
Acetone: A System Call Interface for Asbestos Labels

by

Clifford A. Frey

Bachelor of Science in Computer Science and Engineering,

Massachusetts Institute of Technology (2004)

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

© Clifford A. Frey, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .

Department of Electrical Engineering and Computer Science

May 23, 2005

Certified by .

M. Frans Kaashoek

Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Acetone: A System Call Interface for Asbestos Labels

by

Clifford A. Frey

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2005, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Acetone is a secure operating system kernel that uses a shared address space and
supports Asbestos labels. Acetone uses Asbestos labels to enable a wide variety of
security policies including ones that prevent untrusted applications from being able
to disclose private data. All threads run in the same address space, but have different
memory access privileges. Acetone uses standard memory protection mechanisms
to ensure that all memory accesses are consistent with label rules. The performance
results show that these checks have a relatively low cost.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor

3

4

Acknowledgments

I would like to thank David Ziegler, Maxwell Krohn, Russ Cox, and Frans Kaashoek

for valuable guidance and discussion. This thesis would not have been possible

without them.

I would also like to thank Betsy, Laura, and Tina for their love, support, and

encouragement.

This research was supported by DARPA grants MDA972-03-P-0015 and FA8750-
04-1-0090, and by joint NSF Cybertrust/DARPA grant CNS-0430425.

Parts of this thesis are adapted from and contain text written in collaboration with
Petros Efstathopoulos, Frans Kaashoek, Eddie Kohler, Max Krohn, David Mazières,
Robert Morris, Steve VanDeBogart, and David Ziegler.

Parts of this thesis are also adapted from

Max Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie
Kohler, David Mazières, Robert Morris, Steve VanDeBogart, and David
Ziegler. Make least privilege a right (not a privilege). In Proceedings of
the 10th Workshop on Hot Topics in Operating Systems, June 2005.

5

6

Contents

1 Introduction 11

1.1 Motivation . 11

1.2 Operating System Security Overview 12

1.3 Asbestos Overview . 13

1.4 Problems . 14

1.5 Approach . 16

1.6 Challenges . 17

1.7 Limitations . 17

1.8 Contributions . 18

2 Background 19

2.1 Abstractions . 19

2.1.1 Handles . 20

2.1.2 Messages . 20

2.2 Asbestos Labels . 22

2.3 Label Policies . 22

2.3.1 Processes . 22

2.3.2 Effects of Labels . 23

2.3.3 Effective Labels . 24

2.3.4 Ownership and Decontamination 25

2.4 Examples . 26

2.4.1 Process Isolation . 26

2.4.2 Multi-level security . 27

7

2.4.3 Discussion . 29

2.5 Implementation . 29

2.5.1 Processes . 29

2.6 vm_save/vm_restore . 30

2.6.1 Design . 30

3 Design 33

3.1 High Level Overview . 33

3.1.1 Abstractions . 33

3.1.2 System Calls . 34

3.2 Unified Address Space . 35

3.3 Threads . 35

3.4 Memory Pages . 36

3.4.1 Memory Protection . 36

3.5 Gates . 37

3.5.1 Using Gates . 38

3.5.2 Message Sending . 39

3.6 Hardware Support for Memory Protection 39

3.6.1 Simple and Slow . 40

3.6.2 Reducing Page Faults . 41

3.6.3 Decreasing Creation Costs . 41

3.6.4 Finding Parent Protection Spaces 42

4 Evaluation 43

4.1 Simplicity . 43

4.2 Covert Channels . 45

4.3 Performance . 46

4.3.1 Hardware Paging . 46

4.3.2 Method of Testing . 46

4.3.3 Results . 47

8

5 Related Work 49

6 Future Work and Summary 51

6.1 Future Work . 51

6.1.1 Accounting . 51

6.1.2 Memory Protection Space Selection 52

6.2 Summary . 52

9

10

Chapter 1

Introduction

This master thesis presents Acetone, a new operating system that makes it easier to

implement secure applications. Acetone combines Asbestos labels, a unified address

space, and the ability to easily create new security domains.

Acetone is a redesign of Asbestos, an operating system that introduced Asbestos

labels. Asbestos labels allow security domains to be easily defined in terms of label

primitives. These domains can be defined in terms of both mandatory access control

and discretionary access control policies. Acetone simplifies the Asbestos system call

interface. The benefits from this simplification include making it easier to reason

about security policies, an easier to reason about implementation, and simplifying

sharing of resources between security domains.

1.1 Motivation

Current computer systems do not provide adequate security for their users. Viruses,

spyware, and adware plague many users’ systems, and large-scale commercial servers

frequently end up disclosing sensitive information.

These problems mostly stem from two main sources. The first is that software

contains bugs that allow exploits. The second is that in most personal computing en-

vironments, users are willing to run untrusted code that appears to serve a legitimate

purpose.

11

Although it is always possible to improve the quality of application code, it is

difficult to remove all security vulnerabilities. Similarly, it is possible to educate

users to make them less trusting, but there are times when it is still desirable to run

untrusted code. Given these difficulties, the best approach to improving security

of applications is to provide better operating system support for isolating modules

from one another, and to allow a user to run untrusted code with a restricted set of

privileges.

The principle of least privilege states that each bit of code that executes on a

machine should run with the least amount of privilege possible [17]. This secures

applications by preventing a bug in one part of an application from being able to

use all of that application’s privileges. This principle can also help users by allowing

them to run entire applications with the fewest privileges possible, therefore limiting

the effect that these applications can have on their system.

1.2 Operating System Security Overview

In order to enforce modularity between different components, operating systems

allow code to be run in different domains. A domain is a set of resources that can all

be accessed by the current thread at the same time. Ultimately, in order to implement

the principle of least privilege, it is important that applications can easily create many

domains that each have the smallest amount of privilege necessary. It must also be

simple for these domains to communicate with each other so that each domain can

be small, allowing many domains to exist, each with just the privileges that it needs.

By carefully analyzing how different security domains are created and used, and by

looking at how data can be moved from one domain to another, it is possible to

evaluate an operating system and to determine how easily it enables an application

writer to use the principle of least privilege.

Different operating systems have varying interfaces for creating a domain and

controlling what resources are available in each domain. For instance, most UNIX

systems essentially have one domain for each process running on the system. The

12

memory and register state of different processes are protected from other processes.

Each process domain includes access to the register state of the process, memory

mapped to the process, and access to all of the file and network resources of the user

who owns the process.

1.3 Asbestos Overview

Asbestos allows application writers to reach towards the principle of least privilege

by giving them a set of primitives that provide easy modularization. Asbestos im-

proves upon the UNIX security model in a number of important ways. The primary

improvement is the use of labels for access control instead of basic user IDs and de-

fault process rights. Also, Asbestos allows multiple domains per process, which can

only be entered or accessed in response to receiving messages from other processes.

The basic way to create a new isolated security domain in Asbestos is to create

a new process. Each process has an associated security label that defines a domain

containing all of the resources that the process has access to based on its label and

the label rules. In order to reduce the overhead of having one process in the system

for each security domain, Asbestos also supports having multiple subdomains within

one process. This can be done by assigning labels to ranges of the virtual address

space. These ranges can then only be accessed when the process receives a message

with the appropriate label. For instance, a virtual address space range can be set up

for each user who is logged in to a server, and even if there are bugs in the server, it

is impossible for a user to access another user’s data.

Both Asbestos processes and individual pages of memory can have security la-

bels. It is possible for data to move from one security domain to another by sending

a message from one process to another. As messages are transmitted in the system,

Asbestos also keeps track of information flow by updating security labels appropri-

ately.

A simplified SSHD implementation in Asbestos is shown in Figure 1-1. In most

cases, different parts of the functionality are isolated from one another by using dif-

13

ferent processes. It is possible for many domains to exist in the SSHD/Protocol pro-

cess because the SSHD/Demux process can send specially marked messages that give

additional privileges but also restrict the SSHD/Protocol process to a sub-domain.

As an example of how an application can be broken up into different domains in

Asbestos, consider a simple implementation of SSHD that permits network logins to

the local machine, but where local users are never allowed to see each other’s data.

This application needs to have many privileges on the system, including the privilege

to act on behalf of any user of the system. However, in order to use the principle of

least privilege, most parts of the system should be running with only a few privileges.

For instance, once a user has logged in, SSHD has three main modules that handle

the connection. First, the demultiplexer maps individual network streams to specific

user sessions. Second, the protocol manager handles all ssh-specific protocol tasks,

including encryption. Last, the specific user’s shell provides a basic interface to the

users applications and data, and allows the user to perform any task allowed by that

user’s privileges.

In this example, in order to follow the principle of least privilege, the application

should be broken up into at least a few different domains. The domain where the

protocol manager executes should only contain the privilege to access the specific

user’s network connection and the input and output of the user’s shell. The user’s

shell should have a domain that has full access to all of the user’s privileges. The

demultiplexer needs to have a domain that contains access to the network and all

of the protocol managers. The demultiplexer domain must also run in a domain

that has the privilege to declassify user-private data, allowing it to be sent over the

network.

1.4 Problems

One problem with Asbestos is that it is cumbersome to share data with other do-

mains, as the only way to communicate information between domains is through

messages. This is a problem because it is often easier to write applications that use a

14

Shell

UserA

UserB

send_msg

Network

send_msg send_msg

SSHD/Demux

UserB

UserA

SSHD/Protocol

h2 h3

UserA

h1

h3

h2h1

Figure 1-1: Different security domains in Asbestos. Each process has its own address
space and default security domain. In this diagram, every process has the privilege
of sending messages to the processes to the left of it. In addition, the SSHD/Demux
process can declassify user-private data so that it can be sent over the network.
The SSHD/Protocol process has multiple sub-domains that can only be entered in
response to receiving messages from either the SSHD/Demux or the Shell process.
These sub-domains are effectively isolated from each other.

combination of shared memory and message passing than to write applications that

use only message passing. Sharing memory is often a natural way to enable com-

munication between two parts of an application. In cases where a message passing

interface is difficult to implement, shared memory gives application designers an al-

ternative to simply combining two different modules into one, violating the principle

of least privilege.

Another problem with Asbestos is complexity. There are many different abstrac-

tions in Asbestos that use security labels in different ways. Process labels and labels

on pages of memory can both accomplish the same tasks, yet page labels are strictly

stronger as they can control access to all of the memory in a process. It is also pos-

sible for a process to control what information it is willing to accept using either

vm_restore (Section 2.6) or receive labels (Section 2.3.1, yet vm_restore is strictly

stronger. Asbestos is unnecessarily complicated in these respects, and using simpler

abstractions can help.

15

g1

g2

g3

g3

g2

g1SSHD

SSHD

SSHD

Shell UserA

UserB

UserA

UserA/B

Network

Figure 1-2: Security Domains in Acetone. There is only one address space, and
different security domains correspond to regions of memory. Each domain has access
to some data and the use of other gates. The arrows represent a thread using a call
gate. The SSHD/Demux domain can declassify UserA-private data so that it can be
sent over the network.

1.5 Approach

Acetone solves the problems presented above by using a unified address space, mul-

tiple threads of execution, and call gates that can transfer information into different

security domains.

Acetone provides isolation mechanisms that make it easy to create as many do-

mains as desired. It is possible to transfer data to another security domain by using

a gate. These gates provide access to additional resources, but also ensure that these

resources are only used in safe ways. It is also possible for domains to directly share

memory, which can be an easier way to move data from one domain to another.

Domains and gates are both lightweight primitives, allowing a single application to

setup as many security domains as it needs with minimal resource usage.

Figure 1-2 shows how the same SSHD server could be implemented in Acetone.

In Acetone, there is only one address space, and various addresses are in different

domains. Each domain has access to some memory and some gates. It is also possible

for each domain to be labeled with a specific user, meaning that the domain contains

user-private data.

16

1.6 Challenges

Acetone presents an interface where every memory operation appears to be checked

by label rules, but the cost of actually performing these checks on every memory

access is prohibitive for modern hardware. A major challenge is to achieve high per-

formance while ensuring that protection domains are never violated. Acetone avoids

some of this cost by using hardware support for memory protection domains. How-

ever, a memory protection domain is a relatively large data structure that is expensive

to create and update. Acetone must support many different protection domains, so it

is important that these operations can be performed quickly. Acetone must support

cheap creation of new domains that do not cause many faulting memory references.

In addition to the performance challenges, the API provided by Acetone must

be simple and secure. It should be easy to define different security domains, and

Acetone must enforce hard modularity between them. This means that a failure

in one domain cannot directly cause failures in another, non-overlapping, security

domain. It should be clear which domains can make accesses to a given domain.

To make the information flow guarantees in Acetone as strong as possible, there

should be no direct communication channels that are not explicitly allowed by the

security policy. This means that the availability of a specific resource cannot be used

to communicate information.

This system should be as simple as possible. This includes making the trusted

computing base small and also having a small number of system calls. Having these

features implemented in an easy to use manner makes it much easier for an applica-

tion writer to design their application using the principle of least privilege.

1.7 Limitations

Acetone is not yet fully implemented, and it has design difficulties that still need to

be investigated. Only the core system calls, memory protection, and basic test ap-

plications have been implemented. Without more applications, and libraries to help

17

support those applications, it is difficult to evaluate all aspects of Acetone’s design.

However, Acetone demonstrates that Asbestos labels can be used with an acceptable

performance overhead to provide protection between different components of an

application.

Also, as discussed in Section 6.1, some basic desirable features such as accounting

for and imposing limits on resource usage are not possible in the current design.

1.8 Contributions

This thesis has two main contributions. The first is a simplified operating system

design, Acetone, that addresses weaknesses in Asbestos. The second is a high perfor-

mance implementation of memory protection using Asbestos labels that allows new

protection domains to be quickly created.

18

Chapter 2

Background

2.1 Abstractions

Operating system kernels make functionality available to user applications through

various abstractions.

Abstractions in most UNIX operating systems include processes, user identifiers,

file descriptors, path names, and virtual memory operations. By using these ab-

stractions, applications can access various services provided by the kernel or other

applications. Many of these abstractions are actually quite complex. A process is

really the combination of a virtual address space, a current register state, possibly

many kernel threads, a set of open file descriptors, and some security tokens such as

user and group identifiers.

In a traditional microkernel architecture, abstractions generally only include pro-

cesses, interprocess communication (IPC), and memory operations. Other services

must be accessed through IPC.

Asbestos provides abstractions of handles, labels, memory, and processes. As in

microkernel designs, these simple abstractions can be used to provide support for

more complex features such as networking and filesystem access.

19

2.1.1 Handles

Asbestos labels serve two main purposes. They serve as communication endpoints.

In addition, they can act as a capability or as a security label for mandatory or

discretionary access control. Asbestos handles are simply 61-bit numbers that refer

to a security label component and a communication endpoint. These numbers are

ephemeral (they are not assigned the same values after reboots), unique (the same

handle will not be reused), and unpredictable.

This code fragment demonstrates an application generating a new handle:handle_t h;r = sys_new_handle(&h, ...);
The new_handle system call creates a new handle and grants it to the current

process. The kernel associates a security label with this new handle. It is also possible

for the kernel to make this handle be a communication endpoint; this allows the

process to receive messages that are sent to this handle.

At any time, any process can attempt to send a message to a handle. If the handle

is set up as a communication endpoint, then the message is sent, provided that all

checks pass. These access control mechanisms are discussed further in Section 2.2.

There are also system calls that allow some properties of a handle to be changed.

The handle_transfer call can be used to change the communication endpoint of a

handle.

All handles are reference counted by the kernel. When no processes have access

to the handle, all kernel resources associated with the handle are freed. However,

the actual number of the handle is never reused, as it is possible that applications

still refer to that number even though they do not have any privileges with respect

to that handle.

2.1.2 Messages

Messages are the basic packets of information transmitted in Asbestos. All commu-

nication between different processes must be done by sending messages. Messages

20

are an in-order sequence of bytes, and have an associated destination handle, type,

code, ID, optional verification label, optional reply handle, and optional payload.

Essentially the type, code, ID, and payload make up the data content of the mes-

sage. The verification label can allow the sender to prove that it has certain security

properties.

In general, a message’s code is just used for very small payloads, where only

a simple error code must be reported. The ID field is used to match up requests

and replies. Asbestos defines common message types that are used to standardize

communication between different modules and make virtualization easier.

Message types include:READ, WRITE Requests data from a handle or sends data to a handle.LOOKUP Requests a new handle for a related object. For example, for a directory

handle, LOOKUP requests can be used to receive the handles for files within that

directory.CONTROL Makes a request that does not easily map into the other types.*_R Replies to a request. Each message type has a reply type as well, used for

responses. For instance, LOOKUP_R messages generally grant a handle to the

process that issued the lookup request.

Messages are stored in a FIFO in the kernel until they are delivered. Each process

has its own FIFO of messages waiting to be delivered. All access control checks on

sending the message are done at send time. However, the receiving process’s security

label will not be updated until the message is actually received. Virtual memory

tricks are used whenever possible for message delivery. For small messages, the

actual message data is just copied onto the page that contains the message header.

For larger messages, pages are mapped copy-on-write.

21

P , Q Processes ⋆,0,1,2,3 Label levels, in increasing order
h, dest Handles L, C, D, V, E Labels (functions from handles to levels)

L1 ≤ L2 Label comparison: true if ∀h, L1(h) ≤ L2(h) PS Process P ’s send label
max(L1, L2) Maximum label: {h k | k = max(L1(h), L2(h))} PR Process P ’s receive label
min(L1, L2) Minimum label: {h k | k = min(L1(h), L2(h))} hR Handle h’s receive label
owned(L) Owned-handles label: {h ⋆ | L(h) = ⋆} ∪ {h3 | L(h) 6= ⋆}

Figure 2-1: Asbestos notation.

2.2 Asbestos Labels

All access control and security in Asbestos is implemented using labels. The infor-

mation stored in a label is flexible enough to allow a wide variety of access control

policies to be implemented.

A label is a function that maps handles to levels. Possible levels include ⋆, 0, 1, 2,

and 3. Labels are described as a list of (handle, level) pairs, and a default level which

is assigned to all handles that are not in the list. For instance, the label {h1 0, h2 1, 2}

has a default level of 2. The default level, 2 in this case, appears at the end of the list

and applies to all handles not explicitly listed.

Figure 2-1 shows the basic notation and operations that can be done on labels.

The basic operations include ≤, max, and min. As shown in the figure, these opera-

tions are run on each of the label components individually to produce the result.

2.3 Label Policies

Labels are used to restrict access to various resources. Processes, pages of memory,

and handles all have rules associated with them that dictate how a given process can

interact with them.

2.3.1 Processes

A process P has two labels associated with it: a send label (PS) that stores the current

process’s capabilities and access restrictions, and a receive label (PR) that restricts

which access restrictions the process is willing to accept.

22

Process A is only allowed to send a message to process B if

AS ≤ BR.

This check is only used to determine if a message can be delivered. If it can be deliv-

ered, then information flow restrictions are sent along with the message by updating

BS ← max(AS, BS).

Together, the receive restriction and the forwarding of taint information make up a

basic information flow system, as has been shown in many previous designs [5, 13,

15].

These label rules imply that lower levels in the send label are more permissive.

Handles that have low levels associated with them in the send label act as either

capabilities or as low levels of tainting. This means that low levels in the send label

are more permissive. Ultimately, if a process has every handle at 0 or ⋆, it can send a

message to any other process.

In the receive label, lower label components are more restrictive. A label com-

ponent at a low level in the receive label means that the process will not receive

messages from a sender at a higher level. This has the effect of restricting the com-

munication between the processes, and also of limiting what restrictions a process is

willing to accept on its send label.

2.3.2 Effects of Labels

By setting send and receive labels in different ways, it is possible to enable many

different policies. If all label components are either at the default level or the ⋆ level,

then labels end up acting like capabilities; they can be freely granted to anything that

the process can communicate with. If the other label levels are used, it is possible for

the labels to enforce a variety of information flow constraints.

By lowering a process’s receive label, only processes with explicitly lowered send

23

labels can send messages to the given process. If a process’s send label is higher

than the default receive level, the process will not be able to send messages to other

processes unless they have explicitly raised their receive labels. As no user can modify

the receive labels of the I/O devices on the system, this effectively stops a process from

releasing any of its data to anything outside of the system.

2.3.3 Effective Labels

A process has some control over how its messages are sent. It is possible for a process

to send a message that is less permissive than the process’s current label. These

effective labels allow a process to use a discretionary security policy by choosing

what restrictions and privileges are associated with the message.

When sending a message, a process can provide a verification label V and a

contamination label CS. Using these, the kernel creates effective send and receive

labels:

ES = max(PS, CS), ER = min(QR, V).

These labels are then used instead of the process labels for computing the label check

and the label contamination parts of the send process. This does not violate any

security policies because these labels are all more restrictive than the process labels.

The kernel gives the receiver a copy of V , allowing the sending process to prove that

it has a label at a low level, without granting any privilege.

As an example, consider a trusted multi-user file server. This system has two

handles for each user. One handle, uI, is used for the privilege to access a user’s

resources. Another handle, uC, contaminates all user private data. A process acting

on behalf of a user would have a send label of {uI 0} and receive label set to {uC 3}.

The receive label is set to a high level so that the process can receive data that is

private to user u. Once the process has received a message containing user u private

data, its send label is {uI 0, uC 3}. This new send label prevents the process from

communicating with non-u processes, as they will have receive labels with {uC 2}.

When the file server receives a message, it checks the verify label, V , only accepting

24

the message if V (uI) ≤ 0.

Asbestos provides an additional method of restricting which messages a pro-

cess can receive by allowing additional label constraints to be placed on individual

handles. These are called handle labels and can be set by the process that receives

messages sent to that handle. The handle label restriction and the process label re-

striction are both checked before delivering a message to a handle. When a process

P sends a message to process Q over handle dest, the effective receive label is:

ER = min(QR, destR, V).

2.3.4 Ownership and Decontamination

The ⋆ level allows processes to distribute handle access and to declassify information.

A process P that has PS(h) = ⋆ can be considered to own handle h. This process then

has the ability to decontaminate data with respect to h. This decontamination can

be done in two ways. It can be done when the process receives a message. No matter

what the effective send label of the message is, P ’s send label will stay at PS(h) = ⋆.

Process P can also modify other process’s send labels with respect to h, effectively

declassifying an entire process. This is done by the sender of a message providing

two decontamination labels with each message. One label, DS, is used to lower a

processes send label and the other, DR, is used to raise its receive label. Both of

these changes add privileges to the process that receives the message, and hence they

require that the sending process have PS(h) = ⋆. More formally, once the message is

actually delivered, the kernel sets

QS ← max(min(QS, DS), ES) and

QR ← max(QR, DR),

to actually decontaminate the process Q that receives the message.

Making a process’s receive label more permissive can allow the process to become

tainted, which restricts its ability to communicate with other processes. Therefore,

25

an additional check is done before changing a process’s receive label. The kernel will

not deliver a message unless DR ≤ destR. This check allows a process to control

what changes are made to its receive label.

A process is automatically made the owner of any handle that it creates because

new_handle sets PS(h) = ⋆ when it creates a new handle. In addition, the kernel

sets the new handle’s receive label hR(h) = 0 so that only processes that have been

explicitly granted access to the new handle will be able to send messages to it. Every

call to new_handle returns a new handle that has never been used before. This

ensures that the process that creates a handle starts out as the sole owner of that

handle. To change the receive label of a handle, a process can call set_handle_label.

Also, a process can use the setlabel system call to reduce its own rights to a handle

or to allow messages sent to that handle to be delivered to another process.

These ownership, creation, and declassification primitives allows access control

and information flow systems to be built in a completely decentralized manner that

does not require global trust.

2.4 Examples

This section presents a few examples of how Asbestos labels can be used to provide

different access control policies. The fact that this primitive, the Asbestos label, can

implement such a wide variety of policies shows how powerful it is.

2.4.1 Process Isolation

This example focuses on a process P that will create a process Q that is isolated from

the rest of the system. This situation could arise when a web browser wishes to run

a game that is downloaded off of the internet.

One way of achieving this goal is by restricting Q’s send label so that it can

only send messages to P . It will still be possible for Q to receive messages from

any process in the system, but all outgoing messages must be sent to P . This is

accomplished by having P create a new handle, j, and increasing Q’s send label for

26

j to higher than the default receive label. Process P then raises its own receive label

for j so that it can receive messages from Q. Once these steps have been taken, the

processes are set up as follows:

Labels P Q Others

Send j ⋆ j 3 j 1

Receive j 3 j 3 j 2

As a different policy, P may wish to completely isolate Q by only allowing it to

send message to P and only receive messages from P . This restricts as the above pol-

icy does, but it also generates a new handle k that is used to restrict which processes

Q can receive messages from. By setting QR(k) = QS(k) = 0, Q can only receive

messages from P . The result of these operations is shown:

Labels P Q Others

Send j ⋆, k ⋆ j 3, k 0 j 1, k 1

Receive j 3, k 2 j 3, k 0 j 2, k 2

This setup means that Q can only receive messages from senders that have a send

label level for k at 0 or lower. P is the only process that has that property, so it is the

only process that can send messages to Q.

2.4.2 Multi-level security

A multi-level security (MLS) system is one where each domain is restricted by a no-

tion of current and maximum security level. In Asbestos, these domains just corre-

spond to different processes. A “maximum level” corresponds to security clearance,

and “current level” corresponds to the sensitivity level of information that the cur-

rent process has actually been exposed to. For this description, consider the security

levels of secret and top secret. The rule for message sending is that process P can

send a message to process Q if P ’s current level is less than or equal to Q’s maximum

level. MLS systems also allow for some processes to be part of the TCB1. These

processes have the ability to change their current security level at will.

1Trusted Computing Base

27

Many MLS systems are statically defined by the system that implements them.

Each secrecy level is defined, and every application that uses these secrecy levels

is restricted to using just the predefined set. Asbestos labels make it possible for

applications to define their own system with an arbitrary number of different secrecy

levels. The systems can also be virtualized such that different groups of processes can

be participating in different MLS schemes simultaneously.

This system is implemented in Asbestos by having a trusted process M that is

in charge of the MLS space. This process creates handles corresponding to each

different security level, therefore it possesses s ⋆ and t ⋆ corresponding to the secret

and top secret levels. Any other trusted services, such as a multi-level filesystem, are

granted access to these handles at the ⋆ level as well.

When a process enters the MLS system, its current level is set to unclassified, and

its maximum level is set according to what authentication that process can provide.

Once a process’s current security level is changed, it can no longer send messages to

processes that have no access to that security level. If a process S receives some secret

data in a message, that message will also have a contaminate argument that changes

S’s send label, restricting what processes it can send messages to. For instance, when

the multi-level filesystem sends a message containing secret data to process S, it also

uses the contaminate argument C, setting SS(s) = 3, resulting in the following labels:

Labels U S T

Send s1 s3 s3

Receive s2 s3 s3

If a second process T , with maximum security level “top secret,” then receives a

message from S, T will also end up with send label {s 3}, causing T to only be able

to send messages to processes with maximum security level of secret or top secret. If

top secret information is transmitted to T , then the processes will have the following

labels:

Labels U S T

Send s1, t1 s3, t1 s3, t1

Receive s2, t2 s3, t2 s3, t3

28

2.4.3 Discussion

These two examples show how powerful the Asbestos labeling mechanism is. The

one label primitive, combined with two different process labels and the concept of

ownership, can be used to implement a wide variety of access control policies in a

decentralized manner.

2.5 Implementation

When labels are visible to user processes, they are simply treated as an array of

handle-level pairs plus a default level. The kernel represents labels as array of point-

ers to internal structures that store information about each handle. Many tricks

are used to minimize memory usage, including sharing, copy-on-write, and using

low-order bits in pointers to store the level.

2.5.1 Processes

Processes in Asbestos are quite similar to processes in other operating systems. A

process has an isolated address space. The bottom 3.75GB of the virtual address

space can be used by user applications. The top 256MB is reserved for the kernel.

There is no shared writable memory. This is important because all interprocess

communication happens through message passing, and label rules can be applied. If

shared memory was allowed, that might enable a new channel of communication.

In addition to the address space, a process has a thread of execution. This is

basically a copy of all of the registers, and allows the kernel to switch between

different processes. A process also has a page fault handler address and a saved

address of an exception stack. These are just used for user-level page fault handling.

As discussed above in section 2.2, a process has a send label and a receive la-

bel, which are used for dictating whether or not the process can send and receive

messages.

Finally, a process can have a saved copy of everything listed above. This allows

29

the process to receive a message that is tainted with sensitive information, handle it,

and then restore to the untainted state. The end result is that there are essentially

many different security domains running within one process.

2.6 vm_save/vm_restore

So far, labels, and therefore domains, have only been discussed at the process granu-

larity. As demonstrated by the example of the SSHD server, there are times when one

application wishes to have many different security domains. This section presents

functionality that allows a process to have many label spaces defined within it. These

label spaces can only be accessed when the process receives a message with the cor-

rect label for accessing a label space. Checkpoint and restore methods are used to

prevent information flow between different label spaces.

2.6.1 Design

The design goal of these label spaces is to support multiple domains at a lower cost

than one process per domain. The mechanism for this design is motivated by event-

driven architectures that are used in many fast servers [12, 16, 21, 22]. These services

use a simple scheduling loop that looks like:while (1) {get_next_event();proess_event();}
The advantage of this loop is that no state is implicitly carried from one event to

the next. This is ideal for Asbestos’s design, as it should be impossible for one event

to implicitly communicate information to the next event. Note that by default, the

first tainted message that this server receives will taint the entire process, including all

future messages that the server receives. If we modified this loop to instead fork once

per iteration, and have the child handle the event, it would have the label properties

30

that we desire. However, it would not be possible for any state to be communicated

from one event to another, even if they were both tainted.

In order to allow state to be maintained from one even to another, some heap

pages can be marked as accessible only to a specific subprocess. These pages are not

accessible to other subprocesses. Any other changes to memory caused by an event

are all done copy-on-write in order to avoid communication of information to other

subprocesses.

Finally, subprocesses are defined in terms of their send label. Each page of mem-

ory is marked with the label of the subprocess that can access it. As subprocesses are

defined by their send labels, it is only possible to gain access to a one is by sending

the process a message with the correct contaminate and declassify arguments.

This functionality is implemented with the vm_save, vm_restore, and page_taint

system calls. The vm_save system call essentially checkpoints a process, saving its

register state and address space and then waiting for a message. When a message is

delivered, the page-table of the process is manipulated to mark pages copy-on-write

or normal access according to the new send label and the memory page labels. Once

the subprocess is done handling the event, it calls vm_restore, which jumps back to

the process state as of the vm_save call. Finally, a subprocess is allocated by the

untainted process by calling page_taint, which marks a page with a given label.

31

send(dest, CS,DS, V,DR, data)
Let Q be dest’s controlling process

Let ES = max(PS, CS)
Let QnewR = max(QR,DR)
Let ER = min(QnewR, destR, V)
Let Qown = owned(QS)

Requirements:
(1) ES ≤ ER

(2) DR ≤ destR

(3) If DS(h) < 3, then PS(h) = ⋆

(4) If DR(h) > ⋆, then PS(h) = ⋆

Effects:

Grant DS, contaminate with ES,
then restore owned handles

QS ← max(min(QS,DS), ES)
QS ← min(QS, Qown)
QR ← QnewR

new_handle(L)
Let h be an unused handle

Effects:
hR ← L

hR(h)← 0

PS(h)← ⋆

Return h

set_handle_label(dest, L)
Requirement:

dest was created by P

Effect:
hR ← L

Figure 2-2: Some Asbestos label operations. P is the calling process.

32

Chapter 3

Design

The core of Acetone’s design is the system call interface that applications use to

interact with the operating system. In addition, this chapter covers the design of the

virtual memory system in Acetone.

3.1 High Level Overview

Acetone expands on the original Asbestos design by adding support for shared mem-

ory between different applications and simplifying the different security domains

in the system. By reducing the number of abstractions provided, and the number

of ways that they can interact, Acetone is a simpler system than Asbestos yet still

achieves the primary goal of allowing application developers to easily define small

domains.

3.1.1 Abstractions

Acetone’s design is built on a few application-visible abstractions.

Security labels allow arbitrary security domains to be easily defined. By setting up

the appropriate labels, applications can be set up to enforce a wide variety of

security policies. Other abstractions in the system all have labels associated

with them in order to restrict access.

33

Memory pages store application data. Pages are uniquely identified by the virtual

address that they are mapped at. Each page has a label that controls what

domains can read or write to that page.

Threads run programs. Each thread has a current security label which defines the

security domain that the thread is running in. Each thread can only access

resources that are in its domain.

Call gates allow threads to transfer from one domain to another. A thread can re-

quest access to additional resources by making a request through a call gate.

Each call gate has one label that restricts which threads can access that gate,

and another label that represents the additional privileges gained by using that

gate. A gate automatically sets the program counter of the thread that uses the

gate to the entry point of the gate itself.

In this way, a gate in Acetone acts much like a handle in Asbestos because both

abstractions allow a procedure to access resources in a different domain, but

in a restricted fashion. The access to the different domain is limited because

the program counter is set to the address associated with the gate.

3.1.2 System Calls

Acetone provides system calls for each abstraction.

mem_alloc, mem_free, mem_taint - Manage memory. Described in section 3.4

new_gate - Creates a new call gate. Described in section 3.5

jump_gate, fork_gate - Allows a thread to move into a different security domain.

Described in section 3.3

exit, self_taint - Destroy or change the current thread’s label. Described in sec-

tion 3.3.

34

3.2 Unified Address Space

Acetone provides only one address space. Because all threads run in a single address

space they can easily share data. A virtual address is sufficient to uniquely identify

a page of memory. It is unnecessary to know which process or address space that

address is associated with. This one global name makes sharing easier because every

entity in the system agrees on the name of a given resource.

A possible disadvantage of using a unified address space is that the kernel can no

longer allow an application to specify an address where it wants to allocate memory.

This is not allowable because allocating memory at a specific address effectively

communicates information to every other domain, as future requests for that address

will fail. Therefore, specifying that memory should be allocated at a specific address

could only be done by a completely untainted application.

Acetone’s solution to this problem is that the kernel allocates memory at a ran-

dom address. As long as the virtual address space is large enough, this makes it

difficult to communicate any information through the availability of a given ad-

dress. However, this design means that all applications must support arbitrary load

addresses. This is desirable on any system that uses a unified address space. This

feature can be easily implemented by using PC-relative addressing or by using a dy-

namic binary loader that rewrites parts of the binary to reflect the address that it is

loaded at.

3.3 Threads

Threads are somewhat like Asbestos processes, except more lightweight. All threads

execute in the same unified address space, so it is not necessary to store a virtual

address mapping for each thread. Each thread also has a security label. This label

restricts what resources the thread can access, including memory and call gates, as

described below in section 3.4.1 and section 3.5.

For thread management, the only primitive operations are jumping to call gates,

35

terminating the current thread, and a combination of forking the current thread and

jumping to a call gate. By calling jump_gate, the current thread will enter the given

call gate. The details of this are described in section 3.5. The current thread can be

terminated at any time by calling exit. Another call, fork_gate, creates a new thread

that is a copy of the current one. This new thread then immediately jumps to the

given call gate.

It is also possible for a thread to reduce its privilege label by calling self_taint.

3.4 Memory Pages

Memory allocation has also been changed from Asbestos because a thread can no

longer specify what address it wants memory to be allocated at. The only primitive

memory allocation operations in Acetone are mem_alloc and mem_free. Allocations

are of any size and the memory will be allocated in a continuous region of virtual

address space. The address of the allocation is returned. Any thread that is allowed

to write to memory is also allowed to free that memory.

In addition to system calls for allocating and freeing memory, Acetone provides a

call that can change a label on a given page. A thread can call mem_taint only if it is

currently able to write to the page, and will also be able to read from the page after

the call is made. More precisely, if the current thread, T , with Town = owned(Tlabel)

(refer to Figure 2-1 for a review of label ownership), wishes to change a page’s label,

Plabel, to P ′

label, it must be the case that min(Town, Plabel) ≤ Tlabel and Tlabel ≤ P ′

label.

3.4.1 Memory Protection

Each page of memory has a label associated with it. This label is similar to the label

on a thread except that it cannot have any components at the ⋆ level. The ⋆ level

is disallowed because it denotes ownership, and threads are the only primitives that

can own label components. A thread, T , is allowed to read from a page of memory,

P , if Tlabel ≤ Plabel. The thread T can write to the page if it can read from the page

and min(Town, Plabel) ≤ Tlabel. The virtual memory system in Acetone provides an

36

interface that terminates any thread that makes a memory access that is not allowed

by label rules.

3.5 Gates

In Acetone, the transfer of information from one domain to another is done through

gates. A gate is identified by the address that the program counter is set to when the

gate is called. Each gate has state associated with it that enables the called domain

to safely receive information from the caller domain.

When a gate is called, Acetone grants the current thread new privileges, sets the

thread’s program counter to the gate’s address, and changes the label on the memory

containing the message so that it can be modified by the current security domain.

To create a new gate, an thread calls new_gate and gives it arguments corre-

sponding to each of following properties:void *address - The address of the gate’s handler. This address is also the name of

the gate itself. A thread must have write access to address in order to create

a gate there. This constraint prevents information from being communicated

from the availability of specific gates.label_t *minAllowed - A thread and a message must have labels that are less re-

strictive than minAllowed in order to call this gate. More explicitly:

max(Tlabel, Mlabel) ≤ HminAllowed

This property functions like the label on a page. A gate, G, is accessible to

every thread, T , where Tlabel ≤ GminAllowed.label_t *delassify - The label that is used to declassify the incoming thread and

message. This also has the effect of preventing anyone but the receiver from

modifying the message after it has been sent.bool_t newStak - A flag that indicates that a new stack should be allocated when

a thread uses this call gate. This exists solely as a performance optimization.

37

bool_t singleUse - A flag that indicates that this gate should only be used one

time. When a single-use gate is used, the thread is tainted with minAllowed
because otherwise the availability of this gate could communicate informa-

tion between two disjoint domains. Tainting with minAllowed ensures that all

threads that can call this gate have equivalent security domains, ensuring that

it is acceptable for information to be shared between them.

3.5.1 Using Gates

To send a message from one domain to another, the current thread calls

jump_gate_simple(void *gate, void *msg, size_t length).

In this case, gate is the gate that will be called, msg is a pointer to the page or pages

of memory that the message is on, and length is the length of the message, and must

be evenly divisible by the page size.

If the current thread (T) calls jump_gate_simple(G, P , 1 page), where G is a

gate and P is a page of memory containing a message, the system call executes the

following steps.

1. Check if the current thread has write access to P . If it does not, then return an

error.

2. Check if the gate is in the current thread’s domain (Tlabel ≤ GminSend). If it is

not, then return an error.

3. Tlabel ← min(Tlabel, Gdeclassify).

4. Plabel ← min(Plabel, Gdeclassify).

5. Tprogram counter ← G.

The other registers (including the ones that contain the message and length) are

left alone, allowing some data to be passed through the call gate in the registers

themselves.

38

3.5.2 Message Sending

A common use of call gates is for sending messages between domains. In this case,

it is common for a thread in one domain to send a message to another domain,

and for that domain to eventually send a reply message back. The more general

jump_gate system call is set up to help in this common case. This call is much like

jump_gate_simple, except that it optionally creates a reply gate, and calls self_taint

in order to restrict what privileges are usable by the code associated with the gate.

The system call is:

jump_gate(void *gate, void *msg, size_t length, label_t taint, bool_t withReply)

This call performs the following steps.

1. If a reply gate is requested, Acetone creates a single use reply gate that has the

same program counter and stack pointer as the thread that called jump_gate.

2. self_taint(taint)
3. jump_gate_simple(gate, msg, length)

3.6 Hardware Support for Memory Protection

As described above in section 3.4.1, Acetone must ensure that every memory ref-

erence obeys label rules. As actually checking the label rules for a given address is

quite expensive, it is desirable to cache the results of these checks. If these cached

results are stored in a standard x86 page directory, it is possible to use the CPU’s

default memory protection mechanisms to check memory accesses against the cache

of currently accessible addresses.

To actually check the label access rules, the kernel must store information about

memory. For each page of virtual memory, the kernel must be able to determine if

that page is mapped, what physical page it maps to, and the label of that page. This

state is stored in two different structures. The first is the ppage array, which has one

entry for each physical page of memory. This structure keeps the label of each page,

39

and a list of free physical pages. The second structure is a mapping from virtual page

to physical page. This is saved in an x86 page directory and page tables.

The sections below describe algorithms to implement memory protection using

x86 hardware. On x86, the page table structures keep track of both address trans-

lation and memory protection. For Acetone, the address translation is the same for

every thread; only the address protection must frequently change. Because of this,

these sections refer to the x86 hardware as having a current virtual protection space

rather than virtual address space. This protection space is defined by the permission

bits on the page table entries.

3.6.1 Simple and Slow

A simple algorithm that likely results in bad, but not unreasonable, performance

is one that simply caches the results of label checks and flushes the cache whenever

these cached results might no longer be valid. When an instruction attempts to access

memory that is not currently in these cached results, the processor generates a page

fault exception. The kernel handles this exception by terminating the current thread

or adding a page of memory to the current protection space.

Initially, the entire protection space is set up to have no permissions. When a

page fault occurs, the kernel page fault handler checks the label of the current thread

and the label of the page of memory, and adds permission bits corresponding to that

page if the access is valid. Whenever the currently executing label becomes more

restrictive, all permissions to the virtual protection space are removed, resetting the

system to its initial state.

This algorithm results in many unnecessary page faults. For instance, any time

the processor switches threads, it is likely that the new thread’s label will not be

strictly more permissive than the previous thread’s label. This implies that after

almost every thread switch, all page tables need to be cleared and there will be a

sequence of page faults. However, this simple design is still a dramatic improvement

over checking every memory operation.

40

3.6.2 Reducing Page Faults

The performance flaw with the simple design is that it must recompute the same label

check for the same page if the scheduler switched threads momentarily. It is possible

to improve upon the above algorithm by keeping multiple cached virtual protection

spaces.

The basic idea behind this algorithm is that the kernel keeps a mapping from la-

bels to cached virtual protection spaces. Each virtual protection space is guaranteed

to have no more rights than are specified by the label that maps to it. When a thread

is scheduled to run at a given label, the kernel sets the processor’s protection space to

the cached protection space associated with that label. If no cached protection space

is found, then a new one is created.

When a page fault occurs, the label of the faulting address is compared against the

current thread’s label. If the access should be allowed, the current virtual protection

space is updated.

Once there are multiple virtual protection spaces, it becomes necessary to keep

track of which spaces allow access to a given page so that when the page is un-

mapped, it can safely be removed from all of the cached protection spaces.

For each page, a list of cached protection spaces containing it is maintained.

When the page is freed, this list is traversed and the page is removed from every

cached protection space. This maintains the invariant that every protection space

only has access to pages that are allowed to be accessed by the label associated with

that address space.

3.6.3 Decreasing Creation Costs

A weakness with this design is that it is expensive to create new domains. Every time

that a new label is used, a completely new protection space must be created. Each

protection space will take up at least a few pages of memory, and the time spent

initializing them can be significant.

The creation cost of new domains can be decreased by allowing a second kind of

41

protection space. The new kind of protection space, called a sub-protection space,

is a structure that contains a pointer to another protection space, called the parent

protection space, and a list of additional memory privileges. A sub-protection space’s

label is always less than its parent’s label.

As in the simple algorithm above, when a page fault occurs, the kernel checks to

see if the current thread has the necessary rights to access that memory. If it does,

then the kernel updates the current protection space to include the new permissions.

Once a sub-protection space’s list of changes grows past a certain size, the structure

is replaced by a full protection space.

When the kernel switches to a sub-protection space, it switches to the parent

protection space and then applies the list of additional permissions to it. When

switching away from this protection space, it removes the additional permissions.

When a page fault occurs, the kernel first checks if the label rules allow the kernel to

add the mapping to the parent protection space. If it cannot be added to the parent

space, the kernel checks the label rules for the current protection space.

3.6.4 Finding Parent Protection Spaces

When creating a new protection space, it is desirable to find a suitable parent pro-

tection space. A protection space P can be a parent for a new protection space N if

Nlabel ≤ Plabel. If no suitable space can be found, the empty protection space can be

used, however this will likely result in many page faults. Acetone keeps one cached

protection space for each gate and each currently running thread. When a thread

changes its label or uses a call gate, these cached protection spaces are checked to see

if they can be used as a parent for the new protection space. It is possible that using

a more sophisticated cache could be beneficial; this is discussed in Section 6.1.2.

42

Chapter 4

Evaluation

This chapter evaluates the Acetone design both as a stand-alone design and in com-

parison to the original Asbestos design. First, it makes an argument about the sim-

plicity, and therefore security, of Acetone as compared to Asbestos. Second, a covert

channel analysis of Acetone is presented. Finally, actual performance results from

different memory protection schemes are presented.

4.1 Simplicity

Acetone attempts to use the fewest and least complex abstractions possible in order

to allow application developers to easily use the principle of least privilege.

In Asbestos, the procedure to set up, use, and deallocate a subprocess is as fol-

lows:

1. First, the server must be running in a vm_save/vm_restore loop listening for

messages.

2. To start a new connection, the server must receive an untainted message that

informs the server that a tainted connection will be arriving soon.

3. In response to this message, the server allocates a virtual address space range

with page_taint for the tainted connection. Allocating this range sets up a

subprocess that the server cannot directly access.

43

4. The connection is now used by sending messages with the appropriate labels

to the server, and the server can respond to each message and call vm_restore

in order to prepare to receive other messages.

5. Once the connection has finished, another untainted message must be sent to

the server saying that the connection has closed. The timing of this message

is a communication channel between the tainted connection and the untainted

subprocess in the server, so it is generally sent a random amount of time after

the connection closes in order to minimize the amount of information leaked.

6. Once this message has been received, the server frees the virtual address space

range with page_taint.

This entire procedure places many requirements on the client that interacts with the

server, involving both tainted and untainted messages.

In Acetone, the above situation is simplified because no untainted messages are

required, and it is not necessary to preallocate resources for a new subprocess. This

simplification is possible because memory allocations happen at random addresses

and therefore do not communicate information. In Acetone, steps 2, 3, and 5 are

not required. In addition, step 6 is a bit more natural in Acetone’s design because a

special system call is no longer necessary. Freeing of a tainted connection’s data can

be done with the standard mem_free.

Another simplification is that in Acetone it is not necessary to have a separate

process send messages with appropriate labels in order to communicate with sub-

processes. As gates can have privileges associated with them, all of these features

can be implemented with gates and threads, so all parts of a server can be imple-

mented in one binary.

Another advantage provided by the Acetone messaging system is that there is no

kernel buffering of messages. The only memory resources managed in the kernel

are execution contexts, gates, security labels, and pages of memory. In Asbestos, the

kernel also has to manage arbitrarily sized messages for an arbitrary amount of time.

This is difficult for accounting because the memory is not technically under control

44

of either process. By removing this case, it should be easier to implement a resource

accounting system, as discussed in Section 6.1.1.

The last argument for Acetone’s improved simplicity is that it allows for shared

memory. This does not actually make the operating system kernel any more simple,

but it does allow some application code to be simplified because it is not necessary

to transmit all information in carefully constructed messages. This argument is not

conclusive though, as shared memory can also be bad for security. It is more likely

that malicious code can cause damage to another module if the modules share a

memory region than it is if the modules can only send messages to each other.

4.2 Covert Channels

All communication channels that are not explicitly allowed by label rules are based

on resource starvation. It is theoretically possible for two threads to communicate

by controlling the availability of physical memory, virtual address space, CPU time,

network access, or any other resource that both threads have access to. Many of

these channels could become much less threatening if resource accounting was used,

as discussed in Section 6.1.1.

Asbestos provides direct timing channels because a process can only handle one

message at a time. Essentially, information can be communicated by the precise time

that a process calls vm_restore. In Acetone, this is impossible because a different

thread handles each request concurrently. This could make synchronization for the

server difficult, and in some cases it may be necessary to reintroduce that timing

channel by adding a trusted lock server that must be granted access to each label

component. However, in the common case, where each request is executed in a

thread that runs in an independent security domain, the requests can actually be

executed in parallel, and this timing channel is not necessary.

45

4.3 Performance

Acetone is implemented for common x86 hardware. First, this section discusses

some difficulties in using x86 paging mechanisms for applying Acetone’s memory

protection. Then performance results from Acetone running on real hardware are

presented and discussed.

4.3.1 Hardware Paging

It is clear that the x86 page protection and translation mechanisms are not ideal for

Acetone. On x86 platforms, both page translation and protection are done with the

same mechanism. Ideally, there would be two separate mechanisms for these two

features. Acetone would fully take advantage of this because it would have just one

address translation structure that could be used by all execution contexts. There

would only be separate address protection structures for each individual execution

context.

In addition, the hierarchical page table mechanism in the x86 architecture is not

ideal for a sparsely filled address space. As allocations tend not be close together in

the virtual address space, each memory allocation often requires a new page table

to be allocated and used. This effect can be mitigated by allocating larger regions of

memory at one time, or by reducing the randomness of memory allocations.

4.3.2 Method of Testing

In order to evaluate the different memory system implementations, a few different

microbenchmarks are run. These microbenchmarks analyze the cost of both creation

of new security domains and the cost of switching between them. The hypothesis is

that by caching protection domains and using sub-protection spaces discussed in

Section 3.6.3, it is possible to have minimal overhead from creating, maintaining,

and enforcing protection domains.

The first microbenchmark just sends a message (a page of memory) back-and-

forth between two non-overlapping security domains. There is only one thread in

46

this test, and it simply calls a gate that is in the other domain, and creates a reply

gate to be used to return. An analogous test on a UNIX system is to use pipes to

send a byte of information back-and-forth between two processes.

The second microbenchmark measures the cost of creating a new domain, en-

tering it, and returning from it. This test is analogous to a server running code on

behalf of a user that it has never seen before. It creates a new label component, calls

a gate in a different domain, providing the new label component as a taint argu-

ment. This new domain has the privileges granted by the call gate, but still has the

restriction imposed by this taint argument. The new domain reads authorized data,

writes data to a reply message, and then returns through the reply gate. The UNIX

version of this test calls fork on every iteration and the child receives a request from

and responds to the parent.

The tests were each run in three different configurations. The first was on a

version of Acetone with the very simple memory protection scheme discussed in Sec-

tion 3.6.1. The second run was on Acetone with the optimized memory protection

scheme discussed in Section 3.6.3. The last test was run on a machine running Linux

2.6.9. The tests of Acetone were run on an AMD 1500+ with 64MB RAM. The

Linux tests were run on a Pentium M 1.3GHz with 512MB RAM. None of the tests

are memory constrained, and the two different processors have similar performance

characteristics.

4.3.3 Results

The results from these tests are shown in Figure 4-1. For the ping-pong test, each

domain accesses the stack, the executable code, and the message. There are never

any page faults caused by the message, because the send procedure ensures that it is

already in the cached protection space. The simple protection mechanism therefore

takes two page faults each time that a gate is used, one for the stack, and one for the

executable code. This gives four page faults per iteration because each iteration uses

an entry call gate and a return call gate. The simple protection implementation is so

slow overall because of the large amount of time spent clearing out protection do-

47

Test Protection Mechanism Time Page Faults

ping-pong simple 31.9 µs 4
ping-pong optimized 5.5 µs 0
new-domain simple 30.1 µs 3
new-domain optimized 6.3 µs 1

ping-pong linux 4.0 µs 0
new-domain linux 100.0 µs 1

Figure 4-1: Microbenchmark results running with both the simple memory protec-
tion mechanism and the more optimized implementation on an AMD 1500+ proces-
sor with 64MB RAM. Similar tests were also run on a 1.3GHz Pentium-M machine
running Linux 2.6.9. The ping-pong test sent a message to an existing domain and
waited for that domain to reply. The new-domain test is similar, except that each
message is sent to a completely new domain. Each test was run 100 times and the
results were averaged.

mains. The optimized protection implementation takes no page faults in steady state

because it caches protection domains for both reply gates. Its overall performance is

much higher than the simple protection scheme in the ping-pong test because it does

not need to create new protection domain structures and does not take any page

faults. The optimized scheme has very similar performance to Linux.

For the new-domain test, the simple protection scheme takes one fewer page fault

per iteration because a new stack is being mapped for the new domain each time as

part of the send call. The optimized protection scheme takes one page fault per

iteration when accessing the executable code in the new domain. This fault occurs

because this new sub-protection domain’s parent is the null domain, and the sub-

protection domain contains only the message and the newly allocated stack. The

performance is still quite high for the optimized implementation because creating

a new domain is easy: it is only necessary to allocate a small structure that stores

the difference between an empty domain and the new domain, rather than storing a

complete page directory. For Linux, the performance on this test is much slower as

calling fork is an expensive operation.

48

Chapter 5

Related Work

Acetone is based on the Asbestos [14] operating system. Asbestos labels, applying

labels to pages of memory, and the implementation of capabilities as label compo-

nents are all ideas that Acetone took from Asbestos. In addition, most of the related

work in [11] is relevant to this thesis as well.

Opal [3] is a single address space operating system similar to Acetone. The princi-

ple difference is that Opal defines a domain in terms of a list of capabilities, whereas

Acetone uses Asbestos labels to define domains. Looking into optimizations and

application design used in Opal could be valuable for Acetone’s future progress.

Inferno [4] is an operating system that bases protection off of language level

features instead of hardware protection. Like Acetone, all code is executed in a

single address space. Inferno has the limitation that all code must be written in a

specific type safe language. Singularity [7] is a recent operating system that also runs

in a single address space and uses type safe languages to enforce protection.

The work in Paradigm Regained [20] shows that standard access control policies

can be implemented on top of a capabilities based system. Asbestos labels, and

therefore Acetone, implement some of these ideas.

Asbestos is similar to KeyKOS [6] and EROS [19]. The main difference is the use

of Asbestos labels instead of basic capabilities in order to implement security policies.

In addition, KeyKOS and EROS both put considerable effort into being persistent

systems where everything can be checkpointed to disk. Asbestos and Acetone make

49

no effort to do this.

Gates in Acetone can be thought of as capabilities. Some believe that a capa-

bility system cannot implement mandatory access control policies [2]. This is not

necessarily true, as long as other policies can be used to control the transmission of

capabilities. Systems such as KeyKOS [10] and EROS [18] achieve mandatory ac-

cess control policies by isolating processes into compartments and ensuring that any

cross-compartment capability obeyed the mandatory access control guidelines.

Many systems have combined capabilities with extra checks on the use of capa-

bilities. Systems have been built that use interposition [8], labels [9], and authority

checks [1]. Acetone combines capabilities with decentralized labels.

50

Chapter 6

Future Work and Summary

6.1 Future Work

6.1.1 Accounting

One difficult challenge in operating system design is accounting for resource us-

age. Ideally, it should be possible to implement a resource allocation policy that can

limit resource usage on a per application or per user level. Generally, resources that

should be accountable include I/O resources such as network or disk, memory, and

CPU time. The current Acetone design does not have any support for any sort of

accounting. This is an area for future work.

The original Asbestos design also had little support for accounting. However, it

did have distinct processes, which made it possible to kill certain applications after

they had been started. It seems likely that the same features could be made available

in Acetone if applications were given a certain label when they were started. This

label would need to be shown to the system in order to allocate any resources. It

would then be possible for a privileged program such as kill to find and free all

resources that were allocated using that label. This approach is preliminary though,

and requires a much more complete design.

51

6.1.2 Memory Protection Space Selection

The algorithm discussed in Section 3.6.3 does not ideally select cached protection

spaces. In the case of specific tainting labels, for instance a label that taints data as

being private to a specific user, this algorithm will not find a cached protection space,

and will have to default to creating a new, fully restricted one. There are possibilities

to improve both the selection process and the cache usage policies.

6.2 Summary

Acetone provides a simple interface for using Asbestos labels to implement security

protection. Using very few abstractions, labels, threads, memory pages, and call

gates, Acetone provides an interface that allows secure applications to be designed

and implemented. The performance results from microbenchmarks show that Ace-

tone can perform well and is a promising architecture.

52

Bibliography

[1] Viktors Berstis. Security and protection of data in the IBM system/38. In

Proceedings of the 7th Symposium on Computer Architecture, pages 245–252,

May 1980.

[2] William Earl Boebert. On the inability of an unmodified capability machine to

enforce the *-property. In Proceedings of the 7th DoD/NBS Computer Security

Conference, pages 291–293, September 1984.

[3] Jeff Chase, Miche Baker-Harvey, Hank Levy, and Ed Lazowska. Opal: A sin-

gle address space system for 64-bit architectures. SIGOPS Oper. Syst. Rev.,

26(2):9, 1992.

[4] Sean Dorward, Rob Pike, David Leo Presotto, Dennis Ritchie, Howard Trickey,

and Phil Winterbottom. Inferno. In Proceedings of the IEEE Compcon 97

Conference, pages 241–244, San Jose, 1997.

[5] Timothy Fraser. LOMAC: Low water-mark integrity protection for COTS en-

vironments. In Proceedings of the 2000 IEEE Symposium on Security and

Privacy, pages 230–245, Oakland, CA, May 2000.

[6] Norman Hardy. Keykos architecture. SIGOPS Oper. Syst. Rev., 19(4):8–25,

1985.

[7] Galen Hunt, James Larus, David Tarditi, and Ted Wobber. Broad new os re-

search: Challenges and opportunities. In To appear in Proceedings of the 10th

53

Workshop on Hot Topics in Operation Systems, Santa Fe, NM, June 2005.

USENIX.

[8] Paul A. Karger. Limiting the damage potential of discretionary trojan horses.

In Proceedings of the 1987 IEEE Symposium on Security and Privacy, pages

32–37, Oakland, CA, April 1987.

[9] Paul A. Karger and Andrew J. Herbert. An augmented capability architecture

to support lattice security and traceability of access. In Proceedings of the 1984

IEEE Symposium on Security and Privacy, pages 2–12, Oakland, CA, April–

May 1984.

[10] Key Logic. The KeyKOS/KeySAFE System Design, sec009-01 edition, March

1989. http://www.agoris.om/Library/KeyKos/keysafe/Keysafe.html.

[11] Max Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler,

David Mazières, Robert Morris, Steve VanDeBogart, and David Ziegler. Make

least privilege a right (not a privilege). In Proceedings of the 10th Workshop

on Hot Topics in Operating Systems, June 2005.

[12] Maxwell Krohn. Building secure high-performance web services with OKWS.

In Proceedings of the 2004 USENIX, Boston, MA, June 2004. USENIX.

[13] Carl E. Landwehr. Formal models for computer security. Computing Survels,

13(3):247–278, September 1981.

[14] David Mazières, Frans Kaashoek, Eddie Kohler, and Robert Morris. Securing

untrusted software with Asbestos. April 2004.

[15] M. Douglas McIlroy and James A. Reeds. Multilevel security in the UNIX

tradition. Software—Practice and Experience, 22(8):673–694, 1992.

[16] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and

portable Web server. In Proceedings of the 1999 USENIX, pages 199–212.

USENIX, June 1999.

54

[17] Jerome H. Saltzer and Michael D. Schroeder. The protection of information

in computer systems. Proceedings of the IEEE, 63(9):1278–1308, September

1975.

[18] Jonathan S. Shapiro, Jonathan Smith, and David J. Farber. EROS: a fast ca-

pability system. In Proc. Symposium on Operating Systems Principles, pages

170–185, 1999.

[19] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast

capability system. In Proc. Symposium on Operating Systems Principles, pages

170–185, 1999.

[20] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse. Using sparse capabilities

in a distributed operating system. In Proceedings of the 6th International Con-

ference on Distributed Computing Systems (ICDCS), pages 558–563, Wash-

ington, DC, 1986. IEEE Computer Society.

[21] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric

Brewer. Capriccio: Scalable threads for Internet services. In Proceedings of

the 19th ACM Symposium on Operating Systems Principles, pages 268–281,

Bolton Landing, NY, October 2003. ACM.

[22] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-

conditioned, scalable Internet services. In Proceedings of the 18th ACM Sympo-

sium on Operating Systems Principles, pages 230–243, Chateau Lake Louise,

Banff, Canada, October 2001. ACM.

55

