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Abstract

Storage systems must often store confidential data for their users. It is important to
ensure that confidentiality of the stored data is maintained in the presence of bugs
and malicious adversaries. This thesis tackles this problem using formal verification, a
technique that involves proving a software system always satisfy certain requirements.

There are numerous challenges in specifying what it means a system being con-
fidential and proving that a system satisfies that specification: nondeterministic be-
havior, indirect leakage of the data, system complexity, and others. Nondeterminism
in particular creates unique challenges by making probabilistic leakage possible. This
dissertation introduces the following to address these challenges:

• Two novel confidentiality specifications for storage systems with nondetermin-
istic behavior: data nonleakage and relatively deterministic noninfluence. Both
definitions accommodate discretionary access control and intentional disclosure
of the system metadata.

• Two techniques accompanying these specifications: sealed blocks and nonde-
terminism oracles. These techniques addressed the challenges encountered in
proving the confidentiality of the systems, and also reduced the proof effort
required for said proofs. These techniques are formalized and implemented in
two frameworks: DiskSec and ConFrm. Both frameworks contain metatheory to
help the developer to prove that their implementation satisfies the specification.

• The first confidential, crash-safe, and formally verified file systems with machine-
checkable proofs: SFSCQ and ConFs. SFSCQ uses data nonleakage and ConFs
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uses relatively deterministic noninfluence as their confidentiality specifications.
Both are implemented and verified in Coq.

An evaluation shows relatively deterministic noninfluence has 9.2x proof overhead
per line of implementation code. Experiments with multiple benchmarks show that
our systems perform better compared to FSCQ verified file system but worse com-
pared to ext4 file system.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Nickolai Zeldovich
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Storage systems are an integral part of many software systems we use day-to-day.

Users expect their data stored in such systems to stay secret. In this thesis, we

investigate the challenges surrounding the verification of storage system safety under

nondeterminism and present solutions to those challenges.

1.1 Motivation

There are many factors that can undermine the confidentiality of a storage system.

Due to their prevalence among all the software, we will focus on the software bugs.

1.1.1 Software Bugs

Storage systems have had numerous bugs that allowed for data disclosure: we list

several such bugs in Figure 1-1 and describe some of these bugs in more detail below.

All the presented bugs are obtained from CVE database [1].
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Bug description Filesystem(s) year

Access to deleted files’ data fuse-exFAT [8] 2022

Data leak via unaligned file lengths xfs [7] 2021

Can set incorrect permissions on new filesystem objects nfs [4] 2020

Data leak through uninitialized memory ext4 [2] 2019

A local user may create files that belongs to another user xfs [6] 2021

A local user may be able to read arbitrary files APFS [5] 2021

Information leak due to permission bypass Android fs [3] 2019

Figure 1-1: Bugs in various file systems that can lead to data-disclosure.

exFAT allows users to grow a file in stream extension beyond its valid length.

This operation immediately allocates the blocks but they do not get zeroed-out until

the file is closed. exFAT specification states that if the contents beyond the valid

length is read, null bytes should be returned. An implementation of exFAT in Linux

contains a bug that returns the newly allocated blocks’ residual contents instead of

null bytes [8]. In another file system, such a result can be achieved by setting file

length to a value that is unaligned with the block boundary then extending it with

ioctl system call [7].

Some of the bugs are due to improper permission setting and handling. Such bugs

allow attackers to access confidential data of other users by bypassing access control

mechanisms in the storage systems. Both Android fs and and APFS had bugs that

can leak confidential data due to faulty permission checking [5, 3]. xfs file system

allows users to create files that belong to other users and groups that are writable by

the creator [6].
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1.2 Verification and Threat Model

This dissertation looks at how we could avoid these bugs using software verification by

providing precise descriptions of how such a system should behave to ensure confiden-

tiality of the stored data. These descriptions are called confidentiality specifications.

A confidentiality specification of a system both forces a system to maintain certain

properties, and informs users about the safety guarantees that system provides. Fig-

ure 1-2 illustrates how formal verification works on a high level.

Figure 1-2: Formal verification workflow.

From the perspective of verification, we would like to have confidence that the

storage system is secure purely based on the storage system’s confidentiality specifi-

cation. This can be achieved by adopting a strong threat model. To reach our goal,

we take an unconventional approach: treating the developer of the storage system

with an adversarial mindset. More specifically, we assume the developer may be ma-

licious and intentionally deliver an implementation that can be exploited in the future,

which we call an adversarial implementation. This subsumes all possible bugs that a

well-meaning but error-prone developer might introduce into the implementation as

well as any implementation that is designed to be exploited.

As a result, our threat model is that the adversary both develops the storage

13



system and runs an adversarial application on top of the storage system in an attempt

to obtain confidential data. However, the adversary must provide a proof that their

implementation meets our confidentiality specification. The potential victim runs on

top of the same storage system but sets their permissions so that the confidential

files are not accessible to the adversary’s process. Our goal is to ensure that the

confidentiality specification is so strong that it prevents leaks even when the storage

system developer is colluding with adversarial processes running on top of the storage

system.

Our threat model is focused on proving that the storage system implementation

has no confidentiality bugs, rather than proving the absence of bugs in the environ-

ment outside of the storage system. Thus, we assume that our model of how the

storage system implementation executes is correct. That is, we are not concerned

with bugs in unverified software or hardware outside of the storage system, or users

mounting malicious disk images. We do prove that an initialization process produces

a correct image, but ensuring confidentiality on top of an intentionally corrupted file

system image is difficult, even without formal verification. We also do not reason

about timing channels, as we do not model time.

1.3 Challenges

In addition to the standard challenges like confidentiality being a two-execution prop-

erty and the complexity of storage systems, nondeterminism poses unique challenges

in both specifying and proving confidentiality. In this section we will focus on two

challenges that arises from two types of nondeterminism: nondeterminism in the

specification and nondeterminism in the implementation.
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1. Nondeterministic specifications. A challenge in proving confidentiality lies

in the fact that many specifications, including those in a storage system, are nondeter-

ministic. This nondeterminism is necessary to abstract implementation details so it

can be read, understood, and reviewed by humans. A deterministic specification runs

the risk of being overly verbose to a degree that the specification is the implemen-

tation, obscuring the important parts of the specification, making it difficult to read

and comprehend, and defeating one of the key purposes of writing a specification.

To demonstrate the possible pitfalls of writing a nondeterministic specification

that can prevent malicious implementations, consider the create operation from our

confidential file system ConFs. create takes an owner and creates an empty file owned

by the provided owner. Upon successful completion, it returns the inode number that

identifies the file. A natural correctness specification for its return value could be

“create returns the index of a previously unused inode that now corresponds to the

newly created file.” If we were only interested in functional correctness, this would be

an acceptable specification. However, there is a substantial confidentiality problem

associated with it. create is allowed to return any inode number as long as it was

unused at the time of the call. A malicious implementation of the file system can

take advantage of this nondeterminism in the specification to pick the returned inode

number and subsequently leak confidential data, e.g., last byte of the return value

being equal to the first byte of a block that belongs to another user.

Even the nondeterminism associated with the state of the disk after a crash can

be taken advantage of by an adversarial storage system implementation to leak data.

For instance, a high-performance file system specification may allow the file system

to delay flushing data to disk. An adversarial implementation could choose whether

to flush data immediately or defer the flush based on one bit of confidential data from

a victim’s file. To take advantage of this, an adversary could wait for the system to

crash and, after the crash, check whether any writes appear to have been lost. If so,

15



the adversary concludes the file system must have deferred the writes, which would

only have happened if the confidential bit was zero. This, in turn, can allow the

adversary to infer confidential bits.

2. Nondeterminism in implementation: secret-dependent outcome prob-

abilities. Another challenge arises because an adversary may infer the secret in-

formation stored in the system if the distribution of the outcome of a function is

dependent on a secret. Such a vulnerability may exist even when the possibility of

observing a particular return value is independent from the secret. A simple example

of this challenge can be seen in Figure 1-3.

if (get_random_bit() == 1)
return secret_bit

else
return get_random_bit()

Figure 1-3: Example of a program that leaks information via return-value probabili-
ties.

If we assume that get_random_bit() outputs 0 or 1 with equal probability, then

this code leaks the secret bit 50% of the time and outputs a random bit 50% of the

time. It is also important to note that it can output 0 or 1 independently of the secret

value. This way, any (state, return) pair represents a successful execution. Therefore,

by observing just a single return value, an adversary cannot infer the value of the

secret bit with 100% certainty. However, the probabilities of the output values in

Table 1-4 show that they correlate with the value of the secret bit.

16



Secret bit Output % 0 Output % 1

0 75% 25%

1 25% 75%

Figure 1-4: Distributions of return values for each state.

Any adversary who is aware of this behavior can infer the value of the secret bit

with certain confidence.

These types of vulnerabilities are not limited to usage of randomization. They

also manifest themselves when there are other random events that can affect the

behavior of the system. For example, in storage systems, source of randomness comes

from the possibility of a system crash at any point of the execution, not from an

operation with a randomised behavior. In real world, at any point in time, there

is a certain probability of system crashing. Moreover, this probability depends on

many complex factors that make it hard to estimate precisely. When modeling the

system, this hardship can be circumvented by modeling crashes as nondeterministic

events, instead of random ones. However, such a modeling choice does not change

the fact that there is an unknown probability associated with the materialization of

each nondeterministic event in the model. Since the probabilities are unknown, a

technique that addresses these type vulnerabilities should work no matter what the

actual distribution may be.

Other challenges. There are other challenges that are standard in the literature.

The first challenge is that confidentiality is a two-execution property, also known as a

hyperproperty, while functional correctness is a one-execution property [16]. A two-

execution property is a property that is defined over two executions of a program.

This makes confidentiality proofs harder and more complex compared to functional

correctness proofs, which include only one execution.
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The second challenge is the system complexity. Storage systems are complex soft-

ware. For instance, consists of approximately 50,000 lines of code. Proving properties

of such software require techniques to handle the complexity.

1.4 State of the Art: Noninfluence

The de facto approach to specifying confidentiality is through information-flow con-

trol. An information-flow-control policy restricts and regulates transfer of informa-

tion between different parts of the system as well as to its users. There are wide

variety of information-flow control specifications that formalizes different notions of

security [31]. One that is of particular interest is noninfluence [38].

Noninfluence is introduced as a comprehensive specification to ensure the con-

fidentiality of a system that both processes and stores confidential data. It is a

specification that regulates both the data stored in the system, and the data newly

introduced to the system. Noninfluence achieves this goal via two separate properties,

one for each type of confidential data: nonleakage and noninterference.

Nonleakage ensures the confidentiality of the data stored in the system. Informally,

nonleakage states that “if two states of the system differ only in the aspects that are not

visible to a user, then such a user shouldn’t be able to distinguish between those states

if he runs the exact same operation from both states”. This is a necessary property

for ensuring confidentiality of a storage system and is a part of our specifications as

well. However, it is insufficient because it doesn’t restrict system’s behavior regarding

the different actions the same user takes. For example, it doesn’t dictate the system

behavior when a user writes 0 or 1 to a location.

Noninterference regulates the behavior regarding the addition of the new data.

Informally, it states that “the users of a system should observe the same behavior

from the system regardless of other users’ actions in the system”. This restriction is
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not suitable for many storage systems. The reason is that it prohibits any transfer

of information, both direct and indirect. However, storage systems sometimes expose

effects of the users indirectly via metadata or some public information of the system

like available free space. For example, in a file system, if a user creates a file and writes

to it, other users of the file system may see that he created a file, even though they

may not see the file’s contents. For many applications, this behavior is completely

acceptable, even though noninterference prohibits it. Because of this, storage systems

require a more flexible confidentiality specification for introducing new data to the

system.

1.5 Solution Approaches

This thesis explores two different approaches to addressing the challenges mentioned

above: (1) sealed blocks and data nonleakage, and (2) nondeterminism oracles, ab-

stractions and refinements. These approaches complement each other, and together

offer a solution to each of the challenges. We briefly explain all of the approaches

below. We present more detailed explanations in the following chapters.

1.5.1 Data Nonleakage and Sealed Blocks

Data nonleakage and sealed blocks are our first attempt at addressing the challenges.

Our implementation of these approaches addresses the first challenge but also reveals

the intricacies of specifying and proving confidentiality of storage systems, most no-

tably the second challenge. Sealed blocks and data nonleakage are briefly explained

below.

Data Nonleakage We define data nonleakage as a solution to traditional noninflu-

ence definition being too strong for storage-systems confidentiality. Data nonleakage

19



relaxes the requirement of any sequence of actions to be noninterfering by allowing

the specialization of specification to two particular sequences. For example, it is pos-

sible to state that write should be confidential but create operation is public. As

a result, a system has a set of specifications, one for each pair of actions that are not

allowed to interfere. Data nonleakage will be explained more in-depth in Chapter 3.

Sealed Blocks Sealed blocks is a proof technique based on the idea that if a pro-

gram’s behavior does not depend on confidential data, then it is not possible for it

to leak confidential data, since it will behave the same no matter what the data is.

Sealed blocks achieve this via two mechanisms: (1) providing a way to handle data

without accessing its contents, and (2) enforcing access control when the contents are

accessed.

The first mechanism is an operation that we call sealing. Sealing takes a piece of

data and its owner, and turns it into an abstract object that does not provide any

functionality other than unsealing it. This way, showing that a program’s behavior

does not depend on confidential data reduces to showing that it only handles the

sealed data, which can be done by a static analysis of the program.

However, a file system has code that must inspect the contents of the data, espe-

cially for systems that uses on-disk data structures. An example of this is the bitmap

of an allocator. To be able to allocate or free any resources, it has to inspect and

modify the contents of a bitmap. The second mechanism ensures the program that

uses the file system does not access any data that it is not permitted to access. Since

sealed data require unsealing to access the contents, each unseal operation can be

detected and recorded during the execution, creating an unseal trace. With unseal

traces, showing that a program does not leak confidential data reduces to showing

that its unseal trace only contains unseals that it is permitted to perform.
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Overview and Limitations The first approach – data nonleakage and sealed blocks

– addresses the two-execution, nondeterministic specifications, and partially the sys-

tem complexity challenges. We used the sealed-blocks approach to address the two-

execution challenge, that confidentiality proofs are harder and more complex than

integrity proofs, by turning two-execution proofs into trace properties, which require

one-execution proofs. Sealed blocks reduce the two-execution property to a trace

property, which is a one-execution property. Data nonleakage allows nondeterministic

specifications while preventing exploitation of such nondeterminism by implementa-

tions. Both of them reduces required proof effort significantly but don’t allow certain

implementation optimizations.

1.5.2 Nondeterminism Oracles, Abstractions and Refinements

The second approach addresses challenges that are left unresolved by the first ap-

proach. Nondeterminism oracles, abstractions and refinements incorporate the in-

sights we obtained from our first attempt to obtain stronger specifications.

Nondeterminism Oracles The second approach addresses challenge 2 by using a

model that allows reasoning about each possible sequence of nondeterministic events

individually. Such a model enables confidentiality specifications that can require

existence of a matching execution with same return-value for each such sequence. If

the matching exists for each sequence of nondeterministic events, then the probability

of materializing of an execution that leads to a particular return value will be equal

for equivalent states.

We achieved this via a technique we call nondeterminism oracles. A nondeter-

minism oracle is an abstract object where whenever the execution needs to make a

nondeterministic choice, it “asks” oracle and chooses based on the oracle’s answer.

Therefore, different oracles lead to different executions of the same program. Simi-
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larly, for a fixed oracle, execution becomes deterministic. This allows us to enforce

return-value probabilities to be the same for equivalent states by requiring return-

value equality for each oracle.

Limitations There are two important limitations regarding the nondeterminism

oracle approach. First, the oracle approach prohibits some implementations that are

secure for a specific distribution but may be insecure for other distributions. Figure

1-5 shows an implementation that is secure only if the generated bit is uniformly

random. Oracle approach prohibits the implementation in the figure because imple-

mentation is not secure for any other distribution. It is important to note that this

limitation does not weaken the guarantees of the oracle approach, but renders certain

secure implementations unviable.

if (get_random_bit() == 1)
return secret_bit

else
return negate(secret_bit)

Figure 1-5: Example of a program that is secure if the generated bit is uniformly
random.

Second, oracle approach assumes that the probability distribution of nondeter-

ministic events in real life is independent of the secret data stored in the system. For

example, in a system, if writing a block of zeroes to the disk makes it more likely to

crash than writing any other value, then oracle approach is not a fitting model for

that system.

Abstractions and Refinement To tackle the complexity of file systems, we use

abstractions. Being able to define abstractions at desired points helps contain and

compartmentalize the complexity in the system and reduce the proof complexity as
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implementations stack on top of each other. In our work, we use refinement for

connecting abstractions to implementations where correctness of the refinement is

established by simulation proofs. Refinements and simulations are well-established

techniques in the literature.

One complication is that it is known that noninterference is not necessarily pre-

served under simulations [23]. However, nondeterminism oracles lead to a confiden-

tiality specification that is preserved under simulations given that refinement satisfies

a certain property. This condition will be explained in more detail in the following

chapters. This result is one of the contributions of this thesis.

The second approach solves the challenges the first approach falls short on. Non-

determinism oracles enable reasoning about individual nondeterministic events. This

ability leads to a stricter confidentiality specification that prevents challenge 2, while

still being flexible enough to prevent overly verbose specifications and avoid imple-

mentation restrictions. Abstractions and refinements encapsulate the complexity in

small components and allow complex systems to be implemented in a modular fashion

while keeping proof complexity in check.

1.6 Implementation

We implement our solution approaches in two frameworks: sealed blocks and data

nonleakage are implemented in DiskSec, and nondeterminism oracles, abstractions

and refinements are implemented in ConFrm. Both frameworks include storage sys-

tem models and operational semantics of the operations on them as well as formal-

ization of their respective specifications.

We implement two file systems using the frameworks: SFSCQ and ConFs. SFSCQ

is implemented by porting DFSCQ verified file system to DiskSec and modifying the

implementation to add multi-user support and access control mechanisms. ConFs
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is implemented from scratch using ConFrm. Its implementation consists of multiple

abstraction levels and takes advantage of ConFrm’s abstraction mechanisms. Both

systems use their respective frameworks’ confidentiality specifications. These are the

first formally verified confidential software systems with nondeterminism.

All the frameworks and systems are implemented in the Coq proof assistant.

They are extracted to Haskell to produce runnable code. Details of these frame-

works and file systems will be explained in their respective chapters. Source code

of Disksec & SFSCQ can be found in https://github.com/mit-pdos/fscq/tree/

security, and source code of ConFrm & ConFs can be found in https://github.

com/Atalay-Ileri/ConFrm.

Limitations. The frameworks come with some limitations that impact their appli-

cability. DiskSec’s helper theorems apply only to implementations that don’t compare

confidential data. Therefore to take advantage of the full power of DiskSec, the im-

plementation should avoid such comparisons as much as possible.

ConFrm has two important limitations. The first one is that it doesn’t provide

any additional support for proving confidentiality of the top abstraction level. This

may lead to lengthy proofs if the top abstraction layer has a complex structure.

The second limitation is due to our design choices when implementing the non-

determinism oracles. ConFs instantiates ConFrm with a mixed embedding where

disk and memory operations are deeply embedded and the rest is shallowly embed-

ded [15]. Because of this embedding, ConFrm can only apply nondeterminism oracles

to memory operations. As a consequence, the implementation in Figure 1-6 would be

considered secure under such embedding.
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if (secret_bit == 1) {
// loop 1000 times

}
read_disk (a)

Figure 1-6: Example of a program that has secret-dependent crash probability.

Above implementation has a different crash probability depending on the secret

bit. If the bit is 1, function it will take much longer for function to complete, therefore

it will be more likely to crash during the function. Such dependence may leak the

value of the bit. However, since the existence of the loop is transparent to ConFrm, it

will fail to catch the leakage. This limitation can be overcame by using a fully deeply

embedded language for the implementations.

Finally, both our file systems have simple access-control mechanisms and termination-

insensitive specifications.

1.7 Contributions

There are two groups of contributions of this thesis where each one contains three

components.

Data Nonleakage, DiskSec, and SFSCQ. The first group is our first attempt

at tackling nondeterminism and consists of:

• Data Nonleakage, a confidentiality specification based on noninfluence that

captures discretionary access control and deals with nondeterminism due to

crashes.

• Sealed blocks, a proof approach that factors out reasoning about confidential-

ity from most of the storage-system code.
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• DiskSec, a framework for specifying and proving confidentiality for storage

systems that reduces proof effort by using the sealed-block approach.

• SFSCQ, the first file system with a machine-checked proof of confidentiality.

SFSCQ uses data nonleakage as its specification, and DiskSec for proving its

confidentiality.

RDNI, ConFrm, and ConFs. The second group improves upon the first group

and includes:

• RDNI, a confidentiality specification based on noninfluence that incorporates

oracles, reboot functions, and crash-reboot-recovery processes. RDNI provides

stronger guarantees than data nonleakage under nondeterminism.

• Nondeterminism oracles, a modeling technique for reasoning about specific

series of nondeterministic events.

• A metatheory for preservation of RDNI through abstractions, including a

modified simulation definition that incorporates oracles, reboot functions, and

crash-reboot-recovery processes.

• ConFrm, a framework for specifying and proving confidentiality of storage sys-

tems with RDNI specifications. ConFrm implements RDNI and its metatheory

as well as the support for implementing systems as layers of abstractions, defin-

ing refinements, and proving simulations.

• ConFs, the first file system that uses checksum-based, encrypted logging with

a machine-checked confidentiality proof. ConFs is implemented in ConFrm and

uses RDNI as its confidentiality specification.

Finally, thesis has an evaluation that compares SFSCQ and ConFs to demonstrate

the proof effort required and performance overheads of each approach.
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Two groups of contributions complement each other. DiskSec is suitable for the

systems that handle the confidential data without examining its contents and doesn’t

need intermediate abstraction layers . ConFrm is more suitable for the systems that

process confidential data and multiple layers of abstractions.

1.8 Outline

Chapter 2 presents the related work in the literature. Chapter 3 explains proof ideas

behind Disksec and its implementation details. Chapter 4 presents SFSCQ, the first

formally verified file system with a confidentiality specification. Chapter 5 describes

ConFrm, a confidentiality framework for implementing systems modularly and with

strong guarantees regarding nondeterminism. Chapter 6 presents the structure and

implementation of ConFs. Chapter 7 evaluates the performance of both file systems.

Chapter 8 discusses some possible future work. Chapter 9 concludes the dissertation.
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Chapter 2

Related Work

Our work builds on a diverse body of prior work. We will explain these works through-

out this section.

Confidentiality properties. There is a significant body of work formalizing non-

interference properties [22, 27, 28, 32, 33, 34]. DiskSec and ConFrm’s efinitions build

upon this existing work. Specifically, data nonleakage and relatively deterministic

noninfluence can be thought of as a specialization of Oheimb’s nonleakage and non-

influence, respectively [38]. One difference in our approach is that our specifications

stop at the file-system API boundary; applications are not subject to our policies.

This matches well the traditional discretionary access-control policies enforced by file

systems.

Formalizing data nonleakage requires reasoning about two executions, since con-

fidentiality is a two-safety property [37]. In this context, our contribution lies in

a specification and proof style based on sealed blocks that helps us prove a data

nonleakage two-safety property about the file system.

ConFrm’s definition is different from its predecessors in how it treats nondeter-

minism in its formalism. ConFrm takes a more fine-grained approach in relating
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nondeterministic executions by requiring a strong coupling between executions for

each nondeterministic execution branch.

Machine-checked security in systems. Several prior projects have proven secu-

rity (and specifically confidentiality) properties about their system implementations:

seL4 [26, 28], CertiKOS [17], and Ironclad [24]. For seL4 and CertiKOS, the theo-

rems prove complete isolation: CertiKOS requires disabling IPC to prove its security

theorems, and seL4’s security theorem requires disjoint sets of capabilities. In the

context of a file system, complete isolation is not possible: one of the main goals of

a file system is to enable sharing. Furthermore, CertiKOS is limited to proving secu-

rity via deterministic specifications. Nondeterminism is important in a file system to

handle crashes and to abstract away implementation details in specifications.

Ironclad proves that several applications, such as a notary service and a password-

hashing application, do not disclose their own secrets (e.g., a private key), formulated

as noninterference. Also using noninterference, Komodo [19] reasons about confiden-

tial data in an enclave and shows that an adversary cannot learn the confidential

data. Ironclad and Komodo’s approach cannot specify or prove a file system: both

systems have no notion of a calling principal or support for multiple users, and there

is no possibility of returning confidential data to some principals (but not others).

Finally, there is no support for nondeterministic crashes.

DiskSec supports nondeterministic crashes, discretionary access control, and shared

data structures. However, it lacks support for branching on confidential data (e.g.

hash-based logging), abstraction layers, and stronger crash guarantees .

ConFrm’s contributions complement this line of work. ConFrm provides tools

that allow developers to preserve confidentiality while creating abstraction layers.

However, it uses a specific confidentiality definition. Even though the definition can
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be customized via defining different state-equivalence relations, it may not express an

arbitrary confidentiality specification.

Information-flow and type systems. Another approach to ensuring confiden-

tiality involves relying on type systems. An advantage of this approach is that type

checking can be automated to reduce proof load for the developer.

Although this does not give a machine-checked theorem of security, we build on

aspects of this approach, namely, the sealed disk has typed blocks.

Type systems and static-analysis algorithms, as with Jif’s labels [30, 29] or the

UrFlow analysis [14], have been developed to reason about information-flow properties

of application code. UrFlow is specialized for the database backed web applications

and uses a querying language to define the policies. Jif’s analyzer would be hard to

use for reasoning about dynamic data structures inside of a file system (such as a

write-ahead log or a buffer cache) that contain data from different users.

Dynamic tools, such as Jeeves and Jacqueline [40, 39] and Resin [41], deal with

dynamic data structures but require sophisticated and expensive runtime enforcement

mechanisms. DiskSec and ConFrm avoid the overhead of runtime enforcement and

an additional trusted runtime checker.

SeLoc [20] uses double weakest preconditions to prove noninterference for fine-

grained concurrent programs. It is built on top of IRIS [25], a separation logic-based

framework that proves correctness of fine-grained concurrent programs. It provides

a confidentiality-ensuring type system and a wide array of tools to the developers.

However, employing SeLoc requires using IRIS, which adds a substantial entry barrier.

Conversely, both Disksec and ConFrm are standalone and lightweight but do not offer

the full array of tools SeLoc offers.
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Formalizing file-system security. Prior work has extensively studied the security

guarantees provided by file systems, both formally and informally [9]. However, none

of the prior work articulated a precise, machine-checkable model and specification for

file-system security.

Symbolic models of cryptography. Our proof strategy in DiskSec is related to

the techniques introduced to reason about cryptographic protocols. Many cryptographic-

protocol proofs are done in the Dolev-Yao model of perfect cryptography [18]. There

programs are modeled as algebraic expressions, which developers reason about using

equational axioms, like that decryption is the inverse of encryption, when called with

identical symmetric keys. No equations allow breaking encryption without knowing

the key. This model is attractive for its simplicity, and protocol-analysis tools like

ProVerif [11] and Tamarin [35] build on it. HACL* [42] uses a similar proof strategy

for proving its cryptographic library. DiskSec’s block-sealing abstraction extends this

idea with the notion of a permission associated with each sealed block.

Sequential composability and confidentiality-preserving refinements. Since

it is known that traditional noninterference is not preserved in simulation-based re-

finements, there is a body of work that tries to identify the conditions that make

refinements noninterference-preserving.

Sun et. al. [36] proposes two confidentiality properties for interface automata:

SIR-GNNI and RRNI. Both properties are based on refinements and defined relative

to arbitrary security lattices. They also provide sufficient conditions that make SIR-

GNNI and RRNI sequentially compositional.

Baumann et. al. [10] formulates noninterference as an epistemic logic over trace

sets. They define ignorance-preserving refinements and prove that it is a sufficient con-

dition to preserve the noninterference of abstraction. They also show that ignorance-
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preserving refinements are not compositional w.r.t. sequential composition. They

propose another class of refinements called “relational refinements”, which are se-

quentially compositional.

ConFrm’s definition is also sequentially compositional. Our suggested property

differs from existing work in two points. First, it provides stronger guarantees for non-

deterministic executions. Second, it supports reasoning about crashes and recovery

of the storage system.
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Chapter 3

DiskSec

3.1 Specification: Data Nonleakage

To capture the notion of confidentiality in a file system, DiskSec defines the notion

of data nonleakage. Loosely speaking, data nonleakage states that two executions are

indistinguishable with respect to specific confidential data (e.g., the contents of a file).

Data nonleakage allows an application to conclude that an adversary cannot learn the

contents of a file from the file system but may be able to learn other information about

the file (e.g., its length, its creation time, the fact that it was created at all, etc.).

Furthermore, data nonleakage does not place any restrictions on application code,

which captures the discretionary aspect of typical file-system permissions. This notion

intuitively corresponds to the security guarantees provided by Linux file systems.
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Figure 3-1: Overview of DiskSec’s approach to reasoning about confidentiality.

Two-safety formulation. DiskSec formulates data nonleakage in terms of two-

safety, as shown in Figure 3-1. Specifically, data nonleakage considers two executions

that run the same code but start from different states. In Figure 3-1, the executions

are shown as horizontal transitions between states, indicated by the gray outlines.

An execution consists of a step by the user (running procedure 𝑝user, corresponding to

some system call) and then a step by the adversary (running 𝑝adv, corresponding to

some other system call). Although Figure 3-1 shows one particular pair of executions,

DiskSec’s theorems consider all possible such pairs of executions.

The starting states in these two executions (𝑠0 and 𝑠′0) agree on all data visible to

the adversary but could have different contents of confidential files. We call these two

states equivalentadv, to indicate that they are equivalent with respect to the adversary.

This equivalence is indicated by the squiggly line in Figure 3-1. The essence of data

nonleakage is allowing the states to differ in the contents of confidential data while

requiring all other metadata (such as file length, directory order, etc.) to remain the

same.

The definition of data nonleakage consists of two requirements that is based on the
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two parts of noninfluence. The first is state nonleakage, which requires that after every

transition, the resulting states remain equivalentadv. This is indicated in Figure 3-1 by

the squiggly lines between 𝑠1 and 𝑠′1, as well as between 𝑠2 and 𝑠′2. This requirement

ensures that confidential data from 𝑠0 and 𝑠′0 does not suddenly become accessible

to the adversary in a subsequent state, and it addresses the indirect-data-disclosure

challenge.

The second requirement is return-value nonleakage, which requires that transitions

by the adversary return exactly the same values in both executions. For example,

Figure 3-1 shows that the adversary’s 𝑝adv returns 𝑟1 in the top execution and 𝑟′1 in

the bottom execution. Return-value nonleakage requires that 𝑟1 = 𝑟′1, as indicated by

the dotted arrow. This prevents the adversary from learning any confidential data,

such as through collusion with an adversarial file system.

Capturing file-system security. Achieving the two requirements from data non-

leakage ensures that the adversary cannot obtain confidential data from the file sys-

tem. This is because state nonleakage maintains equivalenceadv regardless of what

the adversary does, and any attempts by the adversary to observe information will

produce identical results, based on return-value nonleakage, because they run in equiv-

alentadv states.

The discretionary nature of data nonleakage shows up in the fact that legitimate

users can obtain different results depending on the confidential data. For example, in

Figure 3-1, the results of the user’s execution of 𝑝user, 𝑟0 and 𝑟′0, might be different,

because 𝑝user could correspond to the user reading a confidential file. At this point, a

user has the discretion to disclose this information (e.g., by writing it to a public file).

Data nonleakage does not prevent this, by design, to model the standard discretionary

access control in a POSIX file system.
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Defining return-value nonleakage. Figure 3-2 presents DiskSec’s definition of

return-value nonleakage, in a simplified notation. This definition relies on the defi-

nition of exec, which describes how procedures execute. exec relates the procedure

that is executing (p), the principal on whose behalf p is running (u), and the starting

state (st0) to an outcome and an unseal trace, which we describe later. The outcome

can be either Finished st’ r, indicating that the procedure ended in state st’ and

returned r, or Crashed st’, indicating that the system crashed in state st’. The

unseal traces are irrelevant for now and are used only as part of the proof technique

described in Section 3.2. This definition also relies on a notion of two states being

equivalent for a particular principal, equivalent_for_principal, which captures

the intuitive notion equivalentadv from above.

Definition equivalent_for_principal u st0 st1 :=
(* all parts of st0 and st1 that are accessible to
principal u are identical *)

Definition ret_nonleakage (p: proc T) :=
∀ u st0 st0' st1 ret tr0,
equivalent_for_principal u st0 st1 →
exec p u st0 (Finished st0' ret, tr0) →

∃ st1' ret' tr1,
exec p u st1 (Finished st1' ret', tr1) ∧
ret' = ret

Figure 3-2: Definition of return-value nonleakage, capturing that return values do not
leak other users’ confidential data.

The definition of return-value nonleakage captures the intuition about the adver-

sary not being able to learn information about confidential data: the return value

obtained by the adversary by running some code does not depend on the confidential

data. To make this precise, ret_nonleakage of procedure p considers pairs of states,

st0 and st1, which are equivalent as far as some principal u is concerned. Here, u
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is representing the adversary, and confidential data is represented by the difference

between st0 and st1 that the adversary should not be able to observe. If u runs pro-

cedure p in state st0 and gets return value ret, then it must also have been possible

for the adversary to get the same return value, ret, if he ran p in state st1 instead.

Defining state nonleakage. Figure 3-3 presents DiskSec’s definition of state non-

leakage, which complements return-value nonleakage. This definition helps DiskSec

deal with the indirect-disclosure challenge from Section 1.3. This definition consid-

ers two principals: a viewer and a caller. The definition intuitively says that, by

running procedure p, the caller will not create any state differences observable to

viewer.

Definition equiv_state_for_principal u res0 res1 :=
∃ st0 st1,
equivalent_for_principal u st0 st1 ∧
(res0 = Crashed st0 ∧ res1 = Crashed st1 ∨
∃ v0 v1,
res0 = Finished st0 v0 ∧
res1 = Finished st1 v1).

Definition state_nonleakage (p: proc T) :=
∀ viewer caller st0 res0 tr0 st1,
equivalent_for_principal viewer st0 st1 →
exec p caller st0 (res0, tr0) →

∃ res1 tr1,
exec p caller st1 (res1, tr1) ∧
equiv_state_for_principal viewer res0 res1.

Figure 3-3: Definition of state nonleakage, capturing that caller does not indirectly
disclose state to viewer.

More formally, state_nonleakage considers two executions by caller, running

the same procedure p, with the same exact arguments (encoded inside of p). If the
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caller runs p in two states that appear equivalent to viewer, then the resulting states

in res0 and res1 will still appear equivalent to viewer. This definition includes the

possibility of a crash while running p.

3.2 Proof Approach: Sealed Blocks

Proving that every system call in a file system satisfies ret_nonleakage and state_nonleakage

would require a proof that reasons about two executions, which is complex. To reduce

proof effort, DiskSec introduces an implementation and proof approach called sealed

blocks. This approach factors out reasoning about confidentiality of files from most

of the file-system logic, by reasoning about the confidentiality of disk blocks. The

intuition behind this approach is threefold. First, all confidential data lives in file

blocks. Second, the file system itself rarely needs to look inside of the file blocks. Fi-

nally, permissions on files translate directly into permissions on the underlying blocks

comprising the file.
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Figure 3-4: Overview of DiskSec’s proof approach using sealed blocks.

Figure 3-4 presents an overview of DiskSec’s block-sealing approach. There are

three parts to the block-sealing approach. The first is to create a logical disk where

every disk block is associated with a permission, which defines the set of principals

that can access this block. Some permissions are public, indicating that the block

is accessible to anyone. Other permissions might restrict access to some users, in-

dicating that this block is storing confidential file data. DiskSec is agnostic to the

specific choice of principals or permissions; that is, all of DiskSec is parameterized

over arbitrary types for principals and permissions. The logical disk is purely a proof

strategy and does not appear at runtime; the real disk, shown at the bottom of Figure

3-4, has no permissions.

The second part is a sealed-block abstraction, indicated by shaded blocks in Figure
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3-4. A sealed block represents the raw block contents and the associated permission,

but the file system cannot directly access a sealed block’s contents. Instead, the

file-system implementation must explicitly call seal() and unseal() to translate

between sealed blocks and their raw contents. These seal() and unseal() functions

are also purely part of the proof and do not appear at runtime.

The code of the file system can read and write arbitrary blocks on disk, but the

result of a read is a sealed block that must be explicitly unsealed if needed. The

file-system internals can unseal public blocks (e.g., containing allocator bitmaps or

inodes) but cannot unseal private blocks. This avoids the need to reason about

the file-system implementation when proving confidentiality, because the file-system

implementation never has access to confidential data.

The third part is the wrappers for system calls that handle confidential data,

namely, read() and write(). These wrappers are responsible for explicitly calling

seal() and unseal() to translate between the raw data seen by the user (on top of

the system call) and the sealed blocks that are handled in the rest of the file-system

implementation.

DiskSec’s sealed-block approach is a good fit for the challenges outlined in Section

1.3. Specifically, there are very few places where a file system must access the actual

contents of a file’s disk block—namely, in the wrappers for the read() and write()

syscalls. As a result, most specifications in a file system remain largely the same.

The key difference is that the specifications promise that the procedure in question

does not look inside of any confidential blocks. This means that any nondeterminism

present in the specification cannot be used to leak confidential data.

This approach allows file-system developers to avoid proving explicit confidential-

ity theorems for most of the file system, but it still allows DiskSec to conclude that

confidentiality is not violated. DiskSec provides a theorem that proves two-safety for

any file-system implementation that correctly uses the sealed-block abstraction. As a
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result, the file-system developer need not reason about complex two-safety theorems

and can limit their reasoning to single executions.

3.2.1 Formalizing Sealed Blocks

To formally define DiskSec’s sealed-block abstraction, DiskSec uses the notion of a

handle to represent a sealed block. DiskSec requires the developer to perform two

steps. The first is to modify their code to use the sealed-block abstraction: that is,

to pass around handles for blocks and to call seal() and unseal() as necessary.

The second is to prove that their code correctly follows the unsealing rules. This

boils down to ensuring that sealed blocks are unsealed only when the principal has

appropriate permission for that block.

DiskSec models this by extending traditional Hoare logic to reason about unseal

operations. Specifically, DiskSec builds on CHL [13], where functional-correctness

specifications are written in terms of pre- and postconditions. DiskSec, first, extends

the execution semantics (as we describe next) to produce an unseal trace consisting

of unseal operations and, second, extends the specifications to require that the unseal

trace contain only allowed unseals.

We expect that systems built on top of DiskSec would often group multiple blocks

into a single object (e.g., multiple blocks comprising a single file in a file system). To

help developers reason about all of these blocks sharing the same permissions, DiskSec

introduces the notion of a domain. This is a layer of indirection between blocks and

permissions. Specifically, a sealed block points to a domain ID (e.g., an inode number

in the case of a file system), and the domain in turn specifies the permission for those

blocks (e.g., the permission reflected in the inode’s data structure).

Execution model. DiskSec’s execution model requires the implementation to be

written in a domain-specific language, based on CHL and implemented inside of Coq,
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which provides several primitive operations. These operations include reading and

writing the disk, manipulating sealed blocks by sealing and unsealing, as well as others

for sequencing computation, returning values, flushing disk writes, etc.
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Inductive exec :
forall T, proc T → Principal →
State → (result T * trace) → Prop :=

| ExecReadSuccess :
∀ u st a h,
a < disk_size →
~ handle_used st h →
let data := disk_block_data st a in
let dom := disk_block_dom st a in
let st’ := install_handle st h (data, dom) in
exec (Read a) u st (Finished st’ h, [])

| ExecWriteSuccess :
∀ u st a h,
a < disk_size →
handle_used st h →
let data := handle_data st h in
let dom := handle_dom st h in
let st’ := disk_block_write st a (data, dom) in
exec (Write a h) u st (Finished st’ tt, [])

| ExecSeal :
∀ u st h data dom,
~ handle_used st h →
let st’ := install_handle st h (data, dom) in
exec (Seal data dom) u st (Finished st’ h, [])

| ExecUnseal :
∀ u st h,
handle_used st h →
let data := handle_data st h in
let dom := handle_dom st h in
let perm := domain_perm st dom in
exec (Unseal h) u st (Finished st data, [perm])

| ExecChangePerm :
∀ u st dom newperm,
let oldperm := domain_perm st dom in
let st’ := domain_set_perm st dom newperm in
exec (ChangePerm dom newperm) u st (Finished st' tt, [oldperm])

(* Some rules omitted for space reasons *)
| ExecCrash :

∀ T p u st,
(∀ dom perm, p <> ChangePerm dom perm) →
exec p u st (Crashed st, [])

Figure 3-5: Execution semantics with logging of unseal operations.
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Figure 3-5 shows a simplified version of DiskSec’s execution semantics. The se-

mantics are defined as a relation that relates the code being executed (of type proc

T), the principal u running the operation (of type Principal), and the starting state

st (of type State) to a tuple consisting of a result (of type result T) and a trace

of unsealed permissions (of type trace).

For example, consider the case that handles the Read a operation, which describes

the execution of reading address a from disk. There are three sub-cases. If the address

is out-of-bounds, the Read returns a handle for a zero block, with an empty unseal

trace. If the genereated handle h is already in-use, no execution is possible. Otherwise,

the Read initializes the new handle to represent the block from address a, with the

block’s domain ID, and returns that handle, with an empty trace because no blocks

were unsealed.

As another example, the Unseal h operation produces a nonempty trace, consist-

ing of the permission of the sealed block whose handle h was unsealed, as long as the

handle was valid (otherwise, Unseal returns zero). Since the sealed block points to

a domain ID, dom, the semantics of Unseal look up the corresponding permissions

of that domain. One omitted rule handles concatenation of unseal traces when a

developer sequences one statement after another.

The ChangePerm dom newperm operation allows the developer to change permis-

sions of a domain. This operation is used in implementing chown. The semantics

of ChangePerm modify the permission associated with the domain, and produce an

unseal trace containing the domain’s old permission, to reflect that data with that

permission may have been disclosed. Since the domains are purely a proof construct,

ChangePerm is a purely logical operation, which does not perform any actions at

runtime.

Finally, exec describes the possible crash behaviors of the system. ExecCrash

rule states that, for any operation other than ChangePerm, it is possible to crash in
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the starting state. Impossibility of crash for ChangePerm operation reflects the fact

that ChangePerm is a purely logical operation. A combination of other rules, not

shown, allow crashing in the middle of a sequence of operations.

Specification and verification of unseal rules. DiskSec requires developers to

write a specification for each procedure, using pre- and postconditions. The post-

condition describes how the procedure modifies the state of the system, along with

what must be true of the procedure’s return value, assuming that the precondition

(a predicate over the system state and the procedure’s arguments) held at the start

of the procedure.

To reason about what blocks a procedure might unseal, DiskSec augments spec-

ification postconditions with requirements about the permissions that appear in the

unseal trace produced by the execution of the procedure.

Definition unseal_safe (p: proc T) :=
∀ u st res tr,
exec p u st (res, tr) →
(∀ perm, In perm tr → can_access u perm).

Figure 3-6: Definition of unseal safety.

Figure 3-6 shows DiskSec’s definition of unseal safety. This definition says that

procedure p is “unseal-safe” if, for every principal u that runs this procedure and any

starting state st, all permissions produced by this procedure in its unseal trace tr will

be accessible to the calling principal. Proving unseal safety leads to a proof obligation

for the file-system developer—namely, proving that the implementation will unseal a

block only if the current principal has access to it.

File-system implementation code falls into three categories with respect to proving

unseal safety. The first category are procedures that do not invoke any Unseal

operations. For these procedures, the resulting unseal trace is always empty, and
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DiskSec is able to prove unseal safety without any developer input. Most of the

file-system code falls in this category.

The second category are procedures that unseal public blocks. Examples include

accessing inodes, allocator bitmaps, directories, etc. These procedures do produce

unseal traces containing permissions, but all of the permissions should be public.

Thus, the developer’s job is to show that these permissions are indeed public; once

this is established, showing that the current principal has access is straightforward

(since every principal has access to public permissions).

To prove that the permissions are indeed public, the developer relies on represen-

tation invariants of the file system. For example, the invariant for the block-allocator

states that all of the bitmap blocks are public. The developer can assume this invari-

ant within any implementation of the block-allocator API, which helps her prove that

the block in question has public permissions. In turn the developer must prove that

the invariant is preserved by every procedure (including across crashes and recovery),

and show that it is established at initialization time by mkfs.

The final category are procedures that unseal private blocks. In a file system, this

happens only in the implementation of the read system call, which returns file data

to the caller. The implementation (wrapper) of the read system call contains explicit

code to obtain the current principal, get the file’s ACL (access control list) from the

inode, and compare them. The developer’s job is to prove that this code correctly

performs the permission check. This proof typically relies on the file’s representation

invariant, which asserts that every file block is tagged with a permission matching

the ACL stored in the inode.
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Definition unseal_public (p: proc T) :=
∀ u st res tr,
exec p u st (res, tr) →
(∀ perm, In perm tr → perm = Public).

Figure 3-7: Definition of unseal_public.

DiskSec also provides a stronger version of unseal-safety, as shown in Figure 3-7,

called unseal_public. A procedure satisfies this definition if all of its code falls

in the first two categories above: that is, the procedure either unseals no blocks

at all or unseals only public blocks. This alternative definition is strictly stronger

than unseal-safety; any procedure that satisfies unseal_public is also unseal-safe.

The distinction between these two notions will help the developer prove nonleakage

theorems, as described in Section 3.2.2.

Crashes. DiskSec’s approach naturally extends to reasoning about crashes. DiskSec’s

disk-crash model builds on the CHL model of disk crashes [13, 12]. After a crash, disk

blocks can be updated nondeterministically, as in CHL, based on outstanding writes

that are in the disk’s write buffer but have not been flushed yet to durable storage.

However, domains always follow the data for pending writes; that is, logically, the

content of the disk block is updated atomically together with its domain ID.

All handles are invalidated after a crash, to model the fact that the computer

reboots and all in-memory state is lost. All recovery code, such as log replay or fsck,

is proven correct in DiskSec, which means that it must follow the same block-sealing

rules as the rest of the file-system code. This ensures that no data can be disclosed

by the recovery code.
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3.2.2 Proving Nonleakage

To help the developer prove the two types of nonleakage, DiskSec provides helper

theorems. Figure 3-8 shows the first one, which proves return-value nonleakage based

on unseal-safety. We proved this theorem by considering all operations performed

by procedure p. Each operation must produce the same result in the two executions

being considered, since the states are equivalent for the principal in question, u. The

only way in which the executions could differ is if they unsealed a block that was not

accessible to u. However, unseal_safe says that this is impossible. This theorem also

applies to procedures that are unseal_public, since that notion is strictly stronger

than unseal_safe.

Theorem unseal_safe_to_ret_nonleakage :
∀ (p: proc T),
unseal_safe p → ret_nonleakage p.

Figure 3-8: Theorem connecting unseal_safe to return-value nonleakage.

Figure 3-9 shows the second theorem provided by DiskSec, for reasoning about

state nonleakage. This theorem requires that the procedure satisfy the stronger defini-

tion, unseal_public, to ensure state nonleakage. The intuition for why this theorem

is true lies in the fact that a procedure that unseals only public blocks cannot obtain

any confidential data in the first place. As a result, this procedure’s execution will

be identical regardless of the contents of confidential blocks, and thus the state after

this procedure’s execution will remain equivalent from the adversary’s point of view.

DiskSec proves this theorem formally in Coq.

Theorem unseal_public_to_state_nonleakage :
∀ (p: proc T),
unseal_public p → state_nonleakage p.

Figure 3-9: Theorem connecting unseal_public to state nonleakage.
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DiskSec does not provide a general-purpose theorem for reasoning about state

nonleakage for procedures that satisfy only the weaker notion of unseal-safety (i.e.,

that unseal private blocks), such as the read() system call. Such procedures can

indirectly disclose data as described in Section 1.3 to legitimately unseal confidential

data on behalf of the currently executing principal but then stash a copy of it. It

is up to the file-system developer to prove the state nonleakage of those procedures.

Chapter 4 discusses in more detail how SFSCQ structures its implementation to

simplify these proofs; in the case of SFSCQ, the only system call that requires this

type of reasoning is read.
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Chapter 4

SFSCQ

To evaluate whether Disksec allows specifying and proving confidentiality for a file

system, we applied Disksec to the DFSCQ verified file system, producing the SFSCQ

verified secure file system, as described below.

4.1 Specifying Security

The core specification of confidentiality for SFSCQ lies in the write system call, as

shown in figure 4-1. This specification says that the data argument to the write

system call remains confidential. This is stated formally by considering two different

executions, starting from the same state st, where different data (data0 and data1)

are written to the same offset off of the same file f. The results, res0 and res1, must

be equivalent for any adversary adv that does not have permission to access file f.

Since equivalent_state_for_principal considers both crashing and noncrashing

executions, this definition ensures that the data passed to write remains confidential

regardless of whether the system crashes or not.
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Theorem write_confidentiality :
∀ f off data0 data1 caller st res0 tr0,
exec (write f off data0) caller st (res0, tr0) →

∃ res1 tr1,
exec (write f off data1) caller st (res1, tr1) ∧
∀ adv,
~ can_access adv (file_perm st f) →
equiv_state_for_principal adv res0 res1.

Figure 4-1: Confidentiality specification for the write system call.

The other part of the security specification lies in the chown system call, which

changes the permissions on existing files, and thus affects what data is or is not

confidential. Because chown can disclose the contents of a previously confidential

file, the standard definition of state nonleakage from figure 3-3 does not hold for

chown. Specifically, even if an adversary viewer could not distinguish states st0 and

st1 before some caller executed chown, the adversary may nonetheless be able to

distinguish st0 and st1 after the chown runs because the adversary may now have

permission to read the previously confidential file.

The security of chown is defined by a specialized version of state non-interference,

which considers three cases. The first case is that the adversary viewer does not have

access to the file after the chown (i.e., is not the new owner). In this case, state

nonleakage holds. The second case is that the adversary viewer does gain access to

the file after chown (i.e., is the new owner), but the file had the same contents in

the two executions (i.e., in states st0 and st1). In this case, state nonleakage holds

as well. Finally, the adversary viewer may gain access to the file and the files had

different contents in the two executions. In this case, state nonleakage does not apply.

Figure 4-2 summarizes this formally.
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Definition chown_state_noninterference f new_owner :=
∀ viewer caller st0 res0 tr0 st1,
exec (chown f new_owner) caller st0 (res0, tr0) →
(file_data st0 f = file_data st1 f ∨ viewer <> new_owner) →
equivalent_for_principal viewer st0 st1 →

∃ res1 tr1,
exec (chown f new_owner) caller st1 (res1, tr1) ∧
equiv_state_for_principal viewer res0 res1.

Figure 4-2: Confidentiality specification for the chown system call.

The write and chown specifications, shown above, are the only parts of the se-

curity specification that are specific to the file system, because they define where

confidential data enters the system in the first place, and how permissions on that

confidential data can change. Somewhat counterintuitively, no special treatment is

required in the specifications of other system calls, such as read. Instead, it suffices to

prove the two general nonleakage theorems for all system calls (i.e., ret_nonleakage

and state_nonleakage). This is because we do not want to consider specific at-

tacks, such as whether read has a missing access-control check. Instead, Disksec’s

nonleakage definitions ensure that confidential data cannot be disclosed regardless of

what system calls the adversary tries to use.

Integrity of the file system is a functional-correctness property and thus is covered

by SFSCQ’s specifications, alongside other correctness properties. Integrity did not

require SFSCQ to use any machinery from Disksec for reasoning about confidential

data.
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4.2 Modifying the Implementation

Changing representation invariants. DFSCQ consists of many modules, such

as the write-ahead log, the bitmap allocator, the inode module, etc. Each module

has its own invariant that describes how that module’s state is represented in terms

of blocks. For example, the bitmap allocator describes how the free bits are packed

into disk blocks, where they are stored on disk, and the semantics of each bit.

For SFSCQ, we modified all invariants that describe disk blocks to state the

domain IDs that go along with those blocks. For instance, we modified the invariant

of the allocator to state that the bitmap blocks are public. We modified the write-

ahead log layer to expose the underlying domain IDs on disk blocks to modules

implemented on top of the write-ahead log (in addition to modifying the log invariant

to state that the log metadata is public).

The only nonpublic data is the file contents. We modified the file invariant to

state that the domain ID of every file block matches the file’s inode number, and the

permissions for a particular domain ID match the ACL stored in the inode with the

inode number matching the domain ID.

One surprising issue that we encountered came up in the DFSCQ write-ahead log.

For performance, DFSCQ’s write-ahead log used checksums to verify block contents

after a crash. As a result, the recovery procedure unsealed blocks from the write-

ahead log after a crash, including blocks that contain confidential data.

To address this issue, we switched to a barrier-based write-ahead log instead,

which is the default design of Linux ext4. Instead of using checksums, the barrier-

based write-ahead log issues a disk flush between writing the contents of new log

entries and updating the log header. (DFSCQ already included an implementation

of this barrier-based write-ahead log but did not use it by default.)
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Modifying code. Loosely speaking, DFSCQ modules handle two kinds of blocks:

blocks that they manipulate (e.g., the bitmap allocator manipulating the bitmap

blocks) and blocks that they pass through (e.g., the write-ahead log handling reads

and writes as part of a transaction, or the file layer handling file reads and writes).

The first category required a module to access the block contents, so we added Seal

and Unseal operations accordingly. Virtually all operations that fell in this category

involved sealing and unsealing public data. For the second category, we did not seal

or unseal the data and instead transparently passed through the handle representing

the block; as a result, the module was oblivious to the domain IDs associated with

the disk block.

Private data is sealed and unsealed at the top of the SFSCQ implementation;

that is, in the implementation of the read and write system calls. We modified the

write system-call implementation to Seal the blocks with the file’s inode number as

the domain ID, before processing them further. We modified the read system call to

implement the permission-checking logic—i.e., reading the ACL from the file’s inode,

checking whether the currently running principal has access to the file, and unsealing

the block only if the check passes.

Changing intermediate specifications. We augmented the Hoare-logic specifica-

tions of all internal SFSCQ procedures to require that the procedure be unseal_public.

This change required little manual effort, because we simply changed the underlying

definition of the Hoare-logic specification to require unseal_public. For the write-

ahead log, we added additional constraints in the specification of the log_write

procedure, requiring that the blocks written as part of a transaction must be public,

as described above.
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4.3 Proving Security

Reproving functional correctness. Many existing proofs in DFSCQ broke after

we made the above changes. The proofs broke for three reasons: there were now

additional Seal and Unseal operations in the code (e.g., the bitmap allocator now

sealed and unsealed its bitmap blocks), the logical representation of a block changed

to include a domain ID, and the specification changed (e.g., augmenting the invariant

to state the domain ID of a block). This required manually tweaking most of the

proofs to fix them. The proof changes were simple since the code’s logic and the

proof argument remained unchanged.

Proving unsealing. In addition to fixing existing proofs, SFSCQ’s specifications

required us to prove that the Unseal operation was used correctly. For most proce-

dures, the specification required that the procedure satisfy unseal_public. Proving

that only public blocks were unsealed required us to demonstrate that the block was

indeed public by referring to the invariant.

For the implementation of the read system call, which unseals private data, we

had to prove that read correctly implements the permission check in its code. This

means proving that read calls Unseal only after checking permissions, and that the

code for the permission check returns “allowed” only if the current principal really

does have permission to access the file contents. This proof mostly boiled down to

showing that the code implementing the access-control check in read matches the

logical permission required by the specification.

Proving nonleakage. Proving that SFSCQ provides confidentiality required us to

prove three theorems. The first is that write implements the specification from figure

4-1. This shows that SFSCQ will treat data passed by an application to write as

confidential. The second is that system calls satisfy ret_nonleakage. This shows
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that an adversary cannot use any of SFSCQ’s system calls to learn confidential data.

The final is that all system calls satisfy state_nonleakage. This shows that SFSCQ

will not indirectly leak a user’s data when the user invokes an otherwise-benign system

call. Taken together, these theorems allow an application to formally conclude that

its data remains private, as we show in chapter 7.

Proving ret_nonleakage was the easiest, using Disksec’s theorem from figure 3-

8. All SFSCQ procedures are proven to be unseal safe, so no further proof effort is

required.

Proving state_nonleakage was simple for all system calls except read, because

those system calls satisfy unseal_public, allowing us to apply Disksec’s theorem

from figure 3-9. For read, we structured the system-call implementation in two

parts: a read_helper, which returns the handle to the data read from the file, and

a wrapper around read_helper that unseals the data and returns it to the user.

read_helper is unseal_public, allowing us to apply Disksec’s theorem from figure

3-9. The wrapper required a manual proof, but the proof was short since the wrapper

is two lines of code.

Finally, to prove that write meets its confidentiality specification, we similarly

split write into a wrapper and a write_helper. The wrapper’s job is to seal all

input data and pass the handles to write_helper. Much as with read, this reduced

the proof effort to just the wrapper.

4.4 Limitations

As we stated before, data_nonleakage does not prevent leakage from non-uniform

outcome probabilities. We can demonstrate it by revisiting the example in section

1.3. data_nonleakage considers all states in the example equivalent to each other,

because the state is a single secret bit. Figure 4-3 illustrates all possible executions
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and how each execution matches with another from an equivalent state. Each arrow

represents a possible execution of the program. On the labels, numbers in the brackets

represent generated random bits, and the number following the brackets denotes the

return value. Executions are colored based on their return values.

Figure 4-3: Visualisation of Figure 1-3 satisfying data_nonleakage.

We can see that, for each execution, there is an execution with the same color from

the equivalent state. Therefore, this implementation satisfies data_nonleakage, but

the secret bit can be determined as described in Section 1.3.

Another limitation was in proving confidentiality of change_owner and delete

operations. Since each block has an owner in the DiskSec model, a change_owner

operation require changing owners of multiple blocks atomically. A crash in the middle

of such an operation can leave the system in an inconsistent state. We overcame this

by adding an indirection in ownership tracking.

The limitation with delete operations comes from leftover data in freed blocks.

Each free block is publicly owned. This requires freed blocks to be overwritten with

zero blocks to prevent leakage, even though they are not accessible through the file-

system API. This reduced delete’s performance significantly. It is worth noting

that this was a shortcoming of the sealed-block technique, rather than a bug in the

implementation.

57



Chapter 5

ConFrm

ConFrm is a framework for proving confidentiality of storage systems. It contains

a new confidentiality definition as well as structures such as layer templates, and

execution semantics, helping to implement file systems with confidentiality proofs.

5.1 Specification: Relatively Deterministic Nonin-

fluence

Figure 4-3 shows that data_nonleakage leads to leakage of confidential data when

probability of observing a return value depends on a secret. To address this chal-

lenge, this thesis introduces a new confidentiality definition that we call Relatively

Deterministic Noninfluence (RDNI) that takes return-value frequencies into account.

In the following section we will progressively build this new definition.
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5.1.1 Basic Definition

Noninfluence can be interpreted as “matching” of executions from equivalent states

to equivalent states for some chosen relation between two states1. More specifically,

for each execution from a state, a matching execution from an equivalent state is an

execution with the same return value where resulting states are equivalent as well.

The traditional nondeterministic noninfluence definition allows multiple executions to

be matched with a single execution. For example, in Figure 4-3, the same execution

is matched with two other executions. This flexibility allows matching two sets of

executions from equivalent states to equivalent states as long as their sets of possible

return values are the same, but it ignores the probabilities of the return values.

Since the nondeterminism is what leads to the multiple possible executions, each

execution should be the result of some specific sequence of nondeterministic events. In

other words, each sequence of nondeterministic events uniquely identifies an execution,

that is, executions are deterministic relative to a sequence of nondeterministic events.

Therefore, for a particular sequence of nondeterministic events, there can be at most

one execution from each equivalent state.

One way to ensure that the return-value probabilities are the same is, for each

possible return value, requiring that the number of executions that returns it being the

same from the equivalent states. This can be achieved by enforcing a 1-to-1 matching

between executions from the equivalent states. If an execution can be matched with

exactly one execution from an equivalent state, then we can conclude that the return

value probabilities.

This requirement is the core idea behind the RDNI definition, and indeed is suf-

ficient to address our challenge. Figure 5-1 visualizes how the example 1-3 does not
1In reality, noninfluence definition does not the require relation to be an equivalence. We use

“equivalent states” instead of “related states” to make it clear that it is this relation we are referring
to when we say “equivalent states” in other chapters.
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satisfy the new definition, although it satisfies conventional noninfluence. There is no

matching execution from the equivalent state if the first generated random bit is 1.

There is exactly one execution from each state when the generated bit is 1 and they

have different return values.

Figure 5-1: There is no corresponding execution for the red and black executions.

RDNI formalizes the above notion by using an execution relation that takes a se-

quence of nondeterministic events, which we call an oracle, and refers to it whenever

it needs to make a nondeterministic choice (e.g., crashing or successfully executing).

One important requirement is that the oracle must capture all the nondeterminism

in the system. If all possible nondeterminism in the system is captured by the or-

acle, it is possible to reason about specific sequence of nondeterministic events by

reasoning about the oracle itself. This requirement is enforced by ConFrm through

the construction of a layer. Figure 5-2 shows the formalization of this approach.
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Definition simple_RDNI {T} (u: user) (p: prog T)
(eqv: state → state → Prop) :=

∀ (o: oracle) (s1 s2: state) (res1: Result T),
exec u o s1 p res1 →
eqv s1 s2 →

∃ res2,
exec u o s2 p res2 ∧
eqv (extract_state res1) (extract_state res2) ∧
extract_ret res1 = extract_ret res2.

Figure 5-2: Simple relatively deterministic noninfluence.

Figure 5-2 states that a program 𝑝 satisfies simple_RDNI for any two states 𝑠1

and 𝑠2 related by 𝑒𝑞𝑣, if there is an execution of 𝑝 by user 𝑢 from 𝑠1 with oracle 𝑜

that results in 𝑟𝑒𝑠1, then there is an execution of 𝑝 by user 𝑢 from 𝑠2 with oracle 𝑜

with a result 𝑟𝑒𝑠2 such that states of 𝑟𝑒𝑠1 and 𝑟𝑒𝑠2 are equivalent by 𝑒𝑞𝑣, and return

values 𝑟𝑒𝑠1 and 𝑟𝑒𝑠2 are equal.

5.1.2 Crash, Reboot, and Recovery

Since we will be reasoning about crash-safe systems, RDNI should be extended to take

crashes, reboots and recovery into account. We achieve this by replacing the execution

semantics in the definition with one that captures the entire process of crash-reboot-

recovery. There are important differences in the new execution semantics that needs

to be explained:

1. Execution relation taking two program arguments, program to run and a recov-

ery program,

2. How the state after a crash followed by a reboot is handled. Effects of a reboot

of a system may be nondeterministic. One example of this is an asynchronous

disk. When a system crashes and reboots, the disk can be in one of the multiple
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possible states nondeterministically due to buffered and reordered writes. To

capture and quantify this source of nondeterminism, we introduce reboot state

functions — or reboot functions for short. A reboot function takes a state

after a crash and returns the state that the system will be in after a reboot.

Reboot functions make effects of the reboot on a state deterministic, due to

the fact that the outcome of a function application is deterministic. Similar to

the oracles, different outcomes of a nondeterministic reboot are represented by

different reboot functions.

Although they both represent a form of nondeterminism in the system, we de-

cided to separate reboot functions from oracles in our implementation. This

separation simplifies the refinement definitions in ConFs and makes incorporat-

ing some assumptions on reboot function outputs easier.

3. Execution semantics of a crash-reboot-recovery process must capture multiple

crash and recovery attempts. One way to achieve this is providing semantics

for execution of the original program followed by the multiple consecutive ex-

ecutions of a recovery program. Since each execution requires an oracle and

each crash requires a reboot function to determine after-reboot state, the new

execution semantics will take a list of oracles and a list of reboot functions.

We will explain further details of how executions with recovery are implemented

in the following section. Figure 5-3 shows the formalization with recovery executions.
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Definition RDNI_with_recovery {T} (u: user) (p: prog T)
(rec: prog unit)
(eqv: state → state → Prop) :=

∀ (l_o: list oracle) (l_rf: list (state → state))
(s1 s2: state) (res1: Result T),
exec_with_recovery u l_o s1 l_rf p rec res1 →
eqv s1 s2 →
∃ res2,

exec_with_recovery u l_o s2 l_rf p rec res2 ∧
eqv (extract_state res1) (extract_state res2) ∧
extract_ret res1 = extract_ret res2.

Figure 5-3: RDNI with recovery executions.

This definition differs from simple_RDNI in the way that it allows equivalence

between the states to be broken temporarily in case of a crash, as long as the recovery

program also reestablishes the equivalence. In other words, RDNI_with_recovery

permits after-reboot states to be distinguishable. This is in line with our threat

model, which assumes that adversaries cannot interact with the system until recovery

is successfully completed.

5.1.3 Incorporating Noninterference

All the RDNI definitions up to this point were a variant of nonleakage. Therefore

they didn’t specify system’s behavior regarding the new confidential data. We made

two changes to incorporate noninterference into the definition.

First is conditioning return-value equality on a predicate for the user. This way,

we can require return value equivalence to hold only for certain users, which is needed

to state confidentiality of multi user systems. For example, return-value equality is

required when the theorem is about adversaries’ executions but not needed when it

is about normal users’ executions.

Second is changing the definition to be about the execution of two programs
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instead of the same one. This change enables us to reason about functions with

different input arguments, because a ConFrm program is a function and its arguments

together. With these changes, we reach our final definition for RDNI, which is shown

in Figure 5-4.

Definition RDNI T (u: user) (p1 p2: prog T)
(rec: prog unit)
(eqv: state → state → Prop)
(cond: user → Prop):=

∀ (l_o: list oracle) (l_rf: list (state → state))
(s1 s2: state) (res1: Result T),
exec_with_recovery u l_o s1 l_rf p1 rec res1 →
eqv s1 s2 →
∃ res2,

exec_with_recovery u l_o s2 l_rf p2 rec res2 ∧
eqv (extract_state res1) (extract_state res2) ∧
(cond u → extract_ret res1 = extract_ret res2).

Figure 5-4: Final definition of RDNI.

5.1.4 Termination Sensitivity

The RDNI definition requires for each execution an execution to exist from any equiv-

alent state. This was the case for all the definitions presented so far. This requirement

is called termination sensitivity. In its essence, termination sensitivity implies that

an adversary cannot learn any confidential information by observing if the program

terminates or not. An example of a non-termination-sensitive implementation could

be a function looping infinitely based on some secret bit. If an implementation con-

tains such a loop, then an adversary who calls the function can learn the value of

the secret bit by waiting a reasonable amount of time to see whether the function

terminates.

More generally, termination sensitivity is not restricted to infinite loops. Any
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behavior that causes one execution to “get stuck” while another execution finishes

will violate termination sensitivity. Which executions can “get stuck” depends on

how the semantics are defined. For example, if the semantics of a read operation

on a disk are defined only for addresses that are in-bounds, then any execution that

attempts an out-of-bounds access will get stuck.

It is also worth pointing out that getting stuck is not the same as returning an

error for an invalid operation. In the latter case, semantics are still defined. So,

in the above example, if the semantics are defined to return an error in case of an

out-of-bounds access, then one in-bounds and one out-of-bounds execution would not

violate termination sensitivity.

Although it captures an important aspect of a possible breach of confidentiality,

termination sensitivity is not a necessity in confidentiality specifications. Many differ-

ent systems in the literature use termination-insensitive definitions for their specifica-

tions [31]. A termination-insensitive definition requires any pair of existing executions

from equivalent states to have the same return value and result in equivalent states.

However, a program now has freedom to get stuck in some equivalent states.

However, these definitions are generally variants of deterministic specifications,

where the termination-insensitive variant is a weaker specification. In the nonde-

terministic case, termination insensitivity is overly restrictive. The requirement of

any pair of executions from any two equivalent states to have the same return value

and also result in equivalent states diminishes the power of nondeterminism greatly.

For example, an abstraction of an allocation function where an unused resource is

nondeterministically allocated would not satisfy a termination-insensitive specifica-

tion. This restriction makes termination-insensitive nondeterministic specifications

an unfitting confidentiality specification in many cases.

The relatively deterministic nature of RDNI allows us to define a termination-

insensitive variant that is not overly restrictive. Formal definition of termination-
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insensitive RDNI can be found in Figure 5-5. In this variant, pairs of executions with

the same oracles are allowed to be termination-insensitive, but there is no requirement

on pairs of executions with different oracles. In other words, a pair of executions with

different oracles from equivalent states can have different return values and also can

result in nonequivalent states. This freedom enables abstractions that are similar to

the above example, since return value will be determined by the oracle.

Definition Termination_Insensitive_RDNI T (u: user) (p1 p2: prog T)
(rec: prog unit)
(eqv: state → state → Prop)
(cond: user → Prop):=

∀ (l_o: list oracle) (l_rf: list (state → state))
(s1 s2: state) (res1 res2: Result T),
exec_with_recovery u l_o s1 l_rf p1 rec res1 →
exec_with_recovery u l_o s2 l_rf p2 rec res2 →
eqv s1 s2 →
eqv (extract_state res1) (extract_state res2) ∧
(cond u → extract_ret res1 = extract_ret res2).

Figure 5-5: Termination-insensitive variant of RDNI.

5.2 Definitions and Metatheory

On top of RDNI, ConFrm also includes structures and metatheory that developers can

use to implement confidential and crash-safe storage systems. This portion consists of

two parts: (1) support for abstraction, and (2) the metatheory that provides relevant

theorems to prove confidentiality of an implementation from the confidentiality of an

abstraction. We will first present the infrastructure for defining abstractions and then

explain the metatheory.
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5.2.1 Abstraction Structures

Cores. ConFrm introduces cores as the main way to model the abstract state of the

system and the operations that can be performed on it. A core has four components,

1. the state the system

2. the list of possible operations that can be performed,

3. the list of possible nondeterminism tokens,

4. the execution semantics of each operation.

Also, to ensure that tokens capture all the nondeterminism in the semantics, a

proof that shows, given a token, execution semantics are deterministic is required.

Figure 5-6 shows the formal definition of a core.

Record Core :=
{
token : Type;
state : Type;
operation : Type → Type;
exec : ∀ T, user → token → state →

operation T → Result state T → Prop;

exec_deterministic_wrt_token :
∀ u o s T (p: operation T) ret1 ret2,
exec u o s p ret1 →
exec u o s p ret2 →
ret1 = ret2;

}.

Figure 5-6: Definition of a core.

An example core for a cache can be seen in figure 5-7.
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Definition Cache_Core :=
{
token := Continue | Crash ;
state := address → option block ;
operation := Read a | Write a b | Flush ;
exec := . . . ;
exec_deterministic_wrt_token := . . .

}.

Figure 5-7: An example core for a cache.

This cache has three operations: Read, Write, and Flush. Its state is a partial

function from addresses to blocks, to model possible cache misses. Its tokens are

simple, Continue for a successful execution and Crash for crashing on that operation.

Execution semantics and the proof of determinism are omitted for brevity.

Crashes. ConFrm provides support for crash semantics by defining two different

execution results: Finished and Crashed. A Finished result means that program

has successfully completed and contains a state and a return value. A Crashed result

means that the program crashed during its execution and contains only a state, which

represents the state of the system after the crash happened but before rebooting.

Developers define the crash semantics of the system by defining execution rules

that lead to a Crashed result. It is the developer’s responsibility to ensure that the

defined execution semantics correctly models the system’s both normal and crash

behavior.

Layers. ConFrm also includes the machinery that turns a core to a full layer by

equipping it with Bind and Return operations. This eliminates the repetitive work

that must to be done to define layers. It also allows the framework to provide core-

agnostic theorems and tactics to be used in proofs.
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Semantics of the layer are derived from the semantics of its core. A new semantics

takes a list of tokens (i.e., an oracle) and consumes exactly one at each step. Figure

5-8 shows the derived execution semantics for a layer.

Inductive exec :
∀ T, user → oracle → state' →
prog T → @Result state T → Prop :=

| ExecOp :
∀ T (p : core.operation T) u o d d' r,
core.exec u o d p (Finished d' r) →
exec' u [OpToken o] d (Op T p) (Finished d' r)

| ExecRet :
∀ d T (v: T) u,
exec u [Cont] d (Ret v) (Finished d v)

| ExecBind :
∀ T T' (p1: prog T) (p2: T → prog T')
u o1 d1 d1' o2 r ret,
exec u o1 d1 p1 (Finished d1' r) →
exec u o2 d1' (p2 r) ret →
exec u (o1++o2) d1 (Bind p1 p2) ret

(* Crash semantics are omitted. *)

Figure 5-8: Execution semantics of a language.

It instruments core operations and tokens to convert them into layer programs

and tokens, respectively. Ret and Bind have standard definitions, augmented with

oracles.

ConFrm also provides some theorems regarding determinism of an execution as

well as the relationship between oracles and executions like how two executions relate

to each other if one’s oracle is a prefix of the other’s.
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Recovery semantics. ConFrm provides predefined recovery semantics for the sys-

tems and adds these semantics when it generates a layer from a core. To distinguish

recovery semantics from the semantics of the execution of a single program, we will

refer to recovery semantics as executing-with-recovery. In ConFrm’s recovery model,

only two outcomes are possible when executing-with-recovery: (1) execution can fin-

ish without any crashes, or (2) execution crashes then recovers after a certain number

of attempts. To represent these two outcomes, ConFrm uses two types of recovery re-

sult: RFinished and Recovered. RFinished corresponds to case (1), and Recovered

corresponds to case (2). Since there is no rule for crashing infinitely many times, the

provided semantics implicitly assume that recovery eventually will succeed.

Inductive exec_with_recovery :
∀ T, user → list oracle → state →
list (state → state) → prog T → prog unit →
@Recovery_Result state T → Prop :=

| ExecFinished :
∀ T (p: prog' T) p_rec u o d d' t,
exec u o d p (Finished d' t) →
exec_with_recovery u [o] d [] p p_rec (RFinished d' t)

| ExecRecovered :
∀ T (p: prog' T) p_rec u o lo d d' get_reboot_state l_grs ret,
exec u o d p (Crashed d') →
exec_with_recovery u lo (get_reboot_state d')

l_grs p_rec p_rec ret →
exec_with_recovery u (o::lo) d (get_reboot_state::l_grs)

p p_rec (Recovered (extract_state ret)).

Figure 5-9: Recovery semantics in ConFrm.

Figure 5-9 displays the formal definition. Semantics for (1) are stated in the

ExecFinished rule. It is quite straightforward. If the program successfully exe-

cutes, then it successfully executes-with-recovery. Semantics for (2) are stated in the
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ExecRecovered rule and are more involved. It is inductively defined to capture re-

peated attempts of recovery until it succeeds. The rule states that, if the original

program crashes, and the recovery program executes-with-recovery to some result,

then the original program executes-with-recovery to the state of that result. Execu-

tion uses a new oracle and a new reboot function every time a crash-reboot-recovery

cycle happens. Therefore, lengths of those lists implicitly determine how many times

the recovery will crash until it succeeds.

Refinements. ConFrm’s main mechanism for relating abstractions and implemen-

tations is refinements. ConFrm defines a refinement as an object between an im-

plementation layer and a core abstracting it. We extend the standard refinement

definition to accommodate both crashes and oracles.

As shown in Figure 5-10, a refinement has four components that correspond to the

four components of a core, and a theorem states that a successful execution preserves

the state-refinement relation. The four components are

• a compile function that turns an abstract operation into its implementation

program,

• a refines relation that relates an abstract state to an implementation state,

• a refines_reboot relation that relates an abstract reboot state to an imple-

mentation reboot state,

• and token_refines relation that relates an abstract token to an implementa-

tion oracle.
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Record CoreRefinement C_imp (L_imp: Layer C_imp) (C_abs: Core) :=
{
compile_core : ∀ T, C_abs.operation T → L_imp.prog T;

refines_core: L_imp.state → C_abs.state → Prop;

refines_reboot_core: L_imp.state → C_abs.state → Prop;

token_refines: ∀ T, user → L_imp.state →
C_abs.operation T →
(L_imp.state → L_imp.state) →
L_imp.oracle →
C_abs.token → Prop;

exec_compiled_preserves_refinement_finished_core :
∀ T (p2: C_abs.operation T) o1 s1 s1' r u,
(∃ s2, refines_core s1 s2) →
L_imp.exec u o1 s1 (compile_core T p2) (Finished s1' r) →
(∃ s2', refines_core s1' s2');

}.

Figure 5-10: Definition of a core refinement.

Both compile and refines are part of the standard definition. However, refines_reboot

and token_refines relations require more explanation.

We separate refines_reboot from refines because, in general, a refines rela-

tion is too strong to hold for after-reboot states, but we also needed a relation between

them to ensure that recovery restores the original refines relation. For example, if

a write-ahead log implementation uses a log cache to speed up the reads, its refines

relation may contain a proposition that the values stored in the cache are exactly the

values stored in the log. In this case, the refines relation doesn’t hold after a reboot

because the cache will not contain any data.

The token_refines relation correspond to representing a set of oracles that lead

to the same behavior with a single token. Informally, an abstract token is a concise

72



representation of multiple sequences of nondeterministic events that lead to the same

outcome, which can be thought as having the cumulative probability of the sequences

it represents in the mental model.

The token_refines is more complicated than refines and refines_reboot.

On top of the oracle and the token it relates, it takes the following parameters

• a user,

• an implementation state,

• an abstract operation,

• and an implementation reboot function.

All these parameters are necessary to capture the intricate relationship between ab-

stract tokens and implementations’ crash and recovery behavior. We can demonstrate

the roles they play by examining the following example.

Assume that we are abstracting an implementation of a checksum-based log on an

asynchronous disk with a write function. A crash during a write to a checksum-based

log may leave the log in such a state that whether the write succeeded or not would

depend on which blocks made it to the disk before the crash (which is determined by

the after-reboot state of the implementation). In other words, success of a write after

crash depends on (1) state of the disk just after the crash, and (2) state of the disk

after reboot. To determine (1), we need to know the user, the starting state, and the

data being written, which are in the operation. To determine (2), we need to know

the reboot function. Therefore, capturing the behavior of the write in this particular

case requires all the parameters listed above. Other operations may require some or

all of those parameters as well.

Similar to generating a layer from a core, ConFrm can automatically generate a

refinement between two layers given a core refinement between an implementation
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layer and an abstraction core. A refinement for a layer differs from a refinement

for a core in three places. First, the compile function transforms programs from

the abstraction layer to implementation layer. Second, token_refines turns into

oracle_refines, which relates an abstract oracle and an implementation oracle.

Third, a finished execution of any compiled program should preserve the refinement.

ConFrm also provides a recovery_oracles_refine relation, which relates lists of

implementation oracles to lists of abstraction oracles by oracle_refines inductively.

Figures 5-11 and 5-12 visualize how refinement is defined for normal and recovery

executions respectively.

Figure 5-11: Refinement for normal executions.
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Figure 5-12: Refinement for reboot and recovery executions.

Horizontal Compositions. To enable modular implementations, ConFrm pro-

vides automatic derivation of a new, composite core from two given cores via horizon-

tal composition. A state of the composite core is a pair that contains the state of each

of the component cores. This capability allows developers to develop the system in

small, self-contained parts that can be combined at will when desired without much

overhead. A layer derived from a composite ConFrm core contains support for “lift-

ing” the programs written in a layer of one of the component cores to the layer of the

composite core. Similarly, it allows automatic derivation of a refinement between the

two composite layers if a component of the first layer is a refinement of a component

of the second layer.

5.2.2 Metatheory

At the heart of ConFrm lies the Theorem 5-15, which derives the confidentiality of

a compiled program from the confidentiality of its abstraction. The theorem reveals
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sufficient conditions for preserving RDNI through refinement. The two conditions

are:

1. there should be a simulation between implementation and abstraction with re-

spect to refinement relations, and

2. if a list of implementation oracles refine a list of abstract oracles from a state

with the first program, then it should refine the same oracle from any state that

is equivalent to the first state with the second program.

The first condition ensures that there is no execution of a compiled program that is

not captured by an execution of an abstract program. This is necessary for a property

of any abstract execution to imply a property of any implementation execution. If

there were an implementation execution that does not correspond to an abstract

execution, then it would not be possible to reason about such an execution through

an abstract execution.

The second condition can be interpreted as the necessity that abstraction does

not inject dependency on the confidential data into abstract oracles. Abstractions

modelling some deterministic behaviors of an implementation as nondeterminism is a

common pattern. For example, an abstraction of a resource allocator may model the

allocation function to return an unused resource nondeterministacally, even though

the implementation’s behavior is actually deterministic (e.g., returning the first avail-

able one).

This property makes sure that the developer does not abstract a behavior that

depends on the confidential data in such a way. If such action would be permitted,

then two implementation executions from equivalent states with the same implemen-

tation oracles could correspond to two abstraction executions with different oracles.

In such a case, the noninfluence of the abstraction with the same oracles wouldn’t

be strong enough to establish the same fact in the implementation, due to the fact
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that noninfluence of the abstraction does not state anything about executions with

different oracles. Formalization of this condition can be seen in figure 5-13.

Definition oracle_refines_same_from_equivalent
(u: user) T (p1_abs p2_abs: L_abs.prog T)
rec_abs l_get_reboot_state_imp equivalent_states_abs :=

∀ l_o_imp l_o_abs l_o_abs' s1_imp s2_imp,

refines_equivalent equivalent_states_abs s1_imp s2_imp →

recovery_oracles_refine
u s1_imp p1_abs rec_abs
l_get_reboot_state_imp
l_o_imp l_o_abs →

recovery_oracles_refine
u s2_imp p2_abs rec_abs
l_get_reboot_state_imp
l_o_imp l_o_abs' →

recovery_oracles_refine
u s2_imp p2_abs rec_abs
l_get_reboot_state_imp
l_o_imp l_o_abs.

Figure 5-13: Formalization of oracle refinement being independent of confidential
data.

Simulations. The first condition above states that a simulation must exist between

the abstraction and the implementation. Since we introduced oracles and crash-and-

recovery into execution relations, we modify the standard simulation definition to

accommodate those changes.
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Definition Simulation
u T (p_abs: L_abs.prog T) (rec_abs : L_abs.prog unit)
l_get_reboot_state_imp l_get_reboot_state_abs
eqv_begin eqv_end :=

∀ l_o_imp s_imp s_imp' s_abs,

eqv_begin s_imp s_abs →

L_imp.(exec_with_recovery) u l_o_imp s_imp
l_get_reboot_state_imp (compile p_abs)
(compile rec_abs) s_imp' →

∃ l_o_abs s_abs',
recovery_oracles_refine u s_imp p_abs rec_abs

l_get_reboot_state_imp l_o_imp l_o_abs ∧

L_abs.(exec_with_recovery) u l_o_abs s_abs
l_get_reboot_state_abs p_abs rec_abs s_abs' ∧

eqv_end (extract_state_r s_imp') (extract_state_r s_abs') ∧
extract_ret_r s_imp' = extract_ret_r s_abs').

Figure 5-14: ConFrm’s simulation definition with oracles and execution-with-recovery.

As shown in figure 5-14, the first change is that the modified simulation definition

has three simulation relations, one for the starting states, one for the end states, and

one for the oracles. We separate the relation that relates the starting and end state

to be able to reason about recovery where the relations that hold at the beginning

and at the end are different.

In the context of RDNI transfer of a recovery program, start and end simulation

relations coincide with the state-refinement relations refines_reboot and refines,

respectively. We also define a two-relation variant to use in definition 5-15, where

start and end relations are both a refines relation.

The second change is that a simulation is defined over an entire execution-with-
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recovery. This allows the simulation relation to be broken temporarily after a crash,

as long as it is restored by the recovery process. This change is necessary because

crashes may expose states that will never appear during a normal execution. This

way, a refinement relation can only consider the states that appear during normal

execution. How to represent crash states is entirely left to the developer.
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Lemma RDNI_transfer:
∀ C_imp C_abs (L_imp: Layer C_imp) (L_abs: Layer C_abs)
(R: Refinement L_imp L_abs)
u T (p1_abs p2_abs: L_abs.prog T) rec_abs
l_get_reboot_state_imp
l_get_reboot_state_abs
equivalent_states_abs cond,

RDNI
u p1_abs p2_abs rec_abs
equivalent_states_abs
cond l_get_reboot_state_abs →

Simulation R
u p1_abs rec_abs
l_get_reboot_state_imp
l_get_reboot_state_abs →

Simulation R
u p2_abs rec_abs
l_get_reboot_state_imp
l_get_reboot_state_abs →

oracle_refines_same_from_equivalent R
u p1_abs p2_abs rec_abs
l_get_reboot_state_imp
equivalent_states_abs →

RDNI
u (R.compile p1_abs)
(R.compile p2_abs)
(R.compile rec_abs)
(refines_equivalent equivalent_states_abs)
cond l_get_reboot_state_imp.

Figure 5-15: RDNI transfer theorem.
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5.3 Using ConFrm

In this section, we explain how ConFrm can be used to ensure an implementation is

secure. Our explanation will contain two parties: a checker and a developer. The

checker is the party who is responsible for ensuring the security of the system and

the developer is the party who will implement the system using ConFrm. For clarity,

we divide the implementation components into two groups: the group that will be

defined by the checker and the group that will be provided by the developer. In case

the entire system is implemented by the developer, checker’s group corresponds to

the components that needs to be inspected manually to ensure their correctness.

To use ConFrm, the checker has to implement the model of the disk and the

memory, the top level model of the system, and RDNI specifications for confidentiality.

The model of the disk and the memory ensures that the required assumptions about

the nondeterminism holds. The top level model is where semantics of each operation

in the system is defined and serves as a functional specification for the system. It

also contains an initialization and recovery operation. Both models are implemented

as ConFrm layers. Writing RDNI specifications include selecting the equivalence

relation that encodes what is confidential and what is not. In summary, the checker

is responsible for specifying the system and the computer it will run on.

In return, the developer provides an implementation for each system operation

along with a simulation proof, a proper initialization proof and proofs of RDNI spec-

ifications for the implementation. Proper initialization proof establishes that the

implementation creates an initial state that refines an abstract state. Figure 5-16

shows the formal statement.
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Theorem proper_initialization :
∀ u o_imp s s_imp_init r,

L_imp.(exec) u o_imp s (compile Init) (Finished s_imp_init r) →

∃ s_abs,
refines s_imp_init s_abs.

Figure 5-16: Proper initialization theorem.

Proper initialization theorem is a simulation-like requirement with the differences

that it holds for any start state and it only applies to non-crashing executions. Such

a proof is required to guarantee system starts from a well-formed state.

Simulation proofs show that the implementation provides the intended functional-

ity of each operation. Finally, developer provides proofs for RDNI specifications, one

implementation specification for each top-level specification. Implementation specifi-

cations are in the form of the conclusion of RDNI_transfer theorem. Developer can

derive the proofs from the simulation and oracle refinement independence proofs. All

these components are machine-checkable and doesn’t require manual inspection.

Specifications and proper initialization proof combined guarantee that the system

initializes correctly, its state will refine abstract states throughout the execution,

states that refine equivalent abstract states will continue to refine equivalent abstract

states, and it will return the same values from the states that refine equivalent abstract

states. The checker doesn’t need to know the details of how an implementation state

and oracle refines an abstract states and oracle, respectively. It is sufficient to know

that such a refinement exists to conclude that the implementation is secure.

In this chapter, we covered formalization of RDNI and other components of Con-

Frm, as well as how to use it to implement confidential storage systems. Next, we

will present ConFs, our confidential file system implemented and proved confidential

in ConFrm.
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Chapter 6

ConFs File System

ConFs is the first confidential file-system with a checksum-based log with machine-

checkable proofs. The first half of the chapter will explain its design and implemen-

tation. The second half will explain its confidentiality specifications and the effort

that went into proving them.

6.1 Design

ConFs consists of three components: (1) a checksum-based write-ahead log with a log

cache, (2) a transaction system, and (3) file-system structures like block allocators

and inodes. These components embody different challenges from section 1.3.

The full design of ConFs can be seen in Figure 6-1. Solid boxes depict ConFrm

cores. Shaded boxes represent implementation components. Colors distinguish differ-

ent ConFrm layers. Each shaded box uses functions and operations from the boxes

directly below it. For example, the log cache uses both implemented log functions and

cache operations from the cache core. A solid box on top of a shaded box represents

an abstraction (e.g. transactional disk abstracts the functions of transactions into

operations).
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Figure 6-1: Structure of ConFs.

6.1.1 Base Layer and the Log Component

Base Layer The base layer is the one where we model disk, cache and some in-

memory data structures for transactions and cryptographic operations. It provides all

the basic operations that can be used in the system, which each file-system operation

is compiled into. The list of operations can be seen in Figure 6-2.
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Disk Cache Auth

read: addr → block read: addr → option block auth: user → bool

write: addr → block → unit write: addr → block → unit

sync: unit flush: unit

Crypto List

hash: hash → block → hash get: list (addr * block)

generate key: key put: (addr * block) → unit

encrypt: key → block → block delete: unit

decrypt: key → block → block

Figure 6-2: Operations in the base layer.

Log and Log Cache ConFs contains a checksum-based write-ahead log similar to

DFSCQ’s. Our design differs from DFSCQ’s log in that the log blocks are encrypted.

Encryption of the log is necessary in a checksum-based log to avoid leaking previous

transactions’ contents. Figure 6-3 demonstrates the problem with a simple example.

Figure 6-3: A sequence of events that leads to leakage of the confidential data.

In the above example, there are two logs with the length of one block. Both

logs are initially empty, but there are leftover blocks 𝑏1 and 𝑏2 from a previously

applied transaction. Now a user commits a new transaction with 𝑏1 as its content.
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Then both logs crash after the data and the header are written but before the disk is

synced. In both cases, the new header manages to persist on the disk, but the data

doesn’t. After reboot, the recovery procedure of the first system will keep the latest

transaction since the hash of the log and the hash in the header match. However,

the second system will discard the transaction because the hashes won’t match. Now

the user who committed the last transaction can infer the contents of the previous

transaction based on the state of the system after recovery by looking if his write is

present on the disk.

We use encryption to fix the above problem. Encryption provides protection at

two levels: (1) it makes collision between a block that is already on the disk and the

block that is written on it extremely unlikely, and (2) even in the case of it happening,

it prevents the user from inferring the contents of the previous transaction. Case 1 is

due to the fact that it is extremely unlikely to produce the same ciphertext from two

blocks that are encrypted with two different random keys. Case 2 is ensured by the

usage of a fresh key for each transaction, since having the same ciphertext will not

reveal any information about the plaintexts if two different keys are used. Figure 6-4

shows how using encryption fixes the problem.

Figure 6-4: Encryption fixes the leakage.
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The initial setting in the encrypted example is similar to the unencrypted version,

except the leftover blocks are encrypted with keys 𝑘1 and 𝑘2. Same as before, a user

commits a new transaction with 𝑏1. Before writing 𝑏1 to the log, it gets encrypted

with a freshly generated key 𝑘. The crucial observation is that, if 𝑘 is different than

𝑘1 and 𝑘2, then 𝐸(𝑘, 𝑏1) is different than 𝐸(𝑘1, 𝑏1) and 𝐸(𝑘2, 𝑏2) with high probability.

This difference implies that their hashes are different with high probability as well.

Since the new hash is different than the hashes of leftover blocks, these is no after-

reboot state where one transaction is kept but the other is rolled back. Therefore, all

possible after-recovery states are equivalent.

Since the log contents are encrypted and encryption/decryption is computationally

expensive, we implemented a write-through log cache to speed up the read requests.

The cache contains unencrypted versions of the data stored in the log.

A checksum-based log raises the challenge of operating on confidential data as

well as secret-dependent outcome probabilities. A hash of the log indirectly contains

information from the data stored in the log. Any branching that is made based on

hash values, (e.g., recovery checking the hash to restore the log), has the potential to

leak confidential data. Secret-dependent outcome probabilities arise from the crash

of the asynchronous disk. A crash of an asynchronous disk leads to multiple possible

reboot states, which are dependent on the log contents.

6.1.2 Logged-Disk Layer and Transactions

Logged-Disk Layer We abstract the log-cache API to a new core called logged-

disk core. Logged-disk core provides two improvements over directly using the im-

plementation: (1) it simplifies the disk model, and (2) it simplifies the operational

semantics.

The logged-disk layer’s disk model is a total function from addresses to latest
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blocks. Each address is shifted by the log length (e.g., the first block after the log

in the base-layer disk corresponds to address 0 in the logged-disk-layer disk). Figure

6-5 illustrates how a base-layer disk transforms into a logged-disk-layer disk. Dashed

arrows show the final addresses for the data stored in the log blocks. Solid arrows

show where each block’s content comes from.

Figure 6-5: Base-layer disk’s transformation to logged-disk-layer disk.

This model hides the existence of the log and the cache as well as previously

written values in the base-layer disk.

Transactions Transactions don’t pose any new confidentiality challenges apart

from increasing the system complexity. However, they are required to make the

file-system operations atomic.
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6.1.3 File-System Structures

File-system structures include inode and data allocators, inodes, and files.

Inodes We designed inodes to be as simple as possible while retaining the required

functionality. Each inode contains an owner and a list of direct block numbers. We

decided to only use direct blocks to avoid the complexity of indirect addressing, since

it doesn’t pose any interesting confidentiality issues.

Files Our file-system API provides basic file operations that are relevant to the

challenges we are trying to address. Figure 6-6 shows the file-system API. To keep

the system simple, all operations are designed at a block granularity, i.e. they read or

write entire blocks, because byte granularity adds extra complexity without presenting

any challenges regarding confidentiality. Similarly, we chose to use inode numbers as

file handles to focus on confidentiality without the complexity of managing a directory

structure.

Operation Type Signature

read inum → addr → option block

write inum → addr → block → option unit

extend inum → block → option unit

create user → option inum

delete inum → option unit

change_owner inum → user → option unit

Figure 6-6: File-system API.

File-system structures contain a notion of ownership, discretionary access con-

trol, and nondeterministic specifications for create. This leads to possible indirect

disclosure and the challenge of implementing ownership changes.
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File-Disk Layer The file-disk layer is the abstraction of the file-system API, where

each system call is an operation in its language. The layer presents a simple disk

model, a map from addresses to files. This simplification provides an intuitive model

for how a file system is perceived and also simplifies the confidentiality specifications.

Since there are no directories or naming, create nondeterministically chooses an

empty inode number to create a file and returns that number upon successful creation.

6.2 Implementation

We implemented ConFs as a stack of layers and components to simplify the oper-

ational semantics as we implement higher-level functionality. Each component is

written in a ConFrm layer and also abstracted into a higher layer via refinement.

For example, the write-ahead log is written in the base layer, the layer that models

the raw disk and provides disk operations as its language. Then the write-ahead log,

combined with the log cache, is abstracted into the logged-disk layer. The logged-disk

layer completely hides the existence of the log and the cache in the implementation,

by presenting a crash-safe disk as its state.

6.2.1 Base Layer and the Log Component

Base Layer Two parts of the base layer’s implementation are worth explaining

further: (1) an asynchronous disk, and (2) cryptographic operations.

Asynchronous disk. We implemented an asynchronous disk as a total function

from a natural number to a (block * list block) tuple, similar to DFSCQ. The first

component of the tuple represents the latest block written on the disk. The second

component represents the blocks that were previously written to the disk after the

latest sync. This list is used to model the effect of buffering and reordering of writes
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and used to enumerate possible crash states of the disk, where each disk block after

the reboot may be either the latest value or one of the values in the list. Disk size is

taken as a parameter and enforced by the operational semantics.

Cryptographic operations. To implement a checksum-based, encrypted log, we

need encryption/decryption, key generation and hashing. Encryption and decryption

are implemented as abstract functions with their properties stated as axioms. Figure

6-7 shows our encryption model.

encrypt: key → block → block.
decrypt: key → block → block.

encrypt_decrypt:
∀ k v,
decrypt k (encrypt k v) = v.

decrypt_encrypt:
∀ k ev,
encrypt k (decrypt k ev) = ev.

Figure 6-7: Encryption model.

We use operational semantics to implement the key generation and hashing, sim-

ilar to DFSCQ. Using operational semantics allows us to add collision-freedom and

key freshness as premises to the theorems without introducing inconsistency to the

system (e.g., if there are no hash collisions, then the operation is confidential). If the

premise doesn’t hold for the executing program (e.g, if a previously generated key is

returned during an execution), the theorem doesn’t apply.

We do so by defining validity of an execution only if the desired property is

satisfied. For example, the execution rule for key generation states that the returned

key is not generated by the system before. As a consequence, any theorem that has an

91



execution as a premise, like RDNI, implicitly contains the assumption as a premise,

since an execution that violates the premise cannot be constructed in the model.

Log and Log Cache

Since ConFs’ log contents are encrypted, we modified header blocks to store the

transaction keys. Similar to DFSCQ’s header, ConFs’ header contains two parts: an

active part for the current state of the log and an old part for the log before the latest

transaction. Each part contains a hash value, number of used log blocks, and list of

transaction records. Each transaction record contains its encryption key, start index

of the transaction, and number of address and data blocks in the transaction. Figure

6-8 shows the formal definition of the header and its related structures.

Record txn_record := {
key : key;
start : nat;
addr_count : nat;
data_count : nat;

}.

Record header_part := {
hash : hash;
count : nat;
records : list txn_record;

}.

Record header := {
old_part : header_part;
active_part : header_part;

}.

Figure 6-8: Header structures.

Every time a transaction is committed, the active part replaces the old part before
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the new transaction is added to the active part. This ensures that if a crash happens

during the commit, a previous state of the log can be restored during recovery.

We implemented a simple log cache to eliminate the overhead of finding the latest

block from the log. The cache is updated every time a new write is issued for the log,

to ensure it contains exactly the data stored in the log. Similarly, the cache is flushed

every time the log is applied to disk, to ensure the cache is consistent with the log.

After a reboot, the cache is repopulated with the data stored in the log.

6.2.2 Logged-Disk Layer and Transactions

Logged-Disk Layer The logged-disk layer is the first place where a nontrivial crash

behavior is implemented. When new data is being written to the log, two outcomes

are possible based on when the crash happens. If the new header manages to persist

on the disk, the write becomes successful, and the new data is visible on the disk.

Otherwise, the write gets rolled back during recovery. This behavior of a crash during

a write is determined by the oracle by having different crash tokens that dictate if

the write is successful or not. The crash semantics of the logged-disk is depicted in

Figure 6-9.

| ExecCrashBefore :
∀ disk user op,
exec user CrashBefore disk op (Crashed disk)

| ExecCrashWriteAfter :
∀ disk user address_list block_list,
preconditions for a successful write →
...
exec user CrashAfter disk (Write address_list block_list)

(Crashed (batch_update disk address_list block_list)).

Figure 6-9: Crash and recovery semantics of logged disk.
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The ExecCrashBefore rule indicates that, when the token is CrashBefore, any

operation can crash without any effect. The ExecCrashWriteAfter rule describes a

crash after a successful write. If all the preconditions of a successful write are satisfied

and the token is CrashAfter, then the disk crashes to an after-write state.

6.2.3 Transactions and Transactional-Disk Layer

Transactions To ensure atomicity of each top-level file-system call, we imple-

mented a transaction system on top of the log. Each transaction consists of a list of

address and block pairs. Upon commit, the function first deduplicates the transaction

list based on the addresses, before writing it to the log. Figure 6-10 shows all the

transaction functions.

Operation Type Signature

read addr → option block

write addr → block → option unit

commit unit

abort unit

Figure 6-10: Transaction operations.

Transactional-Disk Layer The transactional-disk layer abstracts the transaction

API to hide the list-based implementation. It transforms the disk and the transaction

list into two disks: one that contains the most recent blocks and one that is the disk

before the active transaction is started. It also keeps track of whether the transaction

is empty or not.

There is no mechanism in the transactional-disk layer to keep track of the trans-

action size. Whenever a write operation executes, a token determines if the write

is successful or it fails due to the transaction being full. Because of this, any write
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operation may fail nondeterministically. Figure 6-11 shows the execution rules for

Write operations.

| ExecWriteInbound :
∀ s a v u,
a < disk_size →
exec u Cont s (Write a v)
(Finished (NotEmpty, ((upd (fst (snd s)) a v), snd (snd s))) (Some tt))

| ExecWriteOutbound :
∀ s a v u,
a ≥ disk_size →
exec u Cont s (Write a v) (Finished s None)

| ExecWriteInboundFull :
∀ s a v u,
a < disk_size →
exec u TxnFull s (Write a v) (Finished s None)

Figure 6-11: Write semantics of transactional disk.

Whenever a Write operation needs to be executed, if the input address is in-

bounds, there are two possible execution paths based on the token: (1) the write goes

through successfully and the first disk is updated, or (2) the write fails without any

changes.

6.2.4 File-System Structures and File-Disk Layer

Allocators. We implement a generic allocator that we use to manage inodes and

data blocks. A generic implementation halves the proof effort required for allocators

and demonstrates ConFrm’s capability of handling generic implementations.

Inodes. The inode component is a wrapper around its allocator. Inodes are encoded

into and decoded from blocks with abstract encode and decode functions. Using
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abstract functions allows us to implement these functions with high performance in

the extracted code.

Files. The implementation of files uses a data-block allocator and inodes to imple-

ment our file-system API. Each function except create has a similar implementation.

They first make an access-control check to ensure that the current user is the owner

of the accessed file. After a successful authentication, they perform the operation and

return an optional value to signify a success or a failure.

The change_owner implementation is straightforward because file ownership is

recorded in inodes, and changing the owner in the inode changes the owner of the

entire file. This is in contrast to DiskSec, where each block has an owner and each

block’s owner must be changed to change the owner of a file.

6.3 Specifiying security

Security of ConFs is defined as an RDNI specification for each of the compiled file

disk operations. The core of these specifications is the equivalence relation between

two states. Since ConFs consists of four distinct layers, we have four different but

related equivalence relations. We will explain these relations starting from the file

disk layer and progressing towards the base layer.

For our confidentiality definition, we chose to treat user data as confidential but

the file system metadata as public. Our choice is based on the fact that current

file systems expose metadata (e.g., size of directory shows the number of files in it,

amount of free space, number of free inodes). ConFs doesn’t treat some metadata that

can be confidential in a file system as confidential (e.g, private directory contents)

since it doesn’t implement all the functionalities of widely-used file systems.
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6.3.1 File Disk Layer Security

The equivalence relation for file disk layer is the formalization of the idea of two states

are equivalent for a user they have the same structure, and the data owned by that

user is identical in both states. Figure 6-12 shows the formal definition of the relation.

Definition same_for_user_except (u: user)
(exclude: option addr) (d1 d2: file_disk.state) :=

addrs_match_exactly d1 d2 ∧

(∀ inum file1 file2,
exclude ̸= Some inum →
d1 inum = Some file1 →
d2 inum = Some file2 →
(file1.owner = u ∨
file2.owner = u) →
file1 = file2) ∧

(∀ inum file1 file2,
d1 inum = Some file1 →
d2 inum = Some file2 →
file1.owner = file2.owner ∧
length file1.blocks = length file2.blocks).

Figure 6-12: Equivalence relation for two file disk states.

The relation has two parts: (1) files with the same inode number have the same

owner and length, and (2) if those files belong to the specified user, then their con-

tents are the same. By requiring files to be identical only for the specified user,

same_for_user_except captures the intuition of differing in confidential data be-

longing to other users, whose connection to confidentiality is explained in Chapter

1.

To make same_for_user_except usable in the change_owner specification,
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same_for_user_except takes an optional inode number of the file whose owner is

being changed for the following reason.

If the new owner is the user whose the states are equivalent for, then the resulting

states would be equivalent only if the files whose owner is being changed are identical

in both states. However, the files that belong to the old owner in the starting states

are not guaranteed to be identical, since equivalence relation does not require other

users’ file contents to be the same between equivalent states. Therefore, the relation

excludes the file being operated on and ensures other files of the user stay identical.

Since the equivalence relation used in change_owner’s confidentiality specification

excludes the file that is being operated on, it only provides half of the required security:

it restricts the leakage from the changed file to the outside, but not the other way

around. The fact that no information leaks from outside into the changed file is

covered by change_owner’s functional correctness, which states that changed file’s

contents stay unchanged after the operation.

Theorem write_RDNI:
∀ n inum adr blk current_user adversary,
RDNI current_user

(Write inum adr blk)
(Write inum adr blk)
Recover
(same_for_user_except adversary None)
(eq adversary) (repeat id n).

Figure 6-13: Confidentiality specification for Write operation.

Figure 6-13 shows a typical confidentiality specification for a file disk opera-

tion. This particular example states the noninterference of the Write operation.

current_user is the user who is executing the Write operation. Two starting states

are equivalent with respect to an adversary, which may be identical to current_user,

and no file is excluded since we expect the effect of the operation to be identical on
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both states. Return value equality is required only if current_user is identical to

adversary because we are only concerned if an adversary can distinguish equivalent

or not. Since file disk’s disk model is crash-safe, list of reboot functions is a list of

identity functions.

Above specification does not ensure confidentiality of the input block. Since input

blocks are the same in both programs, even an obviously insecure implementation that

directly writes the block to an adversaries file satisfies the specification. To ensure the

confidentiality of the input, another specification where inputs are different is needed.

Figure 6-14 shows the specification for the input data. The specification excludes the

operated file from the equivalence because if the current user is the adversary, then

the files after the write will not be the same. We have a similar specification for

extend, which also takes confidential data as an input.

Theorem write_input_RDNI:
∀ n inum adr blk1 blk2 current_user adversary,
RDNI current_user

(Write inum adr blk1)
(Write inum adr blk2)
Recover
(same_for_user_except adversary (Some inum))
(eq adversary) (repeat id n).

Figure 6-14: Confidentiality specification for Write operation with different inputs.

write_RDNI and write_input_RDNI correspond to nonleakage and noninterfer-

ence, respectively. They together ensure the confidentiality of Write operation,

write_RDNI guarantees that confidential data on the disk doesn’t affect the behavior,

and write_input_RDNI guarantees the same for the input data.
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6.3.2 Transactional Disk Layer Security

ConFrm provides a function that derives an equivalence over implementation states

from an equivalence over abstract states, given that a refinement between the two

exists. Informally, the derived equivalence relates two implementation states if there

exists two equivalent abstract states that are refined by those implementation states.

Figure 6-15 shows the definition of the derivation function.

Definition refines_equivalent
(equivalent_abs: abs.state → abs.state → Prop)
(si1 si2: imp.state) : Prop :=
∃ (sa1 sa2: abs.state),
refines si1 sa1 ∧
refines si2 sa2 ∧
equivalent_abs sa1 sa2.

Figure 6-15: Equivalence derivation function from ConFrm.

This function is sufficient to derive the equivalence for the transactional disk

layer. Figure 6-16 depicts an example of a specification with a derived equivalence

for a compiled Write operation. In the definition, each program is replaced with

their compiled versions and equivalence relation is replaced with the derived relation.

Since the state of the transactional disk is different from the state of the file disk,

list of reboot functions is replaced with the transactional disk layer’s reboot function.

One other change is that the theorem weakens the specification to its termination

insensitive variant. This was done due to time constraints and will be explained

further in section 6.4.
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Theorem transactional_disk_write_RDNI:
∀ n inum a v current_user adversary,
Termination_Insensitive_RDNI
current_user
(compile (Write inum a v))
(compile (Write inum a v))
(compile Recover)
(refines_equivalent (same_for_user_except adversary None))
(eq adversary) (repeat transactional_disk_reboot_function n).

Figure 6-16: Derived confidentiality specification for compiled Write operation.

refines_equivalent is not always sufficient to derive a suitable equivalence re-

lation. Sometimes, extra conditions are needed to establish the relation between

the parts of the implementation state that is abstracted away. The main reason for

requiring extra conditions in our case is oracles in ConFrm implicitly dictating the

number of execution steps and the types of operations a program takes. Semantics of

a program requires consumption of exactly one token per operation executed. This

requirement generally implies that two noninterfering programs have to follow the

same execution path as explained next.

6.3.3 Logged Disk and Base Layer Security

Both logged disk layer and base layer require extra conditions regarding the struc-

ture of the log and the transaction list. Following simple example shows why such

conditions are necessary:

Definition read a :=
mv <- transaction_read a;
if mv = Some v then
Ret v

else
disk_read a
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Above is a standard read implementation to get latest value for an address when

there is an active transaction in the system. Proving noninterference of this function

requires showing that there exists two executions from related states with the same

oracle. Since having the same oracle dictates that programs have to follow the same

execution paths, two related states have to contain exactly same addresses in their

transactions, although corresponding data could be different.

Since the transactional disk abstraction hides the existence of a separate trans-

action list, an equivalence relation between two abstract states cannot capture this

requirement. In this instance, equivalence relation for implementation needs to be

supplemented to make it finer-grained.

This particular example and some other more complicated variants are present in

log functions as well. Therefore, we supplemented the equivalence relation with the

following extra requirements:

• same addresses are present in the transactions,

• same addresses are present in the log caches,

• there are equal number of transactions in both logs, and

• corresponding transactions in both logs have the same number of address and

data blocks

All of the above requirements can be summarized as equivalent states having the

same structure, which is in line with the intuition behind our file disk equivalence

relation.
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6.4 Proving Security

As explained in section 5.2, proving confidentiality of our implementations in base

layer requires three groups of theorems for each file disk operation: (1) an RDNI

confidentiality specification proof, (2) a simulation proof between operations and their

implementations, and (3) an oracle refinement independence from confidential data

proof. Vertically composable nature of each type allowed us to prove the properties

for each layer separately, by deriving intermediate RDNI specifications, instead of a

one monolithic proof from file disk layer to base layer.

Confidentiality specification proofs. Confidentiality specification proofs of file

disk operations directly follow from the operational semantics of the operations. Since

each operation is executed in a single step and file disk is crash-safe, these proofs are

straightforward and follow the same pattern.

Simulation proofs. We split simulation proofs to two parts to keep proofs shorter

an more manageable: (1) existence of a refined abstract oracle given an implemen-

tation execution, and (2) existence of an abstract execution given a refined abstract

oracle and an implementation execution. Both of these proofs took advantage of the

functional correctness specifications of implementation programs. Biggest challenge

regarding simulation proofs is establishing token refinement relations. As explained

in 5.2.1, these relations depend on multiple parameters like program itself and reboot

functions. Finding the correct relations required multiple iterations and correspond-

ing changes in definitions and proof scripts.

Oracle independence proofs. Oracle independence proofs were the hardest due

to them being two-execution proofs and requiring reasoning about two abstraction

levels. We split oracle independence theorems into two smaller theorems: (1) two
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programs follow the same execution path from related states with the same oracle,

and (2) if two programs follow the same execution path from related states with the

same oracle, then those oracles refine the same abstract oracle.

One interesting case appeared regarding a write operation that overwrites some

data with the same data on the disk, making the operation effectively a ‘noop’. The

possibility of such a noop write operation makes it impossible to determine if a write

succeeds or not after a crash by just examining the disk’s final state. This causes

a problem in the oracle refinement independence proof, where only one execution of

the same write from equivalent states being noop.

If only the final states are considered in oracle refinement, a noop write’s oracle

can refine both CrashBefore and CrashAfter tokens. However, a normal write’s

oracle can refine only one of them, depending on the resulting state. Because of this,

The problem arises when the noop write’s oracle refines a token that is different from

the normal write’s oracle can refine, since it cannot be proven that normal write’s

oracle refines the other token.

To resolve this problem, we included the precise number of steps a write operation

runs as well as the required conditions on the crash and reboot states of the disk

to oracle refinement relation. This extra information prevents above problem from

arising by making conditions of refining two tokens mutually exclusive, establishing

that the same oracle cannot refine different tokens from equivalent states.

However, such a precise and low level reasoning was tedious and required signifi-

cant proof effort. Despite our best efforts, question of whether this can be solved at

meta-theoretic level or with another proof strategy that requires less effort remains

open.

Termination sensitivity. One concession we had to make was using the termina-

tion insensitive RDNI as our final confidentiality specification. We discovered that
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termination sensitivity is orthogonal to the other properties and needs an entirely

new set of theorems to prove. This orthogonality is fundamental and comes from the

definitions themselves. All the theorems in ConFs are about the properties of exist-

ing executions. In other words, the reasoning starts with an existing execution and

derives required facts from it. However, termination sensitivity requires reasoning

in the opposite direction: starting from some facts to establish the existence of an

execution.

6.5 Extraction and Trusted Computing Base

ConFs extracts to Haskell using Coq’s built-in extraction functionality. To obtain

a functional file system, we implemented three unverified components: (1) an inter-

preter for base layer operations, (2) a directory structure, and (3) FUSE bindings for

each system call. The Coq kernel, Haskell base library, implemented components, and

the external libraries used in the components are all a part of the trusted computing

base.
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Chapter 7

Evaluation

This section experimentally answers the following questions:

• Do the confidentiality specifications prevent bugs?

• How much effort was required to develop the frameworks and to use them to

prove the security of the file systems?

• How does performance of the systems compare to performance of the existing

file systems?

7.1 Specification Trustworthiness

To evaluate the trustworthiness of our specifications, we performed several analyses.

Bug case study. To evaluate whether our confidentiality specifications would elimi-

nate security bugs in SFSCQ and ConFs, we qualitatively analyzed the bugs presented

in Section 1.1. Figure 7-1 shows the results. Functional-correctness theorems of both

file systems preclude the possibility of integrity bugs. For SFSCQ, ret_nonleakage
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as defined in Figure 3-2, prevents bugs that are caused by accessing normally inaccessi-

ble data due to incorrect permission handling or reading the residual data from newly

allocated blocks, and state_nonleakage as defined in Figure 3-3, prevents bugs

that leads to adding or changing data that is accessible to another user. For ConFs,

RDNI as defined in 5-5 prevents all the bugs prevented by either ret_nonleakage

or state_nonleakage, since it encompasses both definitions. Overall, the results

demonstrate that our theorems preclude the possibility of all studied bugs in both

SFSCQ and ConFs.

Description Theorem

Access to deleted files’ data [8] FC

Data leak via unaligned file lengths [7] ret NL & RDNI

Can set incorrect permissions on new filesystem objects [4] FC

Data leak through uninitialized memory [2] FC

A local user may create files that belongs to another user [6] state NL & RDNI

A local user may be able to read arbitrary files [5] ret NL & RDNI

Information leak due to permission bypass [3] ret NL & RDNI

Figure 7-1: Security bugs in various file systems and which theorems preclude each
one.

Trusted computing base. Both the frameworks and the file systems assume the

correctness of several components. All of the implementations assume that Coq’s

proof-checking kernel is correct, because it verifies the proofs. SFSCQ and ConFs

assume that the Haskell runtime and support libraries (and the underlying Linux

kernel) do not have bugs, since they generate executable code through extraction to

Haskell. Each file system assumes that its respective framework’s model of the disk

is accurate.
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7.2 Effort

DiskSec and SFSCQ. To understand how much effort was required to verify

DiskSec and SFSCQ, we compared SFSCQ to the implementation of DFSCQ on

which SFSCQ is based. Figure 7-2 shows the results (counting the sum of lines re-

moved and lines added), breaking down the differences into several categories. The

core infrastructure, including improvements to DFSCQ’s CHL, amounted to around

9,300 lines. We made significant changes to DFSCQ to develop SFSCQ, but many of

these changes were mechanical fixes to proofs to address small changes. In addition,

using DiskSec in SFSCQ required around 1,900 lines of new code and proofs.

Component Changes to DFSCQ

DiskSec 9,283

DFSCQ proof fixes −10, 471, +26, 433

(36,094 total)

SFSCQ impl. and proofs 1,837

Verified cp application 407

Figure 7-2: Lines-of-code change required to implement DiskSec and apply it to build
SFSCQ. Counts measure the diff between DFSCQ and SFSCQ.

ConFrm and ConFs. Since ConFrm and ConFs were built from scratch, we used

lines of code as the effort estimate. We broke down the numbers to show how much

effort went into each component. Figure 7-3 displays the results. According to data,

functional correctness has 5.6x and confidentiality has 9.2x proof overhead compared

to the implementation.
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Component Lines of Code

ConFrm 3610

ConFs implementation 2270

ConFs refinements and simulations 4594

Functional correctness 12691

Top-level RDNI proofs 1950

RDNI Transfer proofs 18887

Grand Total 44002

Figure 7-3: Lines-of-code required to implement ConFrm and apply it to build ConFs.

7.3 Performance

We used five benchmarks to measure the performance of our file systems compared to

existing file systems: FSCQ and ext4. We used FSCQ as a representative of verified

file systems because it is similar to ConFs and SFSCQ, and ext4 as a representative

of widely used file systems.

7.3.1 Experimental Setup

To test our file systems, we extracted Coq implementations to Haskell and connected

them to the FUSE [21] library to provide POSIX API. We wrote an interpreter

function in Haskell for each file system to implement the operations in their disk

and memory model. Since ConFs doesn’t have directories, we implemented a simple

directory structure in Haskell. Directory blocks are written directly to the disk instead

of the log. Downside of this is that it incurs an extra disk sync to ensure they are

persisted correctly.

For our tests, we used two types of benchmarks: data-heavy and metadata-heavy
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benchmarks. Data-heavy benchmarks consists of makefile, which creates a file and

writes 1MB data on it, and writefile, which overwrites the file with 1MB data.

Metadata-heavy benchmarks are smallfile, createdelete, and rename. smallfile

benchmark creates a file then writes 100B of data to it. createdelete creates a file

then immediately deletes it. Finally, rename creates a file then renames it to an

existing file’s name.

We tested ext4 in two configurations: checksum-logging and checksum-logging

with data bypass. These configurations are similar to ConFs’ and SFSCQ’s designs,

respectively.

All tests are run on a machine with an 3.33GHz Intel Core i7-980X CPU, 6x

Samsung 4GB DDR3 1333 MHz memory, and 256GB Samsung 850 EVO SSD disk.

We ran each benchmark 25 times and took the average of the results. We didn’t

observe any outliers in our results.

7.3.2 Results

Figures 7-4 and 7-5 show that SFSCQ performed an order of magnitude better than

ConFs on data-heavy workloads and performs comparably in metadata-heavy work-

loads. Both systems perform better than FSCQ and worse than ext4 in all bench-

marks.
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Figure 7-4: Performance comparison for metadata-heavy benchmarks.
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Figure 7-5: Performance comparison for data-heavy benchmarks.

SFSCQ’s higher performance compared to ConFs in data-heavy benchmarks is due

to fact that SFSCQ permits file data to be directly written on the disk, bypassing

the log and overheads related to it. This is supported by the fact that ConFs and

SFSCQ performed comparably in metadata-heavy benchmarks.

ConFs’s performance speed-up over FSCQ can be attributed to using axiomatic
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definitions for inner data structures that are implemented efficiently with native types

after extraction. Our experiments with an earlier version of ConFs showed that con-

verting native Haskell types to, and from, extracted Coq types for allocator bitmaps

incurred a large performance overhead. We believe this to be true for other non-trivial

extracted types. FSCQ and SFSCQ uses an extracted Word type to represent disk

addresses, which is converted to, and from, native Haskell types when necessary. We

believe this is the source of FSCQ’s low performance.

Ext4 is written in C and cointains many optimizations that are not implemented

in our research prototypes. Therefore it is natural that ext4 outperforms both SFSCQ

and ConFs.
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Chapter 8

Future Work

Program logics All the proofs in ConFs are done without employing any program

logics. Although this was useful in the process of discovering good definitions and

specifications, it is not practical to do so in a large-scale system. Proof length and

complexity quickly spiral out of control if not meticulously maintained. We believe

that a program logic that incorporates oracles would be a good solution to this scal-

ability problem.

Termination sensitivity Although we define both termination-sensitive and in-

sensitive version of RDNI, our experience with ConFs showed that termination sensi-

tivity proofs are mainly orthogonal to the other required proofs. It is an open question

whether a framework can be found to unify termination-sensitivity proofs with other

proofs.

Relaxing all-possible-distributions requirement. In ConFrm, we solved the

secret-dependent outcome probabilities challenge by introducing nondeterminism or-

acles and requiring the existence of an execution from a related state with the same

oracle, as we describe in Chapter 5. Although this is a sufficient condition, it is not
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necessary if there is a known distribution, or a set of distributions, over nondeter-

ministic events. We believe that this approach may be adapted to such scenarios,

however such adaptation is an open problem.

Oracles for other types of nondeterminism. Nondeterminism oracles allow

reasoning about some properties with a probabilistic nature without modelling prob-

ability in the formal system. Using oracles to model the crash behavior of systems is

one possible use of the nondeterminism oracles. The same idea can be used in other

settings that have nondeterminism like concurrency. The exact power of nondeter-

minism oracles as a proof strategy for probabilistic reasoning remains open.
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Chapter 9

Conclusion

This thesis investigates challenges surrounding confidentiality of nondeterministic

crash-safe storage systems with rich sharing semantics and lays the groundwork for

confidential storage systems with machine-checkable proofs. It introduces two con-

fidentiality specifications, data nonleakage and relatively deterministic noninfluence,

and two techniques that accompany them, sealed blocks and nondeterminism oracles,

respectively. It also provides two formally verified frameworks, Disksec and ConFrm,

as well as two confidential file systems with machine-checkable proofs, SFSCQ and

ConFs.

Our confidentiality specifications support specifying a subset of the data stored

in the system and allow the flow of nonconfidential information between users. This

is in contrast to the traditional specifications, which prohibit any information flow

between users. This flexibility makes our specifications suitable for a wider set of

systems. Both specifications are supported by techniques that can be used in different

contexts. Nondeterminism oracles can be implemented in any system that contains

nondeterminism.

SFSCQ and ConFs are the first file systems with machine-checked confidentiality

proofs. SFSCQ shows it is possible to obtain strong confidentiality guarantees for
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existing file-system implementations with reasonable effort. ConFs demonstrates that

the confidentiality of storage systems that manipulate confidential data in a safe

manner can be proven even in the presence of nondeterminism.
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