
Guarda: A web application firewall for WebAuthn
transaction authentication

by

Damian Barabonkov
S.B., Computer Science and Engineering, M.I.T. (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021

c© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021
Certified by. .

Anish Athalye
Doctoral Candidate

Thesis Supervisor
Certified by. .

M. Frans Kaashoek
Charles Piper Professor

Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Guarda: A web application firewall for WebAuthn

transaction authentication

by

Damian Barabonkov

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Transaction authentication is an attractive extension to two-factor authentication. It
is proposed in the WebAuthn standard by the World-Wide-Web Consortium (W3C)
as a mechanism to secure individual “high-risk” operations of a website via a hardware
authenticator device. It defends against a stringent threat model where an adversary
can modify or create HTTP requests between the user and the web service. Transac-
tion authentication as defined by WebAuthn is not yet adopted in practice, partially
because it requires intrusive web application changes.

This thesis presents Guarda, a firewall for integrating transaction authentication
into a new or existing web service with relatively few code changes. The firewall
intercepts all HTTP traffic sent to the web service, and based on the configuration,
any requests deemed safe are proxied directly to the web service. All other requests are
considered high-risk and are held back and validated using transaction authentication.
Only if the validation passes are they also permitted to pass through to the web
service.

This thesis uses the firewall approach to integrate transaction authentication into
three web applications: a blogging site named Conduit, a WordPress admin panel
named Calypso and a self-hosted Git service named Gogs. Compared to directly
modifying them to support transaction authentication, the firewall approach is close
to 8 times more concise. Under heavy load, there is an associated latency of at
worst 1.5x slower when using Guarda to secure Gogs versus accessing the web service
directly without WebAuthn.

Thesis Supervisor: Anish Athalye
Title: Doctoral Candidate

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor

3

4

Acknowledgments

Anish, for his thoughtful expertise and inexhaustible willingness to help when I

was stuck.

Frans, for his insightful advice and guidance, which helped steer the direction of

this thesis.

MIT, for shaping me into the computer scientist I am today, for presenting me

with doors and opportunities I could never have imaged ever existed.

My dearest of friends, for being an integral part of my life, for being a source of

limitless happiness and memories that will last a lifetime.

My parents, for their unabating love, for their unconditional support in every

endeavor of mine and for being the best parents I could ever wish for. I love you.

5

6

Contents

1 Introduction 17

1.1 Current Authentication Methods . 17

1.2 Threat Model . 18

1.3 Transaction Authentication . 18

1.4 Status Quo of Transaction Authentication 20

1.5 Thesis Contributions . 21

1.5.1 WebAuthn Firewall . 22

1.5.2 Case Studies . 23

1.5.3 Other WebAuthn Possibilities 24

1.5.4 Source Code . 25

1.6 Thesis Outline . 25

2 Related Work 27

2.1 Hardware Authenticators for

Two-Factor Authentication . 27

2.2 Current Uses of Transaction Authentication 28

2.3 Hardware Authenticators for

Transaction Authentication . 28

2.4 Web Application Firewalls . 29

3 WebAuthn Transaction Authentication 33

3.1 WebAuthn Registration . 35

3.2 Transaction Authentication Setup . 36

7

3.3 Cryptographic Attestation . 38

3.4 WebAuthn Firewall Verification . 39

4 WebAuthn Firewall Design 41

4.1 Overview . 41

4.1.1 Request Life Cycle . 41

4.1.2 Securing Sample Operation 42

4.1.3 Configurable Components . 44

4.2 Proxying Requests . 45

4.3 WebAuthn Firewall Configuration . 47

4.3.1 Configuration Parameters . 47

4.3.2 Default Input Getters . 49

4.3.3 Context Retrieval . 50

4.3.4 Default Handlers . 50

4.3.5 Domain Specific Language . 50

4.3.6 Custom Handlers . 53

4.4 Authentication Message . 54

4.5 Frontend Modifications . 54

4.6 Backend Modifications . 55

5 WebAuthn Firewall Implementation 59

5.1 WebAuthn Verification . 59

5.2 Default Handlers . 60

5.3 Domain Specific Language . 60

6 Case Studies 63

6.1 Conduit . 63

6.1.1 Context Retrieval . 64

6.1.2 Secured Routes . 64

6.2 Calypso . 65

6.2.1 Multi-Target Proxying . 65

8

6.2.2 Login . 66

6.2.3 Secured Routes . 67

6.3 Gogs . 68

6.3.1 Intrusive WebAuthn . 68

6.3.2 Context Retrieval . 69

6.3.3 Secured Routes . 69

6.3.4 Custom Handlers . 69

7 Evaluation 73

7.1 WebAuthn Firewall Configuration Metrics 73

7.1.1 Overall Complexity . 74

7.1.2 Incremental Complexity to Secure a Route 74

7.2 Frontend Modifications . 75

7.3 Backend Modifications . 76

7.4 Performance Overhead . 77

8 Discussion and Future Work 83

8.1 Applications of Transaction Authentication 83

8.1.1 Good Use Cases . 83

8.1.2 Poor Use Cases . 84

8.1.3 Inapplicable Use Cases . 84

8.2 RPC Isolation . 85

8.3 Tracing Transaction Authentication

Subversion Opportunities . 85

8.3.1 Direct Subversion . 86

8.3.2 Indirect Subversion . 86

9 Conclusion 89

9

10

List of Figures

1-1 User interface of hardware authenticator. 19

1-2 Basic depiction of the WebAuthn firewall functionality. 22

1-3 The architecture design of a RESTful web application. 23

1-4 The architecture design of a server-side rendering web application. . . 24

2-1 User interface of Krypton authenticator in this thesis. It is awaiting

user consent before authorizing the deletion of a repository “damian/midnight-

train”. 31

3-1 A simplified overview of the flow of events during WebAuthn transac-

tion authentication, subdivided into three stages. 34

3-2 The flow of events during WebAuthn registration. 35

3-3 The flow of events during the setup stage of WebAuthn transaction

authentication. 37

3-4 The flow of events during the cryptographic attestation stage of Web-

Authn transaction authentication. 38

3-5 The flow of events during the verification stage of WebAuthn transac-

tion authentication. 39

4-1 The decision process for authorizing an HTTP request or not. 42

4-2 The functionality of the WebAuthn firewall fully depends on the con-

figurable components passed into it. 44

4-3 The positioning and role of the WebAuthn firewall in a RESTful paradigm

web service. 45

11

4-4 The positioning and role of the WebAuthn firewall in a server-side

rendering paradigm web service. 46

4-5 A WebAuthn firewall handles multiple backend targets for a single

frontend. 48

6-1 The WebAuthn firewall must support two backend targets for Calypso. 65

7-1 The frequencies of lines of code to secure a route with transaction

authentication. The majority of the routes can be secured in 10 lines

or less. 75

7-2 The experiment setup to measure the performance overhead of Guarda

under load. 77

7-3 The 95th percentile run times of three different Gogs setups under load.

The x-axis is the number of users issuing requests concurrently, and the

y-axis is the run time latency in milliseconds. The three experiments

are: using Guarda with WebAuthn enabled, using Guarda with Web-

Authn disabled, issuing requests directly to the Gogs server without

WebAuthn transaction authentication. There is a latency penalty to

using the WebAuthn firewall. 78

12

List of Tables

4.1 The domain specific language Get type operations. These affect the

format string if invoked at the top level within Authn. 56

4.2 The domain specific language Set type operations. These do not affect

the format string, but generally perform some side-effect. 57

5.1 The domain specific language Get type operations. These affect the

format string if invoked at the top level within Authn. 59

5.2 The default handlers included with the WebAuthn firewall. 60

6.1 The operations of Conduit secured by transaction authentication. . . 64

6.2 The operations of Calypso secured by transaction authentication. . . 67

6.3 The operations of Gogs secured by transaction authentication. 70

7.1 A breakdown of the configuration file size for each case study. Each

total is broken down into four categories with their respective lines of

code contributions. 80

7.2 The number of code changes performed on each frontend of the case

studies in order to support WebAuthn transaction authentication. . . 80

7.3 The number of code changes performed on each backend of the case

studies in order to support the WebAuthn firewall. 81

7.4 Comparing the complexity differences between intrusive and WebAuthn

firewall integration. 81

13

14

Code Snippets

4.1 A sample HTTP request to delete the SSH key with ID 6. 42

4.2 Route handler which manually secures the delete SSH key operation

of Gogs. 43

4.3 Gogs firewall code which incorporates the domain specific language to

secures the delete SSH key operation. 44

4.4 The firewall configuration for the Conduit web service. 47

4.5 A domain specific program to secure the leave Gogs repository operation. 51

4.6 A sample HTTP request to leave the repository with ID 9. 52

4.7 The switch/case logic necessary to determine which requests need trans-

action authentication and which can pass through without any valida-

tion. Only requests corresponding to delete repository operations are

authenticated. 53

5.1 The function type of the execute function. 61

5.2 The function type of the retrieve function. 62

6.1 Go pseudo-code for the custom login handler for Calypso. 66

6.2 A domain specific program to secure the Calypso operation for inviting

new users to administer a WordPress blog. 68

6.3 A custom handler in Go pseudo-code to secure the Gogs operation for

publishing a new release. 71

15

16

Chapter 1

Introduction

This thesis presents Guarda, an application-level firewall to add transaction authen-

tication to an existing web application. This chapter describes two core concepts,

the threat model and transaction authentication, which are essential to understand

before introducing Guarda and the problems it solves. This chapter paints a broad

picture of the overall thesis. The sections here serve as a preludes for the chapters

that follow in the thesis body.

1.1 Current Authentication Methods

Websites which have user accounts traditionally use a password as their main form of

authenticating the user. The security assumption is that if an adversary does not have

the user’s password, the user is safe from any adversarial attacks. Compromising a

password is common [9] because it is easy to target and attack remotely and at scale.

Security researchers have been well-aware of the gaping security risks of only using

password authentication and thus have developed a security system called two-factor

authentication [16]. In one form, upon account registration, the user not only picks

a password, but also provides a secondary method for login authentication, usually

through a hardware device. Then to login, the user must supply the password as well

as physically authenticate the login on their hardware authenticator. However, this

commonly used mechanism does not offer protection in a stricter threat model where

17

an adversary has control over a user’s web-browser or operating system.

The World-Wide-Web Consortium (W3C) proposed a specification called Web-

Authn [8]. It supports extensions to the traditional two-factor authentication. One

extension is a mechanism called transaction authentication, which provides a number

of security guarantees within this new and broader threat model.

1.2 Threat Model

WebAuthn transaction authentication protects against a more stringent threat model

than traditional two-factor authentication. In transaction authentication, the threat

model assumes that all components except the web service code and hardware au-

thenticator device are vulnerable. This broad capability gives an adversary the ability

to create or modify any HTTP requests between the user and web service. Save from

defending against denial-of-service, transaction authentication prevents broad unau-

thorized access to a user’s account by the adversary. There is an exception to the

threat model: the entire registration event, where cryptographic public key informa-

tion is sent from the user to the web service, must be assumed secure in order to

provide its prescribed security guarantees.

In contrast, the threat model for traditional two-factor authentication assumes a

more limited adversary. This adversary has the capacity to launch phishing attacks

and steal passwords, but the operating system and web-browser are assumed secure.

If any of them were to be compromised, two-factor authentication fails to ensure

its security guarantees. For example, a compromised user web-browser can wait for

the user to authenticate and login faithfully and then take control of the account.

Transaction authentication protects against such failure modes.

1.3 Transaction Authentication

The purpose of transaction authentication is to require “high-risk” operations to be

individually authenticated by the user’s hardware authenticator, despite the user

18

being already logged in.

A number of components are at play during transaction authentication. From

the user’s perspective, they must posses a hardware authenticator device with a text

display on which they attest to operations they want to perform. On the other end

is the verification code that guarantees that the user’s attestations are correct and

valid. This code typically runs on the backend, but in the case of this research, it is

a part of Guarda.

So when the user tries to issue some high-risk operation, e.g., a monetary transfer,

a confirmation message on their hardware authenticator will appear. The message

is specific to the operation the user is trying to perform and should contain enough

information for the user to validate that it is indeed correct and as intended.

For example, a bank website could require that monetary transfers exceeding $500

must be transaction authenticated. In such a case, a possible authentication message

that the user would have to confirm could resemble “Send Alice $750 from account

#12345”. The user would view the message on their hardware authenticator device

as illustrated in Figure 1-1.

Send Alice $750 from
account #12345

Confirm

Decline

Hardware Authenticator

Figure 1-1: User interface of hardware authenticator.

This message contains enough information such that the user is fully informed of

the operation they are about to perform. They can then make the educated judgment

for whether to confirm the operation or not. In the adversarial event where a modified

or unsolicited monetary transfer is attempted, the user should notice a discrepancy in

the authentication message and decline the operation on the hardware authenticator.

The goal of transaction authentication is to prevent the adversary from launching

19

unsolicited operations on behalf of the user and causing fraudulence or damage. The

operations that matter will require this additional authentication which the adversary

cannot falsify as per the threat model — the hardware device is assumed secure. This

is a safe assumption because the hardware device is specialized to only perform this

authentication process and nothing else. Ideally, it has a small attack surface that is

vetted by security specialists.

When the user authorizes this high-risk operation on their hardware authenticator,

the message is cryptographically signed by the authenticator and sent back to the

verifying end where it is checked. Only then, upon successful verification is the

operation performed.

Which operations should be protected is entirely at the discretion of the admin-

istrator of the web service. There is no clear-cut formula on what to protect, but

candidate high-risk operations could include, but are not limited to, deleting one’s

account, transferring money, managing administrative permissions, publishing impor-

tant software releases, etc.

1.4 Status Quo of Transaction Authentication

Although there are web services and hardware authenticators that support WebAuthn

two-factor authentication, no service or authenticator supports the transaction au-

thentication extension. Apart from transaction authentication not being integrated

into real-world applications, there also has been no investigation into the implications

of where it fits well, where it is inhibitory or unnecessary, what it takes to support

transaction authentication in a web service and any software system designs that

would help with integrating and configuring WebAuthn for an existing service.

There are several publicly available codebases in the form of demo applets and

libraries that work with WebAuthn transaction authentication [18] which illustrate

how it can be used in a website. A website typically consists of a frontend and a

backend. The frontend is the HTML/CSS/JavaScript that runs in the user’s web-

browser and is the origin of all of the user’s requests when interacting with the website.

20

The backend consists of the server code and database that execute the user’s requests

from the frontend.

A web service using WebAuthn transaction authentication would have the fron-

tend issue the WebAuthn requests and have the backend contain the WebAuthn

library code to verify those requests and permit the operation if validation passes.

Such approach to integrating WebAuthn has a number of practical downsides.

Firstly, the backend architecture might not lend itself well to the control flow

of the WebAuthn specification. In order to validate a WebAuthn request, multiple

HTTP requests need to be sent back and forth between the frontend and backend.

This may not be handled well by the backend if it was built under the assumption

that there is only one HTTP request per operation.

Secondly, the integration of WebAuthn transaction authentication into a backend

web service tends to be challenging for larger web services. The handler code for each

operation is spread throughout the codebase, so it is difficult to keep track of what is

secured and where in the code it is. Also, it requires a strong overall understanding of

the web service code, which comes with its own set of challenges and slow development

speed.

Lastly, in the extreme, albeit unlikely case, the backend may not even be accessible

to the software developer if it is, for example, a closed-source API backend. In this

case it is impossible to integrate WebAuthn into such a backend.

1.5 Thesis Contributions

There are three major contributions of this thesis:

1. Guarda: A firewall system design for integrating WebAuthn transaction au-

thentication into a new or existing web service.

2. Three distinct case studies showcasing Guarda. Each case study observes a class

of web service and is used to test the limits of the usability of Guarda.

3. A discussion on the beneficial use cases for transaction authentication, when it

makes sense to be applied and when not.

21

1.5.1 WebAuthn Firewall

Firstly, it must be emphasized that WebAuthn is simply a protocol specification.

Implementation details are not bound to any one way, as long as they comply with

the protocol’s details. However, the code demos of WebAuthn unanimously integrate

it into their codebases in the same intrusive manner. They import a WebAuthn

library [15] directly into the codebase and perform the necessary checks and validation

in the backend.

WebAuthn
Firewall

Backend Web-Browser

Webpage

Figure 1-2: Basic depiction of the WebAuthn firewall functionality.

This thesis proposes an alternative method for integrating WebAuthn by incor-

porating Guarda, a Web Application Firewall (WAF). This firewall monitors and

filters HTTP traffic sent from the website webpage to the backend. Any requests

that the firewall deems as needing WebAuthn transaction authentication are stopped

and processed by it. The firewall validates the request according to the WebAuthn

transaction authentication specification. Figure 1-2 depicts how if the validation suc-

ceeds, then the firewall lets the request pass on through to the backend. If not, then

the request is blocked. As far as the backend is concerned, it is unaware that Guarda

exists between it and the website webpage.

With the WebAuthn firewall approach, the backend has to be minimally, if at all,

22

modified to support WebAuthn transaction authentication. Although the frontend

still needs to be modified to produce the WebAuthn transaction authentication re-

quests as it is the origin of all of the user’s operations, the firewall approach lends itself

better to integrating WebAuthn into a new or existing web service. It is less intrusive

than the traditional library-based approach and consolidates all of the WebAuthn

related code in one place. As a result, it is less error-prone and easier to configure.

The design of Guarda presented in this thesis goes beyond simply providing a de-

scription and base functionality. It supplies the software engineer with useful defaults

and a domain specific language (DSL) to configure Guarda. Namely with a short con-

figuration, the engineer can adapt Guarda to parse and understand whatever input

request format the web service uses. Requests map to operations in a web service

depending on which HTTP route they are sent to. With only a few lines of code per

route in the Guarda configuration, the engineer can specify that the route be checked

with transaction authentication and what the authentication message should be in

order to pass as valid for that operation.

1.5.2 Case Studies

RESTful

Backend
Web-Browser

HTTP API Req.

HTTP API Resp.

Frontend

Webpage

Figure 1-3: The architecture design of a RESTful web application.

Three separate case studies demonstrate how Guarda secures different architec-

tures of web applications with WebAuthn transaction authentication. The web appli-

cations studied cover the RESTful design paradigm and the more traditional server-

side rendering paradigm. The two RESTful applications studied are Conduit [5], a

23

Server-Side Rendering
Backend Web-Browser

HTTP

HTML, JS

Webpage

Figure 1-4: The architecture design of a server-side rendering web application.

simple blogging website, and Calypso [7], a frontend admin panel for WordPress. As

illustrated in Figure 1-3, the RESTful paradigm is where the frontend runs in the

web-browser separately from the web server backend program. The frontend per-

forms the rendering visible to the user, and whenever it needs to fetch information or

has to perform some server operation, it communicates via a pre-established API to

the web server, which executes those requests.

The server-side rendering application studied is Gogs [2], a self-hosted Git service

much like GitHub [1]. Figure 1-4 depicts the server-side rendering paradigm, where

every operation the user performs on the webpage is sent over to the server as an

HTTP request. In response, the server returns a whole new webpage, complete with

all of the HTML and JavaScript code to be displayed on the user’s web-browser.

These case studies stress test the flexibility and configurability of Guarda. They

are critical in establishing what parameters and configurable knobs Guarda should

provide. They are also used to evaluate how tangible the improvements are for using

Guarda in a web service rather than integrating WebAuthn transaction authentication

intrusively.

1.5.3 Other WebAuthn Possibilities

In this thesis, Chapter 8 gives insights into best practices relating to utilizing Web-

Authn transaction authentication to secure various classes of problems. Researching

transaction authentication reveals clear use cases where it lends itself well to secure,

24

some use cases which are possible to secure, but not optimal, and lastly some use

cases which cannot be protected at all by transaction authentication.

1.5.4 Source Code

The source code of Guarda and case studies is publicly available at https://github.

com/JSmith-BitFlipper/Guarda-firewall under the MIT License.

1.6 Thesis Outline

The thesis contains the following chapters. Chapter 2 discusses the related work and

background pertinent to this research. Chapter 3 describes the WebAuthn trans-

action authentication protocol in detail. Chapter 4 outlines the design of Guarda,

the WebAuthn firewall. Chapter 5 discusses the implementation details of the novel

components of Guarda. Chapter 6 explains the case studies of Guarda. Chapter 7

contains the experiments and evaluation metrics for Guarda. Chapter 8 opens a dis-

cussion of supplemental notes uncovered over the course of this research. Finally,

Chapter 9 concludes this thesis.

25

https://github.com/JSmith-BitFlipper/Guarda-firewall
https://github.com/JSmith-BitFlipper/Guarda-firewall

26

Chapter 2

Related Work

This chapter presents the background and related work that precedes this research.

These concepts lay out the foundation on which the rest of this research is conducted.

2.1 Hardware Authenticators for

Two-Factor Authentication

The state of the art for using hardware devices for website authentication is two-factor

authentication. These devices such as the YubiKey [21] resemble a small USB key

which stores a private key on device. Websites that support two-factor authentica-

tion simply request the secondary mode of authentication during login. Two-factor

authentication solves the security problems for login quite well [9]. Depending on

the implementation of the specific hardware device, most provide strong resilience to

targeted impersonation, physical observation, internal observation, leakage of data

secrets and relying on a trusted third-party. However, as explained previously, these

benefits do not pertain beyond the login point of a website and assume a lenient

threat model. The adversary with control over the web-browser could simply wait for

the user to faithfully log in and then launch their planned attack.

A number of specifications standardize two-factor authentication so that the same

hardware authenticator device may be used across platforms and web services. A

27

popular standard is Universal 2nd Factor (U2F) [20] developed by Google and Yubico,

now hosted by the open-authentication industry consortium FIDO (“Fast IDentity

Online”) Alliance. It is succeeded by FIDO2 [6], which merges WebAuthn and its

extensions, including transaction authentication, into one common standard.

2.2 Current Uses of Transaction Authentication

Although some web services like GitHub support WebAuthn two-factor authentica-

tion [11], transaction authentication as per the WebAuthn standard is not yet de-

ployed commonly. Cryptocurrency hardware wallets universally support transaction

authentication, but for narrow use cases involving crypto transactions. The two most

popular manufacturers, Ledger [17] and Trezor [19], sell hardware wallets which hold

the private keys and have displays. In order to send any cryptocurrency from the

device, the device displays a message detailing the transaction, which the user would

need to authorize on the physical device. Otherwise, the device will not sign the

transaction which is required for it to proceed and be sent over the network.

In a similar but diminished vain, some banks such as Bank of America recycle

two-factor authentication for sensitive or high-value monetary transactions [12]. In

order to complete the sensitive transaction, the user must redo two-factor authentica-

tion like during login. This is unlike transaction authentication in that no hardware

device specific to transaction authentication is involved, and the user does not see a

confirmation of the exact transaction about to take place before confirming. But the

process of requesting supplemental two-factor authentication on sensitive transactions

aims to defend against a similar threat model as transaction authentication.

2.3 Hardware Authenticators for

Transaction Authentication

Hardware authenticator devices normally do not support general-purpose transaction

authentication. Hardware authenticators for two-factor authentication such as the

28

YubiKey discussed in Section 2.1 do not have any display. Therefore, they are unable

to perform the core function of transaction authentication, displaying a message to the

user and signing it upon their confirmation. The cryptocurrency hardware wallets

discussed in Section 2.2 provide transaction authentication, but only for a limited

subset of functionality relating to crypto transactions.

WebAuthn transaction authentication is not supported by any hardware authen-

ticators. There are hardware authenticators and software emulated authenticators

which support WebAuthn, but only for regular two-factor authentication. The soft-

ware emulated authenticators are intended for development and research purposes.

Google has a Chrome extension that poses as a virtual hardware authenticator; it

performs all of the signing in-browser [13]. Krypton is a small company dedicated to

making cryptographic authentication easy [14]. They provide a browser plugin and

phone app, which pair with one another. The plugin interfaces with the web-browser

and the phone, which performs the cryptographic signing.

This research must modify one of the software emulated authenticators to support

transaction authentication. It uses a modified Krypton browser plugin to display the

authentication message and await user consent before performing the signing in the

plugin. Figure 2-1 portrays the user interface of the plugin as it awaits consent

before returning a signed transaction authentication object. This design deviates

from the original Krypton design as it eliminates the phone app entirely and signs

in-browser. The security properties of the authenticator device itself is not a focus for

this research. It is assumed always secure, so for prototyping and experimentation,

this software modified authenticator is sufficient.

2.4 Web Application Firewalls

A Web Application Firewall is a firewall that filters web traffic going to a web ser-

vice [10]. Most web application firewalls try to block malicious internet traffic from

ever reaching the web server. Common attacks defended against by web application

firewalls include SQL injection, cross-site scripting and DDoS attacks. Typically, the

29

firewall inspects incoming GET and POST request HTTP/HTTPS traffic and ap-

plies pre-configured rules to identify and filter out the undesired traffic. This thesis

describes how to make a web application firewall supporting WebAuthn transaction

authentication.

30

Figure 2-1: User interface of Krypton authenticator in this thesis. It is awaiting user
consent before authorizing the deletion of a repository “damian/midnight-train”.

31

32

Chapter 3

WebAuthn Transaction

Authentication

WebAuthn transaction authentication is a protocol specification for authenticating

high-risk user operations after login. The specification describes a sequence of steps

that must be followed in order to authenticate properly. There is registration and then

transaction authentication, which can be split into three stages: the setup, the cryp-

tographic attestation and then the verification. Figure 3-1 gives a simplified overview

of the transaction authentication process. It visualizes the order of communication

among the hardware authenticator, the web-browser, the WebAuthn verification end

and backend server.

1. Registration: Makes a record of the user and their cryptographic credential into

a database. Registration is performed only once per user and is assumed secure.

The database record is used by the verification step later on.

2. Setup: Initiated by the user’s web-browser and involves a priming exchange

between it and the WebAuthn verification end.

3. Cryptographic Attestation: Occurs on the hardware authenticator device after

the user confirms the operation. The threat model assumes that this attestation

is secure.

4. Verification: Validates whether to authorize the high-risk user operation or not.

Checks if the requested operation matches its authentication message and that

33

Figure 3-1: A simplified overview of the flow of events during WebAuthn transaction
authentication, subdivided into three stages.

34

the cryptographic signature on it is valid. This stage also is assumed secure

under the threat model.

The rest of this chapter describes these steps in more detail and uses Guarda, the

WebAuthn firewall, as the verification end. It contains the database of user public

key credentials and performs the validation to authorize high-risk operations.

3.1 WebAuthn Registration

Figure 3-2: The flow of events during WebAuthn registration.

The purpose of registration is for the user’s hardware device to transfer its pub-

lic key credential to Guarda. This process is assumed to be secure in the threat

model, with no adversary able to intercept or tamper with any of the communica-

tions. Therefore, whatever credential Guarda receives during registration is assumed

35

to be genuine and the user’s own. The firewall later on uses this credential during

the verification stage to ensure transaction authentication integrity.

Figure 3-2 illustrates the flow of events during the registration event. The reg-

istration process begins with a setup of its own, where the web-browser requests a

few parameters from the firewall, most notably a random challenge nonce. Guarda

remembers the challenge it sent as a part of the session data associated with the

registration setup request. The challenge nonce prevents replay attacks. There are

a few other parameters, but they are mainly for the hardware device to know what

type of credential the firewall is expecting to receive. The hardware device sends

over its public key credential for Guarda to save, with the challenge signed by that

credential. Guarda receives an HTTP POST request containing this public key cre-

dential. The POST request also contains identifying information of the current user.

Guarda verifies that the challenge matches, and upon success, stores the credential

and associated user ID into a database row.

3.2 Transaction Authentication Setup

The setup for a transaction authentication event originates from the frontend webpage

on the web-browser. There are several ways to setup a WebAuthn transaction event,

but the contents being exchanged are all the same. More commonly, setup occurs

lazily where the frontend waits for the user to initiate an operation protected by

transaction authentication before initiating the setup. Or it may occur eagerly where

the frontend preemptively initiates the setup, without knowing whether the user will

even perform any secured operation on the webpage.

Figure 3-3 illustrate the setup stage of a transaction authentication event. The

setup begins with a POST request sent to Guarda. The payload for the setup POST

request is an authentication message that will eventually be displayed to the user on

their hardware device. The message is constructed from user input and additional

information contained in the HTML of the webpage, but in all three case studies of

this thesis, that was always sufficient. In response to the POST request, the frontend

36

Figure 3-3: The flow of events during the setup stage of WebAuthn transaction au-
thentication.

receives a few parameters:

1. A random challenge nonce: The firewall remembers it locally in the session data

associated with the request. When the firewall processes the protected request,

it will verify that the challenge included in the returned authentication data

matches the one previously sent and remembered in the session. An adversary

cannot intercept and replay old protected requests since it is exceedingly unlikely

that future challenges from the firewall will exactly match the challenge in the

intercepted request.

2. An extensions field: The firewall transforms the authentication message sent to

it into a WebAuthn-compatible form for the hardware authenticator. It then

places it into the extensions field, which the authenticator reads and handles as

a transaction authentication event.

37

Figure 3-4: The flow of events during the cryptographic attestation stage of Web-
Authn transaction authentication.

3.3 Cryptographic Attestation

The request options from Guarda go through the frontend and are passed on to the

hardware authenticator device. The threat model assumes that only the firewall,

backend and hardware authenticator are secure. At any point, the frontend or web-

browser could modify these options, but any tampering will be detected later on and

denied authorization.

Figure 3-4 outlines the role of the hardware authenticator. The hardware de-

vice parses the request options, extracts from the extensions field the authentication

message and presents that to the user. The authentication message is in the form

of a confirmation for some requested operation and is answered either by “yes” or

“no”. If the user attests “yes”, the hardware device cryptographically signs a data

object, which is returned as an additional field within the HTTP request to Guarda

for verification.

The response of the hardware authenticator includes a clientDataJSON object con-

taining the authentication message displayed to the user a well as the Challenge from

the setup stage. A cryptographic signature of the clientDataJSON is also included. The

signature is computed using Elliptic Curve Digital Signature Algorithm (ECDSA)

38

paired with the SHA-256 hash function. There are other fields, as well, for plumbing

to help Guarda know what parameters to use to validate this response.

3.4 WebAuthn Firewall Verification

Figure 3-5: The flow of events during the verification stage of WebAuthn transaction
authentication.

Guarda receives an HTTP request on a protected route with all of its usual pa-

rameters plus the authentication data object. The firewall must verify the integrity of

39

this object as well that it corresponds with the intent of the HTTP request. In other

words, it must detect whether any code not in the trusted computing base, such as

the frontend, tampered with the authentication data.

Figure 3-5 illustrates the main steps of the verification stage. The three main

steps are to verify the challenge, the authentication message and the authentication

data signature:

1. Checking the challenge is a simple comparison between the challenge received

and the storedChallenge in the firewall’s session data. This protects against

replay attacks.

2. Checking the authentication message is more involved. The firewall is config-

ured per route how to generate an expected authentication message based on

the HTTP request parameters. This generated authentication message must

unambiguously encapsulate the entire intent of the request. Details are further

discussed in Section 4.4. Then it is a simple comparison between the received

clientMessage and the generatedMessage. This makes sure the user authenticated

a message that faithfully represents the intent of the HTTP request.

3. Checking the authenticating data signature involves invoking cryptography li-

brary utilities. This validates the integrity of the entire authentication object

to prove that it was not tampered with. The clientDataJSON is signed by the

hardware authenticator. The firewall has the public key of the hardware authen-

ticator, so it can see if the clientDataJSON indeed corresponds to the signature

attributed to it.

40

Chapter 4

WebAuthn Firewall Design

This chapter describes the high-level design and purpose of Guarda, the WebAuthn

firewall, and how it fits within an existing web application. It also describes how a

software engineer would use the different configuration options and tools that Guarda

provides in order to secure a web service.

4.1 Overview

Guarda acts as a Web Application Firewall. It is situated directly between the

frontend and backend, processing all user requests sent between the two. At the

highest-level, the purpose of Guarda is to map HTTP requests on protected routes to

authentication messages and then verify those requests. To make the mapping and

verification easier, Guarda provides configurable options, a domain specific language

and a collection of default functions.

4.1.1 Request Life Cycle

The flowchart in Figure 4-1 illustrates the life cycle of an HTTP request passing

through the WebAuthn firewall. It begins with Guarda capturing and parsing the

request when it is sent from the frontend to the backend. Then Guarda decides

whether to verify the request with transaction authentication or not. If not, the

41

HTTP Request
Intercepted

Firewall determines
whether to protect

Request proceeds to
backend

Request is blocked
Firewall generates

Authn. message from
request

WebAuthn
Verification

Yes

No

Succeeds

Fails

Figure 4-1: The decision process for authorizing an HTTP request or not.

request is simply proxied through to the backend without any extra work. Otherwise,

Guarda performs a verification procedure on the request and only upon success does

the request pass through the firewall to the backend. Upon failure, the request is

blocked.

4.1.2 Securing Sample Operation

To illustrate how an operation is secured, consider the example of an HTTP request

to delete an SSH key within Gogs named "Damian’s SSH Key". Code Snippet 4.1 is the

HTTP request and relevant parts of its payload.

1 route: "user/ settings /ssh/ delete ",
2 form -data: {
3 id: 6,
4 assertion : "<assertion data from hardware authenticator >"
5 }

Code Snippet 4.1: A sample HTTP request to delete the SSH key with ID 6.

This request should map to a human-readable authentication message, in par-

ticular: "Delete SSH key named: Damian’s SSH Key". Notice that the HTTP request

42

contains the ID of the SSH key, but not the name itself. The name is not present

anywhere in the request, but can be contextualized from the ID by the backend as

described in Section 4.3.3. The domain specific language and default functions make

this mapping and context retrieval easier. Code Snippet 4.2 is roughly what manually

securing this route in Go would look like.

1 func deleteSSHKey (w http. ResponseWriter , r *http. Request) {
2 id := int(r.Form["id"])
3 assertion := r.Form[" assertion "]
4
5 // Retrieve the SSH key name of ‘id ‘
6 var sshKeyInfo struct {
7 KeyName string ‘json :" keyname "‘
8 }
9 PerformRequestJSON (fmt. Sprintf (" server_context / ssh_key /%d", id),

10 & sshKeyInfo)
11
12 authText := fmt. Sprintf (" Delete SSH key named : %s",
13 sshKeyInfo . KeyName)
14
15 // Check the ‘assertion ‘ against the ‘authText ‘
16 FinishLogin (assertion , authText)
17 }
18
19 router . HandleFunc ("/user/ settings /ssh/ delete ",
20 deleteSSHKey). Methods ("POST")

Code Snippet 4.2: Route handler which manually secures the delete SSH key opera-
tion of Gogs.

First, the code reads the "id" and "assertion" values from the request form-data.

It then contextualizes the "id" to retrieve the name of the associated SSH key via the

backend’s context route. Finally, it creates an authentication message and verifies it

against the "assertion" data. This handler is attached to the HTTP route accepting

SSH key deletion requests.

The domain specific language and default functions simplify this code. The

HTTP route for SSH key deletion, "/user/settings/ssh/delete", and request type,

"POST", are specified in one function call. A short domain specific program spec-

ifies how to generate the authentication message. It begins with a format string

"Delete SSH key named: %v" where the format tag "%v" gets substituted with the SSH

key name. Code Snippet 4.3 is the firewall code that secures the SSH key deletion

43

for Gogs.

1 Secure ("POST", "/user/ settings /ssh/ delete ",
2 Authn(" Delete SSH key named : %v",
3 wf. SetContextVar (" ssh_key ", wf.Get("id")),
4 wf. GetVar (" ssh_key "). SubField ("Name"),
5))

Code Snippet 4.3: Gogs firewall code which incorporates the domain specific language
to secures the delete SSH key operation.

As demonstrated above, the direct method of integrating WebAuthn into a web

service is bulky and difficult to configure. The supplemental tools provided by Guarda

allow an engineer to write less code to achieve the same functionality, thus making

development easier and less error-prone.

4.1.3 Configurable Components

Firewall

Verify
FrontendBackend HTTPHTTP

Config Params DSL
Custom

Handlers

Address
Input Type
Context Getters

route
route
route

Custom Go
Code

Figure 4-2: The functionality of the WebAuthn firewall fully depends on the config-
urable components passed into it.

Two sources of configuration enable the Guarda’s customizable nature. One source

44

is the central configuration element depicted as the leftmost input block in Figure 4-2.

It contains the general configurable parameters, from which a number of core Web-

Authn routes are deduced and secured transparently.

The other two input blocks of Figure 4-2 handle the rest of the application specific

routes to be secured. They are secured either using the domain specific language or

custom Go code. These configurable options can be easily modified to completely

define how Guarda protects a web service.

Apart from configuration ease, the design of a WebAuthn firewall is powerful

because it is almost transparent to the web service it is securing. The backend is

unaware that the requests it receives are WebAuthn authenticated. The frontend has

to interface with the user’s hardware authenticator device, so it must be aware of

WebAuthn, but only to a minor extent. As a result, deployment of Guarda is simple

and seamless.

4.2 Proxying Requests

In three different case studies, Guarda is used to integrate WebAuthn transaction

authentication into two different paradigms of web service designs, RESTful and

server-side rendered websites. For each, the notion of the firewall being situated

between the frontend and backend is slightly different, but the function and role of

Guarda is the same, filtering, verifying and proxying requests.

Backend

Firewall

WebAuthn Verify

HTTP API Req.HTTP API Req.

HTTP API Resp. HTTP API Resp.forward

Web-Browser

Webpage

Frontend

Figure 4-3: The positioning and role of the WebAuthn firewall in a RESTful paradigm
web service.

45

For a RESTful web application, the placement of the firewall is more intuitive.

As depicted in Figure 4-3, the firewall sits between the frontend and backend of the

web service. In a RESTful design, the frontend runs in the web-browser and renders

the webpage visible to the user. Whenever the frontend needs to interact with the

backend, it launches HTTP requests to the IP address of the backend. However,

since Guarda is situated between the two, the frontend must interact with the firewall

instead. So when the frontend needs to issue a backend request, it sends it to Guarda

rather than to the backend.

From there, as represented by the “Firewall” box in Figure 4-3, the firewall per-

forms its role and, as necessary, proxies onward to the actual backend. Responses

from the backend are returned to the firewall which are automatically forwarded on

to the frontend.

Backend Web-Browser

Firewall

WebAuthn Verify

HTTPHTTP

HTML, JS forward HTML, JS
Webpage

Figure 4-4: The positioning and role of the WebAuthn firewall in a server-side ren-
dering paradigm web service.

In a server-side rendering web application, there is no notion of a frontend ren-

dering the webpage like in the RESTful use case. Rather, every webpage visible to

the user is generated by the backend and sent to the web-browser. From the web-

browser, the webpage interacts directly with the IP address of the backend. With the

WebAuthn firewall in place as shown in Figure 4-4, the endpoint of the webpage is

Guarda instead of the backend. This way, all HTTP requests that originate from the

webpage are sent to Guarda. The firewall processes these requests and relays them

onward to the server-side rendering web application if the WebAuthn verification code

46

passes. In such a setup, the WebAuthn firewall is situated between the web-browser’s

webpage and backend.

4.3 WebAuthn Firewall Configuration

Some HTTP requests need to be transaction authenticated first before passing through

the WebAuthn firewall. The software engineer configures Guarda to select which re-

quests to verify and what their authentication messages should be. This is done by

including the route in Guarda’s configuration. Requests to all other routes not spec-

ified in the configuration are simply proxied on through to the backend without any

checks.

4.3.1 Configuration Parameters

Guarda has a number of configurable parameters that aid and dictate how routes are

secured. Code Snippet 4.4 is the firewall configuration for Conduit.

1 firewallConfigs := &wf. WebauthnFirewallConfig {
2 FrontendAddress : frontendAddress ,
3 ReverseProxyTargetMap : reverseProxyTargetMap ,
4 ReverseProxyAddress : reverseProxyAddress ,
5
6 GetUserID : userIDFromJWT ,
7 ContextGetters : wf. ContextGettersType {
8 " comment ": commentFromCommentID ,
9 " article ": articleFromArticleSlug ,

10 " current_user ": getCurrentUser ,
11 },
12
13 WebauthnCorePrefix : "/api/ webauthn ",
14 LoginURL : "/api/ users /login ",
15 LoginGetUsername : func(r *wf. ExtendedRequest) (string , error) {
16 return r. Get_WithErr ("user", " username ")
17 },
18 }

Code Snippet 4.4: The firewall configuration for the Conduit web service.

The fields within the configuration are grouped by function. The WebAuthn

library uses the first group, RPDisplayName and RPID, when setting up and verifying

47

transaction authentication events.

Backend 1

Firewall

WebAuthn Verify
Backend 2

Backend 3

HTTP Backend 1

HTTP Backend 2

HTTP Backend 3

HTTP B
ac

ke
nd

 3

HTTP Backend 2

HTTP Backend 1

Web-Browser

Webpage

Frontend

Figure 4-5: A WebAuthn firewall handles multiple backend targets for a single fron-
tend.

The second group, FrontendAddress, ReverseProxyTargetMap and ReverseProxyAddress,

contains the proxying address information. They hold the address of the frontend, the

target backends and the firewall itself, respectively. It is possible for a web service’s

frontend to access multiple backends. In this case, the firewall must know which

backend to forward incoming requests to after processing them. This is stored as a

hash map of hosts and target backends in ReverseProxyTargetMap. This field simply

configures the firewall, as illustrated in Figure 4-5, to catch requests of a given host

address and forward them to a specific target.

The third group is for context retrieval, explained in greater detail in Section 4.3.3.

During normal operation of the firewall, such as verifying incoming HTTP requests,

it is often useful to identify the current user issuing that request. For example, the

public key credential of a user is stored under their ID in Guarda’s database.

Since determining the current user’s ID is application specific, the GetUserID is left

48

for the engineer to supply. The example configuration above implements a function

that extracts the current user’s ID from the JSON Web Token (JWT) included in the

HTTP request headers.

Constructing an authentication message oftentimes needs more context than that

which is supplied the HTTP request payload. The ContextGetters is a collection of

context getter functions written by the engineer. Essentially, they retrieve supple-

mental information needed to generate the authentication message of a protected

HTTP request in a human-readable form. When setting up routes to protect, there

is a clean way in the domain specific language to invoke these functions to fetch more

context as needed.

The fourth group configures the default handlers, explained in more detail in

Section 4.3.4. When integrating WebAuthn into a service, there are a number of

operations that are a core part of the WebAuthn protocol. They are related to the

WebAuthn registration event, the setup event, user login and WebAuthn disable.

These fields provide the default handlers with just enough information such that they

can be tailored for the given web service.

The final group contains miscellaneous parameters. Sometimes a web service’s

frontend expects the HTTP OPTIONS for every URL route it interacts with. The

SupplyOptions flag controls whether Guarda should supply OPTIONS for every pro-

tected route.

4.3.2 Default Input Getters

An HTTP request may contain and encode its payload in a variety of ways. Guarda

supplies four default input getter functions that extract values from requests in dif-

ferent formats. Each default input getter follows the same API, so new ones can be

implemented easily as necessary. The getters include:

• GetFormInput: Parses form-data request payloads.

• GetJSONInput: Parses JSON request payloads.

• GetURLInput: Parses values stored in the HTTP request url. An example would

be "/user/comment/2" parsing the comment ID 2 from the URL.

49

• GetURLParamInput: Parses parameters passed along with the HTTP request url.

An example would be "/user/comment?id=7" parsing the comment ID 7 from the

URL.

4.3.3 Context Retrieval

When an HTTP request contains non-human friendly identifiers that need to be

understood by the user, those identifiers must be translated to their human-readable

counterparts. For example, an ID identifies a user’s comment to a blog post in the

Conduit application. Showing the ID in an authentication message is meaningless to

the user. So rather the ID must be translated to the comment’s title, which the user

can comprehend. This translation is handled by context getter functions programmed

by the engineer. Generally, fetching context involves querying the backend for the

extra information. This is necessary whenever the contents of an HTTP request

payload is not human-readable.

4.3.4 Default Handlers

There are a number of core WebAuthn operations that are constant regardless of

the application. Every web application wishing to integrate WebAuthn must support

WebAuthn login, registration, disabling (de-registration) and the setup phase of a

transaction authentication event. The WebAuthn firewall provides all of these func-

tions transparently. Also, the frontend should be able to query Guarda to see if a user

has WebAuthn enabled or not. This is primarily used in the security settings panel of

the frontend to determine whether to have an "Enable WebAuthn" or "Disable WebAuthn"

button.

4.3.5 Domain Specific Language

The majority of Guarda’s routing configuration is performed using a domain specific

language. Small chunks of code containing domain specific programs secure individual

routes. Securing a route involves a Secure function which takes three parameters. Two

50

parameters, url and method, specify which route and which HTTP verb requests (such

as POST, GET, etc.) on said route to intercept. The last parameter is a handler

function, handleFn which verifies the WebAuthn transaction authentication event on

that route.

The common case is to write a domain specific program to implement the han-

dler function. The Authn function facilitates producing a handler function from a

domain specific program. Sometimes there are edge cases where the handler function

must manipulate or parse the incoming HTTP request in an atypical way. When

the domain specific language cannot capture this behavior, the engineer can write a

custom handler directly, described in Section 4.3.6, to utilize the full power of the Go

programming language.

The purpose of a domain specific program is to generate the expected authenti-

cation message of a transaction authentication event. Section 4.4 explains in more

detail how the authentication message should be formatted.

The first argument of the Authn function is the authentication message format

string with format tags such as "%v". The rest of the arguments make up the domain

specific program. The DSL provides an assortment of operations. Some operations

replace the format tags in order. Other operations do not affect the format string,

but rather facilitate DSL functionality.

The following code snippet is an example of how the Authn function is used to write

a simple domain specific program. Code Snippet 4.5 transaction authenticates the

route for a Gogs user leaving a Gogs repository as a collaborator. Code Snippet 4.6

describes a possible request sent to this route.

1 Secure ("POST", "/user/ settings / repositories /leave ",
2 Authn(" Leave repository named: %v",
3 wf. SetContextVar ("repo", wf.Get("id")),
4 wf. GetVar ("repo"). SubField ("Name"),
5))

Code Snippet 4.5: A domain specific program to secure the leave Gogs repository
operation.

For example, assuming that there exists a repository with ID 9 named “algo-price-

51

1 route: "/user/ settings / repositories /leave ",
2 form -data: {
3 id: 9,
4 assertion : "<assertion data from hardware authenticator >"
5 }

Code Snippet 4.6: A sample HTTP request to leave the repository with ID 9.

watcher”, the authentication message generated to verify the "assertion" data of the

request would be "Leave repository named: algo-price-watcher".

Domain specific language operations that affect the format string are listed in

Table 4.1. Included are the operations that parse values from the HTTP request

being verified. Other operations access values from different channels like the context

retrieval functions or the scope of the domain specific program. It is important

to note that they only affect the authentication message format string if they are

invoked at the top level within Authn. If they are used as input arguments to other

DSL operations, they simply return and pass on their value.

Domain specific language operations that facilitate the DSL, but do not affect

the format string are listed in Table 4.2. These operations generally perform some

side-effect, but are not directly used to construct the format string. Included are

the operations which assign values to variables in the scope of the domain specific

program.

The Authn example in Code Snippet 4.5 presents a simple, but instructive use-

case of the domain specific language. The following is a line-by-line explanation of

that example. Its format string is "Leave repository named: %v". Line three retrieves

a Gogs repository context based on the "id" included in the HTTP request being

protected. The repository context is stored within a variable named "repo". Line

four retrieves the value of "repo" and indexes a sub-field named "Name". Since this

GetVar call is the first format string modifier operation to appear at the top-level of

Authn, it replaces the first "%v" in the format string, in this case with the name of the

repository.

From there, the Authn function wraps this domain specific program with all of the

boilerplate code needed to verify the WebAuthn transaction. More details on the

52

verification process are in Section 3.4.

4.3.6 Custom Handlers

Guarda provides a domain specific language that usually can secure most routes of a

web service. However, occasionally some routes are more complicated to protect and

fall outside of the capabilities of the domain specific language. In which case, the

software engineer can implement a custom handler utilizing the full power of the Go

programming language to secure those routes.

To support this, the Secure function accepts as its third argument a handler func-

tion of a predefined type. The custom handler simply must adhere to that type.

Common use cases for a custom handler is to perform some control flow decisions in

the handler body or sometimes gather external context information to assemble the

authentication message in a particular way. Either way, the custom handler usually

culminates in calling Authn at the end, since it handles all of the boilerplate code to

validate the WebAuthn transaction.

A custom handler is used in the Gogs web service. Gogs uses the same route for

many different types of POST operations related to a repository’s settings. Most of

the actions that POST to this route are harmless, except the "delete" action. Code

Snippet 4.7 describes the core behavior of the custom handler.

1 switch action {
2 case " delete ":
3 // Handle deletion separately
4 handlerFn = firewall .Authn(
5 " Confirm repository delete : %s/%s",
6 wf. Get_URL (" username "),
7 wf. Get_URL (" reponame "),
8)
9 default :

10 // Proxy all other requests
11 handlerFn = firewall . ProxyRequest
12 }

Code Snippet 4.7: The switch/case logic necessary to determine which requests need
transaction authentication and which can pass through without any validation. Only
requests corresponding to delete repository operations are authenticated.

53

The custom handler parses the HTTP request on that route and sees what the

"action" field in the request’s payload is. Only if the action is "delete" does the

handler use Authn to validate the request. Otherwise, the custom handler lets the

request pass right through without any checks.

4.4 Authentication Message

The engineer must specify the authentication message format for every request route

that needs WebAuthn transaction authentication protection. Verifying an incoming

HTTP request with transaction authentication begins with Guarda generating an

authentication message from the parameters of the request. Then the verification

passes only if the generated message is exactly identical to the message signed by the

hardware authenticator and the signature is valid.

The message generated by Guarda should encapsulate the entire intent of the

request in order to have good security guarantees. All of the parameters in the

requests that are considered security sensitive must appear unambiguously in the

authentication message in a human-readable format. Unambiguity refers to how

no two different requests should share the same authentication message. Human-

readability is paramount since the user is the one authenticating the message and

sometimes the parameters in the request may be not human intelligible such as item

IDs, etc. The context retrieval functions from Section 4.3.3 makes these identifiers

into their human-readable counterparts.

4.5 Frontend Modifications

One of the main objectives of the WebAuthn firewall design is to minimize the intru-

siveness of integrating WebAuthn into a web service. However, some modifications

to the frontend are unavoidable as the frontend is the one to initiate any transaction

authentication event. A WebAuthn transaction authentication event has a life-cycle

of setup and verification detailed in Chapter 3, which the frontend must support.

54

In order to minimize frontend intrusiveness, a small WebAuthn JavaScript library

included with the firewall handles all of the frontend boilerplate code surrounding

this life-cycle. Every endpoint in the frontend that launches transaction authentica-

tion requests may use this library to lighten the programming burden of integrating

WebAuthn.

4.6 Backend Modifications

Guarda mostly avoids any backend modifications to integrate WebAuthn transaction

authentication into a web service. The firewall design intentionally situates itself

between the frontend and the backend and requests are proxied between the two such

that the backend is unaware it is connected to Guarda rather than the frontend itself.

Of all three case studies, backend modifications are necessary for Gogs. As a

server-side rendering application, there is no clean way for the firewall to do its context

retrieval. The backend is modified to include a few server context routes, which the

firewall may query for supplemental context. Section 7.3 compares the intrusiveness

and complexity of integrating WebAuthn directly into Gogs versus utilizing Guarda.

The comparison exemplifies that the firewall is the simpler approach to integrating

WebAuthn.

55

Operation Description

Get
Retrieve a value from the HTTP request using the default input
getter explained in Section 4.3.1.

GetInt64 Similar to Get, but returns the value as an int64 type.

GetArray
Similar to Get, but returns the value as an []interface{} array
type.

Get_Form,
Get_URL,
Get_JSON,
Get_URLParam

Get functions that use specific default input getter functions.
Each one of these operations has their respective int64 and
[]interface{} variants: GetInt64_Form, GetArray_Form, etc.

GetUserID
Retrieve the current user’s ID from the HTTP request. Inter-
nally performs a call to the GetUserID function from the firewall
configuration as explained in Section 4.3.1.

GetContext

Fetch some extra context by name using the context retrieval
functions explained in Section 4.3.3.
Example from Gogs: wf.GetContext("repo", wf.Get("id")) gets
Gogs repository by id.

GetVar
Retrieve a store value by variable name within the scope of the
domain specific program. Variable are set by a few Set operations
explained in Table 4.2.

Apply
Applies a Go function to outputs of DSL operations. The result
of the function feeds into the format string.

Table 4.1: The domain specific language Get type operations. These affect the format
string if invoked at the top level within Authn.

56

Operation Description

SetVar
Creates a new variable in the scope of the domain specific pro-
gram and sets a value to it.
Example: wf.SetVar("id", wf.Get("id")).

SetContextVar
Shorthand for combining the output of a GetContext into SetVar.
Example: wf.SetContextVar("repo", wf.Get("id")) is equivalent
to wf.SetVar("repo", wf.GetContext("repo", wf.Get("id"))).

Log Logs values to the firewalls console. Useful for debugging.

Table 4.2: The domain specific language Set type operations. These do not affect the
format string, but generally perform some side-effect.

57

58

Chapter 5

WebAuthn Firewall

Implementation

The WebAuthn firewall presented in this thesis is implemented in the Go programming

language. This chapter describes how some of the critical components of Guarda’s

design described in Chapter 4 are implemented. The following Table 5.1 outlines the

approximate footprint of each component discussed in this chapter.

Firewall Component Lines of Code

WebAuthn Verification 126

Default Handlers 309

Domain Specific Language 478

Table 5.1: The domain specific language Get type operations. These affect the format
string if invoked at the top level within Authn.

5.1 WebAuthn Verification

The cryptographic verification of a WebAuthn transaction authentication event uses

a slightly modified Go WebAuthn library [15]. This library exposes two functions,

BeginLogin and FinishLogin, which set up and validate a WebAuthn two-factor au-

59

thentication event respectively. The FinishLogin function is modified to support the

transaction authentication extension. It checks if the extensions object received from

the hardware authenticator exactly match an expected extensions object generated

by the firewall.

5.2 Default Handlers

As discussed in 4.3.4, every web application with WebAuthn transaction authen-

tication must support a list of core WebAuthn operations. Guarda secures them

transparently with a collection of default handlers. They can be grouped in Table 5.2

by their similar implementations.

Function Description

webauthnIsEnabled
Queries the firewall’s database to determine if a username has
WebAuthn enabled or not.

beginRegister,
beginLogin,
beginAttestation

Functions that setup their respective operations as described
in Section 5.1.

finishRegister,
finishLogin

Validates WebAuthn public key credentials. If successful,
finishRegister saves the credentials in the firewall’s database,
whereas finishLogin allows the login to continue.

disableWebauthn

Validates WebAuthn public key credential and authentica-
tion message "Confirm disable WebAuthn for {{ username }}".
If successful, it deletes the credential from the firewall’s
database.

Table 5.2: The default handlers included with the WebAuthn firewall.

5.3 Domain Specific Language

Guarda secures most routes using the domain specific language within the Authn

function described in Section 4.3.5. Any domain specific program has a state and an

output container. A scope hash table holds the state of the program — all of the

60

local variables which may be set and accessed. The has table maps strings represent-

ing variable names to their respective contained values. The output container is a

formatVars array. This array stores the values to apply sequentially to the format tags

included in the first argument of Authn.

The first argument of the Authn function is the format string. The second argument

and onward are the top-level DSL operations. Only the Get type operations listed

in Table 4.1 which appear as top-level operations may affect the resulting authenti-

cation message. All other occurrences, such as arguments to other domain specific

operations, simply return their respective values.

Each DSL operation must implement an execute and retrieve function. The Authn

executes the domain specific program line-by-line by calling execute of the top-level

operations in order. Since execute is only called on top-level operations, which may

affect the authentication message, it has access to both the scope and the output

formatVars array. The function type of execute is produced in Code Snippet 5.1.

1 execute (r * ExtendedRequest ,
2 scope scopeContainer ,
3 formatVars *[] interface {})

Code Snippet 5.1: The function type of the execute function.

Table 4.1 outlines the Get type operations. When execute is called on one such

operation, it typically appends to the formatVars array. The values of formatVars

substitute the format tags in the format string in order. Table 4.2 outlines the Set

type operations and calling execute typically adds or sets a new variable to the scope

hash table.

The retrieve function of a DSL operation is used to extract a return value from

the operation. Whenever a DSL operation is passed as an argument to another

operation, the parent operation calls the child’s retrieve in order to resolve the return

value. Since these operations are not top-level, they may not affect the format string.

Therefore, they do not receive the formatVars array, only the scope.

Take the following example from Gogs: SetContextVar("repo", Get("id")). The

outer SetContextVar calls retrieve on the inner Get("id") to resolve its return value.

61

The function type of retrieve is produce in Code Snippet 5.2.

1 retrieve (r * ExtendedRequest , scope scopeContainer) interface {}

Code Snippet 5.2: The function type of the retrieve function.

When a DSL operation implements these two functions, it enables a hierarchical

domain specific language. A DSL operation may invoke other operations as arguments

to it or be an argument to another operation. This chaining enables flexible domain

specific programs.

62

Chapter 6

Case Studies

This chapter presents three case studies used to evaluate Guarda. Each case study

involves using Guarda on a web service that is unique in some fundamental way. This

variability stress tests Guarda’s two main objectives: minimal intrusiveness and ease

of configuration. The case studies provide guidance on what aspects of Guarda need

configuration and precisely how detailed versus general those configurable options

should be to be beneficial without becoming overly burdensome.

6.1 Conduit

Conduit is a simple RESTful blog web service [5]. It is not a production service,

rather an educational service to demonstrate the flexibility of RESTful web appli-

cations. The project supplies many simple frontend and backend implementations,

written in various programming languages and frameworks, but following the same

API. The case study focused on a React based frontend [4] and a Golang based back-

end [3]. Conduit is the best-case application for the WebAuthn firewall, a RESTful

web service with basic functionality to protect. No backend modifications are neces-

sary to integrate WebAuthn.

63

6.1.1 Context Retrieval

A major benefit of a RESTful web application is that the backend exposes many useful

context routes. By design, a RESTful frontend performs the necessary rendering on

the user’s web-browser and must retrieve user specific information from the backend.

These routes are useful for WebAuthn context retrieval as well. For example, the

backend already implements routes such as getting an article by its ID. And if not,

then there certainly will be a tangential route such as requesting all comments of an

article to search for a specific one by ID. Since most of the modifications necessary

to the backend when integrating the WebAuthn firewall are for context routes, this

aspect of RESTful applications make that easy.

6.1.2 Secured Routes

The Conduit case study has three protected routes. Table 6.1 lists the secured oper-

ations with a sample authentication message for each. It presents an overview of how

Conduit is protected with transaction authentication.

Operation Authentication Message

Delete Comment "Confirm comment delete: I love WebAuthn"

Delete Article "Confirm article delete: Cat Memes"

Update User Settings
1 " Confirm new user details :
2 username damian
3 email damianb@mit .edu"

Table 6.1: The operations of Conduit secured by transaction authentication.

The simplicity of the Conduit application does not challenge the domain spe-

cific language much. The domain specific programs simply retrieve some context to

complete the format strings. The “Update User Settings” route requires a custom

handler, which is not exceptionally complicated. The custom handler transaction au-

thenticates requests only if the username, email or password are modified. Otherwise,

64

HTTP requests that only modify non-sensitive fields like the bio or profile pictures

pass through without any verification.

6.2 Calypso

Calypso is a RESTful frontend for a WordPress admin panel [7]. This is a produc-

tion service, with far greater complexity than the Conduit application. Also, unlike

Conduit with a backend running locally, which can be modified, Calypso accesses the

official WordPress backend servers. These servers are closed-source and their modi-

fication is out of question. Whereas avoiding backend modifications for Conduit is a

favorable result, with Calypso it is a necessity. Nonetheless, integrating WebAuthn is

possible because the RESTful API of WordPress was complete enough to satisfy the

needs of Guarda.

6.2.1 Multi-Target Proxying

Backend 1

Firewall
WebAuthn Verify

Backend 2

HTTP (wordpress.com, form-data)

HTTP (public-api.wordpress.com, JSON)

HTTP (public-api.wordpress.com, JSON)

HTTP JSONHTTP JSON

HTTP form-data

Web-Browser

Webpage

Frontend

Figure 6-1: The WebAuthn firewall must support two backend targets for Calypso.

Unlike the other two case studies, a point of complexity that Calypso has is

that the frontend accesses multiple backends. Typically, the frontend requests to a

single backend source. However, as shown in Figure 6-1, the Calypso frontend in-

terfaces with two backend targets. Guarda receives requests with target addresses

65

"public-api.wordpress.com" and "wordpress.com" in their headers. It must proxy them

to their respective backends accordingly. One WordPress backend is for API re-

quests located at "public-api.wordpress.com" and accepts JSON payloads. Most of

Calypso interacts with this backend. However, login requests go to a backend at

"wordpress.com" which uses form-data payloads. This architecture design requires that

Guarda support multi-target proxying with separate default input getter functions

per target. The firewall configuration for Calypso lists both of those target domains

along with GetJSONInput and GetFormInput as their default input handlers respectively.

6.2.2 Login

Guarda transparently protects a number of core WebAuthn routes, including the route

for login, as described in Section 4.3.4. However, the Calypso project approaches login

in an atypical fashion. Normally a service has a dedicated route for login. Calypso

shares a login route with other operations, so HTTP requests are identified by an

"action" field in their payload, similarly as described in Section 4.3.6. As a result, the

default login handler cannot support Calypso directly. Extending the default login

handler to be customizable for this one specific case would make Guarda’s configura-

tion too complicated. Rather, a custom login handler implements the Calypso login

event. The login handler roughly resembles the Go pseudo-code in Code Snippet 6.1.

1 func finishLogin (w http. ResponseWriter , req *wf. ExtendedRequest) {
2 action := req.Get(" action ")
3 switch action {
4 case "login - endpoint ":
5 // WebAuthn verify the login request
6 VerifyLogin (w, req)
7 default :
8 // Other requests go right through
9 ProxyRequest (w, req)

10 }
11 }

Code Snippet 6.1: Go pseudo-code for the custom login handler for Calypso.

The handler listens on the "wordpress.com/wp-login.php" route. It extracts the

"action" field in the request payload and validates the login attempt only if the action

66

is "login-endpoint". The VerifyLogin function performs the WebAuthn authentication

and only upon successful verification does it allow the request to proceed through the

firewall. Otherwise, all other requests are proxied through with no additional checks.

6.2.3 Secured Routes

Table 6.2 lists the secured operations of Calypso with a sample authentication message

for each. The domain specific language supports Calypso well; every operation listed

is secured using the domain specific language. This array of protected operations

demonstrates the flexibility of the domain specific language.

Operation Authentication Message

Update Profile Settings "Save the profile settings: Espanol Public"

Invite New Users to Site "Invite new users: damian, durian, john-smithson"

Change Site Address
1 " Change site address
2 from: calypso . localhost
3 to: mytravels .blog.com"

Change Site Theme "Change theme to: Tangerine Orange"

Table 6.2: The operations of Calypso secured by transaction authentication.

Certain domain specific programs have multiple context retrievals. Others have

multiple format tags to fill, and one program requires a special formatting function.

Apart from the custom login handler, there is no case where a custom handler is

necessary. The “Invite New Users to Site” route receives HTTP request containing

an array of elements that must be comma separated in the authentication message.

Rather than implementing a custom handler for this minor inconvenience, the Apply

domain specific operation described in Table 4.1 resolves this problem. It enables Go

code to be used within a domain specific program to a limited extent. Code Snip-

pet 6.2 is a domain specific program for inviting new users to administer a WordPress

blog.

67

1 Secure ("POST", "/rest /{ version }/ sites /{ site_id }/ invites /new",
2 Authn(" Invite new user(s): %v",
3 wf.Apply(func(args ... interface {}) (interface {}, error) {
4 invitees := args [0].([] string)
5 return strings .Join(invitees , ","), nil
6 }, wf. GetArray (" invitees ")),
7))

Code Snippet 6.2: A domain specific program to secure the Calypso operation for
inviting new users to administer a WordPress blog.

The Authn operation string formats the argument of wf.GetArray("invitees")) with

a Go closure passed to Apply.

6.3 Gogs

Gogs is a server-side rendered self-hosted Git web service [2]. A server-side ren-

dered web application presents its own set of challenges to the WebAuthn firewall.

Section 4.2 explains how Guarda has to be the end-point interacting with the user’s

web-browser. The firewall must obtain the context from the Gogs backend. The back-

end does not, however, conveniently expose context routes like RESTful backends as

discussed in Section 6.1.1.

6.3.1 Intrusive WebAuthn

The Gogs web service was the first of the three case-studies. Before Guarda became a

mature idea, part of Gogs was secured in the traditional, intrusive fashion described

in Section 1.4. This work is redone using the WebAuthn firewall approach once it

proved itself as a prospective design approach.

The two main challenges with integrating WebAuthn into Gogs intrusively are

the database adapter and organizational difficulties. WebAuthn needs a database

table to record entries of users’ public key credentials. Simply creating a new table in

Gogs requires writing a custom database model for the table as well as modifying the

codebase in a number of separate locations. Furthermore, the handlers for various

Gogs routes are spread throughout the code. Keeping track of which routes are

68

WebAuthn secured becomes increasingly more difficult as more routes are protected.

6.3.2 Context Retrieval

A downside to server-side rendering web services when compared to RESTful ser-

vices when it comes to WebAuthn firewall integration is the lack of pre-built context

routes. Effectively, the API routes in the RESTful backend services act as the con-

text routes. Gogs, being a server-side rendering backend, must be modified to include

those context routes. Some Gogs routes need additional context to retrieve objects

such as a "repository" or "webhook". Gogs serves this context information out of a

"server_context/<type>/<args>" route. The <type> refers to what type of object is be-

ing requested (e.g., repository, webhook, etc.). Each context type has its own handler

in Gogs, which interprets the <args> to retrieve the correct context object.

6.3.3 Secured Routes

While integrating WebAuthn into Gogs during the case study, every HTTP route of

the web service is categorized whether it should be protected by transaction authen-

tication or not. This judgment is made by weighing the cost versus the benefit of

protecting that route. Protecting a route is not free, most heavily affecting the user

experience. Routes are protected if the harm due to malicious hijacking justifies the

burden to the user’s experience.

Table 6.3 lists the secured operations with a sample authentication message for

each. It presents an overview for the types of operations that could warrant WebAuthn

transaction authentication.

6.3.4 Custom Handlers

As with the other case-studies, most of the routes are simple and easy to secure us-

ing the domain specific language. At most they require a context retrieval to fill a

single format tag. Within the Gogs service, the “Delete Repository” and “Set Pri-

mary Email” operations in Table 6.3 are handled by HTTP routes that also handle

69

Operation Authentication Message

Delete Repository "Confirm repository delete: damian/JS-OS"

Add SSH Key "Add SSH key named: Damian’s Laptop"

Delete SSH Key "Delete SSH key named: Damian’s Laptop"

Update Profile Settings
1 " Confirm profile details :
2 username damian
3 email damianb@mit .edu"

Set Primary Email "Confirm new primary email: damianb@alum.mit.edu"

Change Password "Confirm password change"

Leave Repository "Leave repository named: JS-OS"

Delete App Access Token "Delete App named: Gogs-Watcher-App"

Publish New Release
1 " Publish release named : Version 4.20
2 File names : release .tar.gz , release "

Delete Web-Hook "Delete webhook for: URL gogswatcher.app.com"

Table 6.3: The operations of Gogs secured by transaction authentication.

multiple other operation types. Similarly to the login route of Calypso discussed in

Section 6.2.2, requests have an "action" field in their payload that delineates the op-

eration type. Only certain actions warrant being transaction authenticated. Custom

handlers are used in these cases, to parse the "action" field and WebAuthn secure

only when necessary.

Gogs requires a more involved custom handler for protecting the “Publish New

Release” operation. The files associated with a new release are contained as UUIDs

in the HTTP request. So each file needs context retrieval to retrieve the file name,

which then must be comma separated in the format string. Rather than expressing

this series of operations and formatting in an Apply operation like with Calypso in

70

Section 6.2.3, it is easier to drop down to a custom handler function. The custom

handler function written in Go pseudo-code is produced in Code Snippet 6.3.

1 func publishNewRelease (w http. ResponseWriter ,
2 r *wf. ExtendedRequest) {
3 title := r.Get("title ")
4 uuids := r. Request .Form["files "]
5
6 names := [] string {}
7 for _, uuid := range uuids {
8 append (names , r. GetContext (" attachment ", uuid)["Name"].(string))
9 }

10
11 authText := fmt. Sprintf (" Publish release named : %v", title)
12 authText += fmt. Sprintf ("\ nFile names : %s",
13 strings .Join(names , ", "))
14
15 handlerFn := firewall .Authn(authText)
16 handlerFn (w, r)
17 }

Code Snippet 6.3: A custom handler in Go pseudo-code to secure the Gogs operation
for publishing a new release.

This handler constructs an authentication message from the "title" of the release

and all of the included attachment file names. For the attachment file names, the

handler must translate the UUIDs into contextualized attachment objects and then

look up the "Name" fields.

71

72

Chapter 7

Evaluation

This chapter presents evaluation metrics for the three case studies of Guarda. The

principal evaluation criteria focus on simplicity, organization, ease-of-use and perfor-

mance overhead of Guarda by answering the following questions:

• What is the complexity of using Guarda? (Section 7.1.1)

– What is the breakdown of the configuration file? (Table 7.1)

– How much incremental work does it take to secure a new route? (Fig-

ure 7-1)

• How much does a web service’s frontend code need to be modified? (Section 7.2)

• How do the changes to a web service’s backend compare when integrating Web-

Authn with Guarda versus intrusively? (Section 7.3)

• What is the performance overhead of Guarda? (Section 7.4)

7.1 WebAuthn Firewall Configuration Metrics

Each of the three case studies has its associated WebAuthn firewall configuration

file. The number of lines of code of this file is a proxy measurement to evaluate the

complexity and ease-of-use of Guarda.

73

7.1.1 Overall Complexity

The total configuration file size evaluates the overall complexity of configuring Guarda

and is shown in Table 7.1, sub-divided into four categories:

• Configuration parameters as discussed in Section 4.3.1

• Context retrieval functions as discussed in Section 4.3.3

• Domain specific language and custom route handlers as discussed in Sections 4.3.5

and 4.3.6

• Miscellaneous code such as extraneous syntax and boilerplate code

The firewall configuration file is the sole source of customization that dictates how

the firewall interacts with a specific web service. Both Calypso and Gogs are produc-

tion web services. Considering that they are secured by Guarda within approximately

250 lines of code, this supports the claimed advantages of the firewall’s simplicity and

organization.

7.1.2 Incremental Complexity to Secure a Route

The configuration parameters, context retrieval and miscellaneous code are more or

less fixed costs to the configuration file’s complexity. Only the route handlers scales

with the size of the service being secured. Figure 7-1 plots the frequencies of lines

of code needed to secure a new route among all three case studies. The bar chart

can be partitioned into two clear clusters at approximately the 20 lines of code per

route handler boundary. The bars on the left side with fewer than 20 lines correspond

to uses of the domain specific language. The handlers greater than 20 lines of code

are solely the custom handlers. It is natural to expect this divide since the custom

handlers by nature perform more involved processing of a request than the DSL

handlers and thus use more lines of code.

This chart also evidently demonstrates that most of the routes may be secured

using only the domain specific language. Of all 20 routes secured among all three case

studies, only 5 required a custom handler. This means that 75% of the routes could

be captured by the domain specific language. The average domain specific program

74

	0

	1

	2

	3

	4

	5

	6

	7

	8

	2 	4 	6 	8 	10 	12 	14 	16 	18 	20 	22 	24 	26 	28 	30 	32 	34 	36 	38 	40 	42

Nu
m
be
r	o

f	O
cc
ur
re
nc
es

Lines	of	Code	to	Secure	a	Route		

Frequencies	of	Secured	Route	Sizes
Across	All	Case	Studies

Domain	Specific	Language
Custom	Handler

Figure 7-1: The frequencies of lines of code to secure a route with transaction au-
thentication. The majority of the routes can be secured in 10 lines or less.

to secure a route is 4 lines of code, and the average custom handler is 32 lines of code.

The total weighted average to secure a route is 11 lines of code.

7.2 Frontend Modifications

The frontend of a web service must be modified slightly when integrating WebAuthn,

regardless of whether the WebAuthn firewall is in use or not. The frontend issuing the

WebAuthn operation must adhere to the protocol specification life cycle as described

in Chapter 3. Table 7.2 lists the total number of code changes for each frontend of

the case studies. For every case, the number of changes all exceed the sizes of the

WebAuthn firewall configuration files.

These code changes are not complex. There is boilerplate code delegated to a

JavaScript library. Its contents are not included in the lines of code measurements,

but its import and usage within the frontend is. The nature of protecting an operation

75

with WebAuthn on the frontend involves making a few library calls, error handling

and piecing together the authentication message from the HTML data present. For

example, each Gogs operation secured by WebAuthn involves on average 54 lines of

code changes to the frontend.

7.3 Backend Modifications

A significant advantage to using Guarda over integrating WebAuthn intrusively into a

web service is the lack of modifications needed to the backend. Table 7.3 demonstrates

this fact — using Guarda is not invasive to the backend.

The RESTful case studies, Conduit and Calypso, require no backend modifica-

tions. The Gogs case study, which is server-side rendered, only needs modifications

to supply context.

Before Guarda became a mature idea, Gogs was partly WebAuthn secured in-

trusively. The intrusive Gogs case study protects 5 routes whereas the WebAuthn

firewall study of Gogs covers 11 routes. Nevertheless, even with fewer routes pro-

tected, the invasive nature of securing Gogs is unmistakable. Table 7.4 backs this

claim up plainly. The intrusive Gogs implementation is significantly more complex

and more spread throughout Gogs than the WebAuthn firewall approach.

Many of the additional lines of code for the intrusive WebAuthn integration of

Gogs come from all of the plumbing code needed in to support and run WebAuthn.

WebAuthn needs its own database table with entries to record registered users. The

backend must support WebAuthn registration and login. It must also include the

WebAuthn code that verifies transaction authentication events. All of these func-

tionalities come with Guarda for free, which explains the large reduction in backend

complexity when using Guarda.

Guarda also reduces the amount of boilerplate code required to secure a new route.

Gogs secured intrusively takes on average 87 lines of code per new route. The firewall

has on average 11 lines per new route.

76

Process
Firewall

WebAuthn Verify

Process

Gogs Backend

User

Process

User

Process

User

Process

Change Email

HTTP Req. a
nd Resp.

Change Email

HTTP Req. and Resp.

Change Email
HTTP Req. and Resp.

HTTP Req. and Resp.

HTTP Req. and Resp.

HTTP Req. and Resp.
Verify

GetUserID HTTP

Verify

GetUserID HTTP

Verify

GetUserID HTTP

Server
Context

1

23

Figure 7-2: The experiment setup to measure the performance overhead of Guarda
under load.

7.4 Performance Overhead

Guarda acts as a gatekeeper between the frontend and backend. It naturally adds

some performance overhead to the whole system. This evaluation experiment mea-

sures the performance overhead for securing Gogs with Guarda under load to see how

well it scales.

The hardware for this experiment is a quad-core Intel i7-6600U CPU @ 2.60GHz

laptop machine. Figure 7-2 illustrates the setup used to collect the performance data.

The firewall and Gogs web server run in separate operating system processes. Each

trial to collect performance run times initializes a given number of users running

in their own processes as well. Each user proceeds to sequentially send 300 POST

requests to the “Change Email” route as quickly as possible. This workload generation

is performed as a closed-loop system, where each user sends a new HTTP request only

when their previous request comes back with an HTTP response. The latency of each

request is the elapsed time measured for the request to return a response. The data

point for the trial is the 95th percentile of the running times tail. When there are

many users sending requests simultaneously, there is contention among them which

77

accounts for the increase in latency.

Three different scenarios are tested and the results reported in Figure 7-3. The

blue line measures the request latencies for using Guarda on users that have Web-

Authn enabled. The orange line measures the request latencies for Guarda on users

without WebAuthn enabled. The difference between these two lines is the overhead

of validating a WebAuthn transaction versus simply letting the request pass through.

The red line measures the latencies of sending these requests directly to the Gogs

server.

	0

	50

	100

	150

	200

	250

	300

	350

	0 	5 	10 	15 	20 	25 	30

La
te
nc
y	
fo
r	H

TT
P	
Re

qu
es
ts
	(m

s)
95

th
	P
er
ce
nt
ile

Number	of	Concurrent	Users	Issuing	HTTP	Requests

Latency	vs.	User	Load
Gogs	Case	Study	Performance

Firewall	+	Webauthn
Firewall	Pass-through

Directly	to	Gogs

Figure 7-3: The 95th percentile run times of three different Gogs setups under load.
The x-axis is the number of users issuing requests concurrently, and the y-axis is
the run time latency in milliseconds. The three experiments are: using Guarda with
WebAuthn enabled, using Guarda with WebAuthn disabled, issuing requests directly
to the Gogs server without WebAuthn transaction authentication. There is a latency
penalty to using the WebAuthn firewall.

As seen in Figure 7-3, the blue and orange line remain tightly together meaning

that there is little overhead from the actual validation of a WebAuthn transaction.

Rather there is a significant gap between the lower red line representing the direct

78

connection and the upper blue and orange lines representing the firewall setups. This

discrepancy arises from the implementation of the GetUserID function within the Gogs

firewall. The GetUserID is a configurable function described in Section 4.3.1 which

identifies the current user of a request received by Guarda.

Guarda uses the current user information to determine, for every incoming HTTP

request, whether that user has WebAuthn enabled and, if so, verify the transaction

accordingly. In Gogs, the user of a request is identified by a session ID, which only

the backend can translate to a user ID. Therefore, the GetUserID for the firewall must

send an HTTP GET request to the backend to retrieve the user ID. As depicted by

the dashed request lines in Figure 7-2, every request that passes through the firewall

invokes an additional HTTP request, accounting for the noticeable overhead when

using the firewall. Under a single user load, the additional overhead of this GetUserID

HTTP request contributes approximately 4 milliseconds to the overall latency. Under

the 30 user load when contention is high, the overhead from GetUserID is approximately

70 milliseconds. This is visible in the non-negligible gap between the lower red line

and the upper blue and orange lines.

The GetUserID function is specific to the web service, and it is possible to design the

software to avoid the additional HTTP call. The Conduit web service, for example,

uses JSON Web Tokens (JWT) in order to identify the current user of an HTTP

request. In this setup, the user ID is simply included in a signed JSON object with the

request. Guarda can simply parse this data object and extract the identifier directly

without any additional HTTP requests. Under such a setup, the latency discrepancy

between using Guarda and the direct scenarios should diminish significantly.

79

Case Study Configuration File Lines of Code

Conduit 245

Config Parameters 17

Context Retrieval 117

Route Handlers 49

Miscellaneous 62

Calypso 253

Config Parameters 22

Context Retrieval 92

Route Handlers 81

Miscellaneous 58

Gogs 257

Config Parameters 22

Context Retrieval 51

Route Handlers 126

Miscellaneous 58

Table 7.1: A breakdown of the configuration file size for each case study. Each total
is broken down into four categories with their respective lines of code contributions.

Case Study Frontend Lines of Code Changes

Conduit 289

Calypso 402

Gogs 570

Table 7.2: The number of code changes performed on each frontend of the case studies
in order to support WebAuthn transaction authentication.

80

Case Study Backend Lines of Code Changes

Conduit 0

Calypso 0

Gogs 169

Table 7.3: The number of code changes performed on each backend of the case studies
in order to support the WebAuthn firewall.

Backend Lines Changed Backend Files Modified

Intrusive Gogs 1293 18

WebAuthn Firewall Gogs 169 5

Table 7.4: Comparing the complexity differences between intrusive and WebAuthn
firewall integration.

81

82

Chapter 8

Discussion and Future Work

This chapter makes a number of observations on transaction authentication discovered

over the course of this research.

8.1 Applications of Transaction Authentication

Transaction authentication is not without its limitations. There are use cases that

make perfect sense for this authentication extension, which fit nicely within its spec-

ification and capabilities. Other cases may not lend themselves well to transaction

authentication. The complexity of the authentication message displayed is a key

determining factor for what makes a good versus poor use case.

8.1.1 Good Use Cases

Good use cases of transaction authentication are those where the authentication mes-

sage is short, simple and easy to comprehend by a user. The contents being displayed

should also be human-readable in nature. Names and titles are easily recognizable by

a human. A cryptographic key, albeit displayable, is much less human-friendly.

An example from Gogs is the delete repository action. It is secured with the au-

thentication message: "Confirm repository delete: {username}/{reponame}. From this

message, it should be immediately evident to a user what the operation to be per-

83

formed is.

A short authentication message is less likely to be misinterpreted by the user. Ad-

ditionally, a hardware authenticator device is likely to have a relatively small display.

So shorter authentication messages are better fit for this restrictive display medium.

8.1.2 Poor Use Cases

A poor use case is one where it is possible to use transaction authentication, but it

is rather clunky and disruptive to the user experience. Three general classes of such

problems are as follows:

• There is a lot of context to authenticate. One example is a big form that needs

transaction authentication. This form is unlikely to all fit on the hardware

authenticator’s display. Also, even when only one aspect of the form is modified,

all of the entries must be displayed to the user since they all are sent over in

the HTTP request.

• The contents being displayed are not friendly for human readability. Examples

include SSH keys, cryptographic hashes, and Git hooks code blocks. These can

be displayed, but are burdensome for the user to verify.

• The context media is difficult or impossible to meaningfully be displayed. Rich

media such as images or audio clips fully depend on the hardware authenticator’s

physical capabilities. Binary uploads have no good way of being displayed to the

user at all. For example, the Gogs route to publish a new release as discussed

in Section 6.3.4 has no way to validate the binary contents being uploaded.

8.1.3 Inapplicable Use Cases

Transaction authentication defends against unauthorized and unwanted operations

on a user’s account. However, under the threat model defined in Section 1.2, it

is incapable of performing any form of secure input. That means that transaction

authentication cannot prevent a malicious keyboard sniffer from recording a credit

card number being input during checkout or a new password being set in the account

84

settings. Transaction authentication may prevent these events from being maliciously

initiated by an adversary, but it has no means of preventing any snooping on sensitive

data as it is entered into a website.

8.2 RPC Isolation

Transaction authentication is often understood as a mechanism to protect the user

by defending against unauthorized operations. Intrusive integration of transaction

authentication into a web service has a collateral benefit of being able to shrink the

trusted computing base on the server-side. The original threat model assumes that all

server code is secure. However, if a web service RPC isolates its various components

internally, then only the component actually executing the given operation must be

trusted.

For example, the Gogs web sever has code and database tables pertaining to repos-

itory actions. They are independent of any other server operations and can be RPC

isolated into a separate operating system process. This process is the only one with

the privileges to execute repository actions, from renaming to deleting a repository.

Consequently, the web server must interface with this process in order to operate

on any repository. If this RPC isolated process also contains WebAuthn verification

code, it can perform the transaction authentication validation on its own. Even if any

other aspect of the web server were compromised, the WebAuthn protected reposi-

tory requests sent to this process cannot be tampered with since they would fail the

verification.

8.3 Tracing Transaction Authentication

Subversion Opportunities

Securing a route with transaction authentication requires careful planning to avoid

any vulnerabilities of directly or indirectly subverting the protection. Direct subver-

sion actively evades the transaction authentication protection. Indirect subversion

85

tricks the user into transaction authenticating some operation that actually is unde-

sired.

8.3.1 Direct Subversion

If the disable WebAuthn event were not transaction authentication secured, a triv-

ial example of direct subversion is possible. The adversary could disable WebAuthn

before performing any sensitive operation. To avoid this, the disable WebAuthn

operation is one of the default operations protected by Guarda as discussed in Sec-

tion 4.3.1.

Less obvious direct subversion attacks are also possible. In Gogs, an adversary

could create a new dummy user without WebAuthn enabled. Then they could add

the dummy user as an owner of a target repository and perform the delete operation

from the unsecured user. If not carefully protected, such as requiring transaction

authentication also for adding new repository owners, this sequence of operations

could subvert the protected route of repository deletion.

Direct subversion opportunities might be detectable by performing route search

and analysis similar to symbolic execution. Such a system could scan the web service’s

code and trace all possible chains of operations that could get around the transaction

authentication protection of a specific route.

8.3.2 Indirect Subversion

Indirect subversion opportunities are harder to detect since they involve a human

element. These attacks trick the user into transaction authenticating a seemingly

innocuous operation when actually they are authorizing something sensitive.

An example within Gogs is the following scenario. A user has two repositories

A and B. The repository A is important whereas B is garbage. In this scenario,

repositories may be deleted or renamed. Deletion is WebAuthn protected whereas

renaming is not.

When the user decides to delete the garbage repository B, the adversary quickly

86

and quietly renames A to B and B to A. So by the time the user authorizes the

deletion of B, repository B is actually the important one. In doing so, the adversary

hijacked the user’s faithful deletion of the original garbage repository B in order to

delete the important repository A.

The user believes that they are doing one operation, but in reality, they are doing

a completely different and destructive other operation. Indirect subversion opportuni-

ties are difficult to notice and detect since, unlike the direct subversion opportunities,

there need not be any causal links between operations. In the aforementioned exam-

ple, there is no codified link between renaming a repository and its deletion. This

attack purely relies on silently duping the user.

87

88

Chapter 9

Conclusion

This thesis presents Guarda, a WebAuthn firewall architecture with the central aim of

reducing the burden for integrating transaction authentication into a new or existing

web service. Before this research, WebAuthn would be integrated directly into the web

service’s codebase, which is time consuming and difficult to maintain. The firewall

approach enables an engineer to configure a ruleset for the firewall using the domain

specific language and, if necessary, custom handlers. This configuration determines

which HTTP requests are high-risk and which are not. The firewall processes those

that are deemed high-risk and only allows them to pass through if the transaction

authentication validates successfully.

Three case studies with evaluations justify the advantages of this system over

integrating WebAuthn intrusively.

• Complexity: The average firewall configuration file size among the case studies

is approximately 250 lines of code. The average secured route for Gogs done

intrusively is 87 lines of code. Considering all of the boilerplate code necessary

to support WebAuthn, the firewall approach is almost 8 times more concise

than the intrusive approach.

• Configurability: Among the case studies, 75% of all routes can be secured using

the domain specific language in 20 lines of code or less. The average secured

route requires 11 lines of code, so making adjustments to the configuration is

simple and painless.

89

• Intrusiveness: In both RESTful case studies using Guarda, no modifications are

necessary to the backend. The Gogs case study with Guarda requires 169 lines

of code changes. Contrasted to the almost 1300 lines of code change over 18

different files for the intrusive Gogs case study, the firewall is the significantly

less invasive approach.

The firewall does incur a performance penalty, which varies depending on the

implementation details of the web service. The session ID implementation of Gogs

requires that Guarda make an HTTP request in order to identify the current user

issuing a request. This identification procedure slows down the entire latency of the

request being authenticated. Under heavy load, the request latency may be up to

1.5x slower when using the firewall than accessing the web service directly without

Guarda.

In conclusion, the WebAuthn firewall architecture is flexible and extensible. With

relatively little effort, it can equip even a production level web service with WebAuthn

transaction authentication. When well tuned for performance, such a WebAuthn

firewall architecture design is an appealing option for greater web security.

90

Bibliography

[1] Github: Where the world builds software. https://github.com.

[2] Gogs — a painless self-hosted git service. https://github.com/gogs/gogs,
2021.

[3] Golang echo realworld example app. https://github.com/xesina/
golang-echo-realworld-example-app, 2021.

[4] React redux realworld example app. https://github.com/gothinkster/
react-redux-realworld-example-app, 2021.

[5] Realworld example apps. https://github.com/gothinkster/realworld, 2021.

[6] FIDO Alliance. Fido2: Webauthn & ctap. https://fidoalliance.org/fido2/.

[7] Automattic. Calypso. https://github.com/Automattic/wp-calypso, 2021.

[8] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay
Kumar, Angelo Liao, Rolf Lindemann, and Emil Lundberg. Web authentication:
An api for accessing public key credentials level 1. https://www.w3.org/TR/
webauthn/#sctn-simple-txauth-extension, 2019.

[9] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. IEEE Symp. Security and Privacy, pages 9, 11, 2012.

[10] Kim Crawley. Web application firewalls explained: what is waf?
https://cybersecurity.att.com/blogs/security-essentials/
explain-how-a-web-application-firewall-works, 2020.

[11] Lucas Garron. Github supports web authentication
(webauthn) for security keys. https://github.blog/
2019-08-21-github-supports-webauthn-for-security-keys/, 2019.

[12] Gennie Gebhart. How to enable two-factor authentication on
bank of america. https://www.eff.org/deeplinks/2016/12/
how-enable-two-factor-authentication-bank-america, 2016.

[13] Google. Virtual authenticators tab.
https://github.com/google/virtual-authenticators-tab.

91

https://github.com
https://github.com/gogs/gogs
https://github.com/xesina/golang-echo-realworld-example-app
https://github.com/xesina/golang-echo-realworld-example-app
https://github.com/gothinkster/react-redux-realworld-example-app
https://github.com/gothinkster/react-redux-realworld-example-app
https://github.com/gothinkster/realworld
https://fidoalliance.org/fido2/
https://github.com/Automattic/wp-calypso
https://www.w3.org/TR/webauthn/#sctn-simple-txauth-extension
https://www.w3.org/TR/webauthn/#sctn-simple-txauth-extension
https://cybersecurity.att.com/blogs/security-essentials/explain-how-a-web-application-firewall-works
https://cybersecurity.att.com/blogs/security-essentials/explain-how-a-web-application-firewall-works
https://github.blog/2019-08-21-github-supports-webauthn-for-security-keys/
https://github.blog/2019-08-21-github-supports-webauthn-for-security-keys/
https://www.eff.org/deeplinks/2016/12/how-enable-two-factor-authentication-bank-america
https://www.eff.org/deeplinks/2016/12/how-enable-two-factor-authentication-bank-america
https://github.com/google/virtual-authenticators-tab

[14] Krypt.co. Krypton. https://krypt.co/.

[15] Duo Labs. Webauthn library. https://github.com/duo-labs/webauthn, 2020.

[16] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder, and Sampath Srini-
vas. Security keys: Practical cryptographic secondfactors for the modern web.
Financial Cryptography and Data Security, 20, 2016.

[17] Ledger. Ledger cryptocurrency wallet. https://www.ledger.com/.

[18] Nick Steele. Webauthn.io: A demo of the webauthn specification. https://
webauthn.io/.

[19] Trezor. Trezor cryptocurrency wallet. https://trezor.io/.

[20] yubico. What is fido u2f?
https://www.yubico.com/authentication-standards/fido-u2f/.

[21] yubico. The yubikey. https://www.yubico.com/products/.

92

https://krypt.co/
https://github.com/duo-labs/webauthn
https://www.ledger.com/
https://webauthn.io/
https://webauthn.io/
https://trezor.io/
https://www.yubico.com/authentication-standards/fido-u2f/
https://www.yubico.com/products/

	Introduction
	Current Authentication Methods
	Threat Model
	Transaction Authentication
	Status Quo of Transaction Authentication
	Thesis Contributions
	WebAuthn Firewall
	Case Studies
	Other WebAuthn Possibilities
	Source Code

	Thesis Outline

	Related Work
	Hardware Authenticators for Two-Factor Authentication
	Current Uses of Transaction Authentication
	Hardware Authenticators for Transaction Authentication
	Web Application Firewalls

	WebAuthn Transaction Authentication
	WebAuthn Registration
	Transaction Authentication Setup
	Cryptographic Attestation
	WebAuthn Firewall Verification

	WebAuthn Firewall Design
	Overview
	Request Life Cycle
	Securing Sample Operation
	Configurable Components

	Proxying Requests
	WebAuthn Firewall Configuration
	Configuration Parameters
	Default Input Getters
	Context Retrieval
	Default Handlers
	Domain Specific Language
	Custom Handlers

	Authentication Message
	Frontend Modifications
	Backend Modifications

	WebAuthn Firewall Implementation
	WebAuthn Verification
	Default Handlers
	Domain Specific Language

	Case Studies
	Conduit
	Context Retrieval
	Secured Routes

	Calypso
	Multi-Target Proxying
	Login
	Secured Routes

	Gogs
	Intrusive WebAuthn
	Context Retrieval
	Secured Routes
	Custom Handlers

	Evaluation
	WebAuthn Firewall Configuration Metrics
	Overall Complexity
	Incremental Complexity to Secure a Route

	Frontend Modifications
	Backend Modifications
	Performance Overhead

	Discussion and Future Work
	Applications of Transaction Authentication
	Good Use Cases
	Poor Use Cases
	Inapplicable Use Cases

	RPC Isolation
	Tracing Transaction Authentication Subversion Opportunities
	Direct Subversion
	Indirect Subversion

	Conclusion

