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replication
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read and write are atomic if you run 
rep_recover after every crash

Disk interface

Two-disk interface

Bob is careful and writes a  
machine-checked proof of correctness
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rep_recover ; log_recover ?

log_recover under crashes

rep_recover under crashes

Challenge: crashes during composed recovery

how do we prove correctness 
under crashes using the existing proofs?
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Prior work cannot handle multiple recovery 
procedures

CHL [SOSP ’15] not modular

Yggdrasil [OSDI ’16] single recovery

Flashix [SCP ’16] restricted recovery 
procedures

write-ahead log

replication
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Transactions

Disk interface

Two-disk interface



!10

Contributions

Recovery refinement for modular proofs



!10

Contributions

see paper

see paper

Recovery refinement for modular proofs

CHL for proving recovery refinement

Verified example: logging + replication



!10

Contributions

see paper

see paper

see code

Recovery refinement for modular proofs

CHL for proving recovery refinement

Verified example: logging + replication

Machine-checked proofs in Coq
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Preview: recovery refinement

replication

Disk interface

Two-disk interface

1. Normal execution correctness 
using refinement


2. Crash and recovery correctness 
using recovery refinement
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Disk interface
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Two-disk interface

replication

write

write1 write2

write_impl

read_impl

read1 read2

code

code_impl
write write_impl

read read_impl

correctness is based on how we use replication : 
run code using Disk interface on top of two disks
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Correctness: trace inclusion

replication

Disk interface

Two-disk interface

code

code_impl

⊇

spec’s 
behaviors

running code’s 
behaviors
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Proving correctness with an abstraction relation

disk1

disk2

logical disk

R

write1 write2

write

R

1. developer provides 
abstraction relation R

2. prove spec execution exists
3. and abstraction relation is preserved

spec state
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Disk interface

Two-disk interface

Extending trace inclusion with recovery

code

code_impl

⊇

⊇

specification for crash behavior

crash & recovery behavior

?
crash semantics

recover?
recovery semantics
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recoverop2_impl recover
⋆

R

op2 |

R

Proving trace inclusion, with recovery
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op

R

op_impl

R

non-crash execution crash and recovery execution

R

recoverop_impl recover
⋆

op |

R

Recovery refinement

implies
Trace inclusion
specification behavior

⊇
running code behavior
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op1 op2op1 op2

op
| op

r
⋆

…

r

r r

Kleene algebra for transition relations
expression matching transitions
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Theorem: recovery refinements compose
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Theorem: recovery refinements compose

write-ahead log

log_recover…

replication

rep_recover…

thenIf

logging + 
replication

… rep_recover; 
log_recover

Transactions

Two-disk interface

Transactions

Two-disk interface

Disk interface
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Goal: prove composed recovery correct

rep_recover ; log_recover ?
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under crasheslog

rep under crashes

rep log; ?

Goal: prove composed recovery correct

rep_recover

log_recover



!30

log log

⋆

rep rep
⋆



!30

log log

⋆

rep rep
⋆

rep logrep|( ) rep log
⋆



!30

log log

⋆

rep rep
⋆

rep logrep|( ) rep log
⋆

how to re-use recovery proofs here?
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Using Kleene algebra for reasoning
rep logrep|( ) rep log

⋆

rep replogrep( ) rep log
⋆

=
⋆ ⋆

after de-nesting (p ∣ q)⋆ = p⋆(qp⋆)⋆

rep replogrep ( )rep log
⋆ ⋆⋆

=

(pq)⋆p = p(qp)⋆after sliding
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rep replogrep ( )rep log
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After rewrite both proofs apply
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write-ahead log proof

replication proof
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rep replogrep ( )rep log
⋆ ⋆⋆

rep invariants 
restored logbehaves like

log log

⋆

log invariants 
restored

After rewrite both proofs apply
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Argosy is implemented and verified in Coq

github.com/mit-pdos/argosy

3,200 lines for framework


4,000 lines for verified example (logging + replication)


Example extracts to Haskell and runs
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rimpl r
⋆

op |
recovery refinement

modular proofs

rep rep|( )⋆logKleene algebra

come find us after!

Tej and Joe


