
Quboid: A Workstation for Safer Web Interaction

by

Amol M. Bhave

S.B., E.E.C.S. and Physics, M.I.T. (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2017

c© Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 18, 2017

Certified by. .
M. Frans Kaashoek

Professor
Thesis Supervisor

Certified by. .
Robert T. Morris

Professor
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Master of Engineering Thesis Committee

2

Quboid: A Workstation for Safer Web Interaction

by

Amol M. Bhave

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

As more of the world moves towards online technologies, users are exposed to the
increasing threat of cyberattacks. Studies show that most of these attacks begin with
a phishing attack. Phishing emails and websites may compromise user credentials or
download unsolicited and malicious software.

This thesis presents the design and implementation of Quboid, a workstation for
safer web interaction. Quboid helps users better defend against phishing attacks
by providing several security mechanisms. The design of Quboid is based on the
principle of isolation and restricted communication. The system enforces isolation by
using virtualization to restrict browser instances to show different websites in separate
virtual machines. For example, Quboid isolates a user’s bank website and social
networking website in separate VMs. It uses deep-packet inspection to implement a
HTTP/HTTPS proxy filter to ensure virtual machines only communicate with specific
web servers. It also provides users with a secure interface and provides cues to help
them recognize phishing attacks.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor

Thesis Supervisor: Robert T. Morris
Title: Professor

3

4

Acknowledgments

I would like to thank my advisors, Prof. Frans Kaashoek and Prof. Robert Morris for

their invaluable guidance in finishing this project. Both of my advisors were always

there to support me throughout the course of my research and this thesis would not

have been possible without them. They allowed me to work on things that I was

excited about and steered me in the right direction throughout.

I would also like to thank my department for providing financial assistance during

my research. The grants during my teaching and research assistantship helped me

continue my studies and also provided valuable experience.

I would also like to thank my friends who were always there when I needed them.

They provided the much needed break and fun in stressful times and I am grateful

to them for their support during my time at MIT.

Finally, I would like to express my gratitude to my parents for their unconditional

support throughout my years of study. Their visit to the US during my research

boosted my morale and this accomplishment would have been impossible without

them.

5

6

Contents

1 Introduction 13

1.1 Phishing Attacks . 13

1.2 Approach . 16

1.3 Contributions . 17

1.4 Outline of thesis . 19

2 Related Work 21

2.1 Qubes OS . 22

2.1.1 Isolation using Virtualization 22

2.1.2 Firewall Policies . 23

2.1.3 User Interface . 23

2.1.4 Limitations . 24

2.2 Bromium . 26

2.2.1 Limitations . 28

2.3 Google Chrome Browser . 28

2.3.1 Limitations . 29

2.4 Spam Filters . 29

2.4.1 Limitations . 30

2.5 EROS Trusted Window System . 30

2.5.1 Limitations . 31

3 Goals 33

3.1 Blocking Malicious Content . 34

7

3.2 Unambiguous User Interface . 36

3.3 Damage Containment . 38

4 Design 41

4.1 Site Aggregate Isolation . 42

4.2 Cross Site-Aggregate Resources . 43

4.3 External Resource Referrer . 44

4.4 Exit Destinations . 45

4.5 HTTP Response Headers . 45

4.5.1 Site-Aggregate-Name . 45

4.5.2 Site-Aggregate-Pattern . 46

4.5.3 Cross-Site-Aggregate-Resource-Pattern 46

4.5.4 Exit-Pattern . 47

4.6 DNSSEC and SSL/TLS Certificates 48

4.7 User Interface . 49

5 Implementation 53

5.1 Overview . 53

5.2 Isolation using Qubes OS . 55

5.2.1 Other Approaches . 55

5.3 Proxy Filter VM . 57

5.3.1 Other Approaches . 58

5.4 Site Aggregate Isolation . 58

5.4.1 HTTP Request Headers . 58

5.4.2 Resource Integrity Checks . 59

5.4.3 Other Approaches . 59

5.5 Single Application Window Manager 60

6 Analysis 63

6.1 Common Attack Scenarios . 63

6.1.1 Attacks via email . 63

8

6.1.2 Malvertisements . 67

6.1.3 Attacks using User Interface Ambiguity 68

6.1.4 Other Attacks . 68

6.1.5 Attacks that Quboid does not defend against 69

6.2 Quboid Defense Mechanisms . 69

6.3 Implementation Overhead . 70

6.3.1 Network Latency . 70

6.3.2 Virtualization Overhead . 71

6.3.3 User Experience . 72

7 Conclusion 75

7.1 Future Work . 76

9

10

List of Figures

1-1 This figure shows a phishing email disguised to appear to come from

Paypal. The link shown in the email leads to a fake login page which

allows the attacker to steal user credentials. 14

1-2 This figure shows a phishing email with an attachment that, when

executed, installs a ransomware onto the user’s computer. 15

2-1 This screenshot shows the user interface of Qubes OS. Each of the

applications is running in a separate virtual machine. The user has

labelled the virtual machines as [work], [work-web] and [untrusted],

and have given appropriate border colors to visually differentiate the

virtual machines. 25

2-2 This screenshot shows the prompt shown after the WannaCry ran-

somware has finished encryption of the whole hard disk. The attack

uses a bug in the OS to compromise the whole system. It then en-

crypts the hard disk, sends the decryption keys to the attackers and

then deletes those keys from the local system. The only way to re-

cover the keys is by paying the attacker $300 via Bitcoin and hoping

to re-obtain the decryption keys. 27

3-1 The email in this figure has an image which appears to be an attach-

ment but in-fact is a link to an external page which displays a login

page. 35

3-2 Clicking on the fake attachment leads to this fake login page. 35

11

3-3 Both domain names are similar except their use of the small letter “a”.

One uses a Unicode Cyrillic “a” whereas the other uses a Latin “a”. . 39

4-1 This figure shows a phishing page which is prompting the user to up-

date their browser by clicking on the link. 50

4-2 This figure shows the same phishing page as before after the user clicks

on the link. The links leads to the browser installing a malicious add-on

disguised as a fake update. 52

5-1 Isolation among different site-aggregates in enforced by using a sepa-

rate browser instance per site-aggregate. Traffic from different browser

instances is routed through an intermediate proxy virtual machine.

The proxy VM runs a HTTP/HTTPS filter to filter requests from the

browsers to provide isolation and enforce policies presented in this paper. 54

5-2 A screenshot of the user interface of the secure workstation implemen-

tation. The top bar is a reserved area for the site-aggregate name of

the active browser instance and any system prompts. The rest of the

screen is used exclusively by a single browser instance. 61

6-1 This phishing email appears to come from Microsoft but the domain

is suspicious (onmicrosoft.com). The verify link contained in the email

leads the user to a fake login page. 65

6-2 This phishing email appears to contain legitimate content but instead

contains a ransomware in the attached ZIP file. 66

6-3 Average latency in different proxy configurations 71

6-4 Plot of average VM opening time vs. the number of existing running

VMs . 72

12

Chapter 1

Introduction

Recent years have seen a rise in cybersecurity attacks. From the 2016 Democratic

National Committee (DNC) hack [1] to the WannaCry ransomware attack on the

U.K. National Health Service [2], effects of these attacks can range from influencing

elections to disrupting health care throughout the country. As more of the world

moves towards online systems, the attackers are increasingly motivated to try newer

and more sophisticated attacks.

On the opposing end, there have been developments in the cybersecurity front as

well. Most products release regular security updates to fix bugs in their software.

However, very few focus on the heart of these attacks - phishing attacks. A recent

report [3] published by PhishMe, a phishing defense solutions company, in 2016 found

that “91% of cyberattacks and resulting data breach begin with a spear phishing

email” [4].

1.1 Phishing Attacks

A phishing attack is a type of attack intended to trick the user into revealing sensitive

information for malicious purposes. Such an attack is commonly executed through

fake emails or websites. A successful phishing attack may steal user credentials or

install malicious software on their system, eventually leaving the user open to other

forms of attacks.

13

Figure 1-1: This figure shows a phishing email disguised to appear to come from
Paypal. The link shown in the email leads to a fake login page which allows the
attacker to steal user credentials.

14

Figure 1-2: This figure shows a phishing email with an attachment that, when exe-
cuted, installs a ransomware onto the user’s computer.

15

Figure 1-1 shows a phishing email [5] that appears to originate from Paypal, an

online money transaction service. It asks the user to click on a link to update their

information. Upon clicking, the user is redirected to a fake Paypal login page intended

to steal the user’s credentials.

Figure 1-2 shows a phishing email [6] with an attachment that appears to contain

the user’s monthly financial statement or a service contract. The attachment is a

malicious file which, upon execution, encrypts all the files on the computer and shows

a ransom message on the screen.

As recent attacks have demonstrated, current systems do not take sufficient mea-

sures to protect users from phishing attacks. Such attacks may take place through

various methods and are hard to defend against. In most cases, users are either not

careful enough, or are unaware of the expectations from genuine sources. Therefore,

they miss the cues that tells them that a phishing attack is taking place. This thesis

presents the design of Quboid, a workstation to better defend against cyberattacks,

specifically phishing attacks.

1.2 Approach

Quboid is composed of three parts: (i) Qubes OS, a virtualization-based operating

system that provides strong isolation guarantees, (ii) a HTTP/HTTPS proxy filter

that uses the technique of deep packet inspection [7], (iii) a secure and unambiguous

user interface for browsing the web, and (iv) a filtering policy called Site Aggregate

Isolation.

The goal of Quboid is to defend against phishing sources, specifically phishing

attempts which occur through user-created content such as public forums, instant

messaging, emails, etc. We introduce a new filtering policy called Site Aggregate

Isolation. The policy dictates that websites with logically unrelated content must not

share state and should not be able to communicate with each other. For example,

Gmail and Bank of America are different products and should be isolated whereas

Facebook Web and Messenger may be allowed to share state. Current systems lack the

16

mechanism to reliably identify which website is being displayed to the user. Phishing

attacks take advantage of this to trick the user into trusting the phishing content to

be genuine. We believe that the policies introduced in this thesis will help reducing

this ambiguity and thus provide stronger guarantees for preventing phishing attacks.

Quboid implements the Site Aggregate Isolation policy in two places. Firstly,

it uses separate browser instances to isolate websites belonging to different site-

aggregates, a group of related websites. It uses Qubes OS [8], an operating system that

uses virtualization for isolation, to run each browser instance in an isolated virtual

machine. This ensures that no state can be shared between different site-aggregates.

This also ensures that in the event one browser instance gets compromised, the dam-

age is limited to just that virtual machine. Secondly, traffic from each virtual machine

is routed through an intermediate proxy VM. The proxy VM is responsible for filtering

requests and enforcing the rest of the Site Aggregate Isolation policy.

For security in user interaction, Quboid also contains of a secure user interface.

The interface consists of a single application window manager restricted to displaying

only one browser instance on the screen at anytime. A part of the screen is reserved

exclusively for showing the site-aggregate name of the active browser instance. We

believe these steps help prevent phishing attacks by reducing the ambiguity of the

user interface.

1.3 Contributions

This thesis introduces a set of new policies. These policies allow a safer browsing

experience with some loss of usability. The policy design includes the following:

• a website identification and isolation mechanism called Site Aggregate Isolation,

• exceptions to this policy to allow websites to refer to external resources and

communicate with websites belonging to other site-aggregates, and

• guidelines for the interface of the browsing client to reduce the ambiguity re-

garding the site-aggregate name of the content shown on the screen.

17

This thesis also presents an implementation of these policies in the form of a

workstation. The implementation includes the following:

• Quboid, a system developed on top of Qubes OS to open browser instances

belonging to different site-aggregates in separate virtual machines,

• set of HTTP response headers that include additional information such as the

site-aggregate name of the website, set of external resources needed, etc., and

• a secure user interface with reserved areas for the system and the applications,

and a clear display of the site-aggregate name of the currently active browser

instance.

It is difficult to ensure that no malicious content is encountered by a user while

browsing the web. The principal contribution of Quboid is an increased awareness in

the ability of the user to identify malicious content and safely browse the web without

any harmful effects.

Limitations: A major part of our proposed system requires changes in the structure

of existing websites. Quboid introduces a number of HTTP header fields in our design.

Since these are new header fields, current websites will have to include them in their

implementation. Furthermore, a possible misconfiguration by website developers may

still leave the users vulnerable to phishing attacks.

Quboid defends against some but not all forms of phishing attacks. Although the

system takes several steps to reduce the possibility of a successful attack, the security

of the system still rests in the hands of the user. The interface provides cues to the

user when there is a possibility of a phishing attack. If the user is not careful enough

to recognize them, they may still fall victim to phishing attacks.

The everyday browsing experience of the user is also changed. Quboid offers

strict isolation when browsing the web. This means if users want to download a

new software, it will also be run in an isolated virtual machine. The system does

not provide an easy way to interact with other software running in different virtual

machines.

18

1.4 Outline of thesis

Chapter 2 describes related work regarding creating secure workstations. We analyze

the different approaches taken by modern-day systems, ranging from a full-blown

operating system to methods like spam filters in email clients. We begin by describing

the different ways phishing attacks operate, followed by analyzing each system to see

where they fail in defending against such attacks.

Chapter 3 describes the goals of this thesis. We list properties a secure workstation

must have to prevent phishing attacks. Additionally, we give examples of phishing

attacks to justify the importance of these properties. We emphasize a secure work-

station’s ability to block malicious content, present an unambiguous user interface,

and contain damage in the event of a breach.

Chapter 4 describes the design of the workstation proposed in this thesis. We

describe in detail new policies targeted at attacks originating from user-created con-

tent. We also describe ways to implement these policies in a proxy filter using the

technique of deep packet inspection.

Chapter 5 gives the implementation details of Quboid. We describe the different

subsystems used and the pros and cons of some alternate implementations of these

subsystems.

Chapter 6 analyzes the effectiveness of the system as a whole in defending against

recent real-world phishing attacks and various fictional phishing scenarios. Of course,

our system does not defend against all forms of foreseeable attacks, however, it is able

to defend against a majority of attacks that current systems do not.

Chapter 7 concludes this thesis with a summary of Quboid. A majority of cyberat-

tacks start off with a phishing attack on an unsuspecting user. The secure workstation

developed focuses on the heart of the methods used in these cyberattacks. Our hope

is that with this workstation, users are able to browse the internet without worry-

ing about downloading unsolicited software from unknown websites or having their

details unsuspectingly stolen during day-to-day browsing.

19

20

Chapter 2

Related Work

This chapter describes existing systems used to create secure workstations. We pro-

vide a brief summary of each of the following systems and analyze its limitations.

Qubes OS: Qubes OS is an operating system which uses virtualization to provide

isolation. It provides features such as the ability to create tiered VMs based on

security levels, firewall policies to restrict network traffic in respective tiers, and a

secure user interface implementation. Quboid uses Qubes OS as its base to preset a

secure workstation.

Bromium: Bromium is a similar system to Qubes OS which uses a technology

called micro-virtualization to provide similar isolation guarantees while retaining the

performance benefits of traditional OS processes. The idea of running each application

in a separate virtual machine is used in the design of Quboid.

Google Chrome Browser: The Google Chrome Browser uses isolation techniques

to execute tabs in a sandbox. This largely prevents attacks that take advantage of

browser exploits. Quboid has a similar goal to Chrome Browser - to provide users

the ability to browse the web safely.

Spam Filters: Since most cyberattacks begin with a phishing email, we analyze

the spam-filtering systems used by Gmail, a popular email provider. We analyze the

21

effectiveness of the parameters used by the Gmail filters and its limitations.

EROS Trusted Window System (EWS): The user interface is another system

which phishing attacks take advantage of. EWS is a system which uses the concept

of trusted path for user interaction to provide a trusted window system.

2.1 Qubes OS

Qubes OS is a security oriented operating system based on Xen hypervisor [9]. It uses

virtualization to provide isolation among applications running in different security

levels. Users have the ability to create virtual machines and designate them with

different security levels for use with different applications. For example, banking and

credit card applications can reside in a trusted VM whereas general everyday browsing

can occur in an untrusted VM. The Qubes OS interface is a GUI running in Xen’s

dom0, the built-in trusted VM which is allowed to perform management operations

on the hypervisor. Qubes OS provides several features to ensure that dom0 is never

compromised even if one of the virtual machines gets compromised.

The following subsections describe the isolation guarantees provided through vir-

tualization, firewall policies for the VMs and the Qubes user interface:

2.1.1 Isolation using Virtualization

The virtual machines in Qubes OS run complete operating systems. However, they

all share the same root filesystem which is read-only. Any modifications done by the

VMs to the root filesystem are performed in-memory and are rolled back when the

VM is shut down. Additionally, each VM also has a personalized home filesystem

which stores persistent data.

Having such a strict isolation between different VMs provides better security but

also decreases usability. Qubes OS has the following features to overcome this limi-

tation:

22

Clipboard Sharing Qubes OS lets VMs copy and paste data to and from their

own clipboards through the use of shared memory between VMs. The dom0 is not

involved in the data exchange which reduces the attack surface.

Disposable VMs A user may want to run an application just once in a separate

isolated VM. In a normal workflow, the user will have to create a new VM with an

operating system, run the application in it, and then delete the VM. To simplify this

workflow, Qubes OS has a feature called Disposable VMs. A disposable VM runs like

a normal VM but has an ephemeral hard disk. It can be booted up within seconds

to run an application and then destroyed. It is based on an existing template so the

user does not have to reinstall the operating system every time a new disposable VM

is created.

2.1.2 Firewall Policies

Qubes OS implements strict network isolation. No inter-VM communication is pos-

sible unless the user explicitly modifies the configuration. Network traffic from each

VM is routed through an intermediate VM called the FirewallVM. The FirewallVM

runs a traditional port-based firewall called iptables. Users can change the firewall

policies through the VM management interface. However, these policies are limited

to allowing or denying traffic to and from a specific IP address and/or port.

The management VM, dom0, is completely isolated and has no network access.

This ensures any outside attacks are not able to target and compromise dom0. If dom0

requires network access, for example when performing an update, the necessary files

are downloaded into a separate VM, checked for integrity and then copied over to

dom0 through the use of shared memory.

2.1.3 User Interface

The user interface is an important aspect to focus on to combat phishing attacks.

Most phishing attacks pretend to be a trusted website in order to trick the user into

23

entering their credentials and other sensitive information. Qubes OS makes sure that

all applications running in different security levels appear visually separate from each

other through the use of window border colors. For example, the trusted VM can

have a green border color whereas the untrusted VM can have a red border color. The

users must ensure that they only enter their information in the trusted VM when they

see a green border color around the application. The user is also allowed to rename

the VMs which provides an additional method to verify that they are entering their

information in the correct VM. Figure 2-1 shows a screenshot of the Qubes OS user

interface.

2.1.4 Limitations

Although Qubes OS provides strong security guarantees, it has its limitations for

defending against phishing attacks.

No support for advanced firewall rules: The firewall is only able to filter based

on IP and port. Advanced filters based on hostnames are unavailable. This is specially

important because a user may want to designate a VM as their bank VM and have

firewall rules prohibiting any traffic except to their bank. If the bank’s website changes

IP addresses, for example via a load balancer, an IP and port based firewall proves

insufficient. The Site Aggregate Isolation policy described in this thesis requires the

use of advanced filter rules.

Ambiguity in the user interface: The border color and custom naming strategy

is not enough to defend against some phishing attacks. Qubes OS uses a stacking

window manager. It can have multiple resizable windows which can be stacked on

top of each other. It is possible for an untrusted VM window to pretend to contain

a trusted VM inside its bounds and can trick the user into entering their credentials

into the untrusted VM.

24

Figure 2-1: This screenshot shows the user interface of Qubes OS. Each of the ap-
plications is running in a separate virtual machine. The user has labelled the virtual
machines as [work], [work-web] and [untrusted], and have given appropriate border
colors to visually differentiate the virtual machines.

25

2.2 Bromium

Bromium [10] is a virtualization-based system similar to Qubes OS in several aspects.

It uses virtualization to run applications in separate virtual machines, similar to

Qubes OS. One major difference is instead of running a full operating system in

a VM, it uses a technology called micro-virtualization. Micro-VMs are lightweight

processes which share a lot of resources with the hypervisor while still retaining the

isolation guarantees obtained by running full virtual machines. This allows users to

quickly launch applications in new virtual machines without going through an OS

boot cycle.

Another feature provided by Bromium is the ability to preform post-exploitation

analysis. If the system determines that a possible attack is underway, it notifies

the user and allows the user to perform analysis on the attack. While attacks are

still possible, the damage is contained to the virtual machine where the infected

application resides. It is unable to compromise the rest of the system.

The ability to run application in separate VMs is specially effective against ran-

somware attacks. In such types of attacks, the malicious software encrypts the whole

hard drive, sends the decryption keys to the attackers, and deletes those keys from

the local system. The only way to recover the data then is to pay the attackers a sum

of money in order to retrieve the decryption keys. Figure 5-1 shows a screenshot of

the prompt shown after the WannaCry ransomware has finished the encryption. This

was a recent ransomware attack which compromised several U.K. hospitals.

If a ransomware was to attack a system running Bromium, it will only have access

to the hard disk associated with the virtual machine where the application is running.

Once the application is closed, the virtual machine is shutdown destroying all traces

of the attack.

Qubes OS also shares similar advantages, however, it is possible to have multiple

applications installed in the same virtual machine. The ransomware attack could still

encrypt the contents of the other applications. Bromium provides a stronger security

guarantee by executing each application in its own virtual machine.

26

Figure 2-2: This screenshot shows the prompt shown after the WannaCry ransomware
has finished encryption of the whole hard disk. The attack uses a bug in the OS to
compromise the whole system. It then encrypts the hard disk, sends the decryption
keys to the attackers and then deletes those keys from the local system. The only way
to recover the keys is by paying the attacker $300 via Bitcoin and hoping to re-obtain
the decryption keys.

27

2.2.1 Limitations

Although Bromium defends against phishing attacks that lead to downloading mali-

cious software, it does not defend against phishing attacks that are designed to steal

user information. Bromium provides no defense against attacks that are designed to

trick the user into entering sensitive information and steal their details, for example,

a website can still display a fake login form and Bromium will not give any indication

that something is wrong.

2.3 Google Chrome Browser

The Google Chrome Browser is a popular modern-day browser. It has been the leader

of the browser market share for more than a year, surpassing Microsoft Internet

Explorer in March 2016 in the desktop browser market share [11]. It provides a

simple user interface and several features to increase the usability and security of the

browser. However, the highlighting feature of Chrome is its sandbox.

The Chrome sandbox [12] is a mechanism to provide guarantees on what a piece

of code can and cannot do. The rendering engine of each tab is run in a sandbox. The

sandbox leverages existing operating system mechanisms to restrict the privileges the

code has. It forbids access to the file system, display, clipboard, operating system

hooks, etc. The rendering engine draws onto an off-screen buffer which the browser

then displays to the user.

The threat model for the sandbox operates under the assumption that the code

executing is malicious and the sandbox has been compromised. Thus, a lot of fea-

tures are focused on making sure the code cannot take advantage of browser bugs to

compromise the system.

Quboid uses similar ideas as Google Chrome, for example, executing code from

different websites in isolation from each other. The virtual machine in Quboid serves

the same purpose as the sandbox serves in Chrome. Virtualization is a step forward

in providing isolation in additional contexts, such as the ability to execute malicious

executable file in a contained environment.

28

2.3.1 Limitations

The Chrome sandbox contains any code running within a tab in a sandbox. However,

it does not prevent any downloaded code to execute in an isolated environment. If the

user downloads a malicious file, it will still be able to compromise the entire system.

Additionally, Chrome does not have mechanisms to prevent phishing attacks. Sim-

ilar to most other browsers, it warns the user about inconsistencies in the browser

SSL/TLS certificates. It also maintains a blacklist of malicious websites and warns

the user when navigating to such websites. However, any website not in the blacklist

or with valid certificates can still be able to trick the user into compromising their

credentials.

2.4 Spam Filters

A lot of phishing attacks use emails to spread. A recent attack [13] started with

users clicking on a phishing email which pretended to contain a link to a shared

document on Google Drive. The attackers were then able to obtain the user’s Gmail

authentication token which was used to automatically forward the email to everyone

on the user’s contacts list. Fortunately, most of the email providers implement some

sort of spam filtering before the email reaches the user’s inbox to prevent such sort

of attacks.

For example, Gmail uses the following list [14] to determine when emails should

be automatically marked as spam. We only list the parameters which are relevant for

defending against phishing attacks:

Spoofed email addresses: If the sender’s email address is very similar to a known

email address, for example contact@company.org and c0ntact@company.org, users

may mistake the latter to also be a legitimate source. Gmail recognizes such spoofs

and automatically marks them as spam.

29

Known phishing scams: Gmail lets users mark emails as phishing. If enough

users mark similar looking emails as phishing, it is an indication that any such future

emails should be automatically marked as spam. However, this strategy fails if the

phishing scam is new and not enough feedback has been gathered from user reports.

Messages from unconfirmed sender: If Gmail is unable to verify that the email

was sent from the source it claimed to be sent from, it is marked as spam. This

strategy is helpful when attackers try to send emails with legitimate source email

address from unauthorized email servers, for example, public SMTP servers.

2.4.1 Limitations

Although these strategies are helpful against most phishing attacks, some phishing

email may still end up in user’s inbox. Emails that originate from legitimate email

addresses, or attacks which are fairly new and haven’t been flagged yet can bypass

these mechanisms.

2.5 EROS Trusted Window System

The EROS Window System (EWS) [15] is a window system which provides strict

access controls to the user and claims to not introduce any new covert channels in

the display system. It is a minimal implementation of a secure window system and

is under 4,500 lines of code. The system provides isolation between applications and

allows no communication between them unless the user has specifically authorized so.

The system makes sure that any communication between application should only

be allowed if it can be traced by back to an authorizing user action. This system also

addresses some part of user interface security. In particular, it provides a small code

footprint which is easy to very for security bugs. It addresses partially the issue of

user interface ambiguity by using different brightness for active and inactive windows.

An important property that this system provides is the principle of isolation and

restricted communication. Client sessions operate in isolation of each other, no ses-

30

sion can affect or observe state from other sessions. Additionally, the display server

restricts the kind of communication that can place between processes. The design

of Quboid applies the idea of isolation and restricted communication to different

websites i.e. different websites must not share state and there must be restricted

communication between them.

2.5.1 Limitations

EWS is a not complete secure workstation solution. It addresses the issue of security

between different processes on the system. However, security while web browsing re-

quires a completely different solution. Several forms of phishing attacks don’t rely on

faking windows and window actions. We can however take inspiration from the ideas

of EWS such as isolation and restricted communication to design a secure workstation.

31

32

Chapter 3

Goals

Systems such as Qubes OS, Bromium and Chrome are successful in preventing attacks

that exploit software bugs. However, their security guarantees are insufficient to

prevent phishing attacks. In this chapter, we list the properties of an ideal secure

workstation. We also list attack scenarios that the workstation would be able to

prevent.

Blocking malicious content: The primary property of a secure workstation is

the ability to block malicious content. Malicious content can be accessed by users in

various ways: the website the user is visiting may have been compromised, malicious

content could have been posted by an attacker on a public forum, or users may

explicitly navigate to a malicious website. The system must take steps to identify

such content and block it from being displayed.

Unambiguous User Interface: A lot of phishing attacks operate by displaying

a fake login page to the user. A secure workstation must ensure that the user can

only enter sensitive information in genuine websites, and have mechanisms to defend

against fake websites.

Damage Containment: Even after taking several precautions, some damage is

inevitable. We cannot foresee all sorts of future attacks that may come up. The

33

secure workstation must ensure that in the unlikely event of a malicious software

being able to execute, the damage caused is contained. The risk of leaking sensitive

information in such events must be minimized.

The rest of this chapter focuses on case studies to make the goals of the secure

workstation more concrete.

3.1 Blocking Malicious Content

Several phishing attacks operate by including malicious content in places which appear

to come from legitimate sources. This content can include malicious software, fake

login pages, etc. Below we list two phishing scenarios which highlight ways these

attacks operate.

Fake Gmail Attachment Scam: The first case we look at is a phishing email

scam [16] which uses fake attachments in order to lure the users into clicking on it.

The email has an image of what looks like a Gmail attachment but in-fact is a link

to an external page. Figure 3-1 shows how the email appears to the user.

Figure 3-2 shows the page displayed when the user clicks on the fake attachment

link. This page shows several other features that are common among phishing at-

tacks such as a deceptive URL, similar looking Google login page, missing SSL/TLS

certificates which would identify this page as belonging to Google, etc. The attackers

can steal the credentials that the users enters on this page.

There were other ways this attack could have worked. The attachment link could

have led to an external URL which would have download a malicious software into the

user’s computer. A secure workstation must be able to defend against such attacks.

It should include mechanisms to avoid displaying such links, stopping the download

of malicious software or prevent users from getting tricked into entering credentials

into fake login pages.

Malvertising: The second case we analyze is of malvertising [17], malicious adver-

tisements displayed on legitimate websites. Consider a recent attack [18] that used

34

Figure 3-1: The email in this figure has an image which appears to be an attachment
but in-fact is a link to an external page which displays a login page.

Figure 3-2: Clicking on the fake attachment leads to this fake login page.

35

malvertisements on major news outlets like New York Times, BBC, etc. Attackers

were able to inject malicious software in legitimate online ad networks. When users

visited the website, it would redirect them to the attackers website which would tar-

get security holes in software such as Microsoft Silverlight and Adobe Flash. If the

compromise was successful, a ransomware would get installed and encrypt the users

files.

A major factor responsible for the success of this attack was that the news outlets

trusted the external ad services into displaying anything in their webpages. There was

no protection that in the unlikely event these services get compromised, the outlet

websites do not get affected. A secure workstation must be able to defend against

such attacks by including mechanisms to restrict the trust placed in externally linked

content.

In summary, for a workstation to be secure against malicious content, it should

have the following properties:

• Mechanisms to block malicious content to be displayed in the first place,

• Methods to identify and differentiate genuine content from malicious

content, and

• Fallback mechanisms in case of a compromise in a subsystem.

3.2 Unambiguous User Interface

Exploiting the user interface is another mechanism through which phishing attacks

operate. The main goal of phishing attacks is to trick the user into believing the

phishing content to be genuine. We analyze some of these ways below.

Faking other websites: Some phishing websites operate by appearing to be a

duplicate of a genuine website. Some may even have similar looking domains names.

These websites usually present a login form to the user where the user is tricked into

entering their credentials. Upon submitting the login form, the attackers can steal

36

their credentials and optionally redirect the user to the genuine login form. The user

is lead to believe they have mistakenly typed their password incorrectly and they are

none the wiser.

As an example, consider the case of the usage of Punycode in browsers. As the

world is adopting Unicode, it is possible to use any Unicode characters in browsers.

To encode non-ASCII characters, browsers use a encoding called Punycode. A recent

vulnerability [19] discovered takes advantage of the encoding of similar looking char-

acters to display websites whose domain name appears visually indistinguishable from

real domain names. Further, it is possible to also obtain free SSL/TLS certificates

for the fake domain names. The only way for the user to tell the difference between

a real and a fake website is then to explicitly check the certificate. For example, do-

mains names can use both a Unicode Cyrillic small letter “a” or a Latin small letter

“a”. Both look visually indistinguishable. We can encode the domain apple.com

using alternative characters in Punycode as xn--80ak6aa92e.com. When shown in

browser, both domains appear identically as apple.com. Figure 3-3 shows how both

domains appear in the browser.

A secure workstation must be able to mitigate such attacks by including mecha-

nisms to verify that the website the user is visiting is the website the user intended

to visit.

Faking system prompts: Another common way that phishing attacks operate

is by showing fake system prompts. One popular attack works by showing a fake

prompt to the user displaying that the user’s computer is infected and asking them

to click on a link to download an antivirus software. The link in reality downloads a

malicious software to compromise the user’s computer.

A secure workstation must have mechanisms to let the user distinguish between

content displayed by the system and content displayed by the website. It must pro-

vide ways to distinguish fake and genuine content.

37

3.3 Damage Containment

Even after taking all the precautions, it is still very hard to stop all kinds of attacks.

Thus it is important to plan how a secure workstation would handle a compromised

system. The primary principle to be followed in case of a security breach should be to

contain the damage as much as possible. For example, if a webpage gets compromised

no other webpages should be affected, or if a browser instance gets compromised no

other browser instances should be affected.

We will analyze the case of ransomware attacks to understand why damage con-

tainment is important even after the system gets compromised. A ransomware soft-

ware needs to be first executed on a system to take effect. It can be downloaded

by following malicious links that download unsolicited software on the computer, or

by opening malicious attachment in an email client. Once a ransomware software

executes, it starts encrypting all of the content of the hard disk in order to leave

files inaccessible. The ransomware then sends the decryption key to the attacker and

deletes the key from the system. After that, it displays a prompt notifying the user

that their files have been encrypted and demands a payment for the decryption key

to be made available again in order to decrypt the files. There is usually no defense

against a ransomware attack after the encryption has taken place other than paying

the ransom and hoping to recover the files.

The principle of damage containment can play an important role when faced with

a ransomware attack. A secure workstation must have mechanisms in order to limit

the damage that such malicious software can do. For example, in case of

ransomwares, the system can provide isolation and restrict filesystem access. This

will restrict the damage the ransomware can do.

38

Figure 3-3: Both domain names are similar except their use of the small letter “a”.
One uses a Unicode Cyrillic “a” whereas the other uses a Latin “a”.

39

40

Chapter 4

Design

This chapter presents the design of a workstation to reduce impact of phishing attacks.

Phishing attacks usually operate by misleading users into trusting malicious content

as being genuine. The design includes several policies to be enforced by the browsing

client.

Site Aggregate Isolation: Modern internet applications consist of content from

different sources: user-generated content, external APIs, etc. This makes it difficult

to identify the source of the content a users sees. Phishing attacks take advantage

of this by displaying content that appears to be created by a genuine source. We

present a new policy called Site Aggregate Isolation to defend against such attacks.

The policy dictates that content from different sources (or site-aggregates) must be

explicitly displayed in isolated environments.

Cross Site-Aggregate Resources: Since applications need to display content

from different site-aggregates, we describe exceptions to the Site Aggregate Isolation

policy for resources to be included from other site-aggregates in a safe way.

External Resource Referrer: Some attacks operate by stealing information from

external websites, for example, by stealing information from internal APIs belonging

to third-party websites. We introduce a policy to defend against such unauthorized

41

cross site-aggregate requests.

Exit Destinations: Modern applications also rely on communication among one

another. Phishing attacks take advantage of this by being able to steal information

and submitting it to the attacker’s server. We present a policy to defend against

unauthorized communication between websites.

HTTP Response Headers: The policies presented in this chapter requires ad-

ditional information from websites. Websites currently do not provide information

about their site-aggregate name, external resources they require, or external URLs

they may communicate with. To extract this information from the websites, we intro-

duce four new HTTP response headers: Site-Aggregate, Site-Aggregate-Pattern,

Cross-Site-Aggregate-Resource-Pattern, and Exit-Pattern.

DNSSEC and SSL/TLS Certificates: A popular way phishing attacks operate

is by DNS spoofing or DNS cache poisoning. We present policies to prevent against

these attacks.

User Interface: In addition to securing the web browsing backend, we present the

design of a secure user interface. Phishing attacks trick the user by taking advantage

of the ambiguity of the user interface. We discuss the limitations of the current user

interfaces that use stacking window managers. We also present a clear and unam-

biguous user interface by introducing a single-application window manager inspired

by smartphones.

4.1 Site Aggregate Isolation

While browsing, one of the primary concerns of the user is to ensure that the content

they see is genuine. One way to approach this would be to forbid all content that

was not created by the owner of the website the user intended to visit. However,

such a strict policy would be impractical. Modern internet applications rely heavily

42

on content from several sources, for example, user-generated content, external APIs,

etc. Additionally, applications such as social networking websites and email are based

around user created content. On the other hand, allowing all content, which is what

current browsers do, is also not ideal as it is the main reason behind deceptive content

being displayed to the user.

A more flexible policy is needed which still preserves the interactivity of websites

allowing them to feature user created content, but also making it clear to the user

that certain parts of the website are not created by the website owner and making

it visually explicit when the user navigates to a content that was not created by the

original website that the user visited.

In the design of a secure workstation, we enforce a policy called Site Aggregate Iso-

lation. An site-aggregate is defined as a website or a group of website that coherently

form a single unit. For example, Bank of America and Reddit are part of different

site-aggregates. The decision to come up with this group is up to the website devel-

opers. For example, Google may designate Gmail, Search, News, YouTube, etc. as

different site-aggregates. The policy states that web applications belonging to differ-

ent site-aggregates must be completely isolated from each other, both on the backend

side and the user interface side. They must not be able to communicate or transfer

data with each other unless both websites explicitly agree otherwise. Additionally,

web applications belonging to different site-aggregates must be visually separate and

display identifying information about the site-aggregate name at all times.

4.2 Cross Site-Aggregate Resources

Site Aggregate Isolation policy can be too strict for the scenario of websites requesting

resources from another website. This is commonly seen for Content Delivery Network

(CDN) websites where a popular resource such as a Javascript library is hosted by

a mass distribution CDN service and third-party websites can then link back to the

CDN and request the external resource. This provides several advantages such as

the ability cache common libraries for different websites and faster response times

43

for the resources hosted on the CDN. These external resources however must not be

considered as being on the same site-aggregate as a third-party website as they are

not served by that website itself.

A policy exception needs to be defined for such resources. The cross site-aggregate

resource exception to the policy states that if a website requests resources from an

external website not in the same site-aggregate, it must:

• provide information such as the cryptographic checksums of the resource so that

the browser can verify the integrity of the external resource, and

• explicitly enlist the address of the resource in a separate cross site-aggregate

resource list.

• provide a signature for the cross site-aggregate resource list for the browser to

verify that the list has not been tampered with

4.3 External Resource Referrer

The policy and its exception discussed previously provide safety against a website

requesting and displaying resources that the website owner didn’t intend to include.

However, it doesn’t prevent third-party websites from defending against unauthorized

requests. For example, Site A may try to access content from Site B however Site B

may not want to provide the content to Site A, because that content is internal to

Site B.

We implement an external resource referrer policy on all cross site-aggregate re-

source requests. The policy requires all requests to contain the site-aggregate of the

website requesting the resource. Web servers must verify the referrer of all incoming

requests and deny serving any requests that are unauthorized for that referrer.

44

4.4 Exit Destinations

Some phishing websites may still be able to embed themselves into another website.

For example, they may be able to inject a HTML form into your social networking

feed. They may try to trick the user into entering their password in a fake login form.

When the user clicks on the button, they may be redirected to an external page

belonging to the attacker where the information may be posted. such attacks may be

prevented by restricting the possible exit destinations that a web page is allowed to

send information to.

To isolate different site-aggregates and preventing them from sending information

to each other, no form data must be allowed to be sent to an external site-aggregate

either via a GET or a POST request. However, such a strict policy will again not be

able to support modern web applications which may want to submit data elsewhere.

To support this, the website must explicitly list all exit URLs in an exit destination

list. The website must also provide a signature for this list. The browser must verify

the signature and only allow information to be posted if the external URL matches

one of the URLs in the exit destination list.

4.5 HTTP Response Headers

The policies introduced in the previous sections require additional information from

websites such as their site-aggregate names, list of external resources, etc. We use

HTTP response headers to extract this information. In this section, we introduce

new HTTP response headers that websites must include to support the system.

4.5.1 Site-Aggregate-Name

Every page must have the Site-Aggregate-Name header field which contains the

name of the site-aggregate that page belongs to. For example all webpages from

facebook.com and fb.com may have the value of the Site-Aggregate-Name header

field to be facebook.com, since both the domains names are used by Facebook and

45

are part of a single unit. It must be ensured that these names are web-requestable

URLs. This is used in verification of the site-aggregate name as explained in future

sections.

4.5.2 Site-Aggregate-Pattern

The Site-Aggregate-Pattern header field is included in the HTTP response of every

web page. This field must include the URL patterns in the form of regular expressions

for all the URLs that are considered part of the same site-aggregate as the requested

web page. There may be multiple Site-Aggregate-Pattern headers in the response

which may list additional URLs to be considered part of the same site-aggregate. The

filter considers the union of all the site-aggregate patterns to decide if a requested

web page is in the same site-aggregate or not.

For example, responses from Gmail may include the following Site-Aggregate-Pattern

header fields:

Site-Aggregate-Pattern: https:\/\/mail.google.com\/.*

Site-Aggregate-Pattern: https?:\/\/(www\.)?gmail.com\/.*

Site-Aggregate-Pattern: https:\/\/accounts\.google\.com\/signin\/gmail\/.*

Since multiple instances of the header field are converted to a union, these pattern

match any webpages which begin with gmail.com or mail.google.com domains or

are the sign-in pages at accounts.google.com/signin/gmail. This ensures that

even if any malicious content shows up within these pages, it won’t be able to redirect

the user to fake login pages outside the Gmail’s list of allowed URL’s.

4.5.3 Cross-Site-Aggregate-Resource-Pattern

Most webpages include resources from external sources. These may include Javascript

from a CDN, external images or even HTML IFrames. To allow these resources to

be loaded, we introduce the Cross-Site-Aggregate-Resource-Pattern header field.

This field lists the URL patterns of all external resources that the webpage requires in

46

the form of regular expressions. The proxy filter allows requests to these URLs given

that the request originates in form of an external resource request from the browser

and not as a standalone request. The request gets blocked if the user attempts to

directly navigate to these resources.

For example, a website which includes JQuery, a Javascript framework, and Google

Fonts may have the following Cross-Site-Aggregate-Resource-Pattern header

fields:

Cross-Site-Aggregate-Resource-Pattern: https:\/\/fonts\.googleapis\.com

\/css\/Roboto

Cross-Site-Aggregate-Resource-Pattern: https?:\/\/code\.jquery\.com

\/jquery-3\.2\.1\.slim\.min\.js

These headers ensure that the webpage can load these resources even though they

belong to a different site-aggregate. Restricting direct navigation to these URLs also

ensures that these resources can’t disguise themselves as Javascript and in reality

serve as full HTML page.

4.5.4 Exit-Pattern

It is possible for webpages to include direct HTML content from an external source.

For example, HTML emails or external advertisements. In the event this external

source gets compromised, it can serve malicious content to the user. A common form

of exploitation technique is to present a fake login form to the user in the space

that was meant only for advertisements. This can trick the user into entering their

credentials and submitting it to a URL of different site-aggregate. To prevent this

attack, we introduce the Exit-Pattern header field. This field lists the allowed URLs

of different site-aggregates which the user is allowed to post any information to. For

all other URLs, any information posted in the form of GET or POST parameters is

prohibited. The user is always allowed to post information to URLs within the same

site-aggregate.

47

For example, the website LMGTFY allows users to search for content from various

search engines. This website can include the following list in its response headers:

Exit-Pattern: https?:\/\/www\.google\.com\/q\/.*

Exit-Pattern: https?:\/\/www\.bing\.com\/search.*

Exit-Pattern: https?:\/\/search\.aol\.com\/aol\/search.*

This will allow LMGTFY to post search queries to these external URLs only,

and thus prevent any information to be posted by mistake to any other potentially

malicious URL.

4.6 DNSSEC and SSL/TLS Certificates

DNS spoofing or DNS cache poisoning is a popular way phishing attacks work. The

attacker can corrupt the DNS cache of the user’s system or can even act as a DNS

proxy for the user. The attacker can then modify the DNS entries for websites and

point them to the his/her version of the website to steal user credentials. For example,

the attacker may spoof DNS entries for facebook.com and redirect it to display a fake

login page for Facebook. The attacker can then steal the credentials and redirects

the user to the real Facebook login page to avoid suspicion.

A technology called DNSSEC can be used to prevent such attacks. DNSSEC is

an extension to the Domain Name System which allows DNS entries to be crypto-

graphically signed. It provides a chain of trust that can be verified all the way to the

root nameservers. If an attacker is able to modify the DNS responses, he/she will

not be able to provide a signature for the new responses since the signing key is not

public. However, a lot of websites still haven’t implemented this system. We strongly

recommend the implementation of DNSSEC to secure DNS entries.

A related attack method would be for the attacker to act as a proxy. The attacker

can then analyze and modify all traffic and be able to steal credentials or trick the

user into downloading malicious software. However nowadays, most websites use end

to end encryption using SSL/TLS certificates. These certificates are distributed by

48

organizations called Certificate Authorities (CAs). The CA issues these certificates

only to the owner of the websites. The browser can verify that the domain in the

certificate matches the actual domain of the website. However, the CAs may make

a mistake when verifying website ownership and may give certificates to malicious

third-parties too [20].

Such attacks can be prevented using DNS-based Authentication of Named Enti-

ties (DANE). The DANE protocol specifies putting the public keys of the SSL/TLS

certificates of websites in DNS entries themselves. With DNSSEC in place to sign the

DANE entries, the browsers can verify that the web server they are talking to using

end to end encryption is correct and no attacker has spoofed the certificates.

The secure workstation must have the capability to perform DNSSEC and DANE

verifications. If these checks fail, it must notify the user that the request was denied

due to such a failure.

4.7 User Interface

The user interface is the main target of several phishing attacks. Most attacks try

to mimic the system UI and trick the user into clicking and downloading malicious

content. For example, a phishing page might display that the user’s computer has a

virus and that they must click on a link to download an antivirus software. However,

the antivirus software turns out to be a malicious software which can compromise the

user’s system.

This is made possible largely due to the use of stacking window managers in

modern day systems. A stacking window manager lets the user resize, move and

arrange windows in any way they want. This leads to ambiguity between which

window belongs to the website and which window belongs to the system.

Figures 4-1 and 4-2 show an example of a phishing page which tricks the user into

believing that Firefox is need of an update. When the user clicks on the update link,

the browser downloads a malicious add-on. The add-on is disguised to appear as a

Firefox update.

49

Figure 4-1: This figure shows a phishing page which is prompting the user to update
their browser by clicking on the link.

50

The user interface for the secure workstation must be free of such disambiguities.

Taking inspiration from user interfaces of smart phones, we propose the user interface

to be a single application window manager. Only one website can be displayed on

the screen at any time. This is in contrast to how stacking window managers work

with multiple applications overlapping each other. A single application interface will

only display one application which occupies the entire screen space. In addition,

there should be some screen space reserved for system prompts and notifications.

Applications shouldn’t be able to modify and display anything in this reserved space.

Vice-versa, system prompts and notifications should never appear in the application

area. This will make sure if a user sees anything in the reserved area they can trust

that it is shown by the system and not by some application pretending to be the

system.

Additionally, the user interface must also display the site-aggregate name and

the URL of the current webpage at all times. This information should be visible in

the reserved area and not writable by the websites themselves. Apart from the site-

aggregate name, the user interface can also display the name of the organization or

website to the user. This information can be obtained from the SSL/TLS certificates

of the website.

The user may choose to mark specific websites as known and trusted. For example,

the user may visit their banking website and mark it as trusted. The user interface

must show visual indication whenever the user visits a trusted website. This will be

helpful in case a phishing website is able to display the bank login page. The user

can verify that the phishing webpage is not trusted since it does not have a trusted

visual indication.

51

Figure 4-2: This figure shows the same phishing page as before after the user clicks
on the link. The links leads to the browser installing a malicious add-on disguised as
a fake update.

52

Chapter 5

Implementation

5.1 Overview

This chapter presents the implementation of Quboid, a secure workstation. We use

Qubes OS, an existing system described previously, as the base of our implementation.

Qubes OS uses virtualization to provide the ability to run isolated applications. The

implementation uses separate browser instances for each site-aggregate. Each browser

instance runs in a different virtual machine providing isolation among different site-

aggregates, which is the idea behind Site Aggregate Isolation policy.

Traffic from each browser instance is routed through an intermediate proxy virtual

machine. This proxy VM implements a HTTP/HTTPS filter using a man-in-the-

middle proxy server called mitmproxy. The proxy server filters requests from each

browser instance to enforce the other policies presented previously. To support these

policies, Quboid requires additional information from the websites about their site-

aggregate names, external resource requirements, etc. that it obtains from HTTP

response headers.

Finally, the workstation’s user interface is implemented in the form of a single-

application window manager. Each browser instance is displayed full-screen with no

overlapping content with browser instances belonging to other site-aggregates. The

interface also consists of a reserved area which is dedicated to displaying the site-

aggregate of the active browser instance as well as any other system prompts. This

53

Figure 5-1: Isolation among different site-aggregates in enforced by using a sepa-
rate browser instance per site-aggregate. Traffic from different browser instances
is routed through an intermediate proxy virtual machine. The proxy VM runs a
HTTP/HTTPS filter to filter requests from the browsers to provide isolation and
enforce policies presented in this paper.

54

ensures a strict separation between system content and website content.

5.2 Isolation using Qubes OS

We chose to use Qubes OS as the base for our system because of the strong isolation

guarantees it provides among the different virtual machines. Browser instances are

opened in separate isolated VMs and are limited to showing web pages from the same

site-aggregate. Even if attacks are to exploit a browser bug to compromise the virtual

machine the browser is running in, the damage is limited to the webpages from the

same site-aggregate as the original website. The attack can not steal any information

from other virtual machines.

We use Firefox web browser to open webpages. The browser is configured to

minimize communication with websites other than the website the user is visiting.

To increase usability, a Quboid secure workstation plugin is installed in the browser.

This plugin also assists the system by providing seamless switching and creation of

new browser instances in case the user navigates to a webpage of a different site-

aggregate. The plugin adds an additional option to open a link into a new VM when

the user opens the context menu by right-clicking on the link.

The browser instances are opened in Qubes disposable VMs (DispVM). A new

DispVM is created based on a preexisting template. The root filesystem of such a

VM is ephemeral. Once the browser instance is closed, all changes are rolled back

and the DispVM is destroyed. Thus, each browser instance is opened using a fresh

image of the template runs in isolation of all other instances. This is helpful in the

scenario that if one of the disposable VMs gets compromised, the damage is limited

to that VM. All the state associated with that VM is destroyed as soon it is shut

down.

5.2.1 Other Approaches

Xen Project: Out first attempt at providing isolation was to implement a custom

solution on top of Xen, a popular Linux-based hypervisor. However we soon realized

55

the difficulty of running small lightweight virtual machines and the lack of a graphical

user interface. Vanilla Xen is well-suited for running generic virtual machines in a

server based settings. However, the system we envisioned was intended to be used as

a workstation running applications running in lightweight virtual machines. Without

a lot of modifications, it would have been impossible to achieve these goals in Xen

by itself. Qubes OS on the other hand uses Xen as its base hypervisor and presents

a workstation-like environment which proved ideal for our use case.

Custom Hypervisor: Another approach we could have tried was to write a hy-

pervisor customized for our needs. However, the cost of implementing a new bug-free

hypervisor which can satisfy all our needs was prohibitive. Additionally, solutions

such as Qubes OS and Xen have been around for a while and are well-maintained.

They have been audited several times for bugs in their implementation. For a cus-

tom hypervisor to remain bug-free, its implementation would either have to be too

simple to satisfy our needs or would require several hours of auditing which would

have been difficult. A plausible alternative could be to write a machine-verifiable hy-

pervisor customized for our needs. Such a hypervisor could have machine-checkable

proof that it satisfies a relatively simple specification and provide a strong guarantee

of being free of bugs. This approach remains unexplored.

Google Chrome Browser: Google Chrome, a popular web browser, approaches

the isolation problem by running its tabs in a sandboxed environment. Access re-

strictions are applied to a tab’s rendering engine. The engine draws into an off-screen

bitmap which is then presented to the user by the browser process. Each tab runs

in a separate process in its own sandbox. This approach provides much of the guar-

antees that Qubes provides in terms of isolation. However, the problem it doesn’t

solve is controlled execution of untrusted files. If the user downloads a malicious file

and executes it, the file will not be executed inside the sandbox. Using Qubes OS to

execute untrusted files in an isolated VM solves this problem.

56

5.3 Proxy Filter VM

The browser virtual machines don’t enforce any policies by themselves. Instead all

internet traffic is routed through an intermediate proxy virtual machine. This VM

enforces all the filter rules such as Site Aggregate Isolation, etc. It allows only HTTP

and HTTPS traffic through. It analyzes the HTTP headers in the responses and

restricts access to URLs and resources that are disallowed by any of the policies.

HTTPS connections are usually end-to-end encrypted. That means, by default

the proxy VM shouldn’t be able to view the contents of the request and response. To

overcome this limitation, the proxy VM acts as the man-in-the-middle server between

the actual target and the user. The proxy VM decrypts and re-encrypts the traffic in

order to analyze and enforce the filter policies. It uses a software called mitmproxy,

a web proxy written in Python.

mitmproxy generates a custom CA certificate which is then installed in the browsers

as a trusted CA. Any websites that the browsers access through mitmproxy appear to

be signed with a self-signed certificate by the custom CA. The mitmproxy is respon-

sible for verifying and enforcing SSL/TLS security and inspecting the actual server

certificates for validity and expiration, since this can no longer be enforced by the

browsers themselves.

In order to enforce Site Aggregate policy, the proxy must obtain additional infor-

mation from the website. This information includes the site-aggregate name of the

website, the list of external resources needed, the allowed site-aggregates with whom

the website is allowed to communicate, etc. This information is contained in the form

of new HTTP response headers.

The site-aggregate name is received from the Site-Aggregate header field. The

site-aggregate name must be web-requestable URLs. The proxy must verify the name

by sending a request to the site-aggregate name and checking that the requested page

is in the same site-aggregate. List of allowed URLs should be checked against the

Site-Aggregate-Pattern header field. List of allowed resources and exit destina-

tions should be checked against the Cross-Site-Aggregate-Resource-Pattern and

57

Exit-Pattern header fields.

5.3.1 Other Approaches

As opposed to redirecting the traffic through a proxy, it is also possible to enforce

the policy rules in the browser itself. We decided against that approach for the

following reason - in the event that a browser VM is compromised, it will leave the

network exposed. The compromised VM would then be able to display and request

any external resources from the internet including those belonging to different site-

aggregates. There are several attacks known to exploit bugs in browser systems

such as Adobe Flash or the Javascript engine. Therefore, we decided to move the

enforcement away from the browser and into a separate proxy VM.

5.4 Site Aggregate Isolation

The proxy VM has the ability to inspect all traffic going between the users and web

servers. The enforcement of the Site Aggregate Isolation policy is achieved by using

HTTP headers. The responses from the web server contain information about its site-

aggregate name, allowed exit destinations, list of external resources, etc. The proxy

VM maintains a list of all the information contained the headers for each virtual

machine and uses it to make decisions on whether to allow a request to go through

or not.

The following subsections list the introduced HTTP headers and the policies that

are used to allow or deny requests using those headers.

5.4.1 HTTP Request Headers

We do not introduce any new HTTP request headers. However, we do require the

usage of the existing HTTP Referer Header [21] [22].

Referer The Referer header contains the URL of the previous webpage from which

a link was followed. This can be used to by webpages to log the URLs from which link

58

back to a webpage. We require the usage of this field on all requests for the purposes

of filtering. Web servers must check this header field on all requests and deny any

requests for which the Referer field is not recognized. This should be enforced

specifically for all the internal links of a website. If a webpage is only meant to be

accessible by following internal links, access to that webpage should be prohibited

from outside sources.

An example of an attack that this might prevent is when a website has a internal

API which has been made public by accident. Other websites may be able to take

advantage of this by listing that internet API address as an external resource and

hence be able to extract information from the API.

5.4.2 Resource Integrity Checks

Several websites use CDN’s to deliver scripts or stylesheets. One method to ensure

that these external resources have not been tampered with to verify their integrity

when they are loaded. In order to support this, a new integrity attribute is included

for external scripts and stylesheets. The value of this attribute contains the hashed

checksum of the resource to be loaded. The browser can then verify the integrity of

this external resource. This method is known as Subresource Integrity [23] [24] check,

and is already part of a W3C recommendation.

We encourage the use of this attribute on all static external resources to prevent

malicious content to be loaded into the webpage.

5.4.3 Other Approaches

The higher level idea behind using HTTP response headers is that of providing addi-

tional information about the webpage to the secure workstation. It is possible that

this information may be provided in other ways, for example, the website may have

an API that provides this information. There was no compelling reason behind usage

of HTTP headers as opposed to these other approaches.

It should be ensured when extracting this information that the source of the

59

information is tamper-proof. Malicious external content must not be able to modify

this information about the website. Unless the actual webserver is compromised, the

source of the information must be kept isolated from the webpage content itself.

5.5 Single Application Window Manager

The final subsystem in the implementation is the user interface. The UI is a single

application window manager i.e. it is designed to show exclusively display a single

application at a time. This design is inspired by the user interface of smartphones,

that only displays one application on the screen at a time. That advantage of this

property is that the user is always aware which application is currently being displayed

in the foreground. On the other side, it reduces the usability of the system since the

user can no longer work on more than one application at the same time. We consider

this a reasonable trade-off to create a secure and unambiguous UI.

At all times, there is a reserved area on the screen. This area is used exclusively

for system UI elements. The reserved area displays the site-aggregate name of the

active browser instance and any prompts by the system. Separation of the display

area into a system-only area and an application-only area reduces the risk posed by

phishing attacks that appear as system UI.

Figure 5-2 shows a screenshot of the UI. The top reserved area permanently dis-

plays the site-aggregate name of the page visited. The user the ability to open new

browser instances by typing in the site-aggregate name of the new website into the

top bar.

60

Figure 5-2: A screenshot of the user interface of the secure workstation implementa-
tion. The top bar is a reserved area for the site-aggregate name of the active browser
instance and any system prompts. The rest of the screen is used exclusively by a
single browser instance.

61

62

Chapter 6

Analysis

6.1 Common Attack Scenarios

Here is a list of common phishing attacks and how Quboid defends against such

attacks.

6.1.1 Attacks via email

Scenario: The first attack is a popular phishing email attack [25]. The user receives

an email appearing to come from Microsoft. It claims that unless the user “verifies”

their account, their account may be closed down. The link to verify leads to a fake

sign in page tricking the users to enter their credentials. Figure 6-1 shows an example

of such a phishing email.

Currently: If the user overlooks the source of the email address (which is onmi-

crosoft.com) and the URL of the fake sign in page, their credentials will be stolen by

the attacker.

Quboid: Clicking on the verify link opens up a new browser instance with an un-

recognized domain name. The interface warns the users that this page has an unrec-

ognized domain. The top area also displays the site-aggregate name of the web page

not being Microsoft. The user looks at these cues and recognizes that the web page is

63

a phishing page. However, if the user does not recognize these cues, their credentials

may still get stolen by the attacker.

Similar Attacks: There are several other attacks that work in similar ways as to

this attack [26][27][28]. All these emails start out with a threat of having the user’s

account closed and asks the user to enter their credentials on a fake login page.

Scenario: A majority of phishing emails aim at delivering ransomwares to the users.

A report by PhishMe estimates that over 97% of phishing emails deliver ransomwares.

The user receives an email asking them to open an attachment which contains infor-

mation of a delivery as a ZIP file. The attachment contains a ransomware executable.

Figure 6-2 shows an example of such an email.

Currently: Upon opening, the ransomware starts executing and encrypts the user’s

hard disk.

Quboid: The attachment opens in a new isolated virtual machine since the link

belonged to a different site-aggregate. Even though the ransomware is able to exe-

cute, it does no damage since it can access only the contents of the isolated virtual

machine. It also doesn’t have access to data from other browser instances since they

run in separate virtual machines. This prevents the malicious software to steal data

associated with logged in sessions on other websites.

Similar Attacks: A variant of this attack is a phishing email which doesn’t actually

has any attachment but has an image which appears to be an attachment. To an

unsuspecting user, it appears to be a legitimate attachment and he/she expects that

the attachment has already been scanned for malware by the email client. However,

the attachment image is actually a link that redirects to a page that downloads the

malware.

64

Figure 6-1: This phishing email appears to come from Microsoft but the domain is
suspicious (onmicrosoft.com). The verify link contained in the email leads the user
to a fake login page.

65

Figure 6-2: This phishing email appears to contain legitimate content but instead
contains a ransomware in the attached ZIP file.

66

6.1.2 Malvertisements

Malvertisements is another way in which phishing attacks can occur. The internet

economy is based on online advertisements. Large websites offer ad spaces by directly

contacting target companies. Small scale websites, on the other hand, use intermedi-

ate advertising services in order to display ads. If one of these intermediate services

gets compromised, all other websites that use that service may get compromised as

well. Specifically, consider the following scenario:

Scenario: The user is browsing a website which uses an external advertisement

provider. The provider’s system was compromised and the attacker has uploaded a

malicious advertisement. For example, if a bank website is displaying an advertise-

ment, the advertisement might claim to be a credit card sign-up form and ask the

user for their social security number.

Currently: The user thinks that it is a genuine form and submits their details to

the attacker’s server. The attacker can then steal the information entered in the form.

Quboid: Although the user might enter their details into the fake form, since the

bank website does not list the attacker’s server as an allowed exit destination, the

browser is forbidden from communicating any information to the server. Clicking

on the link will just open a new browser instance with the submit URL of the form

without any form data being submitted along with the request. This mechanism

only works if the external advertisement does not include malicious Javascript. For

example, most email client block any Javascript from executing in HTML emails. A

malicious script may be able to encode the form data in other ways, thus defeating

the purpose of controlling the exit URLs.

Similar Attacks: Similarly, the advertisement can display a link to fake login page.

However, if that link belongs to a different site-aggregate, the URL will open in a

separate browser instance and the interface will clearly show the site-aggregate name

of the new web page.

67

6.1.3 Attacks using User Interface Ambiguity

Scenario: While visiting a website, a popup appears which looks like the Chrome

prompt. The prompt says that the user’s computer is infected with a virus and

an antivirus software must be downloaded. The software downloaded is actually a

malware.

Currently: The popup appears indistinguishable from the actual system prompt

to an unsuspecting user. The user downloads the infected software.

Quboid: The user expects system prompts to be displayed only in the reserved

area. Hence, there is a higher chance of the user suspecting something is wrong if

any system-prompt looking content is displayed in the application content area.

6.1.4 Other Attacks

Scenario: An attacker is able to poison the DNS resolver cache of the user’s local

system. The new entries point to the attackers server where a fake login page is

displayed.

Currently: The user believes the fake login page to be genuine and enters their

credentials. The attacker can not steal these credentials.

Quboid: Since the DNS resolver cache is poisoned, it fails DNSSEC integrity checks.

The proxy VM blocks the request from going through in the first place.

Scenario: An attacker may be using a man-in-the-middle server to sniff all the con-

tent that the user is browsing. In the usual case, any traffic that has been encrypted

using SSL/TLS should not be visible to the attacker. However, if the attacker is

able to obtain a fake certificate for a website which was issued by a trusted CA, the

man-in-the-middle server may be able to sniff the encrypted traffic to that website as

well.

68

Currently: If the fake certificate was issued by a trusted CA, there is no way the

user can identify that such an attack is taking place.

Quboid: The DNS records for the website also contains DANE entries. These

entries have the public the key of the certificate that the website uses. Since the

keys in the DNS record and the keys in the certificate presented by the attacker will

not match up, the system will reject the request and notify the user that the DANE

validation failed.

6.1.5 Attacks that Quboid does not defend against

Quboid provides several mechanism to make the user aware that a phishing attack

may be taking place. However, it is still possible for the user to overlook these cues. In

these cases, Quboid does not prevent against the effects resulting from these attacks.

Scenario: The user unknowingly visits a malicious site which has a pop-up notifying

that their computer may have a virus and they need to call the given phone number

in order to request tech support. If the user fails to notice that this prompt was

not generated by the system, they continue with the call and may potentially reveal

sensitive information. Since this is a completely offline attack, our system cannot

defend against this attack.

Scenario: If the user fails to notice the site-aggregate name of a website being

displayed in the top reserved area, it is possible for a phishing attack to still succeed

by displaying fake login pages. Although Quboid provide several cues, an uncareful

user may be able to miss them.

6.2 Quboid Defense Mechanisms

Quboid employs several defense mechanisms as we saw in earlier chapters. Here we

list these defense mechanisms and explain the attack scenarios that they prevent:

69

Separate VM’s: Each browser instance runs in a separate VM. In the event that

the user executes a malicious downloaded file, the damage remains contained within

that virtual machine.

Site Aggregates: Websites forming a single unit are grouped together in a single

site-aggregate. Phishing websites which pretend to be other website will not be part

of this aggregate and Quboid will display this information.

Proxy Filter: All network traffic is routed through an intermediate proxy. The

proxy ensures that a virtual machine can access content only from its own site-

aggregate, even in the event that the virtual machine has itself been compromised.

Exit URL Whitelist: A whitelist is contained in the HTTP response headers

which lists the URLs that a page is allowed to submit form data to. This is helpful

in case the browser displays external HTML-only content where the external content

has been compromised. It prevents data being submitted outside of the site-aggregate

of the browser.

External Resources Whitelist: The external resources whitelist allows sites to

retrieve content from external websites but prevents the browsers from navigating

directly to these websites.

Secure User Interface: The user interface of Quboid is separated into two: appli-

cation and system. This prevents attacks where a website may try to fake a system

prompt and lead the user into downloading malicious software.

6.3 Implementation Overhead

6.3.1 Network Latency

All network traffic is routed through a proxy VM. This results in an increased latency

during web browsing. We measured this latency by first measuring the latency when

70

Scenario Latency
Without proxy 15ms ± 2ms
With proxy without filter 28ms ± 6ms
With filter proxy 860ms ± 7ms

Figure 6-3: Average latency in different proxy configurations

requesting a web page without going through a proxy, and then measuring the latency

with the proxy. We used mitmproxy, a Python based proxy, for our measurements

and implementation.

Figure 6-3 lists the average latency measured in three different scenarios: (1)

without a proxy VM, (2) through a proxy without any filter rules, and (3) through a

proxy with filter rules.

We find that the latency introduced just by adding an intermediate proxy is not

significant. However, filter rules adds significant amount of latency. This latency can

be reduced by having more efficient implementations of the proxy software and of the

filter.

6.3.2 Virtualization Overhead

Although Qubes employs various techniques to speed up virtual machine creation, it

still takes some time to start new VMs. We measured the time it takes to open new

browser instances in Qubes disposable VMs. We measured the opening times with

different number of virtual machines already running on the system. This shows any

performance limitations that could arise during the normal browsing experience.

Figure 6-4 shows a plot of the average time to open new VMs vs. number of

existing running VMs. We imagine that in a normal browsing session, the user has

around 6-7 web-aggregates open in the VMs. For up to that number of VMs, we do

not see any significant performance hit.

71

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

of existing VMs

T
im

e
to

op
en

ne
w
V
M

[s
]

Figure 6-4: Plot of average VM opening time vs. the number of existing running
VMs

6.3.3 User Experience

Quboid changes the browsing experience for the user in a number of ways.

Separate VMs per site-aggregate: Each site-aggregate is opened in a separate

VM. Opening new VMs is slower than opening new tabs in a modern web browser.

This is a trade-off that Quboid makes between usability vs. the security offered by

virtualization.

Single Application Window Manager: Quboid diverges from the more popular

tiling window managers by using a single application window manager. Only one

browser instance may be displayed on the screen at a time. Different browser instances

are switched by using the application switching shortcuts in the window manager.

This restricts the usability in the event that the user needs to look at content from

multiple browser instances at the same time.

Restricting downloads to VMs: Any application downloaded by the user is run

in a separate VM. Thus, it cannot access content from applications running in different

72

VMs. Everyday tasks such as downloading a media player to play movies require extra

steps since the user has to now move the movie to the media player VM before playing.

73

74

Chapter 7

Conclusion

Phishing attacks are a source of several major cyberattacks. As recent attacks have

demonstrated, current systems are insufficient to prevent these attacks. This the-

sis presented the design an implementation of a workstation to help defend against

phishing attacks.

This thesis introduced policies which are focused to minimize the risk of phishing

attacks. The policy of Site Aggregate Isolation dictated that websites which are

of different site-aggregates must not share any state with each other and must not

be able to communicate with each other. In view of modern web applications, we

introduced exceptions to this policy to support loading resources from other site-

aggregates. Lastly, we outlined the design of an unambiguous user interface that

clearly identifies the source of any content displayed on the screen.

We developed Quboid, a system based on Qubes OS to provide isolated browser

instances belonging to different site-aggregates running in different virtual machines.

The system consists of a transparent web proxy which filters the traffic based on

the previously mentioned policies. We introduced new HTTP response headers to

provide additional information about the web pages in order to support filtering in

the proxy. We also implemented a user interface with reserved areas to display system

and application content, and a clear display of the site-aggregate name of the active

browser instance.

We analyzed the effectiveness of the design by looking at recent phishing attacks

75

and fictional scenarios. We played out how users would react using current systems

in these scenarios and how would our design help defend against these attacks.

Quboid is a system which helps the user in identifying phishing attempts. How-

ever, the system does have limitations. It does not prevent phishing attacks com-

pletely but reduces the likelihood of a successful attack. If users miss the cues pro-

vided by the system, they are still vulnerable to these attacks.

7.1 Future Work

The work performed in this thesis exclusively focused on defense against phishing

attacks. We approached the design of Quboid by reviewing recent phishing attacks

and fictional scenarios. But if we take a step back, the reason behind phishing attacks

is the ambiguity of authorship in modern internet. There was a time when visiting

some website meant all the content the user sees is authored exclusively by the website

owner. SSL/TLS certificates were invented which further strengthen the user’s belief

that the website they are is legitimate and has been externally vetted by trusted

certificate authorities. However, with time both of these trends seem to have changed.

Websites like Facebook and Reddit contain majority of content which has not

been authored by the website owners but rather by the visitors of the website. Several

certificate authorities have been established, some that allow users to gain certificates

for their websites at no cost. These authorities just verify website ownership but not

if the owner is a genuine entity. The times have changed and modern internet needs

are a lot of different.

In view of these changing needs, we need systems in place that can not only verify

the authenticity of a website as whole but also parts of the website. We need methods

to be able to verify the authorship of the content posted on the websites by other

users. The failure of verification of authorship is what leads to phishing attacks.

This is a more general problem than what the system presented in this thesis

solves. One can envision an internet where every part of a website carries a proof

of authenticity and ownership. Then the user may be able to specify policies based

76

solely on the authorship rather than the different parameters that we mentioned in

the design of Quboid.

77

78

Bibliography

[1] “Top Democrat’s emails hacked by Russia after aide made typo, investigation
finds,” December 14, 2016. Available:
https://www.theguardian.com/us-news/2016/dec/14/

dnc-hillary-clinton-emails-hacked-russia-aide-typo-investigation-finds

[2] “UK hospitals hit with massive ransomware attack,” May 12, 2017. Available:
https://www.theverge.com/2017/5/12/15630354/

nhs-hospitals-ransomware-hack-wannacry-bitcoin/

[3] “2016 Enterprise Phishing Susceptibility and Resiliency Report,” 2016.
Available: https:
//phishme.com/2016-enterprise-phishing-susceptibility-report/

[4] “91% Of Cyberattacks Start With A Phishing Email,” December 13, 2016.
Available: http://www.darkreading.com/endpoint/
91of-cyberattacks-start-with-aphishing-email/d/d-id/1327704

[5] “Phishing Example: PayPal - We need your help,” March 22, 2016. Available:
https://security.berkeley.edu/news/

phishing-example-paypal-we-need-your-help

[6] “Phishing Example: Messages containing Locky malware,” August 24, 2016.
Available: https://security.berkeley.edu/news/
phishing-example-messages-containing-locky-malware

[7] “Firewall Evolution - Deep Packet Inspection,” July 28, 2003. Available:
https://www.symantec.com/connect/articles/

firewall-evolution-deep-packet-inspection

[8] “Qubes OS: A resonably secure operating system.” Available:
https://www.qubes-os.org/

[9] “The Xen Project, the powerful open source industry standard for
virtualization.” Available: https://www.xenproject.org/

79

https://www.theguardian.com/us-news/2016/dec/14/dnc-hillary-clinton-emails-hacked-russia-aide-typo-investigation-finds
https://www.theguardian.com/us-news/2016/dec/14/dnc-hillary-clinton-emails-hacked-russia-aide-typo-investigation-finds
https://www.theverge.com/2017/5/12/15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin/
https://www.theverge.com/2017/5/12/15630354/nhs-hospitals-ransomware-hack-wannacry-bitcoin/
https://phishme.com/2016-enterprise-phishing-susceptibility-report/
https://phishme.com/2016-enterprise-phishing-susceptibility-report/
http://www.darkreading.com/endpoint/91–of-cyberattacks-start-with-aphishing-email/d/d-id/1327704
http://www.darkreading.com/endpoint/91–of-cyberattacks-start-with-aphishing-email/d/d-id/1327704
https://security.berkeley.edu/news/phishing-example-paypal-we-need-your-help
https://security.berkeley.edu/news/phishing-example-paypal-we-need-your-help
https://security.berkeley.edu/news/phishing-example-messages-containing-locky-malware
https://security.berkeley.edu/news/phishing-example-messages-containing-locky-malware
https://www.symantec.com/connect/articles/firewall-evolution-deep-packet-inspection
https://www.symantec.com/connect/articles/firewall-evolution-deep-packet-inspection
https://www.qubes-os.org/
https://www.xenproject.org/

[10] “Understanding Bromium R© Micro-virtualization for Security Architects.”
Available: https://www.bromium.com/sites/default/files/Bromium%
20Microvirtualization%20for%20the%20Security%20Architect_0.pdf

[11] “Google’s Chrome Browser crushes the desktop competition in 2016,” Feb 16,
2017. Available:
https://www.forbes.com/sites/kevinmurnane/2017/02/16/

googles-chrome-browser-crushes-the-desktop-competition-in-2016/

[12] “Sandbox.” Available: https://chromium.googlesource.com/chromium/src/
+/master/docs/design/sandbox.md

[13] “Google Docs users hit with sophisticated phishing attack,” May 3, 2017.
Available: https://www.theverge.com/2017/5/3/15534768/
google-docs-phishing-attack-share-this-document-with-you-spam

[14] “Why emails are automatically marked as spam.” Available:
https://support.google.com/mail/answer/1366858#warnings

[15] “Design of the EROS Trusted Window System.” Available:
https://www.usenix.org/legacy/publications/library/proceedings/

sec04/tech/full_papers/shapiro/shapiro.pdf

[16] “Beware This Clever ‘Fake Attachment’ Gmail Phishing Scam,” Mar 15,
2017.Available: https://www.lifehacker.com.au/2017/03/
beware-this-clever-fake-attachment-gmail-phishing-scam/

[17] “What is Malvertising?” September 5, 2014. Available:
https://www.kaspersky.com/blog/what-is-malvertising/5928/

[18] “New York Times, BBC and others inadvertently serve up dangerous ads,”
March 16, 2016. Available: https://www.cnet.com/news/
new-york-times-bbc-dangerous-ads-ransomware-malvertising/

[19] “Chrome, Firefox and Opera vulnerable to Punycode phishing attack,” April
20, 2017. Available:
https://www.theinquirer.net/inquirer/news/3008708/

chrome-firefox-and-opera-vulnerable-to-punycode-phishing-attack

[20] “Chinese Certificate Authority ‘mistakenly’ gave out SSL Certs for GitHub
Domains,” August 29, 2016. Available:
http://thehackernews.com/2016/08/github-ssl-certificate.html

[21] “RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1) - Section 5.5.2,” June
2014. https://tools.ietf.org/html/rfc7231#section-5.5.2

[22] “Referrer.”
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer

80

https://www.bromium.com/sites/default/files/Bromium%20Microvirtualization%20for%20the%20Security%20Architect_0.pdf
https://www.bromium.com/sites/default/files/Bromium%20Microvirtualization%20for%20the%20Security%20Architect_0.pdf
https://www.forbes.com/sites/kevinmurnane/2017/02/16/googles-chrome-browser-crushes-the-desktop-competition-in-2016/
https://www.forbes.com/sites/kevinmurnane/2017/02/16/googles-chrome-browser-crushes-the-desktop-competition-in-2016/
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://www.theverge.com/2017/5/3/15534768/google-docs-phishing-attack-share-this-document-with-you-spam
https://www.theverge.com/2017/5/3/15534768/google-docs-phishing-attack-share-this-document-with-you-spam
https://support.google.com/mail/answer/1366858#warnings
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/shapiro/shapiro.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/shapiro/shapiro.pdf
https://www.lifehacker.com.au/2017/03/beware-this-clever-fake-attachment-gmail-phishing-scam/
https://www.lifehacker.com.au/2017/03/beware-this-clever-fake-attachment-gmail-phishing-scam/
https://www.kaspersky.com/blog/what-is-malvertising/5928/
https://www.cnet.com/news/new-york-times-bbc-dangerous-ads-ransomware-malvertising/
https://www.cnet.com/news/new-york-times-bbc-dangerous-ads-ransomware-malvertising/
https://www.theinquirer.net/inquirer/news/3008708/chrome-firefox-and-opera-vulnerable-to-punycode-phishing-attack
https://www.theinquirer.net/inquirer/news/3008708/chrome-firefox-and-opera-vulnerable-to-punycode-phishing-attack
http://thehackernews.com/2016/08/github-ssl-certificate.html
https://tools.ietf.org/html/rfc7231#section-5.5.2
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer

[23] “Subresource Integrity,” June 23, 2016. Available:
https://www.w3.org/TR/SRI/

[24] “Subresource Integrity.” Available: https://developer.mozilla.org/en-US/
docs/Web/Security/Subresource_Integrity

[25] “Beware of “Email Deactivation - Verify Your Email Address” Microsoft
Phishing Scam,” June 7, 2016. Available:
https://www.onlinethreatalerts.com/article/2016/6/7/

beware-of-email-deactivation-verify-your-email-address-microsoft-phishing-scam/

[26] “‘Verify Your Email Account’, The Latest Phishing Scam to Emerge Online,”
April 4, 2015. Available: https://www.hackread.com/
verify-your-email-account-the-latest-phishing-scam-to-emerge-online/

[27] “‘Google email verification’ message.” Available:
https://support.google.com/accounts/answer/32044

[28] “UChicago: Latest Email Scams.” Available:
https://itservices.uchicago.edu/page/latest-email-scams

81

https://www.w3.org/TR/SRI/
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.onlinethreatalerts.com/article/2016/6/7/beware-of-email-deactivation-verify-your-email-address-microsoft-phishing-scam/
https://www.onlinethreatalerts.com/article/2016/6/7/beware-of-email-deactivation-verify-your-email-address-microsoft-phishing-scam/
https://www.hackread.com/verify-your-email-account-the-latest-phishing-scam-to-emerge-online/
https://www.hackread.com/verify-your-email-account-the-latest-phishing-scam-to-emerge-online/
https://support.google.com/accounts/answer/32044
https://itservices.uchicago.edu/page/latest-email-scams

	Introduction
	Phishing Attacks
	Approach
	Contributions
	Outline of thesis

	Related Work
	Qubes OS
	Isolation using Virtualization
	Firewall Policies
	User Interface
	Limitations

	Bromium
	Limitations

	Google Chrome Browser
	Limitations

	Spam Filters
	Limitations

	EROS Trusted Window System
	Limitations

	Goals
	Blocking Malicious Content
	Unambiguous User Interface
	Damage Containment

	Design
	Site Aggregate Isolation
	Cross Site-Aggregate Resources
	External Resource Referrer
	Exit Destinations
	HTTP Response Headers
	Site-Aggregate-Name
	Site-Aggregate-Pattern
	Cross-Site-Aggregate-Resource-Pattern
	Exit-Pattern

	DNSSEC and SSL/TLS Certificates
	User Interface

	Implementation
	Overview
	Isolation using Qubes OS
	Other Approaches

	Proxy Filter VM
	Other Approaches

	Site Aggregate Isolation
	HTTP Request Headers
	Resource Integrity Checks
	Other Approaches

	Single Application Window Manager

	Analysis
	Common Attack Scenarios
	Attacks via email
	Malvertisements
	Attacks using User Interface Ambiguity
	Other Attacks
	Attacks that Quboid does not defend against

	Quboid Defense Mechanisms
	Implementation Overhead
	Network Latency
	Virtualization Overhead
	User Experience

	Conclusion
	Future Work

