
Argosy: Verifying layered storage
systems with recovery refinement

Tej Chajed, Joseph Tassarotti, Frans Kaashoek, Nickolai Zeldovich

MIT

!2

disk1

disk2

logical disk

Bob writes a replication system

!2

disk1

disk2

write1

logical disk

write2

Bob writes a replication system

!3

disk1

disk2

write1

logical disk

Bob writes a replication system

!3

disk1

disk2

write1

logical disk ?

Bob writes a replication system

!3

disk1

disk2

write1 rep_recover

logical disk ?

and implements its recovery procedureBob writes a replication system

!3

disk1

disk2

write1 rep_recover

logical disk ?

recovery restores
invariants

and implements its recovery procedureBob writes a replication system

!4

replication

read

write

rep_recover

read and write are atomic if you run
rep_recover after every crash

Disk interface

Two-disk interface

Bob is careful and writes a  
machine-checked proof of correctness

Transactions

!5

write-ahead logging

log_recover…

Disk interface

Transactions

!5

write-ahead logging

log_recover…

ops are atomic if you run
log_recover after every crash

Disk interface

!6

write-ahead log

replication

logging +

replication

Transactions

Disk interface

Two-disk interface

?

!6

write-ahead log

replication

logging +

replication

Transactions

Disk interface

Two-disk interface

rep_recover ; log_recover

?

!7

rep_recover ; log_recover ?

log_recover under crashes

rep_recover under crashes

Challenge: crashes during composed recovery

how do we prove correctness
under crashes using the existing proofs?

!8

Prior work cannot handle multiple recovery
procedures

CHL [SOSP ’15] not modular

Yggdrasil [OSDI ’16] single recovery

Flashix [SCP ’16] restricted recovery
procedures

write-ahead log

replication

!9

Argosy supports modular recovery proofs

developer
proves

developer
proves

write-ahead log

replication

Transactions

Disk interface

Two-disk interface

!9

Argosy supports modular recovery proofs

logging +
replication

Argosy
proveswrite-ahead log

replication

Transactions

Disk interface

Two-disk interface

!10

Contributions

Recovery refinement for modular proofs

!10

Contributions

see paper

see paper

Recovery refinement for modular proofs

CHL for proving recovery refinement

Verified example: logging + replication

!10

Contributions

see paper

see paper

see code

Recovery refinement for modular proofs

CHL for proving recovery refinement

Verified example: logging + replication

Machine-checked proofs in Coq

!11

Preview: recovery refinement

replication

Disk interface

Two-disk interface

1. Normal execution correctness 
using refinement

2. Crash and recovery correctness 
using recovery refinement

Refinement

!12

Background

Background

!13

Disk interface

Two-disk interface

replication

Background

!13

Disk interface

Two-disk interface

replication

write

write1 write2

write_impl

Background

!13

Disk interface

Two-disk interface

replication

write

write1 write2

write_impl

Background

!13

Disk interface

read

Two-disk interface

replication

write

write1 write2

write_impl

read_impl

read1 read2

Background

!13

Disk interface

read

Two-disk interface

replication

write

write1 write2

write_impl

read_impl

read1 read2

code

code_impl
write write_impl

read read_impl

correctness is based on how we use replication :
run code using Disk interface on top of two disks

Background

!14

Correctness: trace inclusion

replication

Disk interface

Two-disk interface

code

code_impl

⊇

spec’s 
behaviors

running code’s
behaviors

Background

!15

Proving correctness with an abstraction relation

disk1

disk2

logical disk

R

1. developer provides 
abstraction relation R

spec state

Background

!15

Proving correctness with an abstraction relation

disk1

disk2

logical disk

R

write1 write2

1. developer provides 
abstraction relation R

spec state

Background

!15

Proving correctness with an abstraction relation

disk1

disk2

logical disk

R

write1 write2

write

1. developer provides 
abstraction relation R

2. prove spec execution exists

spec state

Background

!15

Proving correctness with an abstraction relation

disk1

disk2

logical disk

R

write1 write2

write

R

1. developer provides 
abstraction relation R

2. prove spec execution exists
3. and abstraction relation is preserved

spec state

Recovery refinement

!16

!17

Disk interface

read

Two-disk interface

replication

write

write1 write2

write_impl

read_impl

read1 read2

!17

Disk interface

read

Two-disk interface

replication

write

write1 write2

write_impl

rep_recoverread_impl

read1 read2

!17

Disk interface

read

Two-disk interface

replication

write

write1 write2

write_impl

rep_recoverread_impl

read1 read2

!18

replication

Disk interface

Two-disk interface

Extending trace inclusion with recovery

code

code_impl

⊇

⊇

specification for crash behavior

crash & recovery behavior

!18

replication

Disk interface

Two-disk interface

Extending trace inclusion with recovery

code

code_impl

⊇

⊇

specification for crash behavior

crash & recovery behavior

?
crash semantics

recover?
recovery semantics

!19

replication

Disk interface

Two-disk interface

code

code_impl

⊇

…| op1 | op1 op2 |

one of these

:=code

⊇

crash & recovery behavior recover?
recovery semantics

!19

replication

Disk interface

Two-disk interface

code

code_impl

⊇

…| op1 | op1 op2 |:=code

⊇

crash & recovery behavior recover?
recovery semantics

!20

replication

Disk interface

Two-disk interface

code

code_impl

⊇

⊇

code

recovercode_impl

!21

replication

Disk interface

Two-disk interface

code

code_impl

⊇

⊇

code

recovercode_impl

zero-or-more iterations

recover
⋆

!21

replication

Disk interface

Two-disk interface

code

code_impl

⊇

⊇

code

recovercode_impl recover
⋆

!22

replication

Disk interface

Two-disk interface

code

code_impl

⊇

⊇

code

recovercode_impl recover
⋆

Trace inclusion, with recovery

!23

op1_impl recoverop2_impl recover
⋆

Proving trace inclusion, with recovery

!23

op1_impl recoverop2_impl recover
⋆

crash must occur
during some operation

Proving trace inclusion, with recovery

!23

op1_impl recoverop2_impl recover
⋆

Proving trace inclusion, with recovery

!23

op1_impl recoverop2_impl recover
⋆

op1

R R

Proving trace inclusion, with recovery

!23

recoverop2_impl recover
⋆

R

Proving trace inclusion, with recovery

!23

recoverop2_impl recover
⋆

R

op2 |

R

Proving trace inclusion, with recovery

!24

op

R

op_impl

R

non-crash execution crash and recovery execution

R

recoverop_impl recover
⋆

op |

R

Recovery refinement

!24

op

R

op_impl

R

non-crash execution crash and recovery execution

R

recoverop_impl recover
⋆

op |

R

Recovery refinement

implies
Trace inclusion
specification behavior

⊇
running code behavior

Composition theorem

!25

!26

op1 op2

| op

r
⋆

Kleene algebra for transition relations
expression

!26

op1 op2op1 op2

op
| op

r
⋆

…

r

r r

Kleene algebra for transition relations
expression matching transitions

!27

Theorem: recovery refinements compose

write-ahead log

log_recover…

replication

rep_recover…

If

Transactions

Two-disk interface

Disk interface

!27

Theorem: recovery refinements compose

write-ahead log

log_recover…

replication

rep_recover…

thenIf

logging +
replication

… rep_recover;
log_recover

Transactions

Two-disk interface

Transactions

Two-disk interface

Disk interface

!28

Goal: prove composed recovery correct

rep_recover ; log_recover ?

log_recover under crashes

rep_recover under crashes

!29

under crasheslog

rep under crashes

rep log; ?

Goal: prove composed recovery correct

rep_recover

log_recover

!30

log log

⋆

rep rep
⋆

!30

log log

⋆

rep rep
⋆

rep logrep|() rep log
⋆

!30

log log

⋆

rep rep
⋆

rep logrep|() rep log
⋆

how to re-use recovery proofs here?

!31

Using Kleene algebra for reasoning
rep logrep|() rep log

⋆

!31

Using Kleene algebra for reasoning
rep logrep|() rep log

⋆

after de-nesting (p ∣ q)⋆ = p⋆(qp⋆)⋆

!31

Using Kleene algebra for reasoning
rep logrep|() rep log

⋆

rep replogrep() rep log
⋆

=
⋆ ⋆

after de-nesting (p ∣ q)⋆ = p⋆(qp⋆)⋆

!31

Using Kleene algebra for reasoning
rep logrep|() rep log

⋆

rep replogrep() rep log
⋆

=
⋆ ⋆

after de-nesting (p ∣ q)⋆ = p⋆(qp⋆)⋆

rep replogrep ()rep log
⋆ ⋆⋆

=

(pq)⋆p = p(qp)⋆after sliding

!32

rep replogrep ()rep log
⋆ ⋆⋆

After rewrite both proofs apply

replication proof

!32

rep replogrep ()rep log
⋆ ⋆⋆

rep invariants
restored

After rewrite both proofs apply

replication proof

!32

rep replogrep ()rep log
⋆ ⋆⋆

rep invariants
restored logbehaves like

After rewrite both proofs apply

write-ahead log proof

replication proof

!32

rep replogrep ()rep log
⋆ ⋆⋆

rep invariants
restored logbehaves like

log log

⋆

log invariants
restored

After rewrite both proofs apply

!33

Argosy is implemented and verified in Coq

github.com/mit-pdos/argosy

3,200 lines for framework

4,000 lines for verified example (logging + replication)

Example extracts to Haskell and runs

!34

Argosy: modular proofs of layered storage systems

!34

Argosy: modular proofs of layered storage systems

rep rep|()⋆logKleene algebra

!34

Argosy: modular proofs of layered storage systems

rimpl r
⋆

op |
recovery refinement

rep rep|()⋆logKleene algebra

!34

Argosy: modular proofs of layered storage systems

rimpl r
⋆

op |
recovery refinement

modular proofs

rep rep|()⋆logKleene algebra

!34

Argosy: modular proofs of layered storage systems

rimpl r
⋆

op |
recovery refinement

modular proofs

rep rep|()⋆logKleene algebra

come find us after!

Tej and Joe

