
Mandatory Security and Performance of Services in

Asbestos
by

David Patrick Ziegler
Bachelor of Science in Computer Science and Engineering,

Massachusetts Institute of Technology (2004)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

© David Patrick Ziegler, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2005

Certified by .
M. Frans Kaashoek

Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Mandatory Security and Performance of Services in Asbestos

by

David Patrick Ziegler

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents the design and implementation for several system services, in-
cluding network access and database storage, on a new operating system design, As-
bestos. Using the security mechanism provided by Asbestos, Asbestos labels, these
services are used to support the construction of secure Web applications. The net-
work and database services serve as the foundation for a Web server that supports
mandatory security policies, such that even a compromised Web application cannot
improperly disclose private data. The methods used in this thesis allow Web appli-
cation developers to be freed from worries about flawed applications, if developers
are willing to place trust in the underlying services used.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor

3

4

Acknowledgments

I would like to thank my thesis advisor, Frans Kaashoek, for his guidance, advice,

and support on this thesis. He accepted me as a member of the Asbestos project,

helped me choose the focus of the thesis, and was a cheerful supporter the whole

way.

Many people in the Asbestos project and the PDOS group at MIT have supported

me during my work. In particular, Max Krohn has been a backbone of the Asbestos

project, providing a strong motivating application. He has consistently helped me

solve problems without complaints. Cliff Frey has discussed ideas with me without

end. Having him next to me has been a strong motivator.

I also want to thank my parents. They couldn’t understand what I was talking

about half the time, but have supported me without fail for my entire life. I wouldn’t

be where I am without them.

Finally, thanks to my wonderful wife, Sarah. She has been my best friend and

companion through MIT. She takes care of me and supports me in everything I do.

Thank you.

This research was supported by DARPA grants MDA972-03-P-0015 and FA8750-04-1-0090, and by
joint NSF Cybertrust/DARPA grant CNS-0430425.

Portions of this thesis are adapted from and/or contain text originally published in

Max Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler, David
Mazières, Robert Morris, Steve VanDeBogart, and David Ziegler. Make least privilege a
right (not a privilege). In Proceedings of the 10th Workshop on Hot Topics in Operating
Systems, June 2005.

Portions of this thesis also are adapted from and/or contain text written in collaboration with Pet-
ros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler, Max Krohn, David Mazières, Robert
Morris, and Steve VanDeBogart.

5

6

Contents

1 Introduction 11

1.1 Asbestos: A New Operating System 12

1.2 Motivation: A Better Web Server . 13

1.3 Challenges . 14

1.4 Approach . 15

1.5 Outline . 16

2 Background: The Asbestos Security Model 17

2.1 Handles . 17

2.2 Messages . 18

2.3 Labels . 19

2.3.1 Process Labels . 20

2.3.2 Effective Labels . 22

2.3.3 Ownership . 22

2.3.4 Memory Region Labeling . 24

3 Authenticated Identifier Service 25

3.1 Design . 25

3.1.1 Maintaining Authenticated Identifiers 25

3.1.2 Mandatory Security Through Contamination 26

3.1.3 Contamination and Services 27

3.2 Implementation . 28

3.3 Discussion . 29

7

4 Network Service 31

4.1 Design . 31

4.1.1 Application Programming Interface 31

4.1.2 Securing Network Connections 32

4.1.3 Avoiding Contamination . 32

4.2 Implementation . 34

4.2.1 Buffering . 34

4.2.2 Callback-Based Communications 35

4.2.3 Connection Hand-Off . 35

5 Database Service 37

5.1 Design . 37

5.1.1 Application Programming Interface 37

5.1.2 Labeling Database Content 38

5.1.3 Avoiding Contamination . 38

5.2 Implementation . 39

5.2.1 SQL Processing . 39

5.2.2 Storing Authenticated IDs . 40

5.2.3 Storing Authenticated ID Passwords 40

5.2.4 Caching Contamination and Identity Handles 41

5.3 Discussion . 41

6 Putting it All Together 43

6.1 The launcher . 43

6.2 The demux . 44

6.3 The workers . 45

6.4 Security Considerations . 46

6.4.1 authd . 47

6.4.2 netd . 47

6.4.3 okdb . 47

6.4.4 OKWS . 48

8

6.4.5 Developing Secure Web Applications 48

7 Evaluation 51

7.1 End-to-End Measurements . 51

7.2 Discussion . 52

7.2.1 Asbestos Kernel . 52

7.2.2 authd . 53

7.2.3 netd . 54

8 Related Work 57

9 Conclusion 59

9

10

Chapter 1

Introduction

Computer systems today have a poor record in security. We routinely learn of ex-

ploits of buffer overflows [43, 42, 41, 44, 46], vulnerabilities in the Java virtual

machine [45], and improper allocation and deallocation of memory [47], to name a

few. Typically, complete compromise of the system is the result.

In all these cases, complete failure occurs because applications have rights they

do not require. In normal execution, these rights are never expected to be used,

yet, whether from ease of programming, lack of system support, or simple mistakes,

they remain. However, once a program is compromised or malfunctions, it may

accidentally or maliciously abuse the rights it has. The principle of least privilege has

been known for decades — that a process should be given all of the rights necessary

for it to perform its job and no more [36].

We believe that the only viable means of improving security is to design systems

that effectively support the principle of least privilege. For example, an email reader

should be able to confine an executable attachment by only giving it access to a

display window and perhaps a temporary file system. A Web application should be

able to ensure that one user’s private data cannot be sent to another user’s browser

by a faulty Web server.

This thesis considers the goal of creating a more secure Web server and the com-

ponents needed for such an application. Using a novel operating system architecture,

Asbestos, and a secure Web server design, the design and implementation for several

11

supporting services are considered, including a persistent security service, a network

daemon, and a database. Using these components and Asbestos, we can ensure that

one user’s data cannot be exposed to other users.

1.1 Asbestos: A New Operating System

Asbestos combines the advantages of capability-based and mandatory-access sys-

tems. Access in Asbestos is based on a simple primitive, Asbestos labels, that may

be used to implement a variety of discretionary and mandatory access policies in a

completely decentralized fashion. Any process may create an access control space,

represented by a handle, and control the policies applied relative to that space.

Developers can secure their applications by labeling processes with respect to

handles. As processes communicate, they may contaminate each other with respect

to some handles, allowing the kernel or other processes to track and control data

flow. This property allows developers to enforce mandatory access control.

Using a handle to denote a security arena, developers can raise or lower its se-

curity level with respect to the handle to denote decreased or increased rights, re-

spectively. Alternately, developers can change the security level with respect to the

handle to mark a process’s contamination level (i.e., whether it has been exposed to

sensitive data).

To extend the security model to operate within a single process, Asbestos intro-

duces a method for labeling individual regions of memory, allowing a process to

operate on sensitive data without risking exposure of that data to unprivileged en-

tities. By using a set of system calls, a process can save its current state, operate on

sensitive data in a protected region of memory, and return to the saved state in a

secure manner.

12

1.2 Motivation: A Better Web Server

Web servers are increasingly becoming the preferred mechanism to provide access to

databases of private information. Banks, universities, and corporations alike allow

users to view and modify personal data through Web sites. In this role, a Web server

and application should provide users with their data without exposure to other users.

Unfortunately, as Web sites grow in size and complexity, Web developers are more

likely to forget or misapply access controls.

Even if developers correctly implement access controls, they must rely on the

large set of software that a Web application uses to perform properly. In a typi-

cal system, the trusted computing base (TCB) includes the operating system (e.g.,

Linux [48]), the system library (e.g., libc [11]), the Web server (e.g., Apache [12]),

Web server modules (e.g., PHP [14] or SSL [33]), and the Web application itself (e.g.,

account-balance.php). A vulnerability in any of these modules may allow an

attacker access to private data.

Software such as the OK Web server (OKWS) [16] demonstrates that it is pos-

sible to contort the existing UNIX interface [49] to achieve some security goals,

such as isolation. In OKWS, each logical Web service (e.g., account-balance

or transfer-funds) runs as a separate process in its own address space. If an

attacker compromises and controls account-balance, he cannot arbitrarily use

other services as well (e.g., transfer-funds).

Yet OKWS does not provide all the isolation customers may desire. If an at-

tacker controls account-balance, the structure of OKWS allows the attacker to

have access to all account balances, rather than just his own. If a single service is

compromised, the attacker gains all privileges of that service.

With Asbestos labeling, developers can guarantee that even if a service becomes

compromised, the kernel ensures that an attacker can have access only to his own

information. Using labeling, a Web server becomes contaminated after accessing a

client’s data; that contamination lets developers prevent a client’s information from

being transmitted over a network connection for a different client.

13

1.3 Challenges

Several services are required to support a version of OKWS for Asbestos providing

these stronger guarantees. Some form of network access is a prerequisite for any Web

server. In order to store data in a structured format, some form of persistent database

access is appropriate. The focus of this thesis is on the design and implementation

for services supporting an OKWS-like Web server.

Several challenges arise in using Asbestos as a foundation for these services. One

of the more difficult ones is matching up the data structures used by services with the

security primitives Asbestos provides. A logical mapping from service data structures

to handles is necessary, but as handles are ephemeral, a persistent “handle” becomes

necessary.

By creating services that can be used by multiple processes, we open covert com-

munication channels. Although two processes A and B might be unable to com-

municate directly, a service S could act as an unwitting intermediary through some

unintended communication loophole. Care is required to avoid the creation of such

channels.

Another difficult lies in the use of vm_save and vm_restore, the two system calls

Asbestos provides for labeling memory regions. In order to close certain covert chan-

nels, it is necessary that an application can begin processing only once it has received

a message. For many services, the model of waiting for a request, operating on that

request, and returning back to a starting point to wait again is sufficient; however,

that model may be insufficient for some processes (e.g., processes that handle events

other than client requests).

Finally, over-contamination becomes a problem for services that handle data from

multiple sources. After a service has operated on sensitive data from process A, it

must be able to process requests from another process B without marking B as hav-

ing seen A’s data. It becomes difficult to provide the mandatory security guarantees

we would like while supporting this model of operation.

14

1.4 Approach

Several different techniques are used in addressing the challenges in the construction

of these services. For persistent handles, we introduce authenticated identifiers that

processes may use across system reboots to uniquely identify protected data. Along

with the introduction of authenticated IDs, we discuss a service to manage their

creation and distribution.

Several steps are taken to avoid the creation of covert channels. As any process

can request a handle, processes might use the rate of handle creation to communicate

data; to counter this, we encrypt handle values making them effectively random.

Authenticated IDs are similarly accessible to any application; we encrypt them as

well, to mask any information about the creation rate. Database query results may

leak information to clients; we allow creators to choose the contamination that a

process receives through such actions.

Experience with Asbestos has shown that care is required in the security level at

which a handle is distributed; small changes can have profound impacts upon the

security policy that results. For example, increasing the level at which a process is

contaminated at by one unit can effectively render it unable to communicate. When

the network or database distributes sensitive data, it does so at the proper level to

ensure that the desired security is achieved.

The problem of long-term over-contamination is intermingled with the difficul-

ties of vm_save and vm_restore. Memory region labeling was developed to help

address this problem, allowing a single service to handle data from different clients.

However, we find that memory region labeling has difficulties for some service types,

including the ones considered in this thesis. Therefore, we consider solutions to

decontaminate processes securely, including handle ownership and third-party de-

contamination, and the costs of such solutions.

15

1.5 Outline

The remainder of this thesis is organized as follows. First, we summarize the design

of Asbestos and its security model. Next, we consider the design and implementation

for several components:

• the authenticated identifier service, which implements the authenticated ID de-

sign;

• the network service, which provides TCP/IP communication [27, 29] to other

Asbestos processes;

• the database service, which supports a large subset of the SQL standard [1] in

a secure manner; and

• the complete Web application system, using these services and a modified ver-

sion of OKWS, including the security properties developers and system admin-

istrators obtain.

Then, we evaluate the performance of the system, including individual compo-

nents as appropriate, and consider future improvements that may be made. Finally,

we describe related work and conclude with a review of the contributions of this

thesis.

16

Chapter 2

Background: The Asbestos Security

Model

In this chapter we describe the properties of Asbestos, including the primitives it

supports for building secure programs. Asbestos is, at its heart, an operating system

based on message passing. All communication between user-level processes or a

process and the kernel is through messages, sent to communication handles. First,

we discuss the basic primitives for communication between processes, handles and

messages. We describe the details of labeling, the method for controlling the flow of

protected information. Finally, we discuss methods for building secure applications

using these primitives.

2.1 Handles

An Asbestos handle is an endpoint for communication between processes or a pro-

cess and the kernel. However, a handle may also be used as a capability or a kernel-

protected secret, as we describe below. A handle is simply a large and unique random

number. The kernel maintains information describing a process’s privileges with re-

spect to the handle (e.g., ownership).

To create a handle, an application invokes the system call new_handle, which

generates a new handle, grants the caller ownership of the handle, as described be-

17

low, and optionally sets up a message queue to receive messages sent to the handle.

The handle returned is unique (i.e., the handle has not been given out previously),

ephemeral (i.e., the handle is invalid after a reboot), and unpredictable (i.e., the

number returned is apparently unrelated to the previous handle value).

In the Asbestos kernel, a routing table stores the device responsible for a handle;

messages sent to a handle are delivered to that device, usually a process’s message

queue. The kernel also maintains per-process labels used to store security informa-

tion, as discussed below in Section 2.3.

2.2 Messages

As mentioned previously, all communication in Asbestos is through messages. As-

bestos defines a standard message type to which all messages must conform, con-

taining six components:

• a destination handle, where the message is delivered,

• a message type, which defines the operation class requested,

• a message code, used as an argument for request messages and as an error code

for reply messages,

• an ID, used to match requests with replies,

• an optional reply handle, which specifies the recipient of any reply message,

and

• an optional payload, which contains any additional data for the message.

The message types in Asbestos include:

LOOKUP Find an entry in a directory or directory-like object. The payload typically

contains the name of the entry to look up. Replies have type LOOKUP_R (the

convention for all message types); the payload typically contains the handle

values for the objects.

18

P , Q Processes ?,0,1,2,3 Label levels, in increasing order
h, dest Handles L,C,D, V,E Labels (functions from handles to levels)

L1 ≤ L2 Label comparison: true if ∀h, L1(h) ≤ L2(h) PS Process P ’s send label
max(L1, L2) Maximum label: {h k | k = max(L1(h), L2(h))} PR Process P ’s receive label
min(L1, L2) Minimum label: {h k | k = min(L1(h), L2(h))} hR Handle h’s receive label
owned(L) Owned-handles label: {h ? | L(h) = ?} ∪ {h3 | L(h) 6= ?}

Figure 2-1: Asbestos notation.

READ, WRITE Read data from an object, or write data to an object; the payload

contains the data.

CONTROL A catch-all message for other types of access. The message code specifies

any further information about the operation requested.

In order to send a message, a process calls send, described in further detail below.

2.3 Labels

Applications specify access and information flow control in Asbestos through a sin-

gle primitive, labels. Labels are flexible enough to implement a wide range of discre-

tionary and mandatory access control policies. Asbestos labels support several novel

features, including temporary restrictions that help implement discretionary policies,

decentralized declassification [22], and labeling of regions of memory within a single

address space.

In Asbestos, a label is a function from handles to levels, members of the ordered

set {?, 0, 1, 2, 3} (where ? < 0 < · · · < 3). We write labels using set notation, as

{h1 0, h2 1, 2}. The default level, 2 in this case, appears at the end of the list and

applies to all handles not explicitly listed.

Labels may be compared; we say for two labels L1 and L2 that

L1 ≤ L2 iff L1(h) ≤ L2(h) for all h.

We define similar comparisons max and min (see Figure 2-1).

19

send(dest, CS, DS, V,DR,data)
Let Q be dest’s controlling process
Let ES = max(PS, CS)
Let QnewR = max(QR, DR)
Let ER = min(QnewR,destR, V)
Let Qown = owned(QS)

Requirements:
(1) ES ≤ ER
(2) DR ≤ destR
(3) If DS(h) < 3, then PS(h) = ?
(4) If DR(h) > ?, then PS(h) = ?

Effects:
Grant DS, contaminate with ES,
then restore owned handles
QS ← max(min(QS, DS), ES)
QS ← min(QS, Qown)
QR ← QnewR

new_handle(L)
Let h be an unused handle

Effects:
hR ← L
hR(h)← 0
PS(h)← ?
Return h

set_handle_label(dest, L)
Requirement:

dest was created by P
Effect:

destR ← L

Figure 2-2: Some Asbestos label operations. P is the calling process.

2.3.1 Process Labels

The most basic use of labels is in processes, where they identify a process’s current

access restrictions in its send label PS and the maximum restrictions a process is

willing and able to accept in its receive label PR. Asbestos performs an access check

on every message send:

PS ≤ QR.

That is, a process P can only send a message to Q if P ’s send label is less than or

equal to Q’s receive label. If this check succeeds, the message is delivered. This flow

of information contaminates Q with the same restrictions P has:

QS ← max(QS, PS)

The access check and contamination operation form the basis of the Asbestos secu-

rity policy. See Figure 2-2 for more details.

An important component of Asbestos labeling is that the default send and receive

20

labels have different default values. The default send label is {1}, and the default

receive label is {2}. Importantly, the default label values are in the middle of the

label ordering; 0 and ? are less than both defaults, and 3 is greater.

Because of this asymmetry, flexible isolation schemes are possible. An application

can use an arbitrary handle h to prevent a process P from sending messages to a

process Q in three distinct ways:

A B C

PS {h 3, 1} {1} {h 2, 1}
QR {2} {h 0, 2} {h 1, 2}

In scenario A, the application sets PS(h) to 3. This prevents the communication

with Q as intended and additionally restricts P to be unable to send messages to

any other process (except one with receive label {h 3}). Because increasing a receive

label makes the system more permissive, such an action requires special privilege, as

discussed in Section 2.3.3.

In scenario B, the application modifies Q instead, by setting QR(h) to 0. This

instead restricts the processes that may send to Q, as any process wanting to send to

Q would need {h 0} in its send label.

These two isolation mechanisms, similar to those available in most mandatory

access control systems, limit P ’s ability to communicate with Q by limiting either

P or Q’s ability to communicate with anyone. However, the label asymmetry in

Asbestos allows a more flexible policy involving both P and Q, as in scenario C. In

this case, the application sets PS(h) to 2 and QR(h) to 1. Thus, P is unable to send

messages to Q. P can communicate with other processes, but as it does so, it will

contaminate those processes with the send label {h 2}. Thus, any process X cannot

send a message to Q if it has received a message from P , directly or indirectly. Any

process that does not wish such contamination can set its receive label default to

{1}. Since lowering a receive label makes the system more restrictive, this requires

no special privilege.

21

2.3.2 Effective Labels

Asbestos allows processes to further restrict access relative to their send and receive

labels by using effective labels. When a message is sent, the sender may use a con-

tamination label CS and a verification label V . These labels are used to construct

effective send and receive labels ES and ER, as follows:

ES = max(PS, CS), ER = min(QR, V).

The message is delivered only if ES ≤ ER. When using a contamination label, ES is

used to contaminate the receiver, rather than PS. When using a verification label, V

is reported to the receiver when the message is delivered.

To see how these features can be used, consider a multi-user file server. For each

user, an “identity handle” uI and a “contamination handle” uC are allocated. Any

process that speaks for u has send label {uI 0} and receive label {uC 3}.
When the file server sends data exclusively for u, it sets CS to {uC 3}. Only

processes with receive label {uC 3} can receive such messages, and once received,

their send labels rise to {uC 3}. This restricts such processes from communication

with non-u processes, which have receive label {uC 2}.
When a process sends data to the file server, it sets V to {uI 0} (or {uI ?}). The

file server checks V , accepting the message only if V (uI) ≤ 0. In this way, a process

can prove that it speaks for u.

2.3.3 Ownership

The special level ? allows processes to distribute handle access and declassify infor-

mation in a decentralized way. Any process with PS(h) = ? is said to own handle h,

and is given two additional privileges:

• P cannot be contaminated by other processes with respect to h. Even if it

receives a message with ES = {h 3}, P ’s send label remains {h ?}.

• P can decontaminate other processes by lowering their send labels or raising

22

their receive labels with respect to h. This allows P to make the system more

permissive with respect to h.

To support decontamination, Asbestos provides two decontamination labels with

every message, DS and DR. The DS label is used to make the receiver’s send label

more permissive by lowering some of its handle levels. The DR label makes the

receiver’s receive label more permissive by raising some of its handle levels.

This privileged relaxing of permissions is modeled by PS(h) = ?; to loosen re-

strictions on another process with respect to some handle, a process must own that

handle. When the kernel delivers a message, it checks that whenever DS(h) < 3 or

DR(h) > ?, the process has PS(h) = ?. Assuming the message is delivered, the kernel

sets

QS ← max(min(QS, DS), ES) and

QR ← max(QR, DR).

Decontamination of receive labels is a particularly sensitive operation; a decon-

taminated process may receive a message that later increases its send label, limiting

its ability to communicate. To prevent processes from becoming decontaminated

unwillingly, Asbestos can control the messages processes are permitted to receive

through their handle labels. Each handle has its own label, which may be arbitrarily

set by the handle’s controlling process. The handle label is used to additionally re-

strict the effective receive label for messages sent to that handle. If a process P sends

a message to Q at handle dest, the effective receive label is

ER = min(QR, destR, V).

With handle labels, the kernel additionally checks that DR ≤ destR, allowing a pro-

cess full control over the contamination or decontamination it is willing to accept.

23

2.3.4 Memory Region Labeling

As described so far, labels apply at the granularity of an entire process. From the

operating system’s perspective, this is the only point at which a boundary can be

drawn, as a process’s internals are a black box. Unfortunately, this limitation makes

it impossible to run untrusted processes that speak for different users at different

times, a class of processes that includes most services. One option is for the operat-

ing system to trust the application to keep user data internally isolated. Alternately,

programming language-level mechanisms can enforce policies at a much finer gran-

ularity, but these mechanisms limit language choices available to programmers and

break down when communicating with processes that are implemented in different

languages.

Asbestos uses a different approach that allows a single untrusted process to con-

tain any number of independent memory regions. Asbestos enforces isolation be-

tween these regions at the granularity of memory pages. To do so, Asbestos provides

three system calls: vm_save, vm_restore, and page_taint. A process begins by allo-

cating a memory region using page_taint, which marks existing pages with a given

send label.

When a process calls vm_save, the current page table and register state are saved

and the process waits until a message arrives. When a message arrives, the kernel

determines what label changes are induced by message delivery and updates the pro-

cess’s page tables to give appropriate access to memory (read/write, copy-on-write,

or none). When the process calls vm_restore, the updated page table is discarded

and the process jumps back to the vm_save system call.

24

Chapter 3

Authenticated Identifier Service

As discussed in Section 2.1, handles are ephemeral; when the system reboots, all

handles disappear. Yet at the same time, applications need to store some security

information persistently; when the Web server stores a client’s data, it should label

that data as belonging to the client. The relationship between these handles and

other processes must be maintained across reboots.

In this chapter, we discuss the design and implementation of authd, a process

that maintains persistent handle mappings. authd provides large numbers — au-

thenticated IDs — that persist across reboots, unlike handles. Any application may

contact authd to determine the handle value associated with a authenticated identi-

fiers; processes may provide extra information in order to gain certain privileges with

respect to the authenticated ID. In order to ensure agreement among all processes,

authd guarantees that during one boot cycle of the system, the handle associated

with an authenticated ID is unique and constant.

3.1 Design

3.1.1 Maintaining Authenticated Identifiers

The simplest solution for authd to maintain authenticated identifiers is to distribute

increasing integers to processes that request an authenticated ID. Whenever a new

25

authenticated ID is requested, the new value is written to disk. When the system

reboots, authd can start allocating new authenticated IDs starting after the value

on disk.

Such a scheme allows applications a covert channel through which they can com-

municate surreptitiously (as all applications can request authenticated IDs). By ob-

serving the rate at which authenticated IDs are allocated, two applications can com-

municate that otherwise would not be permitted to do so.

To solve this problem, authd encrypts authenticated IDs as they are given to ap-

plications. Internally, authd uses increasing integers as authenticated IDs. When an

authenticated ID is transmitted to or from authd, authd automatically decrypts or

encrypts the client’s value, respectively. This eliminates the covert channel described

above.

Next, authd must maintain a mapping between authenticated IDs and handles.

To do so, authd maintains a simple database filled lazily. During a single boot of

the system, we expect that only a fraction of all authenticated IDs ever allocated

will be used. The memory cost of storing handles for all authenticated IDs may be

unacceptable, so authd stores only those are in use since boot.

3.1.2 Mandatory Security Through Contamination

Given authenticated identifiers, applications may be written to enforce mandatory

security policies. Consider a Web server providing access to private data to several

different users. We would like to prevent a compromised Web server from allowing

attackers to view others’ data. To do so, the Web server can associate an authenti-

cated ID with the user’s data.

For every user, a persistent record is maintained in a database. Included in that

record is an authenticated ID specific for that user. When the Web server accesses

authenticated data for a client, the database arranges for the Web server to become

contaminated with the handle associated with the authenticated ID for that user.

At this point, the Web server will further contaminate any process it speaks with,

directly or indirectly, with the handle associated with the user. Using this contami-

26

nation, the database can enforce a variety of mandatory access control schemes on

that user’s data.

3.1.3 Contamination and Services

Unfortunately, the use of authenticated IDs as described thus far presents a large

problem. Contamination of services can never decrease, even for trusted services;

there is no mechanism for a service to decide that data may be declassified. Consider

the database maintaining authenticated IDs for records. As soon as the database

asks authd about an authenticated ID for a single record, it becomes permanently

contaminated with that record’s authenticated ID A1. When a request arrives for

a different record and the database looks up the new authenticated ID, it becomes

additionally contaminated with a second record’s authenticated ID A2. Any message

from the database to a client will contaminate the recipient with respect to two

records, A1 and A2, rather than only the one requested. To solve this problem, we

need a mechanism similar to level ? for handles; we need a way to demonstrate

“ownership” of an authenticated ID.

To provide ownership, we allow a process to optionally associate an access and

an owner password with an authenticated ID. This complicates authd, as now pass-

words must be stored with authenticated IDs on disk. Additionally, we associate two

handles with each authenticated ID. The first handle is the contamination handle,

used for contamination of processes as described previously in Section 3.1.2. The

second handle is the identity handle. The identity handle is used to demonstrate that

a process “speaks for” an authenticated ID. As described in Section 2.3.2, the iden-

tity handle can be presented in a verification label to prove that a process speaks for

an authenticated ID.

When a process requests information about an authenticated ID, it may ask for

one of three things:

1. The contamination and identity handles as numbers, without any granting or

contamination.

27

2. Contamination with the contamination handle at 3 and granting of the identity

handle at ?.

3. Granting of both the contamination and identity handles.

No special privilege is necessary to request the first; any process is permitted

to determine the handle values associated with a authenticated ID. This allows a

process to verify a handle presented in a verification label without requiring special

privilege or accepting contamination.

A process may request the second and become willingly contaminated with the

authenticated ID in exchange for the right to speak for that authenticated ID, but

only if it presents the proper “access” password in the request. This allows authen-

ticated ID creators to choose the distribution policy for access to the authenticated

ID.

Finally, a process may request the third, but will receive it only if it presents

the proper “owner” password for the authenticated ID. This solves the ownership

problem above. Now, a process that creates an authenticated ID may gain the right

to decontaminate other processes with respect to the contamination handle, so that

the flow of contamination may be stopped. In the database example above, now

the database (which we assume for the moment creates the authenticated IDs) can

possess the contamination handle at ?, allowing it to remain uncontaminated.

3.2 Implementation

To perform its service, authd must maintain two types of information:

• The persistent record of all authenticated IDs that have been created, including

the authenticated ID and passwords. This must persist across reboots.

• The in-memory record of current authenticated IDs, containing the authenti-

cated ID, the contamination handle, and the identity handle. This should be

destroyed after each reboot.

28

For the persistent record, authdmaintains a simple SQLite database [24] on disk

containing several items; for each authenticated ID that has been created, authd

stores the authenticated ID and the access and owner passwords. authd can deter-

mine the maximum authenticated ID (and thus, the next ID value) by performing a

simple database query.

For the in-memory record of currently used authenticated IDs, authd uses an-

other SQLite database stored only in memory. When an authenticated ID is first

requested, authd checks if the authenticated ID is in the table. If not, authd cre-

ates the contamination and identity handles, storing the authenticated ID and handle

values in the in-memory database. Once it has located the entry for the authenticated

ID, authd checks for a password in the request.

In an application’s request, it specifies which of the three actions of Section 3.1.3

it prefers:

• Choosing action 1, an application receives the contamination and identity han-

dles as numbers, without any granting or contamination, and with no privilege

required.

• Choosing action 2, an application provides the access password. If correct, the

application receives contamination with the contamination handle at 3 and is

granted the identity handle at ?. Otherwise, authd responds as in action 1.

• Choosing action 3, an application provides the owner password. If correct,

authd grants the application both the contamination and identity handles at

?. Otherwise, authd responds as in action 1.

3.3 Discussion

The most needed feature in authd is different methods of demonstrating ownership.

While the access/owner password is sufficient, more exotic or secure schemes might

be desirable. A feature that many might miss in the current design is a method for

29

changing the access or owner password. Additionally, some other mechanism of

persistent handle ownership could be developed and used as an alternative.

30

Chapter 4

Network Service

Many of the services we might want to provide require network access; a motivating

example for much of our design is Web servers. In supporting network access, we

must also consider the security implications associated with it. To the network, the

data being transmitted has no meaning; the network service cannot understand every

protocol, and even if it could, data may be encrypted. Only the process using the

connection understands the significance of the data and the labeling that should be

applied.

In this chapter, we consider the design and implementation for netd, a process

that supports network access. netd provides TCP/IP connections [27, 29] to user

applications and handles buffering, network card interfacing, and other networking

issues internally. To apply Asbestos labels to network connections, netd allows

a process to attach a handle to a connection, with which all processes using that

connection will be contaminated.

4.1 Design

4.1.1 Application Programming Interface

The lifetime of a connection begins when an application requests a socket. Unlike in

UNIX [49], netd wraps the entire process of creating a socket and either connecting

31

to a remote host or listening for connections in one Asbestos message. When an

application requests a new socket, netd responds by granting a handle for the new

socket at ?.

On a connected socket, an application may perform READ and WRITE operations

to transfer data, CONTROL operations to close the connection or change connection

options (such as the low-water mark), and SELECT operations to determine the

available buffer space.

When a process has a handle for a listening socket, it may accept new connections

by sending a READ message to netd; netd replies with a handle for the newly

accepted connection once one arrives. The resulting connection may be used as

above.

4.1.2 Securing Network Connections

Network connections are more complicated to label than processes. We have no in-

formation about the data arriving over the network that might make it easy to apply

labels to the connection. Our solution to this problem is to maintain an optional

contamination handle per connection. When a socket is created, the new owner

of that connection can tell netd to add a contamination handle to the connection.

From that point forward, whenever netd sends a message in response to an opera-

tion on a connection, it contaminates the recipient with that contamination handle

at 3. In this way, the creator of a socket can enforce mandatory security policies on

a connection.

4.1.3 Avoiding Contamination

This design for securing network connections contains a problem. Consider a pro-

cess P using a network connection with a contamination handle h. When P first

accesses the connection, it becomes contaminated with {h 3} in its send label. This

is as expected; netd uses the contamination label CS to perform the contamination,

and remains uncontaminated itself.

32

However, after becoming contaminated, P will no longer be able to communicate

with netd (or any other similar service), as netd is unwilling to become contam-

inated. In fact, netd must refuse to accept any contamination, on the assumption

that other applications wish service as well. If netd accepted contamination for one

connection, any application with an open connection would eventually become sim-

ilarly contaminated as soon as it communicated with netd. No application would

be willing to accept this.

One option to avoid contamination is to use memory region labeling, as described

in Section 2.3.4, with vm_save and vm_restore. This allows a service to handle con-

taminated data without steadily increasing its contamination level. Unfortunately,

the vm_save/vm_restore design is poorly suited to netd. When using memory re-

gion labeling, a process runs only when it receives a message; for processes that

handle events besides messages (e.g., TCP timers and packet arrival), this style of

service is not acceptable. While Asbestos could produce messages in response to

such events, it does not currently do so.

Another method of avoiding accumulating contamination is to use decontamina-

tion; any process which owns a handle may decontaminate a third party with respect

to that handle. However, this requires a third party to interact with netd every time

netd is contaminated (i.e., after every message). Ignoring the overhead of doubling

the message traffic, it is unreasonable to require this behavior from all applications.

The only remaining option is for netd to own the handles it uses to contaminate

(i.e., PS(h) = ?). This requires that the service either creates the handle or is granted

the handle by the handle’s creator (directly or indirectly). Although this approach

solves the problem, it requires that the process contaminating the connection owns

the handle used to contaminate. To evaluate whether this is a reasonable require-

ment, we consider typical usage patterns.

We expect that an application would want to label a connection in order to

enforce contamination on another process that uses the connection. For example,

a front-end process F might establish the connection, determine what restrictions to

apply (in the form of contamination), and hand the connection to a worker process

33

W . In this model, F must create a handle to use in contaminating the connection.

Thus, it is expected that no process would label a connection that it does not in-

tend to distribute; to do so, it would have to create a handle to use in contaminating

the connection, and therefore own the handle. Since the process owns the handle,

it cannot become contaminated, even if it receives a message with ES = {h 3}. We

see that any process attaching a contamination handle to a connection must own the

handle, and would contaminate the connection only in order to contaminate other

processes. Thus, in practice, the approach of netd owning handles is acceptable and

sufficient for the expected usage model.

4.2 Implementation

netd uses the lwIP TCP/IP stack [9] as the support for handling the TCP and IP

protocols and internally handles connection maintenance issues.

4.2.1 Buffering

For each connection, netd maintains buffers separate from those provided by lwIP.

One buffer is used for received data; one portion is allocated for the TCP window [4]

and the rest for “preemptive acknowledgments,” where netd acknowledges the data

before any application using the connection has accepted it. We observed that the

time required for the application to accept the data led to acknowledgements being

returned with high latency; to counter this difficulty, we allowed netd to send ac-

knowledgments before an application accepts the data. Since the amount of data a

remote host is permitted to send without acknowledgment is the same as the TCP

window size, no data will ever be transferred without available buffer space.

netd additionally maintains a send buffer for data that cannot yet be transmitted

(e.g., because the interface is full, because the remote host’s window is full). When

an application attempts to send data when netd has insufficient buffer space, netd

enqueues only the data that fits in the buffer; the application is told how much data

has been enqueued and must retransmit the remainder.

34

4.2.2 Callback-Based Communications

netd uses callbacks to process packets; there are no blocking operations in netd.

When an application sends data to a socket, only the data that can be immediately

buffered is queued. The remaining data is not transmitted, and the application is

informed of the situation. When an application reads data from a socket, if the read

may be immediately satisfied, netd returns the data immediately. If not, the appli-

cation’s requests is put on a queue, which is examined whenever new data arrives

from the remote host.

This style lends itself to applications that send a message to netd and continue

other processing until the command finishes. When reading data, the application

receives a reply as soon as the minimum data length (i.e., the low-water mark) is

available. When an application has a minimum amount of data it wishes to send,

it performs a SELECT on a handle, and netd replies as soon as there is sufficient

buffer space.

This callback-based style of processing extends to netd’s interaction with lwIP

as well. When data arrives from a socket, lwIP calls into netd to inform netd of

the data; netd informs lwIP once it has completed processing. Similarly, lwIP calls

up to netd whenever data has completed transmission, so that netd may enqueue

more data on the lwIP transmission buffer.

4.2.3 Connection Hand-Off

As described in Section 4.1.3, we expect that a common usage pattern of netd is

to create a connection, either by contacting a remote host or accepting an incoming

connection, and hand off its handle to a process to serve that connection. This style

complicates connection tracking, as we cannot count on the death of a process as a

sign that a connection should be terminated.

To solve this problem, we added a feature to the Asbestos kernel to generate an

optional DEAD message addressed to the creator of a handle as soon as no other

process has access to that handle. This extension allows netd to garbage collect

35

connections that may no longer be accessed. If a front-end process establishes a

connection as described above and hands it to a worker to service it, as soon as the

worker finishes service, perhaps by calling vm_restore, the kernel informs netd that

no other process may access it, and netd closes the connection.

36

Chapter 5

Database Service

In this chapter, we describe the design and implementation of the OK database ser-

vice (okdb), a service supporting structured storage, which Web server applications

use to store data. okdb provides a nearly-complete implementation of the SQL

standard [1], allowing applications to create tables to store data, insert new data in

the form of table rows, and query existing data. Additionally, okdb applies label-

ing to database content in the form of authenticated IDs, which are used to allow

controlled-flow data access and ensure that only authorized clients can modify data.

5.1 Design

5.1.1 Application Programming Interface

All interactions with okdb take the familiar form of SQL queries. When performing

a query (i.e., requesting data from the database), okdb responds with a “result han-

dle” for the query results. The application may examine each row in the results in

turn by sending further messages to the result handle. When performing a command

(e.g., inserting, modifying, or removing data), okdb simply replies with a result code.

37

5.1.2 Labeling Database Content

To support mandatory access control on database content, we use a scheme similar

to that described for a multi-user file server in Section 2.3.2. For each row in a table,

okdb optionally maintains an authenticated ID. When an application performs a

query, receiving data from okdb, okdb contacts authd to obtain the contamination

handles for all authenticated IDs in the rows returned. In response, okdb automat-

ically contaminates the recipient with the contamination handle from authd at 3.

Similarly, when an application performs a command, modifying database content,

okdb checks the verification label presented by the application, to ensure that the

application possesses the identity handle associated with the authenticated ID. In this

manner, we obtain similar security properties as for the multi-user file server exam-

ple but with the flexibility to perform arbitrary labeling on database content, rather

than labeling based solely on specific users.

Row-level labeling, however, is insufficient. For example, we may wish to prevent

arbitrary insertions into a table; with row-only labeling, this is not possible. To solve

this problem, we additionally associate authenticated IDs with tables. Using similar

checks as before, when an application performs a query, we additionally contaminate

the recipient with the table’s contamination handle. When an application performs a

command, we additionally check the verification label for the table’s identity handle.

5.1.3 Avoiding Contamination

The design described so far has the same problem for okdb as we found for netd

in Section 4.1.3; okdb will steadily increase contamination as it interacts with other

processes.

As before, requiring a third party to decontaminate okdb after every message is

an unacceptable demand. Memory region labeling is now a possibility, but there are

difficulties. For okdb, memory region labeling would require separating differently

labeled data into separate pages. For a database, where each row in a table may

correspond to a different client (and therefore, differently labeled data), having a

38

small amount of data in a page of memory could be wasteful.

Again, it appears that using handle ownership is necessary. For okdb, we expect

that applications would want to label records to enforce access control on them-

selves. For example, a Web server might rely on labeling to ensure that it will not

distribute one client’s data to a different client’s network connection. In this example,

two types of interactions between the Web server and okdb might occur:

• A new client performs a request, adding new records to the database with a

new authenticated ID.

• A client performs requests that require fetching information from the database.

In the first interaction, the Web server creates a new authenticated ID using an

owner password. The use of an owner password ensures that a process presenting

the proper password may be granted the contamination and identity handles. To

ensure that okdb does not become contaminated, we require that any request to

contaminate database records with an authenticated ID includes the owner password

for the password ID. This requirement is akin to requiring that okdb is granted both

the contamination and identity handles, but the inclusion of the password ensures

that the “grant” persists across reboots.

When a client performs requests requiring existing database content, we presume

that it begins with no knowledge of authenticated ID passwords and no contamina-

tion (e.g., by using vm_save and vm_restore). When okdb returns records, it can

contaminate the Web server without becoming contaminated itself, as it can obtain

the contamination and identity handles in its send label at ?. If the Web server sends

further messages, okdb continues to remain uncontaminated.

5.2 Implementation

5.2.1 SQL Processing

okdb relies heavily on the SQLite database library [24] to perform SQL processing.

When queries and commands arrive, okdb simply hands the query to SQLite to

39

perform the work. Once SQLite returns a result, okdb determines whether the query

returned data. If it did, okdb creates a new results handle and returns it to the

requester. Otherwise, it simply returns the result code from SQLite.

An application may examine the results by iterating through the rows of the

results handle. A client can ask the database to step to the next row of the results;

given a row, the client can ask for the values of any field in the row in any of a

number of formats (e.g., double, integer, string). An application may also ask the

native type of a column of the results; when a request is made for data not in the

native format, it is automatically converted.

5.2.2 Storing Authenticated IDs

We considered several methods for storing authenticated IDs for rows and tables.

The solution we arrived at uses two different methods to store authenticated IDs.

For rows, okdb requires every table contains a column called authid. When a

query arrives requesting data, okdb modifies the query to return the authenticated

ID as well. Without exposing the authenticated ID in the results, okdb looks up

the authenticated ID with authd as each row is examined and contaminates the

recipient. When data is inserted, okdb modifies the query to additionally insert the

authenticated ID into the new record.

For tables, okdb maintains a separate SQL table, table_authid, of table

names and authenticated IDs. When queries arrive, okdb examines table_authid

to determine what access checks (using identity handles and verification labels) must

be performed and what contamination must be applied.

5.2.3 Storing Authenticated ID Passwords

To store owner passwords for authenticated IDs, we take advantage of the database

abstraction already available from SQLite, and create a separate database (inacces-

sible to clients) in which we store a SQL table, authid_info, of authenticated IDs

and passwords. When an authenticated ID is presented by an application to be asso-

40

ciated with a database row, okdb first ensures that a password was presented, and

looks up the authenticated ID and password with authd to verify that it is correct.

Once okdb has done so, okdb inserts a new row into authid_info containing the

authenticated ID and password and performs the query as described above.

5.2.4 Caching Contamination and Identity Handles

A naïve implementation of okdb would look up authenticated ID values on-demand;

when a row is accessed, determine the contamination and identity handles before

allowing the access. Our implementation of okdb does exactly this, but caches

found values in memory, using a temporary SQLite database. okdb uses a table,

authid_values, to cache the contamination and identity handles for all authenti-

cated IDs that have been retrieved. When okdb needs a contamination or identity

handle, it first checks the database to determine whether the values have already

been determined. The database is not saved on disk, so the table is recreated when

okdb is restarted or the system reboots.

5.3 Discussion

The area most needing further research in okdb is the requirement that okdb owns

all authenticated IDs that it uses. As described in Section 5.1.3, other mechanisms

available in Asbestos, such as memory region labeling, fail for okdb. We need to

examine whether the features provided can be augmented to support different service

models.

One possible alternative is the use of a custom database persistence layer. By

writing a database from the ground up, we can structure it to support memory region

labeling, although still with the overhead of wasted space. It is unclear whether such

a design would be comparably simple to the SQLite-based system in place now,

although it would come with a stronger security guarantee.

Another feature to investigate is remote database access over a network. Most

databases used are available through a network interface, allowing the database to

41

reside on a separate, high-performance machine. In Asbestos, this is not possible, as

the labeling mechanism does not automatically transfer across network connections.

Developing an extension to Asbestos that allows Asbestos messages to be transmitted

across a network would allow remote database access, as well as other interesting

possibilities such as network file access.

42

Chapter 6

Putting it All Together

In this chapter, we consider the structure of a complete Web server system using

authd, netd, and okdb, as described in Chapters 3 , 4, and 5. Using a modi-

fied version of OKWS, we present a complete system that provides stronger security

guarantees than the original OKWS design.

The Asbestos implementation of OKWS isolates logically distinct services in dif-

ferent worker processes and also enforces user isolation to prevent one compromised

service from leaking information about other users. Rather than using a separate

process per user, OKWS uses memory region labeling with vm_save and vm_restore

to provide full isolation of one user’s data from others.

6.1 The launcher

OKWS first starts launcher, which starts the separate OKWS components and

ensures proper communication privileges for each. The launcher creates N worker

verify handles (where N is the number of services), one for each worker. These are

used to verify that a worker process is valid.

The launcher starts demux first, which grants its own handle (the demux han-

dle) to the launcher. After starting demux, launcher grants demux each of the

worker verify handles.

Next, launcher starts N workers, granting each worker the demux handle.

43

netd worker1

okdb

Client

authd

S
1
.
R
E
A
D

2
.
R
E
A
D
_
R

6
.

R
E
A
D
_
R

1. Connect

5. Ack

4. Data

S
2
.

R
E
A
D

1
1
.
R
E
A
D
_
R

1
2
.

L
O
O
K
U
P

1
3
.

L
O
O
K
U
P
_
R

8. READ_R

7. READ

14. READ

15. READ_R

16. WRITE

17. Data

18. Ack

20. CONTROL

21. CONTROL_R

19. WRITE_R

10. LOOKUP_R

3
.

R
E
A
D

9. LOOKUP

demux

Figure 6-1: The sequence of messages when processing a Web request. Note some
messages are omitted for clarity.

This allows each worker to contact demux to announce that it is ready to service a

request. The launcher also grants each worker its worker verify handle.

6.2 The demux

After sending the demux handle to launcher, demux waits for each worker to

contact it. When a worker contacts demux, it passes its worker verify handle, to

prove to demux that it is the correct worker for its service. After verifying worker

W , demux creates a new handle and sends it to W . The worker later uses this

handle to communicate with demux.

This sequence of events for handling connections is shown in Figure 6-1. The

demux contacts netd and opens a listen socket for incoming connections (message

S1). When a connection arrives (messages 1–2), demux reads enough of the HTTP

headers to determine what user U is making the request, and what worker W that

user is requesting (messages 3–6). Once it has done so, it contacts okdb (message

7), determining what authenticated ID is applied to U ’s data (message 8). It next

contacts authd, presenting the authenticated ID and owner password (message 9),

and is granted U ’s contamination and identity handles (message 10) in response. At

this point, the demux is ready to hand the connection off to W ; however, it must

ensure that as soon as W reads from U ’s socket, it becomes contaminated with U ’s

contamination handle. To do so, demux tells netd to apply U ’s contamination

44

handle to the connection.

6.3 The workers

An OKWS system will typically have many workers running, each implementing a

logically distinct Web service. Each service sends a READ message (message S2) when

it first starts up, requesting incoming requests. When the demux is ready to hand

a particular worker W a connection, it simply replies to this READ message (as in

message 11). The worker then immediately can reply with another READ message

(as in S2), since it is capable of serving overlapping clients.

The handoff shown in messages 11 through 13 requires care. Each worker main-

tains server-side state for each active user with which it is communicating, including

send and receive buffers. In our implementation, each worker W sets aside a 64-

page region for each user U that becomes active, and it allocates pages there lazily as

the user requires them. Moreover, it taints this entire region with U ’s contamination

handle, so that it might later write to it when it has U ’s contamination handle in its

send label.

If the demux were to deliver U ’s connection contaminated with U immediately in

message 11, the worker would be at a loss. It would have to set aside a region for U ’s

state, but it could not write to any persistent, non-tainted memory to indicate that it

had done so. OKWS on Asbestos instead uses a two-phase handoff protocol. In mes-

sage 11, the demux informs W that it is about to deliver a connection for user U but

does not contaminate W as it does so. W then consults a table T (implemented as a

quadratic hash table), either finding a previously allocated region for U or allocating

a new one. Note that T resides in uncontaminated memory. When W writes to T

that it has allocated a region for the user U , it can later read this mapping without

becoming contaminated.

After noting this new region assignment in T , W is ready to accept the connec-

tion and the contamination, and it does so in messages 12 and 13. Once it has

received U ’s connection, it enjoys a reserved, pre-tainted region of pages, which it

45

can access across connections when contaminated with U ’s contamination handle.

The worker then services U ’s connection. After parsing the request, the worker

performs any database access necessary (represented by messages 14–15). This may

include querying existing data (which may contaminate the workerwith contamina-

tion handles) or modifying data (for which the worker must present the appropriate

identity handle). Finally, the worker sends the reply back to the client over the con-

nection (messages 16–19), closes the connection (messages 20–21), calls vm_restore,

and waits to service another connection.

One interesting issue remains: freeing memory. When worker W corresponds

with U over many HTTP requests, it can grow and shrink U ’s region while contami-

nated, always leaving at least one page allocated to store a map of the region. When

the user U explicitly logs off, W would like to reclaim the last page and reassign

U ’s region to other users who become active. To achieve this, W sends a message

to the demux, informing it that U ’s region should now be available to other users.

The demux immediately sends back an acknowledgment, telling W to free the last

page in the region. The demux then waits a random amount of time, on the order

of ten minutes, and sends a second uncontaminated message, telling W to mark U ’s

region unallocated in the table T .1 The region is now available for reassignment to

a different user. The demux must be careful to synchronize these last messages with

potential requests from U , so as to avoid race conditions on W ; if demux tells W

to free the memory region between the two steps of the two-phase protocol, W will

discover the expected memory region does not exist.

6.4 Security Considerations

In this section, we consider the security of the complete system as described previ-

ously. For each component, we consider weaknesses and unsolved problems.

1demux’s response represents a storage channel, which we mitigate by a long delay.

46

6.4.1 authd

It is clear that authd plays an important role as a member of the trusted comput-

ing base (TCB) of our system. Many processes must interact with authd to ob-

tain new authenticated IDs and obtain details of existing authenticated IDs. In our

implementation, we allow all processes to contact authd. The correctness of our

implementation is therefore critically important; bugs might allow applications to

inappropriately communicate, own contamination handles, or modify existing data.

Fortunately, authd is a simple enough application that it is relatively straightfor-

ward to audit. All the functions it performs are simple: performing essentially static

queries on a database and sending and receiving messages. It is reasonable to verify

that authd properly implements the policies we have described.

6.4.2 netd

Analyzing the security of netd requires examination of several components: our net-

work card driver implementation, lwIP, and netd’s interactions with lwIP. Because

netd plays a privileged role, owning all handles it uses to contaminate, correctness

of our implementation is again critical.

Our network card driver is based on the Linux ne2000 driver and lwIP, both of

which are in widespread use. However, we have no guarantees of their correctness,

and an audit of either component would be difficult. Additionally, the code for netd

itself is sufficiently complex, using several callbacks and complex structures, that we

believe a thorough audit would be difficult to perform.

6.4.3 okdb

okdb is the most complex service of all that we have considered so far. Although

SQLite is a relatively small database, that component alone is approximately 30,000

lines of code. Additionally, our implementation relies on properly analyzing SQL

statements to determine what rows and tables are referenced and modified. The

entire okdb service represents a complex task to audit. As with netd, okdb “owns”

47

all authenticated IDs that it uses. A flaw in okdb’s logic could lead to improper

disclosure of sensitive data.

Another concern with okdb is that it relies upon persistent storage, as provided

by our filesystem implementation. Flaws in our filesystem service could lead to dis-

closure of sensitive data. The SQLite database format is public, and it is therefore

easy to construct the database given the file’s content.

6.4.4 OKWS

The new design of OKWS provides a strong guarantee to system designers and

clients: even if an attacker discovers a bug in a worker process, the labeling al-

ready in place prevents the attacker from viewing other users’ data. By explicitly

enumerating the labeled traffic that may be transmitted over the network, we ensure

that even flawed software does not result in improper disclosure.

However, OKWS relies on other components to perform their roles properly.

Specifically, a bug in the demux process would destroy all security guarantees. As

demux owns all handles and authenticated IDs, an attacker controlling demux could

arbitrarily distribute labeled data, as all data is labeled with an identifier created by

demux. While the functionality of demux is limited for precisely this reason, the

trust placed in demux remains a concern.

6.4.5 Developing Secure Web Applications

For Web application developers, the system comprised of authd, netd, okdb, and

OKWS provides a strong and simple foundation for building secure applications.

Developers are freed from the requirement of remembering to apply security policies

to data consistently, as those policies are automatically applied. As contamination is

automatically applied by okdb and netd, as selected by the OKWS demux, Web ap-

plications are automatically marked as contaminated when they examine privileged

data.

The great gain of this system is that bugs in code created by real-world developers

48

are not catastrophic, as long as the OKWS demux properly contaminates worker

processes. In doing so, we assure that even compromised services cannot improperly

release data. While we do rely on the correctness of several supporting services, as

described above, the applications developed by end-developers need not be bug-free.

49

50

Chapter 7

Evaluation

In this chapter, we consider the effectiveness of the complete Web application system,

consisting of OWKS, okdb, netd, and authd, and discuss the performance of the

individual services as appropriate. We also discuss areas of improvement.

We expect that the additional security offered by the complete Web application

system comes at a small cost to performance. To verify this, we have implemented

and measured a simple version of OKWS on Asbestos, using okdb, netd, and

authd. Using this implementation, we measure the time to process client requests

and determine bottlenecks.

7.1 End-to-End Measurements

We performed experiments on an AMD Athlon 1500+ (1.3 GHz) with 64 MB of

memory, a 10 Mb Ethernet network, and with a local Linux client generating re-

quests.

Figure 7-1 shows the cumulative distribution function of request latency. In this

example, all client requests arrive sequentially; due to bugs in our TCP/IP implemen-

tation, concurrent connections lead to timeouts and do not offer a performance gain.

All clients but one are serviced within 7.2 ms, the last in 24 ms. The complete system

can serve nearly 200 connections per second.

As shown in Figure 7-2, performance is not limited by available processor time,

51

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10

C
D

F

Time to complete request (ms)

Latency

Figure 7-1: CDF of request latency as seen from the client.

suggesting concurrency will offer a performance benefit when the TCP/IP implemen-

tation is improved. CPU time is dominated by time spent on IPC. Service for a

typical request has approximately 20 messages, as shown in Figure 6-1, although

several messages are omitted there for clarity. The actual number of messages varies

depending on the service requested, but is often near 50.

The cost of the security in this system is low. The cost of authd and kernel

security-related tasks sums to only 8% of the CPU time, and we believe that with a

tuned implementation this cost can be lowered.

7.2 Discussion

7.2.1 Asbestos Kernel

There are performance areas of the Asbestos kernel that may benefit from further

study. In particular, the cost of IPC as shown in Figure 7-2 is quite high. It is

clearly significant if this cost can be reduced, as all communication is through IPC.

For example, a typical okdb query uses approximately dozens of messages: two to

52

Module Execution Time
Kernel: miscellaneous 0.30%
Kernel: memory management 0.14%
Kernel: vm_restore 3.46%
Kernel: IPC 14.02%
Kernel: network 5.49%
Kernel: console 0.29%
User: authd 4.23%
User: netd 2.87%
User: okdb 4.49%
User: OKWS demux 4.04%
User: OKWS worker 3.98%
Idle 56.72%

Figure 7-2: Execution time of various modules while OKWS is under heavy load.

create the query (request and response), ten for each row (two to access the row,

two more for each field in the row), and two to destroy the results and free memory.

Once OKWS improves to the point where it has saturated the CPU, the cost of IPC

will become a further bottleneck.

Further improvements to vm_restore would likely prove valuable as well. In this

example, nearly as much time is spent by the OKWS worker performing its service

as is spent in vm_restore. Under heavy load, this may nearly halve the performance

a worker can provide.

7.2.2 authd

We were surprised that authd required more CPU time than each of the OKWS

components, as the actions it performs are all relatively simple. As authd uses a

very straightforward, untuned implementation, we suspect further performance can

be easily gained using simple techniques. For example, authd uses no caching of

results; if a two sequential requests are made for the same contamination handle,

two database queries are performed. Similarly, each request performs two separate

database queries, one for the contamination handle, and one for the identity handle.

53

7.2.3 netd

One significant change we would like to investigate is the use of a better Ethernet

driver and card. Our network card only supports 10 Mb speeds, and we expect that

a faster card would expose shortcomings in our implementation that might later

slow performance.

In the same vein, our Ethernet driver and card appear to have bugs that lead to

high CPU usage. In the example above, the CPU usage is low, but under full network

usage, the Ethernet driver takes up to 20% of the CPU. As the driver has been used

successfully in many Linux installations, we believe the Ethernet card itself may be

flawed; this issue still remains to be investigated.

We remain unconvinced that our use of lwIP is optimal; we have noticed that

under high network usage, lwIP uses up to 25% of the CPU. This unexpected result

is worrisome; while it has not yet become a performance bottleneck (CPU idle time

is available), we are concerned that this is symptomatic of deeper problems.

In netd itself, we would like to reduce the number of copies performed. From

when data arrives from the network until it is handed to an application, it is copied

several times:

• from the network card buffer to an lwIP buffer,

• from an lwIP buffer to a circular buffer in netd,

• from netd’s circular buffer to a temporary buffer,

• from the temporary buffer to kernel memory, and

• from kernel memory to the application’s buffer space.

Of course, there may be further application-level copying once the data has been

received. Clearly some of these copies are unnecessary, and may lead to performance

bottlenecks in the future. More experimentation is necessary to determine the im-

pact, if any, of this copying.

54

Finally, we would like to add further protocol support to netd. While TCP

support is necessary and sufficient for many applications, a notable omission is DNS

support. In addition, adding UDP support would make the network implementation

more complete.

55

56

Chapter 8

Related Work

The security model of Asbestos derives from several ideas in previous systems, in-

cluding capabilities [3, 17, 37, 23], virtualizable interfaces to both the kernel and

other processes (a logical extension of system-call interposition libraries [13, 34]),

and decentralized mandatory access control [22].

The Flask System applies MAC to the Fluke Microkernel [38], and many of

Flask’s core design principles have been implemented in SELinux [18]. SELinux

adds mandatory access control to Linux by allowing administrators to create static

policy files describing which resources applications can access and how processes

may interact with one another. Similar to SELinux is TrustedBSD [50], providing the

same functionality for FreeBSD.

Systems such as SELinux and TrustedBSD are attractive to developers and ad-

ministrators as they preserve the POSIX interface to which users are accustomed.

Implementing a secure application using either system is straightforward: implement

the application as on a traditional POSIX system and create a policy file defining the

rights of the application. However, this model does not support the dynamic cre-

ation of security domains; an implementation of the original UNIX OKWS design

would be possible, but the extended design separating user data as described in this

thesis would not be.

Application developers can take steps to ensure secure software with existing

systems; OpenSSH [35] and qmail [2], among others, use mechanisms to ensure that

57

bugs are confined and do not lead to complete failure, most often by separating

logically distinct functions into separate processes as in OKWS. However, intricate

steps are required to initialize such an environment and ensure that a compromise

in one component does not lead to compromise of the complete system. Asbestos

provides a simple mechanism for enforcing such isolation, and the kernel enforces

mandatory access control automatically.

Databases such as LDV [39, 40] have supported multilevel access. However,

Asbestos labeling provides a more flexible system, and okdb’s use of the operating

system’s security mechanisms allows a consistent method for securing and tracking

the flow of data across different processes.

58

Chapter 9

Conclusion

In this thesis, we have presented the design and implementation of several services

for Asbestos, including persistent identification, network access, and database per-

sistence. Using the features provided by Asbestos, we have designed services that

limit the flow of data and allow programmers to ensure that even flawed software

does not allow information leakage. By analyzing typical usage patterns, including

those of our motivating application, we have shown that these services support the

styles of security we consider most critical. Although the services themselves are

privileged, applications using them have mandatory policies enforced that prevent

improper disclosure of data.

Further work is still necessary to reduce the amount of trusted code. More

effective ways of preventing contamination, such as a different implementation of

memory region labeling, might provide stronger mandatory security guarantees and

reduce the size of the trusted computing base.

59

60

Bibliography

[1] American National Standards Institute. American national standard for infor-

mation systems: database language — SQL: ANSI X3.135-1992. American

National Standards Institute, 1430 Broadway, New York, NY 10018, USA,

1992. Revision and consolidation of ANSI X3.135-1989 and ANSI X3.168-

1989, Approved October 3, 1989.

[2] Daniel J. Bernstein. qmail. http://cr.yp.to/qmail.html.

[3] Allen C. Bomberger, William S. Frantz, Ann C. Hardy, Norman Hardy,

Charles R. Landau, and Jonathan S. Shapiro. The KeyKOS(R) nanokernel

architecture. In USENIX, editor, Proceedings of the USENIX Workshop on

Micro-Kernels and Other Kernel Architectures: 27–28 April, 1992, Seattle,

WA, USA, pages 95–112, Berkeley, CA, USA, April 1992. USENIX.

[4] D. D. Clark. RFC 813: Window and acknowledgement strategy in TCP, July

1982. Status: UNKNOWN.

[5] S. E. Deering. RFC 988: Host extensions for IP multicasting, July 1986. Ob-

soleted by RFC1054, RFC1112 [6, 7]. Obsoletes RFC0966 [8]. Status: UN-

KNOWN.

[6] S. E. Deering. RFC 1054: Host extensions for IP multicasting, May 1988.

Obsoleted by RFC1112 [7]. Obsoletes RFC0988 [5]. Status: UNKNOWN.

61

[7] S. E. Deering. RFC 1112: Host extensions for IP multicasting, August 1989.

Obsoletes RFC0988, RFC1054 [5, 6]. See also STD0005 [30]. Updated by

RFC2236 [10]. Status: STANDARD.

[8] S. E. Deering and D. R. Cheriton. RFC 966: Host groups: A multicast ex-

tension to the Internet Protocol, December 1985. Obsoleted by RFC0988 [5].

Status: UNKNOWN.

[9] Adam Dunkels. Minimal TCP/IP implementation with proxy support. Tech-

nical Report T2001-20, Swedish Institute of Computer Science, October 26,

2001.

[10] W. Fenner. RFC 2236: Internet Group Management Protocol, version 2,

November 1997. Updates RFC1112 [7]. Status: PROPOSED STANDARD.

[11] Free Software Foundation. GNU C library. http://www.gnu.org/

software/libc/libc.html, 2005.

[12] The Apache Software Foundation. The Apache HTTPD server project. http:

//httpd.apache.org/, 2005.

[13] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure en-

vironment for untrusted helper applications. In Proceedings of the 6th Usenix

Security Symposium, San Jose, CA, USA, 1996.

[14] The PHP Group. PHP: Hypertext preprocessor. http://www.php.net/,

2005.

[15] Max Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler,

David Mazières, Robert Morris, Steve VanDeBogart, and David Ziegler. Make

least privilege a right (not a privilege). In Proceedings of the 10th Workshop

on Hot Topics in Operating Systems, June 2005.

[16] Maxwell Krohn. Building secure high-performance web services with OKWS.

In Proceedings of the 2004 USENIX, Boston, MA, June 2004.

62

[17] Henry M. Levy. Capability-Based Computer Systems. Digital Press, 1984.

[18] Peter Loscocco and Stephen Smalley. Integrating flexible support for security

policies into the Linux operating system. In USENIX, editor, Proceedings of the

FREENIX Track: 2001 USENIX Annual Technical Conference: June 25–30,

2001, Marriott Copley Place Hotel, Boston, Massachusetts, USA, pages ??–??,

Berkeley, CA, USA, 2001. USENIX Association.

[19] J. C. Mogul. RFC 919: Broadcasting Internet datagrams, October 1984. See

also STD0005 [30]. Status: STANDARD.

[20] J. C. Mogul. RFC 922: Broadcasting Internet datagrams in the presence of

subnets, October 1984. See also STD0005 [30]. Status: STANDARD.

[21] J. C. Mogul and J. Postel. RFC 950: Internet Standard Subnetting Procedure,

August 1985. Updates RFC0792 [28]. See also STD0005 [30]. Status: STAN-

DARD.

[22] Andrew C. Myers and Barbara Liskov. A decentralized model for information

flow control. In Proceedings of the sixteenth ACM Symposium on Operating

System Principles, pages 129–142, October 1997. Appeared in ACM Operating

Systems Review volume 31, number 5.

[23] R. M. Needham and A. J. Herbert. The Cambridge CAP Computer and Its

Operating System. Addison-Wesley, Reading, MA, 1982.

[24] Michael Owens. Embedding an SQL database with SQLite. Linux Journal,

110:62–64, 66, 68, June 2003.

[25] J. Postel. RFC 760: DoD standard Internet Protocol, January 1980. Obso-

leted by RFC0791, RFC0777 [27, 26]. Obsoletes IEN123 [32]. Status: UN-

KNOWN. Not online.

[26] J. Postel. RFC 777: Internet Control Message Protocol, April 1981. Obsoleted

by RFC0792 [28]. Obsoletes RFC0760 [25]. Status: UNKNOWN. Not online.

63

[27] J. Postel. RFC 791: Internet Protocol, September 1981. Obsoletes RFC0760

[25]. See also STD0005 [30]. Status: STANDARD.

[28] J. Postel. RFC 792: Internet Control Message Protocol, September 1981. Ob-

soletes RFC0777 [26]. Updated by RFC0950 [21]. See also STD0005 [30].

Status: STANDARD.

[29] J. Postel. RFC 793: Transmission control protocol, September 1981. See also

STD0007 [31]. Status: STANDARD.

[30] J. Postel. STD 5: Internet Protocol: DARPA Internet Program Protocol Speci-

fication, September 1981. See also RFC0791, RFC0792, RFC0919, RFC0922,

RFC0950, RFC1112 [27, 28, 19, 20, 21, 7].

[31] J. Postel. STD 7: Transmission Control Protocol: DARPA Internet Program

Protocol Specification, September 1981. See also RFC0793 [29].

[32] Jon Postel. DOD standard Internet protocol, December 1979.

[33] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. http:

//www.openssl.org/, 2005.

[34] Niels Provos. Improving host security with system call policies. In Proceedings

of the 11th USENIX Security Symposium, pages 257–272. USENIX, August

2003.

[35] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escala-

tion. In Proceedings of the 11th USENIX Security Symposium, pages 231–242.

USENIX, August 2003.

[36] Jerome H. Saltzer and Michael D. Schroeder. The protection of information

in computer systems. Proceedings of the IEEE, 63(9):1278–1308, September

1975.

64

[37] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast

capability system. In Proceedings of the 17th ACM Symposium on Operat-

ing Systems Principles (SOSP’99), pages 170–185, Kiawah Island Resort, near

Charleston, South Carolina, December 1999. Appeared as ACM Operating

Systems Review 33.5.

[38] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,

and Jay Lepreau. The Flask security architecture: System support for diverse

security policies. In Proceedings of the 8th USENIX Security Symposium, pages

123–139, Washington, D.C., USA, August 1999. USENIX.

[39] P. Stachour and B. Thuraisingham. Design of LDV: A multilevel secure rela-

tional database management system. IEEE Transactions on Knowledge and

Data Engineering, 2(2), June 1990.

[40] P. Stachour, B. Thuraisingham, and P. Dwyer. Update processing in LDV: A se-

cure database system. In Proc. 11th NIST-NCSC National Computer Security

Conference - Postscript, pages 96–115, 1988.

[41] Computer Emergency Readiness Team. Microsoft Internet Information Server

(IIS) 4.0, 5.0, and 5.1 buffer overflow in chunked encoding transfer mechanism

for ASP. http://www.kb.cert.org/vuls/id/669779, 2002.

[42] Computer Emergency Readiness Team. Microsoft Internet Information Server

(IIS) vulnerable to buffer overflow via inaccurate checking of delimiters

in HTTP header fields. http://www.kb.cert.org/vuls/id/454091,

2002.

[43] Computer Emergency Readiness Team. Apache HTTP Server contains a buffer

overflow in the mod_proxy module. http://www.kb.cert.org/vuls/

id/541310, 2003.

[44] Computer Emergency Readiness Team. Microsoft SQL Server vulnerable to

buffer overflow. http://www.kb.cert.org/vuls/id/584868, 2003.

65

[45] Computer Emergency Readiness Team. Sun Java Runtime Environment allows

untrusted applets to access information within trusted applets. http://www.

kb.cert.org/vuls/id/393292, 2003.

[46] Computer Emergency Readiness Team. Apache vulnerable to buffer over-

flow when expanding environment variables. http://www.kb.cert.org/

vuls/id/481998, 2004.

[47] Computer Emergency Readiness Team. MIT Kerberos krb524d insecurely

deallocates memory (double-free). http://www.kb.cert.org/vuls/id/

340792, 2004.

[48] The Kernel.Org Organization, Inc. The Linux kernel archives. http://www.

kernel.org/, 2005.

[49] The Open Group. The Single UNIX Specification: The Authorized Guide to

Version 3. The Open Group, Publications Department, Apex Plaza, Forbury

Road, Reading, Berkshire RG1 1AX, UK, 2002. Open Group Document Num-

ber G906.

[50] Robert N. M. Watson. TrustedBSD: Adding trusted operating system features

to FreeBSD. In USENIX, editor, Proceedings of the FREENIX Track: 2001

USENIX Annual Technical Conference: June 25–30, 2001, Marriott Copley

Place Hotel, Boston, Massachusetts, USA, pages 15–28, Berkeley, CA, USA,

2001. USENIX Association.

66

