown-Type Attacks . 22

2.1.2 Spectre-Type Attacks . 25

2.1.3 Microarchitectural Data Sampling (MDS) 26

2.2 End-to-End Benchmarks . 27

7

2.2.1 Methodology . 28

2.2.2 LEBench . 30

2.2.3 Octane 2 . 31

2.2.4 Virtual Machine Workloads . 33

2.2.5 PARSEC . 34

2.2.6 Summary . 34

2.3 Performance of Individual Mitigations 35

2.3.1 Meltdown . 36

2.3.2 Microarchitectural Data Sampling 37

2.3.3 Spectre V2 . 37

2.3.4 Spectre V1 . 43

2.3.5 Speculative Store Bypass . 45

2.3.6 L1 Terminal Fault . 46

2.3.7 Other attacks . 47

2.4 Analysis of Hardware Spectre V2 Mitigations 47

2.4.1 Measuring Speculation . 49

2.4.2 Results . 50

2.4.3 Takeaways . 53

2.5 Discussion . 54

2.5.1 Spectre V1 . 54

2.5.2 Speculative Store Bypass . 54

2.6 Summary . 55

8

3 Ward 57

3.1 Motivation . 60

3.2 Goals . 61

3.3 Approach: Unmapped speculation contract 62

3.4 Design . 68

3.4.1 Overview . 69

3.4.2 World switch . 71

3.4.3 Mitigations . 73

3.4.4 Kernel text . 75

3.4.5 Memory management . 76

3.4.6 Process management . 77

3.4.7 File system . 77

3.4.8 Pipes . 78

3.4.9 Discussion . 79

3.5 Implementation . 80

3.6 Evaluation . 84

3.6.1 Experimental methodology . 84

3.6.2 WARD’s USC-based fast mitigations 86

3.6.3 World switch . 89

3.6.4 WARD memory overhead . 90

3.6.5 Security . 90

3.7 Discussion . 91

9

4 Related Work 93

4.1 Measuring performance . 93

4.2 Mitigation approaches . 94

4.3 WARD . 95

5 Discussion and Future Work 96

6 Conclusion 99

10

Chapter 1

Introduction

Side-channel attacks leak information between protection domains outside of the normal

information flow of a system. In late 2017 a new class of side-channel attacks was

discovered impacting CPUs from all major vendors [32, 41]. These attacks—termed

transient execution attacks—exploit details of how modern processors use speculative

execution to run more quickly.

Transient execution attacks represent a concern for system developers because providing

isolation is a key security responsibility for many kinds of software. For instance, an

operating system must not allow processes running on the same machine to inadvertently

leak information between one another, and web browsers must ensure that JavaScript

running on one website cannot access state belonging to other sites. System developers

have deployed a range of techniques devised to mitigate the impact of these transient

execution attacks, but unfortunately they can introduce significant performance costs.

The overhead caused by mitigations is present on vulnerable processors dating from

11

before the discovery of the attacks and also at least to some degree on all major commercial

CPUs released after their discovery. This thesis (i) measures how overhead has evolved

over subsequent generations of processors, and (ii) since processors from 2017 and earlier

will remain in use for years to come, presents a new operating system design to reduce OS

level overheads those CPUs.

1.1 Transient Execution Attacks

Speculative execution is an optimization used in the design of modern processors to

drastically improve their performance, by enabling them to do useful work during times

when they would otherwise be stalled waiting to load information from memory. When the

CPU reaches a conditional branch instruction that it doesn’t yet know whether will be taken

or not, it predicts the outcome and then starts executing instructions that would follow. The

prediction is based on prior executions of that same instructions and any other heuristics

the processor may have.

Usually the branch prediction is correct and the speculatively executed instructions can

be committed. When the prediction is incorrect, the CPU rolls back the architecturally

visible results of the instructions executed after the branch. However, in general when

reverting transiently executed instructions, their microarchitural effects—like inserting or

evicting lines from the cache—are not undone. Observing the microarchitural effects of

speculatively executed instructions enables transient execution attacks.

1.1.1 Example Attack

12

1 if (index < array_size) {
2 int v = array2[array1[index] * 256];
3 ...
4 }

Figure 1.1: Example code for a Spectre V1 attack

Spectre V1 was one of the earliest attacks discovered and leaks information between

different processes, between a process and the operating system kernel, or between a

sandbox and the code running within. The attack relies on a specific sequence of instructions

called a “gadget” to be located in the victim’s code region (e.g., in the code for a system

call). The gadget consists of a bounds check followed by two array accesses as shown in

Figure 1.1, for which the index value can be controlled by the adversary.

To trigger the attack, the adversary will repeatedly call the gadget with in bounds

indexes (e.g., by invoking the system call that has the gadget). This trains the CPU branch

predictor that the branch is usually taken. Then, the attackers forces the array size to be

evicted from the CPU cache and calls the gadget with an out of bounds index.

When execution reaches the bounds check, the processor will initiate a load to read the

array size. However before that load completes, it will speculatively start executing the

body of the if statement because the branch predictor has previously learned that the index

is usually in bounds. Because the index is out of bounds, the first array access will read

past the end of the array into arbitrary memory (e.g., allowing the attacker to access any

part of memory) and pull the value into a CPU register. The second array access then loads

a specific cache line whose index will depend on the first read.

Eventually the branch misprediction will be discovered and rolled back, but the cache

contents will not be. This enables the attacker to later time how long it takes to access each

13

cache entry and infer which value must have been pulled in by the victim application. Refer

to the Project Zero article [23] and paper appendix [32] for a full attack description.

1.1.2 Other Attacks

After the discovery of the original transient execution attacks, a wide range of others were

identified. They can be divided into three broad categories [22]:

• Spectre type attacks like the one described above rely on processor misprediction to

incompletely roll back executed instructions.

• Meltdown type attacks achieve the same effect using a trapping instruction to trigger

the roll back.

• Microarchitural Data Sampling (MDS) type attacks exploit the processor’s for-

warding logic to cause the processor to erroneously run instructions with data fed

from a sibling hyperthread or previously running task, rather than the correct values.

1.1.3 Threat Model

To understand this wide range of attacks, it is useful to have a framework to describe them

all. Based on the outline from Kiriansky, et al. [31] we can give a unifying definition: a

transient execution attack involves an attacker and victim application co-located on the

same physical machine in which the attacker (i) guides speculative control flow to cause, (ii)

an access to a victim secret, (iii) and for it to be transmitted via a microarchitectural covert

channel, (iv) to a receiver in the attacker’s protection domain. These steps are depicted in

Figure 1.2.

14

CPU predictor

Attacker AttackerVictim

(i) mistrain (ii) mispredict

(iii) transmit Microarchitectural
side-channel

(iv) receive

secret

Figure 1.2: Steps involved in a transient execution attack.

In Spectre V1 for instance, the attacker (i) poisons the branch predictor, (ii) which

causes an out of bounds load to pull the victim secret into a register, (iii) so a second

memory operation pulls in a cache line whose index is determined by the secret, (iv) so

that the attacker can recover the secret by probing which entries are present in the cache.

Exactly how each step is conducted varies between attacks. For instance, there are many

prediction structures within a modern CPU that can be leveraged to reroute speculative

control flow, and the access in (ii) can be performed via a gadget in the victim application

or entirely using instructions located within the attacker application. The final receive step

is typically noisy and requires some degree of decoding of the observed value to recover

the original secret.

Transient execution attacks are possible in settings with code running for two mutually-

distrusting entities on the same CPU. This can be a user application attacking the OS, a

user application targeting other user applications, a guest OS exploiting the hypervisor, and

so forth.

15

1.2 Evolution of Mitigation Cost

Mitigations for transient execution attacks can introduce significant performance costs as

surveys by Phoronix have demonstrated [35, 36, 38]. One goal of this thesis is to gain a

more detailed understanding compared to prior work, including by measuring how specific

mitigations impact performance.

We start with end-to-end benchmarks to identify which mitigations are relevant to

performance. In selecting workloads, we direct our attention primarily towards security

boundaries. This is because transient execution attacks in one way or another involve

leaking information across a boundary and most of the mitigations to prevent them involve

performing extra work each time execution crosses a boundary. Each selected workload

stresses a different boundary: we use LEBench [48] to measure the OS boundary, Octane

2 [19] to profile JavaScript sandbox overhead, run a few virtual machine benchmarks, and

verify that there isn’t significant overhead for a few CPU intensive workloads running

entirely within a single process.

By varying which mitigations are enabled during each experiment run, we’re able to

attribute overheads back to the specific mitigations that cause them. Our test systems

vary on many dimensions unrelated to transient execution attacks (like core count, clock

speed, and cache size) so our direct comparisons focus on relative differences between

configurations of the same system.

On workloads that stress the Linux kernel interface (which have received the most

attention) we find there have been substantial improvements with overhead on LEBench

going from over 30% to less than 3%, and all measured overhead now attributable to a

single attack. By contrast, the performance of JavaScript applications running inside Firefox

16

are impacted by an almost entirely different set of mitigations, which on Octane 2 has

caused overhead to remain roughly flat at 20%.

We aim to understand why some mitigation costs have declined while others have not,

and to understand whether moving mitigations from software to hardware truly makes

them faster. Therefore, we also conduct a detailed breakdown of individual mitigation code

sequences to investigate their precise cycle costs. For each mitigation identified by the

end-to-end benchmarks, we attempt to measure execution time of the associated instruction

or instruction sequence on each of our impacted systems. Our experiments show some

variations between processors in how long individual mitigations take, but demonstrate that

the main source of improvement is that some costly mitigations are completed avoided on

newer CPUs.

1.3 Ward

Mitigations are important for OS kernels because they make a particularly good target

for transient execution attacks. First, an adversary can cause the kernel to speculatively

execute code that leads to leakage of sensitive data. Even though the adversary cannot inject

their own code to execute in the kernel, they can often have significant influence on what

existing kernel code gets executed in speculative execution, by specifying particular system

call arguments or setting up micro-architectural CPU state such as the branch predictor.

Secondly, an OS kernel has access to all of the state on the computer. This means that

an adversary running in one process can trick the kernel into leaking state from any other

process on the same computer.

17

When running on processors designed prior to 2018, the only way for operating systems

to prevent transient execution attacks is to use expensive software mitigations. Such

processors will remain in use for years to come and cannot simply be ignored. WARD is a

novel operating system architecture that is resilient to transient execution attacks, yet avoids

much of the overhead caused by software mitigations when running on these processors. It

is based on the Unmapped Speculation Contract, which describes limits on a processor’s

speculative behavior: namely that physical memory not mapped into a current or previous

page table cannot impact microarchitectural state.

WARD leverages the USC by dividing the kernel into multiple domains. The K domain

includes all information accessible to the operation system, while each process has its

own associated Q domain consisting only of the userspace memory and kernel space data

structures related to that one process. At any given point in time the processor is either

executing in userspace, in a Q domain, or in the K domain.

Notably when executing in a Q domain, WARD is able to avoid many of the expensive

software mitigations that would ordinarily be required. And since WARD is able to handle

many system calls and traps entirely in the Q domain, it can achieve considerably better

performance on many workloads compared to conventional operating system designs.

1.4 Contributions

One primary contribution of this thesis is to draw attention to the performance critical areas

for improving transient execution mitigations, driven by (1) a survey mapping end-to-end

overheads to the specific mitigations that cause them, and (2) detailed microbenchmarking

18

of individual mitigations. To analyze hardware mitigations for Spectre V2, this thesis also

contributes a new technique to measure speculation using ideas from Bölük [8].

Another contribution is articulating the Unmapped Speculation Contract, which de-

scribes upper limits of what speculative execution attacks can and cannot do. This thesis

then demonstrates the benefits of the contract by presenting WARD, a novel kernel archi-

tecture that uses selective kernel memory mapping to avoid some of the costly transient

execution mitigations required on older Intel processors.

1.5 Outline

The following chapter presents an end-to-end performance evaluation and goes into detail

on each major attack describing both background on how it works as well as analyzing

its impact on each evaluated system (§2). We then proceed to introduce the Unmapped

Speculation Contract, which encapsulates some security guarantees that we believe even

old processors are able to provide, and describe the WARD kernel design which improves

the performance of OS intensive workloads by leveraging it (§3). Afterwards is an overview

of related work (§4). We follow up with some discussion and ideas for future work (§5),

and then conclude (§6).

19

Chapter 2

Performance Analysis

From the end-user perspective, a significant concern from transient execution attacks is the

performance degradation they cause. This is because operating systems and applications

have deployed mitigations to restore their previous security guarantees, but those same

mitigations make systems slower. This highly visible impact on user experience has been

measured by Phoronix and others. We go further and attribute overheads to individual

mitigations to understand which ones matter to overall performance. We also study internal

JavaScript runtime mitigations to understand whether the performance impact on browsers

is different from operating systems.

In this thesis, the focus is on security boundaries because mitigations for transient

execution attacks usually involve doing extra work for each boundary crossing, often in the

form of flushing of microarchitural state or waiting for in-flight operations to complete. Each

of our workloads are chosen to stress a different security boundary. §2.2.2 measures the OS

boundary, §2.2.3 the boundaries between JavaScript sandboxes, §2.2.4 between a guest OS

20

and a hypervisor, and §2.2.5 confirms that mitigation overheads are low in the absence of

security boundaries. Another possible boundary would be between WASM sandboxes, but

we found that other than Swivel [43], which is already well studied, production WASM

engines seem to either rely on site isolation [47] or neglect to mitigate transient execution

attacks at all [3].

Our experiments look at a range of processors including both some that predate the

discovery of Spectre and Meltdown but which are still in active use, newer ones which

incorporate some mitigations, and even more recent models with still more mitigations. We

evaluate five processors from Intel and three AMD processors so we can compare across

vendors as well. For each processor and workload, we characterize the total overhead

caused by mitigations and further attribute how much of the overall slowdown is caused by

each individual mitigation. This informs our microbenchmarking of individual mitigations.

For mitigations that incur meaningful overhead, we investigate in more detail to understand

their performance characteristics.

We seek to answer the following questions: Which attacks are primarily responsible for

the performance impact, and does that vary across processors or workloads? (§2.2) What

drives the cost of mitigations for those attacks? (§2.3) What mitigations would benefit from

hardware support to lower their cost and what predictions can we make about mitigation

overheads going forward? (§2.5)

In doing so, this chapter seeks to draw attention to the performance critical areas for

improving transient execution mitigations, driven by (1) an end-to-end survey of how

mitigation costs have evolved over processor generations, and (2) detailed microbench-

marking of individual mitigations. To analyze hardware mitigations for Spectre V2, we

21

also contribute a new technique to measure speculation using ideas from Bölük [8].

There are some limitations. We are limited in the number of processor generations to

evaluate and at the same time the processors we do consider are diverse in terms of clock

speed, core count, power draw, and many other dimensions. Additionally the conclusions

we can draw are constrained by the lack of public details on how hardware mitigations are

implemented. Finally, it is inherently uncertain what impact yet to be discovered attacks

will have.

2.1 Attacks and Mitigations

We consider attacks from the the perspective of how they affect end-user performance. This

outlook differs from prior surveys like Canella, et al. [11], which focus on enumerating and

classifying the space of possible attacks.

2.1.1 Meltdown-Type Attacks

Meltdown-type attacks exploit the processor’s fault-handling logic to speculatively access

privileged state.

Meltdown [41] The original Meltdown attack is caused by speculatively translating

kernel addresses for supervisor pages even while running in user mode, which enables a

user process to read any kernel memory mapped into its address space before the processor

aborts speculation and raises a fault. At the time of discovery, existing processors from

Intel as well as some from IBM and ARM were vulnerable [4, 25, 30].

22

Attack Mitigation B
ro

ad
w

el
l

Sk
yl

ak
e

C
lie

nt

C
as

ca
de

L
ak

e

Ic
e

L
ak

e
C

lie
nt

Ic
e

L
ak

e
Se

rv
er

Z
en

Z
en

2

Z
en

3

Meltdown Page Table Isolation ✓ ✓

L1TF
PTE Inversion ✓ ✓
Flush L1 Cache ✓ ✓

LazyFP Always save FPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spectre V1
Index Masking ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
lfence after swapgs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spectre V2

Generic Retpoline ✓ ✓
AMD Retpoline ✓ ✓ ✓
IBRS
Enhanced IBRS ✓ ✓ ✓
RSB Stuffing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IBPB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spec. Store Bypass SSBD ! ! ! ! ! ! ! !

MDS
Flush CPU Buffers ✓ ✓ ✓
Disable SMT ! ! !

Table 2.1: Default mitigations used by Linux on each processor. A ✓in a given cell means
the mitigation used, while an empty space means it isn’t required. In some cases, preventing
an attack requires some mitigation that isn’t enabled by default, which is indicated by a !
symbol.

Software mitigations for Meltdown are expensive, requiring a page table switch on every

user-kernel boundary crossing. Processors made by other vendors—and those designed

after the attack was discovered—do not engage in this kind of speculation, so they can

avoid these software overheads.

23

L1 Terminal Fault [61] On certain Intel processors, the present bit in PTEs is ignored

during speculative execution, which can allow an attacker to leak L1 cache contents.

Operating system software can easily be adjusted to make sure no vulnerable PTEs are

included in the page tables, which mitigates the attack at virtually zero cost.

However, when running a hypervisor, the same speculative mechanisms also bypass the

nested page table. Taken together, if the hypervisor doesn’t flush the L1 cache before every

VM entry, it risks leaking recently accessed data from other privilege domains. Both the

flush operation itself and subsequent cache misses make this mitigation more costly.

LazyFP [54] Traditionally, when exposing floating point hardware to user processes,

operating systems would optimize context switch time by lazily saving and restoring FPU

state. In particular, the assumption was that many processes would not access floating point

state, so on a context switch the FPU would be marked disabled, but retain the floating

point registers from the previously running process. Any attempt to execute floating point

instructions would trigger a trap, during which the OS could save the old process’s floating

point registers and load in the registers for the current process.

During transient execution, some processors will ignore the enable bit on the FPU and

allow computation on the floating point registers even if they actually belong to a different

process, potentially leaking sensitive register contents to an attacker.

Linux’s mitigates LazyFP by always saving and restoring FPU state during context

switches. Amusingly, this mitigation speeds up certain workloads, because modern proces-

sors provide special instructions for saving and restoring this state (e.g., xsaveopt) [42].

As a result, the trap handling overhead is often higher than the cost of unconditionally

saving and restoring the registers.

24

2.1.2 Spectre-Type Attacks

Spectre-type attacks exploit speculative execution following a misprediction. They typically

involve a specific gadget involving two memory loads; see Figure 2.1 for an example. The

first load brings sensitive data into a register, and the second uses that value to index into a

large array. An attacker is later able to determine the result of the first load by seeing which

array entry was pulled into the cache.

Notice that the code in Figure 2.1 matches the body of the if statement from Figure 1.1

(which shows a Spectre V1 attack). Other Spectre attacks have different supporting code

but this same core gadget.

1 int x = array[index];
2 int y = array2[x * 256];

Figure 2.1: A Spectre gadget. If this code sequence is executed (even speculatively) it will
alter the contents of the CPU cache, making it possible for an attacker to learn the value of
x, or if index is attacker controlled, all of virtual memory.

Spectre V1 [32] The bounds-check-bypass variant of Spectre works by tricking the

processor into doing an out-of-bounds array access by speculatively executing the body of

an if statement. Software mitigations usually entail manually annotating kernel branches

with lfence instructions or array accesses with special macros that never read out of

bounds.

Spectre V2 [32] Modern CPUs use a Branch Target Buffer (BTB) to predict the targets

of indirect branches. At a high level, a BTB is table mapping from instruction address to

the last jump target for the branch instruction located at that address. Processors use BTBs

25

so they can speculatively start executing code following an indirect branch before resolving

the true target of that branch. Poisoning the BTB enables attacker code to make the CPU

mispredict the targets of indirect branches and route transient execution to specially chosen

spectre gadgets.

There is no single mitigation for Spectre V2. It is commonly mitigated by replacing

every indirect branch with a retpoline sequence [28] that halts further speculative execution,

plus additional kernel logic to flush the BTB on context switches to protect user processes

from one another.

Speculative Store Bypass [24] This attack—originally known as Spectre V4—exploits

store-to-load forwarding in modern processors to learn the contents of recently written

memory locations. The only available mitigation is a processor mode called Speculative

Store Bypass Disable (SSBD), but enabling it has severe negative performance impacts.

Given the difficulty of exploiting Speculative Store Bypass and the considerable cost of

mitigating it, by default SSBD is only used by Linux for processes that specifically opt in

to it via prctl or seccomp.

2.1.3 Microarchitectural Data Sampling (MDS)

Microarchitectural Data Sampling describes class of attacks involving leaks from various

microarchitectural buffers within the CPU [12, 51, 57]. Unlike other Spectre and Meltdown

variants, MDS attacks cannot be targeted to specific victim addresses, which makes them

more challenging to exploit.

From an attacker perspective there are many different variations of MDS with their own

26

specific mechanisms and capabilities. However, mitigations all fall into two categories:

specific microarchitectural buffers need to be cleared on every privilege domain crossing

or hyperthreading must be disabled to prevent an attacker and victim from simultaneously

running on the same physical core. Clearing these CPU buffers is costly because of how

frequently it must be done. Not using hyperthreading would have an even larger cost, but

by default hyperthreading is enabled even for vulnerable CPUs because the risk was viewed

acceptable given the performance difference.

2.2 End-to-End Benchmarks

We start by evaluating the total cost attributable to all mitigations for transient execution

attacks. This value is different for each individual CPU, so we compare both across

generations of processors and between vendors.

Later sections will go into more detail on how individual attacks work and the char-

acteristics of their respective mitigations, but for now we wish only to gain a high level

understanding of which mitigations are relevant from a performance perspective.

The primary impact of transient execution attacks is to leak information across pro-

tection boundaries. Accordingly mitigations to prevent such leakage often involve extra

operations when the CPU transitions from one protection domain to another. Alternatively,

some mitigations must be enabled continuously while untrusted code is being executed.

Based on this, we focus on two particularly relevant protection boundaries: the user-kernel

interface for the operating system, and the sandboxing that web browsers’ JavaScript

engines provide between execution contexts for different sites. The boundary between

27

Vendor Model Microarchitecture
Power

(W)
Clock
(GHz) Cores

Intel

E5-2640v4 Broadwell (2014) 90 2.4 10
i7-6600U Skylake Client (2015) 15 2.6 2
Xeon Silver 4210R Cascade Lake (2019) 100 2.4 10
i5-10351G1 Ice Lake Client (2019) 15 1.0 4
Xeon Gold 6354 Ice Lake Server (2021) 205 3.0 18

AMD
Ryzen 3 1200 Zen (2017) 65 3.1 4
EPYC 7452 Zen 2 (2019) 155 2.35 32
Ryzen 5 5600X Zen 3 (2020) 65 3.7 6

Table 2.2: Information about each of the CPUs we evaluate. All except the Ryzen 3 1200
have 2-way SMT ("hypertheads" in Intel terminology).

a hypervisor and its guest operating system is also notable, but we did not find signifi-

cant performance differences between running virtualization workloads with and without

mitigations enabled.

In addition, we consider the case of a compute-intensive workload running within a

single operating system process. This involves no protection boundary crossings, and thus

measures only the impact of mitigations the operating system keeps enabled all the time.

2.2.1 Methodology

In the following benchmarks we evaluate across eight different CPU microarchitectures

from two vendors. Considering different microarchictures enables us to observe design

improvements between successive releases. Table 2.2 lists out detailed information on each

CPU.

The processors we evaluate span from before the discovery of Spectre and Meltdown

(Broadwell, Skylake Client, and Zen) to the most recently available Intel mobile and server

28

microarchictures (Ice Lake Client and Server respectively) and AMD microarchicture

(Zen 3). Despite sharing the same name, Ice Lake Client and Ice Lake Server are different

microarchitectures and were designed separately. All machines have an up-to-date kernel:

either version 5.11, the 5.14 release, or the 5.4 long-term maintenance release.

This diversity of systems gives a broad view of the ecosystem, but all the different

dimensions they vary on complicates our work. The processors range from 1.0 GHz to 3.7

Ghz and from 2 cores to 32 cores. Newer ones incorporate not just design improvements,

but also tend to have smaller transistors, faster RAM, and so forth. For these reasons our

experiments focus primarily on relative differences between configurations of the same

machine.

To measure the impact of individual mitigations, we run Linux with the default set of

mitigations enabled, and then use kernel boot parameters to successively disable them to

determine the overhead that each one causes. Some mitigations are applied separately by

Firefox, which we control via its about:config interface.

When we started running experiments, variability observed on a single configuration

was frequently on the same scale as the overheads we were trying to measure. Additional

techniques were required to account for this. We adopted a methodology of running each

benchmark configuration many times while tracking the average and 95%-confidence

interval, stopping once the error was small enough. Benchmark scores for individual runs

of the same configuration would vary by a couple percent each time, but the many iterations

give us an accurate estimate of the true average.

29

Broadwell Skylake
Client

Cascade
Lake

Ice Lake
Client

Ice Lake
Server

Intel

0

5

10

15

20

25

30

35
Sl

ow
do

wn
 (%

)

Zen Zen 2 Zen 3

AMD

 Clear CPU buffers
 Meltdown Mitigations
 Spectre V2 Mitigations
 Other

Figure 2.2: The overhead of mitigations on the LEBench benchmark suite which stresses
the operating system interface. Error bars show 95% confidence intervals.

2.2.2 LEBench

LEBench [48] is a collection of microbenchmarks for measuring specific operating system

operations.1 In this experiment, we track the geometric mean of benchmarks from the suite.

As seen in Figure 2.2 the overhead has decreased sharply for newer processors: CPUs

that incorporate hardware mitigations (for Intel) or from a vendor whose CPUs were not

vulnerable to all attacks in the first place (AMD) exhibit substantially smaller overheads.

1To align with experiments from elsewhere in this thesis, we use the version of the LEBench benchmarks
distributed with WARD [6] .

30

Also notable is that only a small number of mitigations are responsible for nearly all of

the overheads. Collectively, all unlisted mitigations caused a fraction of a percent slowdown

on Zen 2, but on the other processors had no statistically-significant impact at all.

2.2.3 Octane 2

Broadwell Skylake
Client

Cascade
Lake

Ice Lake
Client

Ice Lake
Server

Intel

0

5

10

15

20

25

30

35

40

45

Sl
ow

do
wn

 (%
)

Zen Zen 2 Zen 3

AMD

Speculative Store Bypass Disable
Other OS
Index Masking
Object Mitigations
Other Javascript

Figure 2.3: Slowdown on the Octane 2 browser benchmark caused by JavaScript and
operating system level mitigations. Error bars show 95% confidence intervals.

Octane 2 is a benchmark for JavaScript performance, which we run from within Firefox.

Figure 2.3 plots the percent decrease in scores caused by enabling each mitigation in turn.

31

JavaScript mitigations (Index masking, object mitigations, and “other JavaScript”) are

shown in blue, while operating system controlled mitigations including Speculative Store

Bypass Disable (SSBD) and “other OS” are shown above them in green.

All JavaScript mitigations are implemented by the JIT engine inserting extra instructions

into the generated instruction stream, and are used to prevent different variations of the

Spectre V1 attack. For instance, index masking ensures that speculative accesses to an array

do not index past the end of an array. It does so by placing a conditional move instruction

before every array access which checks whether the access is in bounds and overwrites

the index with zero otherwise. This check overall takes very little time but it prevents the

CPU from starting to pull the array contents into cache until the array length is known.

Across many millions of array accesses in the Octane 2 benchmark, this ends up causing a

non-trivial cost.

Speculative Store Bypass Disable is an OS level mitigation that is disabled by default

for most processes, but on the kernel versions we’re using is enabled for Firefox because

it uses seccomp. Starting with Linux 5.16 released in January 2022, the kernel by default

no-longer enables the mitigation for seccomp processes [37]. Applications can still enable

the mitigation manually, but Firefox releases so far don’t override the kernel setting.

This may stop being relevant. Intel has reserved a bit in in the ARCH_CAPABILITIES

model-specific register to indicate that a given processor isn’t vulnerable to Speculative

Store Bypass and therefore that the associated mitigation is neither needed nor implemented.

However, we do not know of any CPUs for either vendor that set that bit, not even models

that came out years after the attack was discovered.

32

2.2.4 Virtual Machine Workloads

We measure two different virtual machine workloads relevant to how VMs are used in

production. The performance of running LEBench inside of a virtual machine with and

without host mitigations enabled mirrors running a customer application on a cloud provider.

Execution primarily (but not exclusively) stays within the VM so we would expect host mit-

igations to have limited impact on the performance observed by the guest. This matches our

observations: measured overhead was ±3% on all systems, signalling that the mitigations

applied by a hypervisor do not have significant impact. Some runs suggested a slowdown

in the range of 1-3%, but our methodology resulted in too much variability between runs

to be confident whether or not that was caused by noise. In any case, we were unable to

attribute the slowdown to specific mitigations because the slowdowns are so small.

Secondly, we measure the overhead of virtual machine exits by running the smallfile

and largefile microbenchmarks from LFS [50] against an emulated disk. The median

overhead was under 2%, but once again, we observed high variability between runs. This

workload performs many security boundary crossings because every access to the emulated

disk requires running code within the hypervisor. However, in contrast to LEBench that

reached millions of system calls per second, the higher cost of VM exits meant that this

experiment only reached several tens of thousands of VM exits per second. We believe that

this explains the lack of a clear slowdown; the comparatively small number of protection

domain crossings means that even though the time spent on mitigations during a single VM

exit is likely higher than for a system call, in relative terms it is not enough to meaningfully

impact the end-to-end performance.

33

2.2.5 PARSEC

As a final experiment we measure the overhead of running the swaptions, facesim, and

bodytrack benchmarks from the PARSEC suite. These were chosen to get good coverage of

compute-intensive benchmarks with different working set sizes. None involve significant

numbers of calls into the operating system nor user-level sandboxing, as explored by the

previous experiments, which makes them ideal to measure the impact solely of “always on”

mitigations that the OS applies to running processes.

We were unable to observe any meaningful difference between running with and

without the default set of mitigations: total runtime was usually within ±0.5% for the

two configurations, and never differed by more than 2%. This serves as a reminder that

slowdowns from transient execution attack mitigations aren’t relevant to all workloads.

The one exception is that we observed significant overheads by force-enabling mitiga-

tions for Speculative Store Bypass. §2.3.5 explores this in more detail.

2.2.6 Summary

Each of these benchmarks plots a different trajectory of mitigation costs. Workloads that

stress the operating system interface have received the most attention, and overheads on

LEBench have gone from over 30% on older Intel CPUs to under 3% on the latest mod-

els, thanks to fixes for several of the attacks. By contrast, none of the attacks impacting

JavaScript performance have been addressed in hardware and overhead on Octane 2 has

remained in the range of 15% to 25%. Our compute-intensive benchmark has negligi-

ble overhead regardless of the processor, and we did not observe significant overheads

on either of the two VM workloads measured. These trends are consistent with prior

34

work from Phoronix [38], which found big improvements on OS workloads (perf-bench,

ctx_clock, etc.), moderate but consistent overheads for web browsers (Selenium), and

minimal overheads for the more compute-intensive workloads.

There has been a significant effort from computer architecture researchers towards

addressing Spectre V1 [2, 5, 60, 65, 66], but interestingly software mitigations for the

attack had no measurable impact on LEBench performance. By contrast, they account for

around half the overhead on the browser workload.

It is also worth pointing out that all three attacks with significant overhead on new

processor are actually quite “old”. Spectre V1 and Spectre V2 were the first transient

execution attacks discovered (along with Meltdown, which was discovered at the same

time), while Speculative Store Bypass followed only a matter of months later. Over the

subsequent three years of transient execution attack discoveries, they’ve all either been

quickly resolved in hardware or had a negligible cost to mitigate in software. This paints an

optimistic outlook for the future (assuming this remains true).

2.3 Performance of Individual Mitigations

This section explores the individual mitigations that contributed to the previously shown

end-to-end overheads. Our aim is to understand why some mitigation costs have declined

while others have not. Furthermore, we also want to understand whether moving mitigations

from software to hardware truly makes them faster.

For each mitigation, we attempt to isolate the relevant instruction sequence and examine

what the cost is on each of our processors. To achieve precise timings, we rely on the

35

timestamp counter functionality available on x86 and average over one million runs to

eliminate noise.

2.3.1 Meltdown

Meltdown mitigations account for one of the most substantial performance impacts on

LEBench, singlehandedly causing an around 10% overhead. On processors vulnerable

to Meltdown, production operating systems use page table isolation (PTI) to mitigate it.

This approach adds significant overhead to every user-kernel boundary crossing, because

it requires switching the page tables every time via a mov %cr3 instruction. Among the

systems we evaulated, only Broadwell and Skylake are vulnerable to Meltdown.

As seen in Table 2.3, on these processors the cycles required to swap page tables when

entering and again on leaving the kernel far exceeds the time for the actual syscall or

sysret instruction that triggers the entry/exit. For syscalls, the Ice Lake Client CPU takes

fewer cycles (which will prove a pattern—likely due to its lower base clock speed) and the

Cascade Lake model stands out by taking longer than both earlier and later Intel models.

Vendor CPU syscall sysret swap cr3

Intel

Broadwell 49 40 206
Skylake Client 42 42 191
Cascade Lake 70 43 0
Ice Lake Client 21 29 0
Ice Lake Server 45 32 0

AMD
Zen 63 53 0
Zen 2 53 46 0
Zen 3 83 55 0

Table 2.3: Average cycles to execute a syscall or sysret instruction, and for vulnerable
processors, to swap page tables.

36

One other impact of page table isolation is that on old processors it can cause increased

TLB pressure due to much more frequent TLB flushes. Both Broadwell and Skylake Client,

however, support PCIDs which tag page table entries with a process identifier. This allow

many TLB flushes to be avoided, and makes TLB impacts marginal compared to the direct

cost of switching the root page table pointer.

2.3.2 Microarchitectural Data Sampling

The other substantial mitigation on LEBench is clearing CPU buffers, which is required

to mitigate Microarchitectural Data Sampling (MDS). On processors that are vulnerable

to MDS, a microcode patch extends the verw instruction to also implement this clearing

functionality. Without the patch the verw only has its old behavior related to segmentation.

Table 2.4 shows that the cost of performing this flush is approximately 500 cycles.

This cost is substantial because microarchitectural buffers must be flushed not just on

context switches between processes but also on every kernel-to-user privilege transition.

Recent Intel processors and all processors from AMD are not vulnerable to MDS. On these

processors the verw has only its legacy segmentation-related behavior and takes only tens

of cycles.

2.3.3 Spectre V2

Spectre V2 involves poisoning the branch target buffer so that an indirect branch in victim

code jumps to a Spectre gadget. As we saw, mitigating Spectre V2 is a small but largely

consistent drag on LEBench performance across all the processors.

37

Vendor CPU Clear Cycles

Intel

Broadwell 610
Skylake Client 518
Cascade Lake 458
Ice Lake Client 0
Ice Lake Server 0

AMD
Zen 0
Zen 2 0
Zen 3 0

Table 2.4: Cycles required to clear microarchitectural buffers using the verw instruction.
Processors not vulnerable to MDS are listed as zero cycles because they do not require any
microarchitectural buffers to be cleared before returning to user space.

Indirect Branch Restricted Speculation Indirect Branch Restricted Speculation (IBRS)

was the first mitigated proposed for Spectre V2 and is enabled by setting a MSR bit which

must be repeated on every entry into the kernel. Newer Intel processors—Cascade Lake and

onward—support enhanced IBRS (eIBRS), which allows the operating system to enable

IBRS once at boot time, and have it remain in effect without additional system register

writes.

The cycle cost of doing this MSR write on every system call was viewed as unacceptably

high [56], so production operating systems investigated alternative approaches, ultimately

settling on retpolines for any processor not supporting eIBRS.

Retpoline Retpolines are the primary software mitigation for Spectre V2 today. They

involve replacing every indirect branch in the kernel with an alternate instruction sequence.

A retpoline sequence has identical behavior to an indirect branch instruction, except that

the branch destination (and more importantly any Spectre gadgets) are never jumped to

speculatively.

38

There are a couple variations of retpolines, with slightly different characteristics. So

called “generic retpolines” use a code sequence involving a call instruction, a write

instruction to replace the saved return address with the jump target, and a ret instruction

to cause the processor to speculatively jump back to the call site (due to the return value

stack) before correcting to the intended branch target. This version works on both Intel and

AMD processors.

An alternative version “AMD retpoline”, involves simply doing an lfence followed by

a normal indirect branch. As might be inferred from the name, this variant does not work

on Intel: code using it would still be vulnerable to Spectre V2.

1 generic_retpoline:
2 call 2f
3 1: pause
4 lfence
5 jmp 1b
6 2: mov %r11, (%rsp)
7 ret
8

9 amd_retpoline:
10 lfence
11 call *%r11

Figure 2.4: Assembly sequences for the two kinds of retpolines

Table 2.5 shows extra cycles of each of these variations across our machines, relative to

a baseline of doing an unsafe indirect branch. One noticeable takeaway is that IBRS adds

tens of cycles of overhead to indirect branches except on processors with eIBRS support

(Cascade Lake and the two Ice Lake CPUs) where it is inexpensive. Retpolines however

can be as or even more costly.

The AMD processors have different performance executing AMD retpolines: on the

39

Zen 2 model we measure no overhead compared to a normal indirect branch, while the

other AMD processors they are even slower than a generic retpoline.

Vendor CPU Baseline IBRS Generic AMD

Intel

Broadwell 16 +32 +28 N/A

Skylake Client 11 +15 +19 N/A

Cascade Lake 3 +0 +49 N/A

Ice Lake Client 5 +0 +21 N/A

Ice Lake Server 1 +1 +50 N/A

AMD
Zen 30 N/A +25 +28
Zen 2 3 +13 +14 +0
Zen 3 23 +19 +13 +18

Table 2.5: Baseline cycles to perform an indirect branch, and the added cost of doing
indirect branches with IBRS enabled, the added cost of an indirect branch via a generic
repoline, and via an AMD retpoline.

Indirect Branch Prediction Barrier (IBPB) In addition to preventing indirect branches

in the kernel from being hijacked, it is also important that one user process cannot launch a

Spectre V2 attack against another process. To prevent this attack, on every context switch

between processes the operating system runs an Indirect Branch Prediction Barrier to clear

the branch target buffer.

We verified across all our processors that executing an IBPB between poisoning the

branch target buffer and performing an indirect branch prevents execution from being routed

to the attacker-controlled target. Oddly, however, we noticed that the performance counters

report that indirect branches executed after an IBPB result in mispredictions. We speculate

that this behavior is caused by the IBPB setting all entries in the BTB to point to a specific

harmless gadget rather than simply clearing them.

40

Table 2.6 shows that the cost of an IBPB has generally declined over time from many

thousands of cycles on the Broadwell server to hundreds of cycles on Cascade Lake and

Ice Lake Server. This improvement is likely related to the fact that older processors

implemented IBPB via a microcode patch, whereas newer ones may have some amount of

support in hardware. The Ice Lake Client processor somewhat bucks the trend of improving

performance when compared to the earlier Cascade Lake, but still requires many fewer

cycles than Broadwell or Skylake. AMD processors we tested show a similar improvement

across generations.

Vendor CPU IBPB cycles

Intel

Broadwell 5573
Skylake Client 4537
Cascade Lake 340
Ice Lake Client 2455
Ice Lake Server 836

AMD
Zen 7370
Zen 2 1088
Zen 3 808

Table 2.6: Cycles to execute an Indirect Branch Prediction Barrier.

Return Stack Buffer Filling When a user process employs generic retpolines to protect

itself from Spectre V2, it is counting on the return stack buffer not being tampered with

during the code sequence. Unfortunately, if the operating system triggers a context switch

at an inopportune time then this condition might be violated. Linux uses two approaches to

guarantee that user-level retpolines still work despite interrupts potentially happening at

any time during execution.

The first is a static analysis pass over the Linux kernel at build time to ensure that

41

the operating system itself doesn’t have unbalanced call and ret pairs anywhere, which

incurs no runtime cost at all. Since any code compiled with the regular toolchains will

already have this property, this check is not expected ever to fail.

Secondly, when context switching between different user threads Linux will fill the the

return stack buffer with harmless entries. This is required so that any interrupted retpoline

sequence will avoid jumping to any Spectre gadgets—meaning that despite not causing a

speculative jump to the intended retpoline landing point, it will still produce safe results.

Table 2.7 shows the cycles required to fill the return stack buffer on each processor.

There is improvement across generations of Intel processors but less of a clear trend across

the AMD CPUs. These changes are likely realized more by improving performance overall

than trying to optimize for return stack buffer filling specifically, but regardless, the cost

of these mitigations is relatively minor compared to the total overhead of doing a context

switch between processes (which takes at least several thousand cycles)

Vendor CPU RSB Fill Cycles

Intel

Broadwell 130
Skylake Client 130
Cascade Lake 120
Ice Lake Client 40
Ice Lake Server 69

AMD
Zen 114
Zen 2 68
Zen 3 94

Table 2.7: Cycles to stuff the RSB.

Return stack buffer filling also provides protection against variations of SpectreRSB [33],

which exploits the return stack buffer itself. Thus while the overall toggle to enable the

42

functionality is controlled by Linux’s nospectre_v2 option, some amount of the overhead

attributed to Spectre V2 should probably be accounted to mitigating SpectreRSB instead.

2.3.4 Spectre V1

On the Octane 2 benchmarks, the various Spectre V1 mitigations collectively accounted for

a large fraction of the total overhead. We discuss each of them in more detail.

lfence One mitigation for Spectre V1 is to execute an lfence instruction immediately

following each bounds check and swapgs instruction. This instruction waits until all prior

loads have resolved, thereby preventing any subsequent Spectre gadget from executing.

The cost of an lfence varies significantly based on operations in flight. Table 2.8 shows

the results of a simple microbenchmark of running an lfence instruction in a loop. An

important caveat is that the performance will depend a lot on what other instructions have

been executed prior so this is not a fully representative experiment.

We see that all times are roughly of the same scale, with newer processors showing

better performance. The lfence does more work on AMD than on Intel (as evidenced by

the AMD retpoline sequence described earlier) so the numbers are not directly comparable

across vendors.

Index Masking Instead of preventing speculation past bounds checks, an alternative

mitigation is to force the array index to zero for any out of bounds access. SpiderMonkey

(the JavaScript engine used by Firefox) uses this strategy: before every array indexing

operation it inserts a cmov instruction that overwrites the array index with zero if it would be

past the end of the array. Unlike in many compiled languages, JavaScript always knows the

43

Vendor CPU lfence cycles

Intel

Broadwell 28
Skylake Client 20
Cascade Lake 15
Ice Lake Client 8
Ice Lake Server 13

AMD
Zen 48
Zen 2 4
Zen 3 30

Table 2.8: Cycles to execute a single lfence instruction on each machine. In real applications,
the cost will heavily depend on the other loads in flight.

lengths of arrays so this mitigation can be applied automatically to the generated assembly.

On the committed execution path the conditional move will always be a no-op (because

as a safe language JavaScript always does bounds checks), but in the speculative case it

blocks execution until the array length has resolved. Our measurements of the Octane 2

benchmark suite indicate this approach incurs a roughly 4% performance overhead on most

of the systems.

Object Mitigations Since JavaScript is dynamically typed, the compiler must insert

many runtime checks on the types of variables. This presents another possible avenue

for Spectre V1 attacks, because mis-speculating an object’s type can cause its fields to be

misinterpreted, potentially resulting in out of bounds memory reads. The mitigation is

similar to index masking: object guards insert a conditional move that zeros out the object

pointer if the check fails. This mitigation incurs an overhead on Octane 2 on the order of

6% on the tested processors.

44

2.3.5 Speculative Store Bypass

Broadwell Skylake
Client

Cascade
Lake

Ice Lake
Client

Ice Lake
Server

Intel

0

5

10

15

20

25

30

35

Sl
ow

do
wn

 (%
)

Zen Zen 2 Zen 3

AMD

 swaptions
 facesim
 bodytrack

Figure 2.5: The slowdown caused by Speculative Store Bypass Disable on three benchmarks
from the PARSEC suite.

Speculative Store Bypass exploits the processor’s store-to-load forwarding to enable

an attacker to learn the contents of recently written memory locations. The only available

defense against the attack is to enable a processor mode called Speculative Store Bypass

Disable (SSBD) that blocks this forwarding. A downside is that this can come at substantial

cost, even when normal non-malicious code is being run.

The compromise reached by the Linux developers was to enable SSBD only for pro-

45

cesses which opted into it via its prctl or seccomp interfaces. To see the full impact of

this mitigation if enabled all the time, we measured the slowdown it causes to the swaptions

benchmark from PARSEC. Figure 2.5 shows that the slowdown can be as much as 34%,

and is trending worse over time. It isn’t entirely clear why this would be the case, but it

may be related to newer processors have a more complete SSBD implementation compared

to what was possible via microcode patches. These overheads are especially considerable

given that the combined impact of all default mitigations for this benchmarks is well under

one percent (§2.2.5).

2.3.6 L1 Terminal Fault

One other attack worth mentioning is L1 Terminal Fault, which can leak the entire contents

of the L1 cache when page tables contain PTEs with certain bit patterns. Linux avoids ever

creating such PTEs, which can be done with essentially no overhead. This is consistent

with it not showing up in our end-to-end performance study earlier.

However, the problem is more severe when virtual machines are involved because an

untrusted guest operating system could insert such specially crafted PTEs into its own page

table. Doing so would enable it to learn L1 cache contents lingering from memory accesses

done by the host. The necessary mitigation on vulnerable processors is for the host to flush

the L1 cache prior to entering a guest virtual machine.

Our benchmarking of virtual machine workloads did not show any measurable impact

from enabling this mitigation and it has also been patched on newer processors, so the

relevance should be minimal going forward.

46

2.3.7 Other attacks

The attacks discussed so far are hardly the only transient execution attacks discovered.

Many others like System Register Read, and so forth have commanded significant time and

attention for computer architects, operating system developers, and security researchers.

However, the cost they incur on workloads today seems to be minimal, so we skip evaluating

them individually.

2.4 Analysis of Hardware Spectre V2 Mitigations

For nearly all the attacks we’ve looked at so far, either the mitigation approach has remained

the same across all the processor generations we’ve studied, or it has gone from an expensive

software mitigation to a hardware fix with no measurable cost at all. Spectre V2 notably

does not follow this trajectory. It has a multitude of hardware and software mitigations,

yet remains a non-trivial expense on every CPU we’ve tested. In this section we attempt

to understand the attack better by determining under which conditions the Branch Target

Buffer is used to speculatively execute instructions and when it is not.

47

1 void victim_target() {
2 int c = 12345 / 6789;
3 }
4 void nop_target() { /* do nothing */ }
5 void(*target)();
6

7 void test() {
8 // configure performance counter to measure
9 // whether the divider is active

10 configure_pmc(ARITH_DIVIDER_ACTIVE);
11

12 // train the branch target buffer
13 target = victim_target;
14 for (int i = 0; i < 1024; i++)
15 divide_happened();
16

17 // potentially overwrite the entry
18 ...
19

20 // measure whether the trained entry is jumped
21 // to speculatively
22 target = nop_target;
23 if (divide_happened())
24 printf("victim_target ran speculatively!");
25 }
26

27 bool divide_happened() {
28 // fill branch history buffer
29 for (int i = 0; i < 128; i++) {}
30

31 // flush branch target from cache
32 clflush(target);
33

34 // read performance counter
35 int start = rdpmc();
36

37 // perform the indirect branch
38 (*target)();
39

40 // see whether performance counter changed
41 return rdpmc() > start;
42 }

Figure 2.6: Sketch of our approach. The test function prints whether it was able to poison
the branch target buffer to route speculative execution to victim_target.

48

2.4.1 Measuring Speculation

To understand when CPUs speculatively execute instructions, we need a method to deter-

mine what instructions are being speculatively executed by the CPU. Bölük [8] describes a

technique using performance counters to determine whether a processor starts speculatively

executing at a given address, which we adopt to probe the behavior of the Branch Target

Buffer, as explained next.

Processor performance counters are specific to an individual generation of CPU and

provide detailed information about microarchitectural events. All our processors have a

performance counter to measure the number of cycles that the divider is active, and some

also have a dedicated performance counter to indicate the number of mispredicted indirect

branches. By reading one of these counters before and after a block of instructions, we can

tell whether executing that code triggered any of the relevant operations.

Figure 2.6 sketches out how we use this method to know whether code at a specific target

location was executed speculatively. We execute indirect branches that may potentially be

mispredicted as targeting a specially constructed landing pad, and see whether we measure

any use of the divider corresponding to executing instructions at landing pad. Care has to

be taken to ensure no divide instructions are executed by the committed execution trace.

Interestingly, we sometimes observed mispredicted indirect branches without any divide

instructions being performed, which we interpret as the processor speculatively executing

instructions at a different location than the one we attempted to poison the branch target

buffer with. For this reason, we focus on the performance counter for cycles with the

divider active even when both are available.

Prior work discovered that for a Spectre V2 attack, only some bits of the virtual and

49

physical addresses have to match between the victim and attacker. However, to maximize

the chance of success, we ensure all 64 bits match by sharing the same page of memory

between the victim and attacker.

2.4.2 Results

With intervening system call No system call
Vendor CPU u→k u→u k→k u→u k→k

Intel

Broadwell ✓ ✓ ✓ ✓ ✓
Skylake Client ✓ ✓ ✓ ✓ ✓
Cascade Lake ✓ ✓ ✓ ✓
Ice Lake Client ✓ ✓ ✓ ✓
Ice Lake Server ✓ ✓ ✓ ✓

AMD
Zen ✓ ✓ ✓ ✓ ✓
Zen 2 ✓ ✓ ✓ ✓ ✓
Zen 3

Table 2.9: Whether the processor will speculatively execute an indirect branch in the
given configuration when IBRS is disabled. A checkmark in column X→Y indicates that
training the branch target buffer in mode X is able to control the target of a subsequent
victim indirect branch in mode Y, either with or without an intervening syscall and/or
sysret instruction between them.

Table 2.9 and Table 2.10 show the results produced using this methodology. The

columns indicate the mode that the attacker and victim run in respectively (e.g., u→k is the

classic configuration of a user-space attacker trying to misdirect a victim running in kernel

space). We also indicate the presence of an intervening syscall instruction.

Not shown in that figure, we also attempted to run the attacker in kernel mode and the

victim in user mode. This is not reflective of a real world attack scenario, but it revealed

that the same attacks processors vulnerable to the user→kernel version were vulnerable to

50

With intervening system call No system call
Vendor CPU u→k u→u k→k u→u k→k

Intel

Broadwell
Skylake Client
Cascade Lake ✓ ✓ ✓ ✓
Ice Lake Client ✓ ✓
Ice Lake Server ✓ ✓ ✓ ✓

AMD
Zen N/A N/A N/A N/A N/A

Zen 2
Zen 3

Table 2.10: Same as Table 2.9 but with IBRS enabled. IBRS always prevents problematic
cases like u→k, but on many processors blocks all speculation including predicting the
target of userspace indirect branches based on prior branches done by the same process
(u→u).

a kernel→user attack.

One final note is that we did not manage to poison the branch target buffer at all on our

Zen 3 processor. We suspect this isn’t because it is immune to the attack, but rather due to

some change to the Branch History Buffer (used to compute the index for the branch target

buffer) or another implementation detail that experiments did not account for.

Indirect Branch Restricted Speculation Recall that the original version of Indirect

Branch Restricted Speculation (IBRS) was the first mitigation proposed for Spectre V2 but

is not used by default on any production operating system because it requires an expensive

write to a model-specific register on every entry into the kernel.

According to Intel documentation [26], this mitigation prevents indirect branches

executed from less privileged modes from impacting the predicted destination of indirect

branches in more privileged modes. We experimentally validated this claim by poisoning

51

the branch target buffer and then seeing whether the processor would speculatively jump

to the programmed branch destination. Our measurements indicated that toggling this

mitigation caused the user space code to be unable to redirect kernel execution. However,

subsequent experiments (reported in Table 2.10) revealed that IBRS was disabling all

indirect branch prediction both in user space and kernel space. Not having this prediction

even for user processes incurs a high performance cost.

Enhanced IBRS (eIBRS) Enhanced IBRS provides the same guarantees as the original

IBRS but doesn’t require an MSR write on every kernel entry. Given the lackluster

performance of IBRS compared to retpolines, that may not seem promising, but the presence

of this feature signals more serious mitigations built into the hardware. In particular, eIBRS

does not disrupt indirect branch prediction at the same privilege level. When it is available,

Linux by default uses eIBRS instead of retpolines.

As seen in Table 2.10, Cascade Lake and the two Ice Lake processors (the microarchic-

tures that support eIBRS) both do indirect branch prediction only based on prior indirect

branches executed in the same privilege mode. We speculate this is achieved by using a

branch target buffer that is either partitioned or tagged using a bit indicating the current

privilege mode.

When running with eIBRS enabled, we have observed that kernel entries (caused by

page faults, the syscall instruction, etc.) having bimodal performance. Most times they

take a similar number of cycles (on the order of 70 cycles), but one in every 8 to 20 or so

entries they take an additional 210 cycles. On the same processor, when running without

eIBRS the time is always 70 cycles.

We have been unable to fully determine what is causing this behavior, but a few

52

patterns have emerged. Under some conditions, the slow system calls will happen exactly

every eight times, meanwhile at other times the processor will go long stretches without

any slow syscalls. Additionally, we have sometimes observed behavior consistent with

the branch target buffer being flushed only during slow kernel entries: poisoning the

branch target buffer in the kernel prior to a system call causes misprediction of subsequent

indirect branches in kernel mode only if the intervening kernel entry was fast. Monitoring

performance counters reveal that slow system calls involve both executing more micro ops

and more cycles spent stalling, but do not provide a clear hint of what those additional

micro ops are doing.

2.4.3 Takeaways

The original IBRS design not only added substantial overhead to every kernel entry, it also

blocked indirect branch speculation everywhere. eIBRS improves on this by seemingly

partitioning or tagging the branch target buffer based on the CPU privilege mode.

Partitioning or tagging the branch target buffer however is not a complete mitigation

for Spectre V2. User processes still need their own defenses and even within the kernel

indirect branches executed by the operating system could be used to mistrain the branch

target buffer to misdirect subsequent operating system indirect branches.

We suspect that the designers of eIBRS may have been aware of this risk and taken

precautions against it. The documentation for eIBRS doesn’t make any promises, but

the slow kernel entries suggest that additional work is happening in connection with the

feature.

53

2.5 Discussion

2.5.1 Spectre V1

One takeaway from the previous sections is the continued impact of Spectre V1. There are

no hardware mitigations available for the attack in high performance commercial CPUs.

And yet, despite being among the first transient execution attacks discovered, it still presents

a significant—and largely unchanging—overhead when mitigated in software.

Because Spectre V1 mitigations are specifically applied by JIT engines doing code

generation, they also may present a unique opportunity for computer architects. The

JIT annotates each vulnerable gadget with a leading cmov instruction. This pattern of a

conditional move followed by a load instruction could be detected by hardware to trigger

special handling.

Even if this approach proves unworkable, that doesn’t rule out hardware acceleration

for Spectre V1 mitigations. JIT engines generate code on the fly based on the processor

they are running on, which means that unlike native applications, the author of a given

JavaScript application doesn’t need to be involved in porting/recompiling it to leverage a

new ISA extension. And since current web browsers generally receive new updates on a six

week release cycle, any new hardware could be leveraged quickly.

2.5.2 Speculative Store Bypass

Speculative Store Bypass Disable was initially implemented in microcode, and while

we cannot tell whether more recent CPUs include actual hardware changes as well, the

performance overhead hasn’t improved. This attack in particular also emphasizes the need

54

to look at the performance impacts of transient execution attacks across representative

workloads. Despite being disabled by default, Speculative Store Bypass Disable incurs a

substantial overhead on JavaScript execution in web browsers—one of the most common

workloads run by end-users.

This may be changing however. Linux 5.16 released in January 2022 has a different

default configuration for Speculative Store Bypass. Going forward, processes that use

seccomp but do not specifically request SSBD will not have the mitigation enabled. This is

particularly notable because Firefox currently falls in that category. It remains to be seen

whether Mozilla will issue a patch to restore the old mitigation behavior, but if not, this

could be a signal that SSBD was never actually required in the first place.

Additionally, Intel’s inclusion of a hardware capability to detect whether a processor is

vulnerable to Speculative Store Bypass (without a way to toggle it) strongly suggests that

they believe future hardware will be able to prevent the attack with negligible overhead.

2.6 Summary

Our goal was to answer a number of questions, which we now revisit.

Which attacks have the greatest performance impact? We found that the primary im-

pact on current processors comes from mitigations for Spectre V1 and V2, and Speculative

Store Bypass. These are some of the earliest attacks discovered: the first two are described

in the first transient execution attack paper, and the third was discovered only a matter of

months later. On operating system intensive workloads, older Intel processors also incur

significant costs from Meltdown and MDS, but these have been resolved on the newest

55

models.

What drives the cost of mitigations for those attacks? Other than Indirect Branch

Prediction Barriers which address one component of Spectre V2, mitigations themselves

have not been getting substantially faster. The performance improvement for operating

system workloads can be explained by no longer needing many of the most expensive

mitigations.

What predictions can we make about mitigation overheads going forward? We

cannot know for sure, but there is reason to be optimistic. None of the attacks discovered in

the last several years show up as causing much performance impact and there is potential

that new CPUs may be able to mitigate Spectre V1 or Speculative Store Bypass with lower

overhead. If the recent change in Linux to use SSBD in fewer places is adopted broadly,

then a hardware mitigation for the latter attack may not even be required.

56

Chapter 3

Ward

To address the severe performance overhead associated with OS level mitigations on older

processors, we propose a new hardware/software contract, called the unmapped speculation

contract, or USC for short. The USC allows the OS kernel to significantly reduce the

overhead of mitigating a particular subset of transient execution attacks—namely, those that

leak arbitrary memory contents. The USC says that physical memory that is unmapped (i.e.,

physical memory that has no virtual address) cannot be accessed speculatively. Although

not specifically guaranteed by the x86 architecture, this property seems to be true even

on pre-2018 CPUs and thus provides a theoretical baseline for what information transient

execution attacks can leak on those processors. By bounding what data can be leaked, the

USC can significantly reduce the cost of mitigations.

We have evidence that most processor models already adhere to the USC. AMD states

that “AMD processors are designed to not speculate into memory that is not valid in the

current virtual address memory range defined by the software defined page tables” [1, pg.

57

2], and Intel issued hardware and microcode fixes for bugs that violate USC [29, 30].

To demonstrate the benefits of the unmapped speculation contract, this thesis presents

WARD, a novel kernel architecture that uses selective kernel memory mapping to avoid

the costs of transient execution mitigations. WARD maintains separate kernel memory

mappings for each process, and ensures that the memory mapped in the kernel of a process

does not contain any data that must be kept secret from that process. As a result, privilege

mode switches (e.g., system call entry and exit) no longer need to employ expensive

mitigations, since there are no secrets that could be leaked by transient execution. When

the WARD kernel must perform operations that require access to unmapped parts of kernel

memory, such as opening a shared file or context-switching between processes, it explicitly

changes kernel memory mappings, and invokes the same mitigation techniques used by the

Linux kernel today.

A key challenge in the WARD design lies in re-architecting the kernel and its data

structures to allow for per-process views of the kernel address space. For example, a

typical proc structure in the kernel contains sensitive fields, such as the saved registers

of that process, which should not be leaked to other processes. At the same time, every

process must be able to invoke the scheduler, which in turn may need to traverse the list

of proc structures on the run queue. We present several techniques to partition the kernel:

transparent switching of kernel address spaces when accessing sensitive pages through

page faults; using temporary mappings to access unmapped physical pages; splitting data

structures into public and private parts; etc.

To evaluate the WARD design, we applied it to the sv6 research kernel [16] running on

x86 processors. The sv6 kernel is a monolithic OS kernel written in C/C++, providing a

58

POSIX interface similar to (but far less sophisticated than) Linux. The simplicity of sv6

allowed us to quickly experiment with and iterate on WARD’s design, since some aspects

of WARD’s design require global changes to the entire kernel. Since sv6 is a monolithic

kernel, our prototype was able to tackle hard problems brought up by kernel services such

as a file system and a POSIX virtual memory system.

We evaluate the performance of our WARD prototype using LEBench [49]. On the

Broadwell CPU, WARD can run the LEBench microbenchmarks with small performance

overheads compared to a kernel without mitigations. For 18 out of the 30 LEBench

microbenchmarks, WARD’s performance is within 5% of the benchmark’s performance

without any mitigations (but at the cost of some extra memory overhead). In the worst

case, the overhead is 4.3× (context switching between processes, where mitigations are

unavoidable). In contrast, standard mitigations incur a median overhead of 19% with

a worst case of nearly 7×. To confirm that LEBench results translate into application

performance improvements, we measured the performance of git status, which incurs

11.2% overhead in WARD, compared to 24.6% with standard mitigations.

One of the limitations of USC is that it does not cover all possible transient execution

attacks. In particular, attacks where the sensitive information is already present in the

architectural or microarchitectural state of the CPU are not covered by USC. For instance,

the Spectre v3a attack can leak the sensitive contents of a system register (MSR), instead

of leaking sensitive data from memory. USC does not cover sensitive data that is stored

outside of memory, and WARD applies other mitigations (e.g., as in Linux) to address those

attacks.

59

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0

1

2

3
R

el
at

iv
e

ru
nt

im
e

Broadwell Server
Cascade Lake Server

Figure 3.1: Linux slowdown due to mitigations on LEBench, for two generations of Intel
CPUs: Broadwell and Cascade Lake.

3.1 Motivation

Transient execution mitigations harm kernel performance in two ways. First, they place

overhead on code execution by disabling speculation, like how the Linux kernel uses

retpolines to mitigate Spectre V2 [28]. Second, mitigations increase the privilege mode

switching cost incurred during each system call: upon entry into the kernel, they either flush

microarchitectural state or reconfigure protection mechanisms. For example, KPTI [21, 40]

switches to a separate page table before executing kernel code to prevent Meltdown [41].

As described before, workloads that are system call intensive (e.g., web servers, version

control systems, etc.) are impacted by this type of overhead, while compute-intensive

workloads see little performance impact.

Collectively, these and other mitigations can result in large slowdowns. To better under-

stand this problem, we revisit the LEBench [49] microbenchmark suite from earlier which

consists of system calls that impact application performance the most, this time examining

60

individual system calls instead of only the geometric mean over all of them. We evaluate the

Linux kernel (version 5.6.13), comparing two configurations: one where all mitigations are

disabled and one where all are enabled. Figure 3.1 shows the relative slowdown between

the two configurations for 13 kernel operations of LEBench that don’t involve networking

(i.e., without send, recv, epoll). There are two sets of bars, representing two generations

of Intel CPUs: the older Broadwell, and the newer Cascade Lake. On Broadwell, system

calls that perform the least kernel work are impacted the most (e.g., getpid), but a wide

range of operations are impacted significantly (25%-100% slowdowns). These observations

are similar to what we saw in §2.2.2 and to the observations made by Ren et. al. [49].

3.2 Goals

WARD’s goal is to reduce the performance cost of mitigations for transient execution attacks.

In principle, WARD’s techniques can reduce not only the cost of software mitigations, but

also allow processor designers to avoid mitigations in hardware. Practically, however,

WARD is most applicable to older Intel processors, which incur the largest costs on OS-level

mitigations.

Transient execution attacks can leak data across many protection domain boundaries,

including leaking secrets from the kernel to an adversary’s process, or leaking secrets

from one process to a different process, or even leaking secrets within a single process

that implements its own internal protection domains. Much like in the Linux kernel, the

focus of WARD is on preventing leakage between processes, as well as preventing leakage

from the kernel to a process. WARD’s approach to preventing cross-process leakage is the

61

same as Linux (flushing state), but WARD has a novel approach for efficiently preventing

kernel-to-process leakage of memory contents, as we describe in the next section.

Although WARD addresses all known transient execution attacks, the focus here is on

attacks that allow the adversary to leak the contents of arbitrary memory, which is especially

important in an OS kernel. WARD handles other transient execution attacks, such as leaking

the contents of sensitive data already present in the CPU (e.g., x86 MSRs), in the same way

as Linux does.

Attacks that do not leverage transient execution to leak data are also out of scope,

since they are orthogonal to the key challenge of transient execution leakage. In particular,

we do not consider attacks that leverage physical side channels (such as Rowhammer or

RAMbleed), cache side channels (such as cache timing attacks), interrupt side channels,

power side channels, etc.

3.3 Approach: Unmapped speculation contract

WARD’s design for mitigating transient execution attacks relies on page tables. Specifically,

if a page of physical memory is not referenced by any entry in the current page table or

TLB, speculative execution cannot access any sensitive data stored in that page, because

the page doesn’t have a virtual address to access it by.

A contribution of this thesis lies in articulating a hardware/software contract—which

we call the unmapped speculation contract—that captures the above intuition. The contract

aims to provide a strong foundation for keeping data confidential, which is typically stated

as non-interference. Non-interference can be thought of by considering two system states, s

62

and s′, that differ only in sensitive data, which should not be observable by an adversary. A

system ensures non-interference if an adversary cannot observe any differences in how the

system executes starting from either s or s′.

Single-core USC. To formally state the unmapped speculation contract, we start with a

single-core definition. We use A(·) to refer to the state of the CPU, including all architectural

and micro-architectural state, but excluding the contents of memory, and we use M(·) to

refer to the contents of mapped memory, i.e., the contents of every valid virtual address

based on the committed page table in that state. We define the contract by considering a

single clock cycle of the processor’s execution, step(·), which includes any speculative

execution done by the processor on that cycle, and require that unmapped pages cannot

influence it:

∀s,s′,

if A(s) = A(s′) and M(s) = M(s′),

then with S := step(s) and S′ := step(s′),

it must be that A(S) = A(S′)

In plain English, the definition considers a pair of starting states s and s′ that should

look the same, as far as speculative execution is concerned, because they have the same

CPU state and the same contents of mapped pages. They might, however, differ in the

contents of some unmapped physical pages, which contain sensitive data that we would like

to avoid leaking. The definition then considers the state of the CPU at the next clock cycle

(S := step(s) and S′ := step(s′) respectively), and requires that the CPU architectural and

micro-architectural state A(·), which the adversary might observe, continues to be the same

63

in those two states. As a result, the microarchitectural state could not have been influenced

by any sensitive data not present in M(s).

If the OS kernel does not change the mapped memory in that clock cycle, M(·) remains

the same, and the contract will continue to hold on the next cycle too. However, if the OS

kernel changes the mapped memory, the contract allows speculative execution from that

point on to use the newly mapped memory, and the kernel will need to use other mitigations

to defend against transient execution leaks from the newly mapped memory, if necessary.

The contract specifies how the micro-architectural state, A(·), can evolve, but does not

say anything about how M(·) can change. This is because the focus of the contract is on

transient execution, which cannot affect the committed architectural state of the system;

the contents of memory is described by the ISA, since it is architectural state. In other

words, changing the memory requires committing the execution of some instruction, at

which point this is no longer a transient execution.

Multi-core USC. In a multi-core setting, the CPU state can be thought of as consisting

of per-core state (e.g., registers, execution pipeline, and root page table pointer), which

we denote with Ai(·) for core i, and the uncore state (e.g., the hardware random number

generator [46]), which we denote with U(·), shared by all cores. Similarly, since each core

has its own page table, we index the mapped memory by the core i whose page tables we

are considering, Mi(·). Finally, we consider the multi-core system executing a clock cycle

on one core at a time, stepi(·). We assume that stepi(·) does not change A j(·) for any i ̸= j.

With this notation, the multi-core contract says:

∀s,s′, i,

64

if Ai(s) = Ai(s′);U(s) =U(s′); and Mi(s) = Mi(s′),

then with S := stepi(s) and S′ := stepi(s
′),

it must be that Ai(S) = Ai(S′) and U(S) =U(S′)

This means that speculative execution on core i is allowed to depend on the state of

core i, the uncore state, and the memory mapped by core i. This multi-core formulation

allows transient execution to affect both the core state Ai(·) as well as the uncore state U(·),

at the micro-architectural level. However, transient execution cannot affect either of these

states in a way that depends on unmapped memory.

Although hardware threads appear to provide separate execution contexts, with a

separate page table for each hardware thread, they have extensive sharing of core resources.

To capture that, we consider Ai(·) to include the state of all hardware threads on core i,

stepi(·) to include the execution of any hardware thread on core i, and Mi(·) to be the union

of memory mapped by all of the hardware threads on core i (i.e., the union of the page

tables of the threads). With this model, the contract allows leakage of mapped memory

across hardware threads.

Benefits of the USC. The contract helps reconcile security and performance of speculative

execution. It enables software to precisely specify what data can and cannot be used for

speculative execution, by configuring page tables. For example, if the mapped pages never

contain sensitive data, then no mitigations are needed to defend against transient execution

vulnerabilities. Finally, because OS developers expect page faults and TLB misses to be

quite expensive (compared to memory references), USC doesn’t change their performance

expectations: developers already have adapted their designs to avoid excessive page faults

65

or TLB invalidations.

AMD explicitly states in bold font that their “processors are designed to not speculate

into memory that is not valid in the current virtual address memory range defined by the

software defined page tables” [1, pg. 2]. Intel has no explicit position about this contract,

but it appears that they treat violations of this contract as bugs to be fixed in hardware or

microcode, as evidenced by their fixes for Meltdown and L1TF, described below.

USC and attacks. The contract captures a common pattern that emerges in many transient

execution attacks: an adversary can only leak micro-architectural state that is already

present on the CPU, as well as the contents of mapped memory, but not the contents of

memory that is not present in a page table. As one example, consider the MDS family

of attacks [12, 51, 57]. These attacks allow an adversary to trick the kernel into leaking

the contents of mapped memory, through careful orchestration of transient execution.

Linux prevents this class of attacks by clearing CPU buffers when crossing the user-kernel

boundary. This is needed because, when executing in kernel mode, all system memory is

mapped and therefore could be leaked through transient execution. The contract, however,

captures the fact that only mapped memory is at risk with this attack. This allows for a

more efficient mitigation of such attacks by avoiding kernel mappings of sensitive memory,

as we demonstrate with WARD

In contrast to the example of MDS attacks, which leak sensitive data from memory, the

USC does not help mitigate attacks that leak sensitive data already present in the CPU state.

For instance, the Spectre variant that leaks the contents of x86 MSRs (Spectre 3a) is not

precluded by the contract, since the sensitive data being leaked is not present in memory at

all. As a result, an OS kernel must apply other mitigations to deal with such attacks.

66

Attack Leaked state Mitigated Consistent
by USC with USC

Spectre variants

Memory

Yes Yes
Meltdown Yes Yes (depending on PTE contents)
MDS Yes Yes
PortSmash Yes Yes
L1TF Yes Yes (depending on PTE contents)

Spectre variants
Core state

No Yes
LazyFP No Yes
System reg. read No Yes

Spectre variants
Uncore state

No Yes
CrossTalk No Yes
SGAxe No Yes

Figure 3.2: Transient execution attacks categorized based on the state leaked by the attack.

More generally, the contract helps categorize existing attacks based on which part of

the system state they leak, as shown in Figure 3.2. For attacks that leak core or uncore state,

the contract has little to say in terms of how those attacks can be mitigated, as shown in the

“Mitigated by USC” column. As a result, WARD defends against these attacks much in the

same way as Linux. In contrast, for attacks that leak the contents of memory, the contract

gives a more efficient mitigation approach: simply avoid mapping memory that contains

sensitive data. This allows WARD to efficiently mitigate attacks such as some variants of

Spectre and MDS.

As shown in the “Consistent with USC” column, all of the attacks in Figure 3.2 are

consistent with the contract’s requirements on the underlying hardware. This is good in two

ways. First off, this means that none of the known attacks violate the contract, and thus, the

contract is a reasonable approach for mitigating transient execution attacks. Second, this

means that USC can mitigate the class of attacks that it covers—namely, attacks that leak

67

memory contents.

There are two special cases: Meltdown and L1TF. When originally discovered, these

attacks bypassed the page table protections and allowed an adversary to obtain the contents

of memory that was not mapped. Subsequent guidance clarified that the USC still holds in

these cases provided that software avoids certain bit patterns in page table entries. In both

of these cases, the hardware manufacturer (Intel) considered them to be hardware bugs, as

evidenced by the fact that both of them were fixed in subsequent CPU generations [29, 30],

as confirmed by Canella et al. [11].1

3.4 Design

Under the assumption of the unmapped speculation contract, this section describes how

WARD can reduce the cost of mitigations for system calls. §3.4.1 provides an overview

of WARD’s design with subsequent sections providing more detail about WARD’s switch

between protection domains (§3.4.2), about the mitigations used by WARD when mitiga-

tions are necessary (§3.4.3), WARD’s kernel text (§3.4.4), WARD’s memory management

modifications (§3.4.5), WARD’s process management split (§3.4.6), and WARD’s file system

split (§3.4.7).

68

Public

Stack Stack Stack

Stack Stack Stack

Private

No
miti-
gat-
ions

With
miti-
gat-
ions

No
miti-
gat-
ions

With
miti-
gat-
ions

Text

User
space

Kernel
space

Q1 K1 Q2K2

Figure 3.3: Overview of WARD’s address space layout with two processes (indicated by
the colors green and purple). Each process has a Q and K domain. Q domains have access
to public data (the grey color) and per-process kernel data; the white private region is
unmapped kernel data. Each domain also has its own stack and kernel text. In the Q domain,
the kernel text has no mitigations. The K domains map all memory, including sensitive
memory (indicated by red); all K domains have the same memory layout. Data structures
that are shared across processes, such as pipes or file pages, can be mapped in multiple Q
domains, as indicated by the yellow color.

3.4.1 Overview

WARD’s design maintains two page tables per process. One page table defines a process-

specific view of kernel memory. When a process is running with that page table, we say

1Canella et al. state that some variants of the Meltdown attack, such as Meltdown-BR, are still possible
even with the most recent microcode. Those variants, however, are bypassing software checks, rather than the
hardware page table, and therefore do not violate the unmapped speculation contract.

69

it is running in its quasi-visible domain (or Q domain for short), and with its Q page

table. Following the unmapped speculation contract, WARD assumes any kernel memory

mapped by the Q page table can be leaked to the currently running process. Instead of using

mitigations to prevent leaks of kernel memory, WARD arranges for the mappings in the Q

page table to be such that they contain no sensitive data of other processes.

When the process needs to access data that is not mapped in the Q page table, it can

switch to its other page table, which maps all physical memory, including memory that

contains sensitive data. When a process is running with this page table, we say the process

is executing in its K domain with its K page table. In its K domain, the process runs with

the same mitigations as Linux currently uses.

This design allows many system calls to execute in the Q domain, with no mitigation

overhead. As a simple example, getpid does not access any sensitive data; it needs access

to only the kernel text and its own process structure. A more interesting example is mapping

anonymous memory: this requires access to the process’s own page table and to the memory

allocator, but not other processes’ page tables or pages.

Figure 3.3 shows the address space layout in WARD in more detail. Each process

has a Q and K view of memory. When a process is running in user space it runs in its

Q domain (with no secrets mapped in the Q page table). When a user process makes a

system call it enters the kernel but stays in its Q domain. The Q domain maps public

kernel memory, Q-visible kernel memory, the process’s Q domain stack, and the kernel text

without mitigations.

If a system call needs access to memory in the K domain, WARD performs a switch

from its Q domain to its K domain. We refer to the switch from a Q domain to a K domain

70

as a world switch, because kernel code in a Q domain runs without most mitigations and the

kernel code in the K domain runs with full mitigations. Furthermore, the process switches

from its Q domain stack to its K domain stack. The K domain, with access to all kernel

memory, can then execute the rest of the system call with full mitigations.

Achieving good performance in WARD depends on avoiding world switches. To reduce

the number of world switches, WARD maps kernel data structures that contain no sensitive

data into every Q domain. For example, all Q domains map x86 configuration tables (IDT,

GDT), some memory allocator state, etc. On the other hand, kernel data structures that

contain application data, such as process memory or saved register state, are not mapped

into Q domains unless that process should have access to that data.

3.4.2 World switch

One of the challenges in WARD’s design is that a system call often does not know upfront

whether it will need to execute in the Q domain or in the K domain. For example, a

read system call might be able to execute purely in the Q domain, or might need access

to sensitive data from the K domain, depending on the file descriptor that the process is

reading from, and depending on whether this Q domain already has some sensitive data

mapped or not. To support this, WARD’s design allows a system call to start executing in

the Q domain, and switch to the K domain later as needed.

WARD allows the Q domain to trigger a world switch either intentionally or transpar-

ently. If the code determines that it must switch to the K domain, it can intentionally invoke

the function, kswitch(), to perform a world switch. When kswitch() returns, the kernel

thread is now executing in the K domain, and has access to all memory. If the Q domain

71

needs access to specific sensitive data which might or might not be already mapped, the Q

domain can attempt to access the virtual address of that data. If the data is already mapped

in the Q domain, the access will succeed, no world switch happens, and the Q domain can

continue executing. If the data is not mapped, the Q domain triggers a page fault, which

transparently triggers a world switch. Once the page fault returns, the kernel thread is now

executing in the K domain, as if it called kswitch(). Compared to making an intentional

call to kswitch(), the transparent approach incurs a slight overhead for executing the

page fault, but allows large sections of the kernel to be kept completely unmodified, and

allows the Q domain to elide a world switch altogether if the data is already mapped in the

Q domain.

The above design requires that a kernel thread can start executing in the Q domain and

transparently switch to executing in the K domain. This means that any addresses that

the kernel thread is referencing, including pointers to data structures, stack addresses, and

function pointers, remain the same. To achieve this, WARD ensures that the layout of the Q

domain and the K domain match. In particular, all data structures in the Q domain must

appear at the same address in the K domain, and the kernel code (text) is located at the

same address (even though the code is slightly different, as described in §3.4.4).

The stack requires particular care because a kernel thread that is processing sensitive

data in the K domain could inadvertently write that data to the stack. For example, a read()

system call from /dev/random needs to switch to the K domain to access the system-wide

randomness pool. However, the pseudo-random generator code might spill some of its

state to the stack, depending on the compiler’s choices. If the stack is accessible from

the Q domain, the sensitive data could in turn be leaked during the next entry into the Q

72

Transient execution vulnerability User/Q domain K domain Context Switch

L1TF x x

Spectre V1 x
Bounds Check Bypass Store x
Meltdown x
Speculative Store Bypass x

Spectre V2 x x
Microarchitectural Data Sampling x x

(Fallout, RIDL, Zombie Load, etc.)

LazyFP x
SpectreRSB x

PortSmash Not applicable
Load Value Injection Not applicable
Meltdown-PK (protection key bypass) Not applicable
Meltdown-BR (bounds check instr. bypass) Not applicable
Read-only Protection Bypass Not applicable

Figure 3.4: The mitigations implemented in software by WARD.

domain by any thread within the same process. At the same time, if the K domain stack was

separate from the Q domain stack, pointers to stack locations before a world switch would

no longer work after a world switch. To reconcile these constraints without having to rely

on any dedicated compiler support, WARD maps a distinct kernel stack for each domain at

the virtual address range and copies the Q domain stack contents to the K domain stack

during a world switch.

3.4.3 Mitigations

Figure 3.4 shows the known transient execution attacks [11, 22], organized by the mitiga-

tions needed to address those attacks in WARD’s design. The columns indicate where the

mitigations are needed: while executing in user-mode or the Q domain; while executing in

73

the K domain; and when context-switching between processes.

The L1TF attack allows leaking the contents of the L1 cache if there are partially-filled-

in entries in the page table. We think of this attack as a violation of the USC (see Figure 3.2),

but a simple microcode fix, as well as clearing unused page table entries, makes the system

agree with the USC, and avoids the L1TF attack. Since L1TF allows leaking the contents

of any data, WARD applies the mitigations both in user-space, Q domain, and K domain.

The next category of attacks requires no mitigations in either user-space or Q domain.

Specifically, Spectre variants that bypass bounds checks require mitigation in the K domain,

since there is sensitive memory contents that could be leaked as a result of a speculative

check bypass. However, there is no sensitive data that can be leaked in the Q domain, owing

to USC. Similarly, no mitigations are required on a context switch, since these attacks can

only leak data from the current protection domain.

Meltdown also falls in this category, but for a different reason. Meltdown allows an

adversary to bypass the user-kernel boundary check in the page table. WARD’s use of

a separate page table for the Q and K domains ensures that Meltdown cannot leak any

confidential data, since no confidential data is available in the Q domain. Recent fixes from

Intel resolve the Meltdown attack in a way that avoids the need for software mitigations.

The next category of attacks require mitigation both in the K domain and on context

switch. Both Spectre V2 and MDS can allow an adversary to obtain sensitive data either

from the OS kernel or from another process. However, no mitigations for these attacks are

needed in the Q domain due to USC: there is no sensitive data to leak in the Q domain of

the currently running process.

For some attacks, such as LazyFP and SpectreRSB, mitigations are only required on

74

context switch, because the attacks involve process-to-process leakage.

Finally, a number of attacks are not applicable to WARD’s simpler design, in contrast

to Linux. For example, WARD does not support SGX, does not support running virtual

machines, and does not use certain hardware features (such as hardware bounds-check

instructions or protection keys).

3.4.4 Kernel text

Some of the mitigations involve changes to the executable kernel code (text), such as the

use of retpolines in place of indirect jumps. These mitigations impose a performance cost,

but they are not needed when executing in the Q domain.

A naïve approach might be to compile the kernel code twice, with different compiler

flags for mitigations, and load the two different kernel binaries in the Q and K domains

respectively. However, this would break WARD’s page fault triggered world switches

because after completing the switch, execution would resume with the same instruction

pointer and stack contents from before the switch but neither would be meaningful in the

new text segment.

Instead we need the two version to have matching instruction addresses and stack

layouts. WARD achieves this by compiling the kernel only once, but then making two

copies of the code at runtime. One copy is mapped into all the K domains, and the other

into all the Q domains but at the same virtual address as in the K domains. Switching

between the two is seamless.

At boot time, in a process inspired by Linux’s ALTERNATIVE macro [17], WARD

locates each call or jmp in the Q text segment pointing to a retpoline thunk, and replaces

75

them with the instruction that retpoline emulates. One complication is that indirect call

instructions are only 2 or 3 bytes, compared to the 5 that a direct call instruction takes. If

we tried to pad with a NOP instruction before or after, the pair would not execute atomically,

so instead we prepend indirect calls with several repetitions of the CS-segment-override

prefix, which is always ignored in 64-bit mode.

3.4.5 Memory management

Memory allocation in WARD is complicated by the fact that the contents of free pages may

contain sensitive data. In particular, if a page was freed by one process, its contents must

be erased before the page can be mapped in another Q domain. Zeroing out pages on every

allocation would be costly, in particular when allocating kernel data structures, which do

not otherwise require the memory to be zero-filled.

To avoid the overhead of repeatedly zeroing kernel pages, WARD implements a sharded

allocator for kernel memory. Each Q domain has its own pool of pages for allocation, and

the K domain keeps all of the kernel memory that is not part of any Q domain. WARD

transfers memory between these shards in batches to amortize the world switch overhead.

Keeping a pool of kernel memory in a Q domain allows the kernel to repeatedly allocate

and free memory within a Q domain with little overhead.

The other category of memory managed specially by WARD is public memory. WARD

maintains a single pool of public pages, with separate functions, palloc() and pfree(),

for allocating and freeing in that pool. All public-pool pages are mapped in every Q domain.

76

3.4.6 Process management

When the WARD kernel switches from executing one process to another, it must perform a

world switch, to ensure that confidential data does not leak across processes (such as the

saved CPU registers that the kernel might keep on the stack). However, if a multi-threaded

application is running, there is no security reason to perform a world switch when switching

between multiple threads in the same process—all of the threads have the same privileges

and have access to the same process address space.

To avoid mitigation overhead when switching between threads in the same process,

WARD splits the process descriptor, struct proc, into two parts. The first part stores

sensitive process state, such as the saved CPU registers, and is not public. The second

part stores metadata about the process, such as the PID, the run queue, the scheduler state,

etc. This part is public and is used by the scheduler when deciding what thread to execute

next. As a result, the scheduler can pick the next thread without incurring a world switch.

Furthermore, if the next thread happens to be from the same process, the context switch

code can also avoid performing a world switch. Existing scheduler policies that favor

picking threads from the same process mesh well with this approach.

3.4.7 File system

File system workloads involve access to several kernel data structures, including the inode

cache and the page cache (containing file data). Inodes are challenging for WARD to deal

with because they are smaller than a page, so it is not feasible to map them individually

into a Q domain. However, achieving good performance for file system operations requires

being able to access an inode without a world switch. To reconcile this conflict, we chose

77

to make all inode structures public in WARD, similar to our approach for splitting the proc

structure above. If the inode had sensitive data (such as extended attributes), that part of the

inode structure would need to be split off into a separate private structure, along the lines of

how we split off the part of the proc structure storing saved CPU registers.

File data pages are not public, because their contents might be sensitive. WARD

implements an optimization that allows it to access file contents without a world switch. In

particular, after WARD checks the permissions on a file, it reads or writes the contents of a

file page by temporarily mapping the corresponding physical page of memory into its Q

domain’s address space. This allows the Q domain to access that specific memory page

without the risk of leaking other pages; as a result, no mitigations or world switches are

needed. When the Q domain is finished with the file read or write, it unmaps the page and

issues a TLB shootdown, in case the file is later truncated and the page gets reused for other

data.

3.4.8 Pipes

Pipes are different from many of the other kernel data structures discussed so far in that

their contents shouldn’t be visible globally, but their state can be associated with multiple

processes at a time. WARD’s goal is to ensure that if a reader and writer of a pipe run on

different cores, then they don’t incur world switches when they access the pipe. To achieve

this, we store a pipe’s data structures in shared memory regions between Q domains. These

shared regions are lazily mapped into Q domains the first time a process accesses a pipe

(doing the mapping on fork would cause unnecessary overhead), and unmapped when the

last reference to the pipe within a Q domain is closed.

78

When a pipe becomes full or empty, the caller blocks on a condition variable. Sub-

sequent reads or writes can observe which processes are blocked and add them to the

scheduler run queue if appropriate. Neither of these operations requires access to any secret

data so no world switch is triggered until a new process is scheduled. Thus, if the core

remains idle until the blocking thread is added back to the run queue, the cost of a world

switch is avoided.

3.4.9 Discussion

WARD’s design assumes that there are no secrets in the Q domain that need to be hidden

from the user-level process. For many secrets, they can be protected by placing them in

the K domain, such as the seed of a system-wide randomness generator. However, address-

space layout randomization (ASLR) for the kernel address space is difficult to protect in

this fashion, because kernel addresses must be used in the Q domain, and the addresses

must match up between the Q domain and the K domain in order for world switches to

work. (Note that the initial seed that is used to randomize layout could be protected in the K

domain, but the resulting randomized layout cannot be protected.) As a result, kernel ASLR

in WARD is susceptible to leakage of addresses through transient execution side-channels.

Our WARD prototype does not include an optimized in-kernel network stack, but a

reasonable approach might be to treat all network data as public, leaving it up to the

application to encrypt any sensitive information sent over the network. This meshes well

with the recent trends in widespread use of TLS for network security, and allows for network

operations to achieve high performance in WARD because no mitigations or world switches

are required, and all network processing can stay in the Q domain.

79

Transient execution variant Strategy Support

Spectre V1 bounds clipping partial
Bounds Check Bypass Store lfence partial
Read-only Protection Bypass lfence n/a (no kernel sandbox)
Spectre V2 retpoline yes

" speculation barrier yes
" return stack buffer filling yes
" set IBRS before BIOS call n/a (no BIOS calls)

Meltdown Kernel page table isolation yes
System Register Read microcode yes
Speculative Store Bypass disable spec. or ctx. switch yes
LazyFP hardware FP save/restore yes
SpectreRSB return stack buffer filling yes
L1TF cache flush, no SMT n/a (no VM entry)

" no invalid PTEs yes
PortSmash no SMT no
Microarchitectural Data Sampling CPU buffer clearing yes
(Fallout, RIDL, Zombie Load, etc.) no SMT no
Load Value Injection lfence n/a (no SGX in WARD)
Meltdown-PK (protection key bypass) address space isolation n/a (no protection keys)
Meltdown-BR (bounds check instr.) lfence n/a (no MPX instrs.)

Figure 3.5: Transient execution mitigations implemented in WARD.

Hyperthreading is a source of many possible transient execution leaks, because a

significant amount of microarchitectural state is shared between the execution contexts.

However, many Linux systems continue to run with hyperthreading enabled, despite these

risks, because of the high performance overhead they would incur if hyperthreading was

entirely disabled. WARD does the same.

3.5 Implementation

To demonstrate the feasibility of the WARD design, we implemented a prototype of WARD

starting from the sv6 research kernel. The kernel is monolithic, implementing traditional

80

OS services such as virtual memory, processes and threads, file systems, fine-grained

concurrency using RCU-like techniques, etc. The sv6 kernel, is written in C/C++, runs on

x86 processors (both AMD and Intel), and has decent uniprocessor performance and great

multicore performance and scalability [16].

Kernel changes. WARD’s design affects most core kernel subsystems, including the

memory allocator, virtual memory, context switching and the scheduler, and the file system.

The simplicity of sv6 allowed for rapid experimentation with kernel designs to enable

WARD, which would have been challenging to do in a more complex kernel like Linux,

since it is time-consuming to make changes to core subsystems in the Linux kernel, which

would have made design iterations far slower.

To help partition the kernel data structures across Q domains, we developed Warden, a

tool for tracking down the cause of world switches. Warden instruments page faults from the

Q domain that lead to a world switch, and records a stack trace for each of them. Examining

the profile of these world switches allows the kernel developer to quickly understand what

kernel data structures need to be partitioned or sharded to reduce the number of world

switches, as well as the operations that need to be supported on these data structures within

a Q domain. Although Warden identifies the data structures that are causing world switches,

it is up to the kernel developer to identify an appropriate plan for partitioning the data

structure so that no sensitive data can leak through side channels.

To run applications on top of the WARD prototype kernel, we changed the WARD

system call interface, including system call numbers, data structure layout, etc, to match

that of Linux. This allows unmodified Linux ELF executables to run on top of WARD, and

ensures that WARD implements (a subset of) the same system calls that are available on

81

Linux.

We modified sv6 to use PCIDs to reduce the cost of switching page tables (see §3.4.2).

To improve TLB shootdown performance, we modified sv6 to use Linux’s shootdown

strategy. This is important, for example, for removing temporary mappings in a read and

write systems calls (see §3.4.7).

Mitigations. WARD implements side-channel mitigations for known transient execution

attacks [11, 22], as shown in Figure 3.5. WARD mostly copies the mitigation strategies

and their implementation from the Linux kernel [39]; the most interesting exception is

that WARD does not apply some of these mitigations to the Q domain, as described in

Figure 3.4.

For Spectre V1, WARD, adds an lfence instruction when copying from user code, and

when taking an interrupt, exception, and NMI entry. WARD uses bounds clipping in fewer

cases than Linux for two reasons: WARD has less code and we haven’t performed a careful

audit of the complete source code. For Spectre V2, we compile WARD to use retpolines

(by specifying the “-mretpoline-external-thunk” flag to clang). WARD also uses Linux’s

FILL_RETURN_BUFFER macro to fill the return stack buffer, and issues an indirect branch

predictor barrier IBPB instruction on a context switch. For Meltdown, WARD uses separate

page tables (as described in §3.4.1) and uses process-context identifiers (PCIDs) to avoid

TLB flushes.

For Spectre V4, WARD issues an lfence on context switch. (If WARD supported

generating code at runtime, the JITs would also have to be hardened.) For LazyFP, WARD

uses the xsaveopt instruction to safe/restore floating point state. For SpectreRSB, WARD

fills the return stack buffer on context switch. For L1TF, WARD avoids invalid PTEs. Like

82

Linux, WARD doesn’t address PortSmash; the default for the Linux kernel is to allow SMT,

and WARD does too. For microarchitectural data sampling attacks, WARD issues the verw

instruction for clearing CPU buffers.

Some attacks aren’t applicable to WARD, because WARD doesn’t support virtualization,

secure enclaves, and hardware transactional memory; does not call into the BIOS; and does

not implement in-kernel software sandboxes such as BPF.

Like Linux, WARD also zeroes unused CPU registers on kernel entry, to reduce the

avenues of attack available to an adversary. To determine whether mitigations are necessary,

WARD maintains a special variable called secrets_mapped whose value is 0 in the Q

domain and 1 in the K domain; this allows the rest of the kernel code to determine if it needs

to perform mitigations just by using if (secrets_mapped) ... (as long as interrupts

are disabled, to avoid races). To help evaluate the performance impact of side-channel

mitigations, WARD’s implementation allows switching individual mitigations on and off at

runtime, rather than at compile time or boot time.

To improve performance, a few system calls invoke the world switch intentionally to

avoid the extra overhead of a transparent world switch. For example, open, and fork

always invoke world switch intentionally. The read and write system calls invoke a world

switch intentionally when they are reading or writing large amounts of data, since the cost

of a world switch is less than the cost of shooting down the temporary mappings for that

many file pages. A page fault on a Copy-On-Write (COW) page also intentionally invokes

a world switch.

Lines of code. The WARD prototype consists of about 34,000 lines of C++ code (for

kernel/ and include/), compared to 24,000 lines of C++ code for the sv6 kernel that

83

WARD was derived from. git diff –stat reports roughly 17,000 lines of insertions

and 5,000 lines of deletions between sv6 and WARD. It is difficult to further break down

WARD’s lines of code, since many aspects of WARD’s design required small changes

throughout the kernel’s source code. For example, splitting up the kernel memory allocator

required the use of C++ placement new in many parts of the kernel. Similarly, implementing

the Linux binary compatibility layer required making changes to the implementation of

many system calls.

3.6 Evaluation

To demonstrate the benefits of WARD’s design, this section answers the following questions:

• Do WARD’s techniques reduce the overhead of mitigations for system calls? (§3.6.2)

• How do mitigations affect the cost of a world switch? (§3.6.3)

• What are the memory overhead associated with WARD’s design? (§3.6.4)

3.6.1 Experimental methodology

To answer these questions, we consider three different configurations of WARD:

• Baseline: WARD with no mitigations against transient execution attacks.

• Linux-style: WARD with standard mitigations against transient execution attacks,

mirroring the approach taken by the Linux kernel. This configuration does not use

separate Q domains; all system calls directly enter the K domain.

84

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0

1

2

3

4

5
R

el
at

iv
e

ru
nt

im
e

Linux-style Mitigations
USC-based Mitigations

Figure 3.6: Performance of WARD with fast USC-based mitigations and with Linux-style
mitigations, normalized against the baseline performance of WARD without any mitigations.

• USC-based: WARD with fast mitigations that take advantage of the split between the

Q domain and the K domain, leveraging the USC. The K domain implements the

same mitigations as in Linux-style.

WARD’s design is aimed at reducing the overhead of mitigations associated with system

calls. To zoom in on the system call overhead, we evaluate WARD’s performance using

LEBench [49]. This allows us to precisely report and explain the effect of WARD’s tech-

niques on individual system calls. We don’t report results for the networking benchmarks

in LEBench, because the WARD prototype doesn’t have a suitable in-kernel network stack.

All benchmarks were run on a Dell PowerEdge T430 with two E5-2640 v4 CPUs and

64 GB of RAM.

One potential concern with the use of recent microcode is that it makes the baseline

slower, which in turn makes the cost of mitigations appear lower than they really are.

85

This is similar to the significant effect we observed with newer CPUs, as described in

§3.1. However, with newer microcode, we find that the performance of the baseline is not

significantly affected: it achieves similar performance even when we use old microcode. The

reason for this is that the recent microcode updates add mitigations that can be specifically

enabled (e.g., through the SPEC_CTRL MSR), but almost nothing is enabled by default.

The Linux and Ward baseline experiments do not enable these mitigations, and thus the

performance effect is minimal.

For the Linux measurements of LEBench, we use the 5.4.0 kernel on Ubuntu 20.04.

3.6.2 WARD’s USC-based fast mitigations

LEBench. Figure 3.6 shows the benefit of WARD’s fast mitigations on LEBench. The

figure compares WARD with USC-based and Linux-style mitigations, relative to the baseline

with no mitigations. As shown, WARD with fast USC-based mitigations is often able to

match the unmitigated baseline. The reason is that many of the microbenchmarks can

execute with no or very few world switches, as shown in Figure 3.7.

Many microbenchmarks (getpid through huge pagefault in Figure 3.7) have nearly

0 transparent and intentional world switches. They execute completely in the Q domain.

The reason that some have near 0 world switches, but not exactly 0, is that during the

measurement they were interrupted by a timer interrupt, which requires a world switch to

the K domain to run the scheduler (the remainder of the syscall is then executed in the K

domain too).

Another cause for fractional numbers of transparent world barriers is that some op-

erations might have a slow path that requires secrets but only gets triggered infrequently

86

(i.e. because a memory allocator pool ran empty). A strength of the WARD approach is

that these sorts of cases don’t have to be manually annotated and in fact it is harmless to

completely ignore them provided they are executed infrequently enough.

There are several microbenchmarks (e.g., the bigger read and write ones) that perform

one intentional world switch per system call. These system calls immediately enter the

K domain and thus perform identical to WARD with full mitigations, and have the same

overhead. These system calls also perform much work in the kernel and the overhead of the

one world switch is amortized by that work.

The thr create and thr create-child do multiple syscalls per iteration, but av-

erage one world barrier per iteration. Specifically, the thr create microbenchmark

makes three systems calls: one clone that requires a world switch and a call to each

of sigprocmask and set_robust_list which don’t. The thr create-child mi-

crobenchmark includes an additional call to (sigprocmask) from the child process, for

which WARD can also avoid the world switch.

The fork and fork-child benchmarks each do a single syscall with an intentional

world barrier that takes the vast majority of execution time, but also raise a handful of page

faults to populate page table entries (which need secrets if they are copy-on-write related or

if the kernel runs out of zeroed memory pages and has to prepare more).

An interesting case is the context switch microbenchmark. This microbenchmark

measures context switching by writing and reading a byte over a pipe between two processed

pinned to the same core. The write calls avoids a world switch because the scheduler can

wake other processes while in the Q domain, but the read call causes a context switch and

(since the two processes are mutually distrusting) thus requires a world switch.

87

sys calls World switches
T I Sum

getpid 1 0 0 0
small write 1 0 0 0
small read 1 0 0 0
small mmap 1 0 0 0
small munmap 1 0 0 0
small page fault 1 0 0 0
mid mmap 1 0 0 0
mid munmap 1 0 0 0
mid page fault 1 0 0 0
big mmap 1 0 0 0
big page fault 1 0 0 0
huge mmap 1 0 0 0
huge page fault 1 0 0 0
context switch 2 0 1 1
thr create 3 0 1 1
thr create-child 4 0 1 1
mid read 1 0 1 1
mid write 1 0 1 1
big read 1 0 1 1
big write 1 0 1 1
big munmap 1 1 0 1
huge read 1 0 1 1
huge write 1 0 1 1
huge munmap 1 1.001 0 1.001
fork 2 0 2 2
big fork 2 0 2 2
huge fork 2 0 2 2
huge fork-child 17 0 7 7
big fork-child 17 0.006 7.02 7.026
fork-child 17 0.012 7.065 7.077

Figure 3.7: The microbenchmarks, sorted by the sum of the number of transparent (T) and
intentional (I) world switches per iteration, along with the number of system calls invoked
(including page faults).

88

Configuration Transparent Intentional

None 2457 cycles 1082 cycles
SpectreV2 2453 cycles 1075 cycles
MDS 3337 cycles 1980 cycles
MDS+SpectreV2 3363 cycles 1992 cycles
MDS+SpectreV2+Q_retpoline 3406 cycles 2014 cycles

Figure 3.8: The costs of transparent and intentional world switches for different configura-
tions.

When we modify the microbenchmark to pin the two processes to different cores we

observe that it runs without world switches and that the overhead is about 25 times lower

than Linux-style mitigations.

Application: git. To confirm that the improved performance of WARD’s fast mitigations

seen in LEBench translates into application-level performance improvements, we evaluated

the performance of git. For this benchmark, we ran git status in a 100 MB repository

that we cloned from GitHub; all of the file system state was cached in memory. The average

runtime for Linux-style mitigations took 24.6% longer than the unmitigated baseline, and

USC-style mitigations took 11.2% longer than the unmitigated baseline. Much of the

speedup is due to the fact that git status invokes frequent lstat system calls, which

can execute in the Q domain. The remaining overhead is due to system calls like openat

that require a world barrier for accessing potentially sensitive file contents.

3.6.3 World switch

§3.6.2 shows that the mitigation overhead is dominated by the cost of a world switch. This

section breaks down this cost.

89

An intentional world switch via kswitch() takes around 644 cycles on a shallow stack,

plus 50 cycles or so for every KB of stack used (the cost of a memcpy). A transparent world

switch using a page fault adds 1372 cycles.

Figure 3.8 measures the cost of a null system call that invokes an intentional or a

transparent world switch, and returns. It shows the cost for different configurations: no

mitigations, MDS mitigations, SpectreV2 mitigations, and with retpoline in Q domain.

The configuration with Q_retpolines runs with retpolines in both the Q and K domains. It

shows the benefit of WARD patching them out at runtime: the retpoline that disables branch

prediction for indirect jumps through the system call table costs 22 cycles.

3.6.4 WARD memory overhead

Because the memory protection mechanisms that WARD uses to expose non-secret data to Q

domains operates on a 4KB or 2MB granularity, WARD’s approach incurs some additional

memory overhead. Figure 3.9 lists some of these cases. In general we face a trade-off when

filling small dynamic memory allocations for Q domain state: either we use an entire page

each time, or we tolerate higher memory fragmentation because all chucks of memory on a

page must be only used by the same Q domain.

3.6.5 Security

To validate that WARD’s mitigations work, we implemented a demonstration program that

attempts to execute a Spectre V2 attack against the WARD kernel. While running with

applicable mitigations disabled (i.e. each Q and K domain retpoline replaced with a normal

indirect jump) the attack succeeds in exfiltrating secret kernel data. However, when our

90

Component Overhead Explanation

Kernel text 2 MB Separate text segments for
Q and K domains

Public kernel data < 4 KB Padding to a page boundary
Process structure 4 KB / process Allocated on its own page
Thread structure ~6 KB / thread Split between a Q domain

page and a K domain page
Q domain stack 32 KB / thread Smaller stacks possible by

avoiding deep recursion
Page tables varies Q domain mappings require

additional PTEs
Inodes – Many public allocations
Scheduler state – packed into a single page

Figure 3.9: Memory overhead of different WARD components.

Spectre V2 mitigations are re-enabled (by re-enabling retpolines in the K domain) the attack

is thwarted. It is of course impossible to be certain that all variations on the attack would

be blocked, but this test provides some confidence both that the unmitigated baseline is

vulnerable to transient execution attacks, and that WARD is able to prevent them.

3.7 Discussion

Future vulnerabilities. It is likely that there are further transient execution attacks either

under embargo or yet to be discovered. Based on trends in the existing attacks, we believe

that WARD should be well positioned to address them: so far, mitigations developed for

Linux have been suitable to directly copy into WARD. Since many need to run only at K

domain entry/exit instead of every user-kernel boundary crossing, the same defenses in

WARD might be cheaper to apply than they would be for Linux.

91

Linux. We are optimistic that Ward’s techniques could also benefit monolithic production

kernels for two reasons. First, WARD and Linux are in the same ballpark in terms of

system call performance on LEBench. Out of the 30 microbenchmarks, WARD is faster

than Linux on 18 of them, and slower on 12. Second, as shown in Figure 3.1 (§3.1) Linux

incurs a significant overhead for mitigations on LEBench and that overhead is in line with

the overhead that WARD’s Linux-style mitigations incur on LEBench (see Figure 3.6).

Some systems calls experience more overhead in WARD, because they implement less

functionality (e.g., getpid), but the corresponding calls in Linux also incur significant

overhead. Some systems calls in WARD have less overhead than Linux, because they are not

as efficient; for example, big and huge mmap in WARD requires an update of its radix-tree

VM data structures [15], while Linux just inserts the new region into a list. Linux may see

a bigger payoff for those system calls with WARD’s design than WARD.

A question is how much effort is required to incorporate WARD’s techniques into a

production kernel such as Linux. Our preliminary efforts have proven encouraging: we

found that we could leverage existing infrastructure for KPTI to maintain Q domain and K

domain page tables. We implemented a switch_world function in Linux, which switches

to the K domain and copies the Q stack to the K stack. We modified the Linux page-fault

handler to call this function when it encounters a page fault while running with the Q page

table. This allows the Linux kernel to run as normally with a transparent world switch on

each system call. We refactored the struct task_struct into a Q-private and secret

part, allowing the gettid system call to run entirely in the Q domain. This gives us some

indication that the basic approach of WARD could be made to work in Linux, although an

open question is how to best re-design Linux’s data structures to fit WARD’s design.

92

Chapter 4

Related Work

This thesis is motivated by the papers that show how secret kernel data can be leaked

through micro-architectural state, which started with the discovery of Meltdown [41]

and the original Spectre [32] variants. These were rapidly followed by the discovery of

more attacks targeting transient execution, including MDS [12, 51, 57], Speculative Store

Bypass [24], and many others [7, 9, 10, 14, 33, 46, 54, 58, 61]. Several survey papers

categorize the known attacks [11, 22, 64].

4.1 Measuring performance

Simakov [53] and Prout [45] conducted early performance studies on the impact of tran-

sient execution attacks, but the most comprehensive results come from the many articles

published by Phoronix [35, 36, 38]. This prior work provides top-line numbers on the total

overhead, but does not attribute costs to individual mitigations nor measure the impact of

JavaScript level mitigations.

93

The Linux community has paid close attention to the cost of mitigations throughout,

including for IBRS [56], KPTI [20], and MDS [35]. Their efforts has played a role in both

understanding and driving down the performance overheads.

4.2 Mitigation approaches

Linux makes heavy use of software and microcode-based mitigations on older proces-

sors [39], and WARD adopts the same techniques and optimized implementations for the K

domain. These include Linux’s nospecmacro for bounds clipping, FILL_RETURN_BUFFER

to fill the return buffer, and retpoline. WARD’s hotpatching of its kernel text to remove

retpolines in the Q domain was inspired by Linux’s ALTERNATIVE macro [17].

Many attacks have now been fixed in production hardware [27], but the known hardware

techniques for addressing other attacks require more substantial changes [2, 5, 60, 65, 66].

Generally these techniques involve somehow delaying the use of speculative data until it is

safe. Although such defenses are more comprehensive, they have higher overheads that

impact performance whenever speculation occurs.

User-space sandboxing requires its own set of techniques. Swivel [43] is a compiler

framework which hardens WASM bytecode against attack, while Firefox’s and Chrome’s

WASM engines rely on Site Isolation [47]. Production JavaScript engines deploy more

targeted mitigations like Pointer Poisoning and Index Masking [44], and also reduce the

overall timer precision [44, 59]. Compiler techniques like Speculative Load Hardening [13]

ensure binaries are completely immune to Spectre, albeit at considerable overhead.

94

4.3 WARD

The Q page table is inspired by the shadow page table in KAISER [21] and KPTI [40]. In

Linux, when a process executes in user space, the process runs with a shadow page table,

which maps only minimal parts of kernel memory: the kernel memory to enter/exit the

kernel on a system call. As soon as the process enters the kernel, it switches to the kernel

page table that maps all of physical memory. WARD, however, executes complete system

calls while running under the Q page table; this requires a significant redesign of the OS

kernel, which is a major focus of this work.

WARD and ConTExT both constrain speculation based on memory mappings, but

ConTExT uses a new PTE bit to explicitly mark pages that contain secret data [52] while

WARD instead keeps secrets in separate address spaces. SpecCFI proposes to enforce

control-flow integrity during speculative execution [34]. This idea strengthens Spectre

defenses, and is complementary to WARD.

The use of virtual-memory to partition the kernel address space has a long history in

operating systems research. One example is Nooks [55], which runs device drivers in

separate protection domains with their own page table in kernel space to provide fault

isolation between drivers and the kernel. Another example is the use of Mondrian Memory

Protection [62] to isolate Linux kernel modules in different protection domains within the

kernel address space [63]. The most recent example is Mike Rapoport’s work on kernel

address space isolation [18] in Linux. These designs use similar techniques to introduce

isolation domains within the kernel, but focus on traditional attacks (e.g., code execution

through a buffer overflow) as opposed to transient execution.

95

Chapter 5

Discussion and Future Work

The ongoing impact to performance of transient execution attacks is continuing to decline

on newer processors, and on some workloads isn’t even measurable at all. Watching the

stream of new transient execution attacks being published might not give this impression,

but that comes from looking at the quantity of attacks independent of their performance

drain.

One aspect in particular that is easily overlooked is that production operating systems

don’t try to provide perfect isolation in the first place. This is a challenge for the security

community because it is much harder to model, but a tremendous opportunity to the systems

community that can ignore low severity side channels (or accept incomplete fixes for more

severe ones). It means that a proposed method by a security researcher to mitigate a specific

transient execution attack might be deemed excessive by the developer community.

One example is disabling hyperthreading. While theoretically necessary to mitigate cer-

tain attacks, Linux by default choses to just ignore that advice and run mutually untrusting

96

processes on adjacent hyperthreads. An even more pronounced case is Spectre V1: the

only way to be 100% sure that no gadgets are present is to insert speculation barriers of

some sort after every single branch in the kernel, because there isn’t a programmatic way to

know which are vulnerable. Instead Linux developers just annotate all the specific code

sequences they can find to prevent them from being exploited. From a theoretical sense this

is unsatisfying since there are almost surely places that have been missed. However, the

constant stream of memory safety and logic bugs being discovered in the kernel makes any

comparatively difficult to exploit Spectre vulnerabilities of limited concern.

If strong security against transient execution attacks is needed, critical applications can

achieve much higher guarantees of isolation by running on dedicated hardware because

transient execution attacks only work if the attacker and victim are sharing the same

physical machine. This makes them immune even to attack variants that haven’t been

discovered yet, but naturally comes with its own downsides. The combination of added

cost, reduced utilization, or degraded usability mean that this approach is usually reserved

only for applications that absolutely require it.

It is also worth considering performance impacts in context. The Zen 3 processor we

experimented with might look like it has the worst overhead from Speculative Store Bypass

Disable, but that is only on relative terms. In fact, it is so much faster than any of the other

machines we tested on the benchmarks, to the point that with SSBD enabled it outperformed

all the other processors when they had SSBD disabled. That partly comes down to clock

speed, but also the generational improvement in CPUs, which almost invariably exceeds

the at this point roughly 3% overhead that OS-level mitigations cause to syscall workloads.

With the context discussed so far, the major area most applicable for future work is

97

JavaScript isolation. Across all the processors we studied, overheads from mitigations

have been high and unchanging across processor generations. A big chunk of JavaScript

overhead is from SSBD, which may be solvable by hardware at low cost or avoided by

simply not enabling the mitigation. However, that requires drawing attention to it: most

public documentation emphasizes that SSBD isn’t used by default and neglects to mention

that critical applications like web browsers frequently run with it enabled.

The second facet of possible future work is addressing Spectre V1 from sandboxed

JavaScript code. JIT compilers can readily insert appropriate bounds check instructions

and speculation barriers to prevent the common variants of the attack. However, existing

processors are not tuned to accelerate these code patterns, so the cumulative impact of

running them thousands or millions of times can have a detrimental impact on performance.

This doesn’t need to be the case. The computer architecture community has already studied

ways for a CPU to perform memory operations without introducing Spectre gadgets [2, 65,

66]. Those techniques can be painfully slow when applied to every memory operation in

a program, but could be far more reasonable when applied only to memory instructions

flagged by the JIT.

98

Chapter 6

Conclusion

This thesis measures the performance penalties for mitigations against transient execution

side-channel attacks across generations of Intel and AMD processors, and introduces

the WARD kernel design, which eliminates as much as half this overhead for OS heavy

workloads on old processors.

On post-2018 processors, overhead from the OS boundary has mostly been eliminated

in hardware. This means the high mitigation costs have been largely resolved for server

workloads. At the same time, JavaScript sandboxing is still expensive. Across both work-

loads, most overheads that remain are caused by a small number of software mitigations,

all addressing attacks that were discovered in 2018 or earlier and attacks published since

require mitigations with only minor performance impact for recent processors.

A further analysis of individual mitigations shows that the performance of most mitiga-

tion code sequences remains relatively unchanged, and that hardware fixes are responsible

for nearly all of the speedup. Spectre V1 and Speculative Store Bypass mitigations are

99

significant and haven’t declined across processor generations. However, it may be possible

to reduce these overheads of these mitigations with hardware changes too; for example, the

Spectre V1 mitigation has a recognizable pattern of a conditional move followed by a load

instruction, which could be detected by hardware to trigger special handling.

The WARD design shows how USC can be used to reduce the performance costs of

mitigations on system calls using per-process Q domains and global K domains. WARD

transparently switches from Q to K domain through page faults, uses temporary mappings

to access unmapped physical pages, and splits data structures into public and private

parts. An evaluation shows that WARD can run the microbenchmarks of LEBench with

small performance overhead compared to a kernel without mitigations: for 18 out of

30 LEBench microbenchmarks, WARD’s performance is within 5% of the performance

without mitigations. On Broadwell, WARD overall has a geometric mean slowdown of

16% on LEBench compared to 32% for Linux. Although WARD is research kernel, we are

hopeful that the ideas of this thesis can drive further progress in production kernels and

web browsers.

100

Bibliography

[1] Advanced Micro Devices, Inc. Speculation behavior in AMD micro-

architectures. https://www.amd.com/system/files/documents/security-

whitepaper.pdf, 2019.

[2] Sam Ainsworth and Timothy M. Jones. Muontrap: Preventing cross-domain spectre-

like attacks by capturing speculative state. In Proceedings of the ACM/IEEE 47th

Annual International Symposium on Computer Architecture, ISCA ’20, page 132–144.

IEEE Press, 2020.

[3] Bytecode Alliance. Cranelift code generator. https://github.com/

bytecodealliance/wasmtime/blob/main/cranelift/README.md, January

2022.

[4] Arm, Ltd. Cache speculation side-channels. https://developer.

arm.com/support/arm-security-updates/speculative-processor-

vulnerability, 2020.

[5] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. Spec-

Shield: Shielding speculative data from microarchitectural covert channels. In Pro-

101

https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/README.md
https://github.com/bytecodealliance/wasmtime/blob/main/cranelift/README.md
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability

ceedings of the 28th International Conference on Parallel Architectures and Compila-

tion Techniques, pages 151–164, Seattle, WA, September 2019.

[6] Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and

Nickolai Zeldovich. Efficiently mitigating transient execution attacks using the

unmapped speculation contract. In Proceedings of the 14th USENIX Symposium

on Operating Systems Design and Implementation (OSDI), Banff, Alberta, Canada,

November 2020.

[7] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro

Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. Smotherspectre: Exploiting

speculative execution through port contention. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’19, page

785–800, New York, NY, USA, 2019. Association for Computing Machinery.

[8] Can Bölük. Speculating the entire x86-64 instruction set in seconds with this one weird

trick. https://blog.can.ac/2021/03/22/speculating-x86-64-isa-with-one-weird-trick/,

March 2021.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order

execution. In Proceedings of the 27th USENIX Security Symposium, pages 991–1008,

Baltimore, MD, August 2018.

[10] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,

Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI:

102

Hijacking transient execution through microarchitectural load value injection. 2020

IEEE Symposium on Security and Privacy (SP), pages 54–72, 2020.

[11] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,

Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A systematic

evaluation of transient execution attacks and defenses. CoRR, abs/1811.05441, 2018.

[12] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina

Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van

Bulck, and Yuval Yarom. Fallout: Leaking data on Meltdown-resistant CPUs. In

Proceedings of the 26th ACM Conference on Computer and Communications Secu-

rity (CCS), pages 769–784, London, United Kingdom, November 2019.

[13] Chandler Carruth. Speculative load hardening. https://llvm.org/docs/

SpeculativeLoadHardening.html, 2018.

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H.

Lai. SgxPectre: Stealing intel secrets from sgx enclaves via speculative execution. In

2019 IEEE European Symposium on Security and Privacy (EuroS P), pages 142–157,

2019.

[15] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. RadixVM: Scalable

address spaces for multithreaded applications. In Proceedings of the 8th ACM EuroSys

Conference, pages 211–224, Prague, Czech Republic, April 2013.

[16] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and

Eddie Kohler. The scalable commutativity rule: Designing scalable software for

103

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html

multicore processors. In Proceedings of the 24th ACM Symposium on Operating

Systems Principles (SOSP), pages 1–17, Farmington, PA, November 2013.

[17] Jonathan Corbet. SMP alternatives. https://lwn.net/Articles/164121/, 2005.

[18] Jonathan Corbet. Generalizing address-space isolation. https://lwn.net/

Articles/803823/, November 2019.

[19] Google. Octane 2. https://developers.google.com/octane/benchmark,

2020.

[20] Brendan Gregg. KPTI/KAISER meltdown initial performance regressions.

https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-

meltdown-performance.html, 2018.

[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice,

and Stefan Mangard. KASLR is dead: Long live KASLR. In Proceedings of the

9th International Symposium on Engineering Secure Software and Systems, pages

161–176, Bonn, Germany, July 2017.

[22] Mark D. Hill, Jon Masters, Parthasarathy Ranganathan, Paul Turner, and John L.

Hennessy. On the Spectre and Meltdown processor security vulnerabilities. IEEE

Micro, 39(2):9–19, 2019.

[23] Jann Horn. Reading privileged memory with a side-channel. https:

//googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html, 2018.

104

https://lwn.net/Articles/164121/
https://lwn.net/Articles/803823/
https://lwn.net/Articles/803823/
https://developers.google.com/octane/benchmark
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

[24] Jann Horn. Speculative execution, variant 4: speculative store bypass. https:

//bugs.chromium.org/p/project-zero/issues/detail?id=1528, February

2018.

[25] IBM. Potential impact on the processors in the power family. https://www.ibm.

com/blogs/psirt/potential-impact-processors-power-family/, 2019.

[26] Inc. Intel. https://www.intel.com/content/dam/develop/external/

us/en/documents/336996-speculative-execution-side-channel-

mitigations.pdf, 2018.

[27] Inc. Intel. Affected processors: Transient execution attacks & related secu-

rity issues by CPU. https://software.intel.com/content/www/us/en/

develop/topics/software-security-guidance/processors-affected-

consolidated-product-cpu-model.html, 2021.

[28] Intel, Inc. Deep dive: Retpoline: A branch target injection mitiga-

tion. https://software.intel.com/security-software-guidance/deep-

dives/deep-dive-retpoline-branch-target-injection-mitigation.

[29] Intel, Inc. Software guidance: L1 terminal fault. https://software.intel.com/

security-software-guidance/software-guidance/l1-terminal-fault,

2018.

[30] Intel, Inc. Software guidance: Rogue data cache load. https://software.

intel.com/security-software-guidance/software-guidance/rogue-

data-cache-load, 2018.

105

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/336996-speculative-execution-side-channel-mitigations.pdf
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load

[31] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel

Emer. Dawg: A defense against cache timing attacks in speculative execution proces-

sors. In 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pages 974–987, 2018.

[32] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. Spectre attacks: Exploiting speculative execution. In Proceedings

of the 40th IEEE Symposium on Security and Privacy, pages 19–37, San Francisco,

CA, May 2019.

[33] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael

Abu-Ghazaleh. Spectre returns! speculation attacks using the return stack buffer. In

Proceedings of the 12th USENIX Conference on Offensive Technologies, WOOT’18,

page 3, USA, 2018. USENIX Association.

[34] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N. Khasawneh,

Chengyu Song, and Nael Abu-Ghazaleh. SpecCFI: Mitigating Spectre attacks using

CFI informed speculation. In Proceedings of the 41st IEEE Symposium on Security

and Privacy, pages 39–53, San Francisco, CA, May 2020.

[35] Michael Larabel. The performance impact of MDS / Zombieload plus the overall cost

now of Spectre/Meltdown/L1TF/MDS. https://www.phoronix.com/scan.php?

page=article&item=mds-zombieload-mit, 2019.

[36] Michael Larabel. Looking at the linux performance two years after spectre /

106

https://www.phoronix.com/scan.php?page=article&item=mds-zombieload-mit
https://www.phoronix.com/scan.php?page=article&item=mds-zombieload-mit

meltdown mitigations. https://www.phoronix.com/scan.php?page=article&

item=spectre-meltdown-2, 2020.

[37] Michael Larabel. Linux 5.16 loosens the spectre defaults around ssbd /

stibp. https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.

16-Spectre-SECCOMP-To-P, November 2021.

[38] Michael Larabel. A look at the cpu security mitigation costs three years after spec-

tre/meltdown. https://www.phoronix.com/scan.php?page=article&item=

3-years-specmelt&num=1, 2021.

[39] Linux Kernel Maintainers. Hardware vulnerabilities. https://www.kernel.org/

doc/Documentation/admin-guide/hw-vuln/, 2020.

[40] Linux Kernel Maintainers. Page table isolation. https://www.kernel.org/doc/

Documentation/x86/pti.txt, 2020.

[41] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders

Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and

Mike Hamburg. Meltdown: Reading kernel memory from user space. In Proceedings

of the 27th USENIX Security Symposium, pages 973–990, Baltimore, MD, August

2018.

[42] Andy Lutomirski. [patch] x86/fpu: Hard-disable lazy fpu mode. https:

//lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-

e+SYsZAoUU7A@mail.gmail.com, 2016.

107

https://www.phoronix.com/scan.php?page=article&item=spectre-meltdown-2
https://www.phoronix.com/scan.php?page=article&item=spectre-meltdown-2
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.16-Spectre-SECCOMP-To-P
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.16-Spectre-SECCOMP-To-P
https://www.phoronix.com/scan.php?page=article&item=3-years-specmelt&num=1
https://www.phoronix.com/scan.php?page=article&item=3-years-specmelt&num=1
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+SYsZAoUU7A@mail.gmail.com
https://lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+SYsZAoUU7A@mail.gmail.com
https://lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+SYsZAoUU7A@mail.gmail.com

[43] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson,

Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean M.

Tullsen, and Deian Stefan. Swivel: Hardening webassembly against spectre. In

USENIX Security Symposium, 2021.

[44] Filip Pizlo. What spectre and meltdown mean for webkit. https://webkit.org/

blog/8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.

[45] Andrew Prout, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Vijay

Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Peter

Michaleas, Lauren Milechin, Julie Mullen, Antonio Rosa, Siddharth Samsi, Charles

Yee, Albert Reuther, and Jeremy Kepner. Measuring the impact of spectre and

meltdown. In 2018 IEEE High Performance extreme Computing Conference (HPEC),

pages 1–5, 2018.

[46] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

CrossTalk: Speculative data leaks across cores area real. In Proceedings of the 42nd

IEEE Symposium on Security and Privacy, San Francisco, CA, May 2021.

[47] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation: Process

separation for web sites within the browser. In 28th USENIX Security Symposium

(USENIX Security 19), pages 1661–1678, Santa Clara, CA, August 2019. USENIX

Association.

[48] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm,

and Ding Yuan. An analysis of performance evolution of Linux’s core operations. In

108

https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/

Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),

pages 554–569, Huntsville, Ontario, Canada, October 2019.

[49] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm,

and Ding Yuan. An analysis of performance evolution of Linux’s core operations. In

Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),

pages 554–569, Huntsville, Ontario, Canada, October 2019.

[50] M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured

file system. In Proceedings of the 13th ACM Symposium on Operating Systems

Principles (SOSP), pages 1–15, Pacific Grove, CA, October 1991.

[51] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,

Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-privilege-boundary data

sampling. In Proceedings of the 26th ACM Conference on Computer and Com-

munications Security (CCS), pages 753–768, London, United Kingdom, November

2019.

[52] Michael Schwarz, Robert Schilling, Florian Kargl, Moritz Lipp, Claudio Canella, and

Daniel Gruss. Context: Leakage-free transient execution. CoRR, abs/1905.09100,

2019.

[53] Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Joseph P. White, Steven M.

Gallo, Robert L. DeLeon, and Thomas R. Furlani. Effect of meltdown and spectre

patches on the performance of HPC applications. CoRR, abs/1801.04329, 2018.

109

[54] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking FPU register state using

microarchitectural side-channels. CoRR, abs/1806.07480, 2018.

[55] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability

of commodity operating systems. ACM Transactions on Computer Systems, 22(4),

November 2004.

[56] Linus Torvalds. Re: Create macros to restrict/unrestrict indirect branch speculation.

https://lkml.org/lkml/2018/1/21/192, 2018.

[57] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue

in-flight data load. In Proceedings of the 40th IEEE Symposium on Security and

Privacy, pages 88–105, San Francisco, CA, May 2019.

[58] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yu-

val Yarom. CacheOut: Leaking data on intel cpus via cache evictions. CoRR,

abs/2006.13353, 2020.

[59] Luke Wagner. Mitigations landing for new class of timing attack.

https://blog.mozilla.org/security/2018/01/03/mitigations-

landing-new-class-timing-attack/, 2018.

[60] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F. Wenisch, and Baris Kasikci.

NDA: Preventing speculative execution attacks at their source. In Proceedings of

the 52nd IEEE/ACM International Symposium on Microarchitecture, pages 572–586,

Columbus, OH, October 2019.

110

https://lkml.org/lkml/2018/1/21/192
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/

[61] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.

Foreshadow-NG: Breaking the virtual memory abstraction with transient out-of-order

execution. Technical report, 2018.

[62] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protection.

In Proceedings of the 10th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 304–316, San

Jose, CA, October 2002.

[63] Emmett Witchel, Junghwan Rhee, and Krste Asanović. Mondrix: Memory isolation

for Linux using Mondriaan memory protection. In Proceedings of the 20th ACM

Symposium on Operating Systems Principles (SOSP), pages 31–44, Brighton, United

Kingdom, October 2005.

[64] Wenjie Xiong and Jakub Szefer. Survey of transient execution attacks and their

mitigations. ACM Comput. Surv., 54(3), May 2021.

[65] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.

Fletcher. Speculative data-oblivious execution: Mobilizing safe prediction for safe

and efficient speculative execution. In 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), pages 707–720, 2020.

[66] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W. Fletcher. Speculative taint tracking (STT): A comprehensive protection

for speculatively accessed data. In Proceedings of the 52nd IEEE/ACM International

Symposium on Microarchitecture, pages 954–968, Columbus, OH, October 2019.

111

	Introduction
	Transient Execution Attacks
	Example Attack
	Other Attacks
	Threat Model

	Evolution of Mitigation Cost
	Ward
	Contributions
	Outline

	Performance Analysis
	Attacks and Mitigations
	Meltdown-Type Attacks
	Spectre-Type Attacks
	Microarchitectural Data Sampling (MDS)

	End-to-End Benchmarks
	Methodology
	LEBench
	Octane 2
	Virtual Machine Workloads
	PARSEC
	Summary

	Performance of Individual Mitigations
	Meltdown
	Microarchitectural Data Sampling
	Spectre V2
	Spectre V1
	Speculative Store Bypass
	L1 Terminal Fault
	Other attacks

	Analysis of Hardware Spectre V2 Mitigations
	Measuring Speculation
	Results
	Takeaways

	Discussion
	Spectre V1
	Speculative Store Bypass

	Summary

	Ward
	Motivation
	Goals
	Approach: Unmapped speculation contract
	Design
	Overview
	World switch
	Mitigations
	Kernel text
	Memory management
	Process management
	File system
	Pipes
	Discussion

	Implementation
	Evaluation
	Experimental methodology
	Ward's USC-based fast mitigations
	World switch
	Ward memory overhead
	Security

	Discussion

	Related Work
	Measuring performance
	Mitigation approaches
	Ward

	Discussion and Future Work
	Conclusion

