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Software must be increasingly parallel to keep up with hardware,
but scaling with parallelism is notoriously hard
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Parallelize or perish



Kernel scalability is important
 • Many applications depend on the OS kernel
 • If the kernel doesn't scale, many applications won't scale

And hard
 • |kernel threads| > ∑|application threads|
 • Diverse and unknown workloads

OS kernel scalability
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Successful in practice because it focuses developer effort

Disadvantages
 • Requires huge amounts of effort
 • New workloads expose new bottlenecks
 • More cores expose new bottlenecks
 • The real bottlenecks may be in the interface design
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Whenever interface operations commute,
they can be implemented in a way that scales.

The scalable commutativity rule
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Design

Implement

Test

The rule enables reasoning about scalability
throughout the software design process

Guides design of scalable interfaces

Sets a clear implementation target

Systematic, workload-independent scalability testing

Advantages of interface-driven scalability



The scalable commutativity rule
 • Formalization of the rule and proof of its correctness
 • State-dependent, interface-based commutativity

Commuter: An automated scalability testing tool

sv6: A scalable POSIX-like kernel

Contributions



Defining the rule
 • Definition of scalability
 • Intuition
 • Formalization

Applying the rule
 • Commuter
 • Evaluation

Outline
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current hardware.
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Whenever interface operations commute,
they can be implemented in a way that scales.

Operations commute
results independent of order
communication is unnecessary
without communication, no conflicts

⇒
⇒
⇒

The intuition behind the rule
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Definitions
 • History
 • Reordering
 • Commutativity

Formal scalable commutativty rule

Formalizing the rule
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A history H is a sequence of invocations and responses on threads.

inc() ok iszero() TT1inc()
iszero()

ok
T

T1
T2

A specification 𝒮  defines an interface. 𝒮  is the set of legal histories
giving the allowed behavior of an interface. [Herlihy & Wing, '90]

Legal history Illegal history

Lets us talk about interfaces, arguments, and state without
specifying an implementation or a state representation.

Histories capture state and arguments



A reordering H' is a permutation of H that maintains operation
order for each individual thread (H|t = H'|t for all t).

Reorderings
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A region Y of a legal history XY SIM-commutes if every reordering 
Y' of Y also yields a legal history and every legal extension Z of XY is
also a legal extension of XY'.

(And this must be true for every prefix of every reordering of Y.)
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Consider a history XY where Y commutes in XY and M can generate XY.

There exists a correct implementation of 𝒮  whose execution of XY is
conflict-free in the commutative region Y.
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Interface specification
(e.g., POSIX)

Implementation
(e.g., Linux)

All scalability
bottlenecks

Commuter

Applying the rule to real systems



SymInode    = tstruct(data  = tlist(SymByte),
                      nlink = SymInt)
SymIMap     = tdict(SymInt, SymInode)
SymFilename = tuninterpreted('Filename')
SymDir      = tdict(SymFilename, SymInt)

class POSIX:
  def __init__(self):
    self.fname_to_inum = SymDir.any()
    self.inodes = SymIMap.any()

  @symargs(src=SymFilename, dst=SymFilename)
  def rename(self, src, dst):
    if src not in self.fname_to_inum:
      return (-1, errno.ENOENT)
    if src == dst:
      return 0
    if dst in self.fname_to_inum:
      self.inodes[self.fname_to_inum[dst]].nlink -= 1
    self.fname_to_inum[dst] = self.fname_to_inum[src]
    del self.fname_to_inum[src]
    return 0

Symbolic model

Input: Symbolic model



Important to have discriminating commutativity conditions
 • ∀states, rename almost never commutes
 • More commutative cases ⇒ more opportunities to scale
 • Captures more operations applications actually do

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d
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Symbolic model

Analyzer

Commutativity
conditions

Testgen

Test cases

rename(a, b) and rename(c, d) commute if:
 • Both source files exist and all names are different
 • Neither source file exists
 • a xor c exists, and it is not the other rename's destination
 • Both calls are self-renames
 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b = d

    del self.fname_to_inum[src]
    return 0

void setup() {
    close(creat("f0", 0666));
    close(creat("f2", 0666));
}
void test_opA() { rename("f0", "f1"); }
void test_opB() { rename("f2", "f3"); }

+ 26 more

Test cases



Symbolic model

Analyzer

Commutativity
conditions

Testgen

Test cases

Linux

Conflicting cache lines

Mtrace/QEMU

 • One call is a self-rename of an existing file and a ≠ c
 • a and c are hard links to the same inode, a ≠ c, and b == d

void setup() {
    close(creat("f0", 0666));
    close(creat("f2", 0666));
}
void test_opA() { rename("f0", "f1"); }
void test_opB() { rename("f2", "f3"); }

test_opA test_opB

010100010111001110010110011010101010101
d_entry.d_lock
inode_cache

+17 more conflicts

Output: Conflicting cache lines



Does the rule help build scalable systems?

Evaluation
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68% are conflict-free

Many potential future bottlenecks

Commuter finds non-scalable cases in Linux



POSIX-like operating system

File system and virtual memory system follow commutativity rule

Implementation using standard parallel programming techniques,
   but guided by Commuter

sv6: A scalable OS
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Remaining 1% are mostly "idempotent updates"

Commutative operations can be made to scale



open
link

unlink
rename

stat
fstat

lseek
close
pipe
read
write

pread
pwrite
mmap

munmap
mprotect
memread
memwrite

m
em

w
rit

e
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

rit
e

pr
ea

d
w

rit
e

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

All tests
conflict-free

All tests
conflicted

Ze
ro

 ca
ch

e

lin
es

 sh
are

d

13,664 total test cases
99% are conflict-free

Remaining 1% are mostly "idempotent updates"

Two pwrites of same
data to same offset

Two lseeks of same FD
to the same offset

Commutative operations can be made to scale



 • Lowest FD versus any FD
 • stat versus xstat
 • Unordered sockets
 • Delayed munmap
 • fork+exec versus posix_spawn

Refining POSIX with the rule



qmail-like multithreaded mail server

Non-commutative APIs:
 Lowest FD
 Ordered sockets
 fork+exec
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Commutative APIs:
 Any FD
 Unordered sockets
 posix_spawn

Commutative operations matter to app scalabiliy



Commutativity and concurrency
 • [Bernstein '81]
 • [Weihl '88]
 • [Steele '90]
 • [Rinard '97]
 • [Shapiro '11]

Laws of Order [Attiya '11]

Disjoint-access parallelism [Israeli '94]
Scalable locks [MCS '91]
Scalable reference counting [Ellen '07, Corbet '10]

Related work



Whenever interface operations commute,
they can be implemented in a way that scales.

Design
Implement
Test

Conclusion



Whenever interface operations commute,
they can be implemented in a way that scales.

Design
Implement
Test

Check out the code at http://pdos.csail.mit.edu/commuter

Conclusion


