
CoqIOA: A Formalization of IO Automata in the
Coq Proof Assistant

by

Anish Athalye
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Anish Athalye, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2017
Certified by. .

M. Frans Kaashoek
Charles Piper Professor

Thesis Supervisor
Certified by. .

Nickolai Zeldovich
Associate Professor

Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

CoqIOA: A Formalization of IO Automata in the Coq Proof

Assistant

by

Anish Athalye

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Implementing distributed systems correctly is difficult. Designing correct distributed
systems protocols is challenging because designs must account for concurrent oper-
ation and handle network and machine failures. Implementing these protocols is
challenging as well: it is difficult to avoid subtle bugs in implementations of complex
protocols. Formal verification is a promising approach to ensuring distributed systems
are free of bugs, but verification is challenging and time-consuming. Unfortunately,
current approaches to mechanically verifying distributed systems in proof assistants
using deductive verification do not allow for modular reasoning, which could greatly
reduce the effort required to implement verified distributed systems by enabling reuse
of code and proofs.

This thesis presents CoqIOA, a framework for reasoning about distributed sys-
tems in a compositional way. CoqIOA builds on the theory of input/output au-
tomata to support specification, proof, and composition of systems within the proof
assistant. The framework’s implementation of the theory of IO automata, including
refinement, simulation relations, and composition, are all machine-checked in the Coq
proof assistant. An evaluation of CoqIOA demonstrates that the framework enables
compositional reasoning about distributed systems within the proof assistant.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor

3

4

Acknowledgments

I am deeply grateful to Frans Kaashoek and Nickolai Zeldovich, who I have been

lucky to know since the end of my high school years, for being my mentors and

helping me explore my research interests. I would not have been pursuing academic

research were it not for their support and the welcoming environment of the Parallel

and Distributed Operating Systems group.

I also owe thanks to Frans and Nickolai for their endless guidance, technical in-

sights, and encouragement on the matter of this thesis.

Finally, I thank my parents and my brother, who provide unconditional love and

support in everything I do.

5

6

Contents

1 Introduction 13

1.1 Implementing correct systems . 13

1.2 Problem and goal . 14

1.3 Approach . 17

1.4 Challenges . 18

1.5 Thesis contributions . 18

1.6 Thesis outline . 19

2 Related Work 21

2.1 Distributed systems verification . 21

2.1.1 Paper proofs . 21

2.1.2 Model checking . 22

2.1.3 Deductive verification . 22

2.2 Input/output automata . 23

2.2.1 Theorem proving . 24

3 Design 25

3.1 Input/output automata . 25

3.2 Execution . 28

3.3 Composition . 29

3.4 Proof techniques . 30

3.4.1 Simulation . 30

3.4.2 Composition theorems . 31

7

4 Implementation 33

5 Evaluation 35

5.1 Specification . 35

5.2 Implementation . 36

5.2.1 Channels . 36

5.2.2 Client-server key-value store 42

5.2.3 System . 42

5.3 Effort . 45

5.4 Discussion . 45

6 Future Work 47

7 Conclusion 49

8

List of Figures

1-1 Booking agent system implementation. 15

1-2 Booking agent building on specifications. 16

3-1 Encoding of input/output automata in Coq. 26

3-2 A lossy FIFO channel automaton. 26

3-3 Coq implementation of a lossy FIFO channel automaton. 27

3-4 Statement of the forward simulation theorem in Coq. 31

3-5 Statement of the commutativity of composition theorem in Coq. . . . 32

3-6 Statement of the substitution in composition theorem in Coq. 32

5-1 Key-value store API. 36

5-2 Key-value store specification in Coq. 37

5-3 Client-server key-value store implementation over reordering channels. 38

5-4 Coq code for reliable and reordering channels. 39

5-5 Components comprising the mediated reordering channel. 40

5-6 Coq code for send and receive mediators. 41

5-7 Composition of components of a mediated reordering channel in Coq. 43

5-8 Hiding internal details using the rename operator. 44

5-9 Client-server key-value store implementation over reliable channels. . 44

9

10

List of Tables

4.1 Lines of code in CoqIOA. 33

5.1 Lines of code in the key-value store implementation. 45

11

12

Chapter 1

Introduction

Implementing distributed systems correctly is difficult. Designing protocols for dis-

tributed systems is challenging because designs must account for concurrent operation

and handle network and machine failures. Furthermore, because distributed systems

protocols are complicated, it is difficult to avoid subtle bugs in implementations of

these protocols.

Production systems under wide use have had subtle correctness bugs. For example,

testing has revealed correctness bugs in releases of popular systems such as Cassandra,

Consul, ElasticSearch, etcd, Kafka, MongoDB, and others [1].

1.1 Implementing correct systems

Unfortunately, tracking down correctness bugs in distributed systems through testing

is time-consuming, and furthermore, it is incomplete. No amount of software testing

is enough to provably eliminate bugs. Testing is especially hard with distributed

systems, where concurrency makes it difficult to catch bugs in tests, even when using

fault injection frameworks to simulate network and machine failures. Formal methods

provide a much more rigorous means of building high-assurance systems.

Bounded model checking is one approach to verifying designs: given a model

of a system, model checkers can exhaustively verify that certain desired properties

hold. Systems designers have used model checking to mechanically verify fundamen-

13

tal distributed systems protocols such as the Paxos consensus protocol [2, 3]. A

lightweight means of checking correctness, model checking has also seen success out-

side of academia. For example, Amazon has successfully used model checking to find

bugs and verify optimizations in production systems [4].

Approaches using modeling tools are limited due to the limited power of bounded

model checking, failing to scale to systems with large or infinite state spaces. Fur-

thermore, relying only on model checking leads to a formality gap: even if a design

has been proven correct, the implementation could still be buggy. Often, bugs in

production implementations are results of a buggy implementation of a protocol that

has been proven correct on paper or using model checking [1].

Deductive verification is a complete approach to verifying both the design and im-

plementation of a distributed system. It provides a machine-checkable proof that code

satisfies the specification and is free of bugs. Theory and tools have advanced in recent

years, and researchers have succeeded in building provably correct implementations

of realistic distributed systems such as Raft [5] on top of the Verdi framework [6] and

a replicated state machine and sharded key-value store using the IronFleet method-

ology [7].

1.2 Problem and goal

Prior work in verifying realistic distributed systems represents impressive engineering

effort. Unfortunately, there is no straightforward way to reuse this work in building

new verified systems, because prior work is not designed for compositional reasoning.

We define compositional reasoning as follows. With an approach to verification

that supports compositional reasoning, we should be able to build an implementation

on top of specifications of underlying components, prove the system correct with

respect to the specifications, and then replace the underlying specifications with their

implementations to produce a final system such that we preserve correctness. For

example, consider the toy system in Figure 1-1: there is a booking agent, a hotel

service, and an airline service, and the booking agent acts as a transaction coordinator

14

Hotel Service Implementation Airline Service Implementation

Booking Agent

Figure 1-1: An example of a system with logically separate components: a book-
ing agent communicating with a hotel service implementation and an airline service
implementation. The booking agent acts as a transaction coordinator to atomically
book tickets for both services.

to atomically buy tickets from both the hotel service and the airline service. In

the example, both the hotel service and airline service are implemented by complex

distributed systems. To build and verify the overall system in a compositional way,

we would first write specifications for the hotel and airline services, and we would

prove that the implementations satisfy the specifications. Then, we would implement

and verify the booking agent with respect to the service specifications, as in Figure 1-

2. Finally, we would replace the service specifications with their implementations to

produce the final verified system while preserving correctness.

We need compositional reasoning to make verified distributed systems practical,

because compositional reasoning enables us to structure code and proofs to manage

complexity and reduce programming effort. With regular non-verified distributed

systems, programmers organize code into modules, and programmers often make use

of external libraries implementing lower-level protocols. For example, CockroachDB,

15

Booking Agent

Hotel Service Spec Airline Service Spec

Figure 1-2: The booking agent system building on specifications of the hotel ser-
vice and the airline service, demonstrating an implementation depending on multiple
specifications.

Dgraph, TiKV, and etcd all use CoreOS’s well-built and thoroughly tested Raft im-

plementation [8, 9] for distributed consensus. In a similar manner, we need to be

able to build up a library of verified components to decrease the burden of building

verified distributed systems.

Our goal is to develop a system that enables building reusable modules that are

independently verifiable in such a way that reasoning about layering and composition

of modules reuses proofs of correctness of individual components. Analogous to the

previous real-world example, we would want to enable building a verified Raft library

such that we can verify an implementation of a distributed key-value store using only

the specification of the Raft library, but still have an end-to-end correctness guarantee

for the implementation of the system using the Raft implementation. In the general

case, we want to be able to build higher-level components of distributed systems

relying only on specifications of lower-level components while producing end-to-end

correctness guarantees for system implementations.

Prior work does not support this kind of compositional reasoning. The IronFleet

methodology [7] of layered refinement allows for building monolithic distributed sys-

tems. The approach does not support composition. Verdi [6] supports a limited form

16

of vertical composition through verified system transformers, but Verdi does not have

a way for a system to build on top of multiple dependencies. We describe prior work

in more detail in Chapter 2.

1.3 Approach

We base our approach on the theory of input/output automata [10], a formal model

for reasoning about asynchronous concurrent systems, to reason about distributed

systems. The IO automata model is a good theory for reasoning about distributed

systems because it enables compositional reasoning.

An IO automaton models a component in a distributed system as a state machine

equipped with a transition relation, where transitions are associated with named

actions. Actions are classified into one of three types: input, output, or internal. Au-

tomata communicate through input and output actions: in a composition, automata

responding to the same named action step together synchronously.

Systems are specified as automata, with the behavior of an automaton defined as

the set of externally visible execution traces. Implementations are shown to refine

specifications by proving that the behavior of the implementation is a subset of the

behavior of the specification. Automata in compositions can be substituted with

others that refine the original automata, so that the resultant composition refines the

original composition. This works even with multiple dependencies as in Figure 1-2:

an implementation can build on multiple specifications, and each specification can be

swapped for its implementation while preserving correctness. This is what enables

compositional reasoning.

We formalize a theory based on IO automata in a proof assistant to enable

machine-checked formal reasoning about distributed systems in a compositional way.

17

1.4 Challenges

Prior work has explored reasoning about IO automata within a proof assistant, but

the approaches do not support proper compositional reasoning. Work by Bogdanov,

which formalizes IO automata in the Larch Prover [11], does not support automata

composition at all. Work by Lim implements a translation from a timed IO automata

specification language to the PVS prover [12], but it handles compositions in the

specification language by recursively inlining the composed automata into a single

automaton in PVS, precluding reasoning about individual automata separately from

the composition. Work by Nipkow and Slind formalizes IO automata in Isabelle/HOL

and supports composition, but it requires that the programmer declare the entire set of

possible actions used in a development ahead of time, making compositional reasoning

impossible without deciding a priori all the automata that will be composed.

Our main challenge was formalizing IO automata within a proof assistant in a

way such that we could perform composition within the proof assistant itself, so that

we could separately reason about individual automata within a composition. With

our formalization, we can prove high-level theorems about composition such as “if

automaton 𝐴′ refines automaton 𝐴, then the composition of 𝐴′ with 𝐵 refines the

composition of 𝐴 with 𝐵”. These theorems are key to compositional reasoning within

the proof assistant.

1.5 Thesis contributions

The main contribution of this thesis is a methodology for compositional reasoning

about distributed systems in a proof assistant as well as CoqIOA, an implementation

of this methodology in the Coq proof assistant [14]. Specifically, the contributions of

this thesis are as follows:

1. We formalize input/output automata in the Coq proof assistant, supporting

specification, proof, and composition within the proof assistant.

2. We provide machine-checked proofs of the theory of IO automata, including

18

refinement, simulation relations, and composition.

3. We evaluate the effectiveness of our system in enabling compositional reasoning

through a case study of a toy system.

Our current implementation has several limitations. While IO automata theory

enables reasoning about both safety and liveness, we reason only about safety. Also,

we do not extract executable code from our automata implementations in Coq. Nei-

ther of these limitations are inherent, and we aim to address them in future work.

1.6 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 discusses related work on

distributed systems verification and IO automata. Chapters 3 and 4 describe our

system design and formalization in the Coq proof assistant. Chapter 5 evaluates our

approach through an example implementation of a toy system. Chapter 6 discusses

the limitations of our current work and describes future research directions. Chapter 7

concludes.

19

20

Chapter 2

Related Work

CoqIOA builds on work done in distributed systems verification and input/output

automata.

2.1 Distributed systems verification

Prior work in distributed systems verification applies paper proofs, model checking,

and deductive verification to prove designs and implementations correct. The ap-

proaches trade off between ease of verification and level of rigor.

2.1.1 Paper proofs

Works describing distributed systems protocols often contain correctness proofs with

varying degrees of formality. The original Paxos paper includes a paper proof of

correctness [2]. The Raft consensus protocol has a formal specification written in

TLA+, along with a paper proof of correctness [15]. Chord includes paper proofs of

correctness as well as probabilistic bounds [16].

Paper proofs are a first step to verifying the correctness of protocols, but paper

proofs can contain errors, and paper proofs do not verify implementations.

21

2.1.2 Model checking

Model checking is an approach to mechanically verifying designs. Model checkers

work by exhaustively enumerating the state space of a model of a system to verify

that desired properties of the model always hold. Model checking has been successful

in verifying distributed systems protocols [3, 17] and practical systems designs [4].

Model checking has fundamental limitations: exhaustive enumeration does not

scale to complicated specifications due to combinatorial explosion, so model checking

is unusable for verifying real systems.

2.1.3 Deductive verification

Deductive verification uses theorem-proving software to produce machine-checkable

proofs of correctness. Writing machine-checkable proofs involves considerable effort

compared to using a model checker, but the approach scales to real systems, and de-

ductive verification allows for proving complex properties of systems. In recent years,

researchers have succeeded in applying verification to realistic distributed systems.

IronFleet is a methodology for proving practical distributed systems correct [7].

The authors use IronFleet to prove correct a sharded key-value store and IronRSL, a

complex Paxos-based replicated state machine library, illustrating that the methodol-

ogy scales to realistic systems. The approach involves verification in layers: describe a

distributed system in a high-level specification, show that it is refined by a distributed

protocol, and show that the protocol is refined by an implementation. IronFleet uses

TLA-style verification to show a refinement between the protocol layer and the high-

level specification, and it uses Hoare logic [18] to show a refinement between the

implementation layer and the protocol layer. IronFleet supports building monolithic

systems, but it does not support compositional reasoning: the approach does not

include a method to build systems on top of already verified implementations. For

example, there is no direct way to use the framework to prove a distributed system

implementation correct on top of the IronRSL specification.

Verdi is a framework for formally verifying distributed systems [6]. Verdi models

22

multiple forms of network semantics and failure modes of distributed systems, allowing

the programmer to design a system for any given model. Verdi introduces the idea

of verified system transformers, a mechanism that transforms a system designed for

one model to an implementation suitable for another, preserving all properties of the

original system. Verified system transformers enable programmers to write and verify

an implementation in a simplified model and then transform their implementation to

work in a more realistic setting. The authors implement and verify the Raft consensus

protocol as a verified system transformer [5], allowing an application programmer to

implement and verify a replicated state machine by verifying a state machine for

the single-machine case and then using the verified transformer to produce a verified

replicated state machine from the single-machine implementation. Verdi offers a

more compositional approach than IronFleet. Verified system transformers can be

viewed as a limited form of composition, allowing implementations built for a simple

network and machine model to have a single dependency on a protocol designed

to make systems work with more realistic network and machine semantics. Verdi’s

composition is not general-purpose, however. For example, Verdi does not support

multiple dependencies in a natural way: we cannot use Verdi to verify the system in

Figure 1-1 in a compositional way.

2.2 Input/output automata

CoqIOA builds on the theory of input/output automata [10], a formal model for rea-

soning about asynchronous concurrent systems. We discuss the IO automata model

in detail in Chapter 3. System designers have used the IO automata model to reason

about distributed algorithms and distributed systems protocols [19].

Timed input/output automata (TIOA), a superset of input/output automata,

extend the model for timed systems [20]. Lynch et al. have developed the Tempo

specification language, a formal language for describing TIOA, along with the Tempo

modeling toolkit [21]. The toolkit provides support for syntax checking, simulation,

model checking [22], and verification [12].

23

2.2.1 Theorem proving

There are multiple formalizations of input/output automata and timed input/output

automata in theorem proving software.

Work by Bogdanov implements a translation tool from an IOA specification lan-

guage to the Larch prover [11]. The implementation supports reasoning about IO

automata, but it does not support composition of automata.

Tempo-PVS implements a similar translation tool, translating timed IO automata

specifications from the Tempo language to PVS [12]. The tool does support composi-

tion, but it implements composition by recursively inlining composed automata into

a single monolithic automaton in the generated PVS code, making compositional

reasoning within the theorem prover impossible.

Work by Nipkow and Slind formalizes IO automata in Isabelle/HOL [13]. The

approach supports IOA specification and reasoning within the theorem prover, and it

also supports composition, but it requires that all automata in a composition share the

same set of actions. This requires deciding on a global set of actions a priori, making

it impossible to use the system to develop automata in a modular way. It would not

be possible to use the approach to develop modular libraries, because library authors

do not know the entire set of actions that a client application would want to use.

24

Chapter 3

Design

We formalize input/output automata [10] in the Coq proof assistant, designing the

formalization to enable compositional reasoning within the proof assistant.

3.1 Input/output automata

An input/output automaton models a component in a distributed system as a state

machine equipped with a transition relation, where transitions are associated with

named actions. Actions are classified as either external or internal. Automata com-

municate through external actions: in a composition, automata responding to the

same named action step together.

An input/output automaton 𝐴 has a set of states 𝑠𝑡𝑎𝑡𝑒𝑠(𝐴), a set of external

actions 𝑒𝑥𝑡(𝐴), a set of internal actions 𝑖𝑛𝑡(𝐴), a set of start states 𝑠𝑡𝑎𝑟𝑡(𝐴) ⊆

𝑠𝑡𝑎𝑡𝑒𝑠(𝐴), and a transition relation 𝑠𝑡𝑒𝑝𝑠(𝐴) ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐴) × (𝑖𝑛𝑡(𝐴) ∪ 𝑒𝑥𝑡(𝐴)) ×

𝑠𝑡𝑎𝑡𝑒𝑠(𝐴).

We encode IO automata in Gallina, Coq’s dependently-typed programming lan-

guage, as shown in Figure 3-1. Automata are records, parameterized by their external

action type, containing a state type, internal action type, a set of start states, and a

transition relation. This is a straightforward translation of the mathematical defini-

tion of IO automata.

As an example, we could model a lossy FIFO channel as an IOA (see figs. 3-2 and 3-

25

Record AutomatonDef (ExternalActionType : Type) :=
mkAutomatonDef {

StateType : Type;
InternalActionType : Type;
start : StateType → Prop;
transition : StateType →

(InternalActionType + ExternalActionType) →
StateType →
Prop;

}.

Figure 3-1: Encoding of input/output automata in Coq.

Send(m) Recv(m)

Drop(m)
internal action

external action external action
1, 0, 0, 1, 0, 1, 0, 1

Figure 3-2: A lossy FIFO channel automaton.

3). The state is a list of messages, the external actions are Send(m) and Recv(m), and

the internal actions are Drop(m). The start state is the empty list. The automata

can take the Send(m) transition starting from any state, and the result is appending

m to the list. The automata can take the Recv(m) transition when m is at the head

of the list, and the result is removing m from the head of the list. The automata can

take the Drop(m) transition when m is in the list, and the result is removing m from

the list.

CoqIOA’s formalization of IO automata deviates slightly from IO automata as

defined by Lynch and Tuttle [10]. Currently, we reason about only safety, so for

simplicity, we omit liveness-related mechanisms. CoqIOA does not enforce automata

to be input-enabled. In addition, we do not distinguish between input and output

26

Variable T : Type.

Inductive ChannelAPI :=
| Send (m : T)
| Recv (m : T).

Inductive Internal :=
| Drop (m : T).

Definition LossyFifo : AutomatonDef ChannelAPI :=
mkAutomatonDef
_
(list T) (* state: list of messages *)
Internal
(fun st ⇒ st = []) (* start state: empty queue *)
(* transition relation: *)
(fun st act st’ ⇒

match act with
| inl (Drop m) ⇒ contains m st ∧ removed m st st’
| inr (Send m) ⇒ st’ = st ++ [m]
| inr (Recv m) ⇒ st = m :: st’
end).

Figure 3-3: Coq implementation of a lossy FIFO channel automaton. The implemen-
tation illustrates defining external and internal actions and then defining an automa-
ton, specifying the state type, start state, and transition relation.

27

actions at all: we only distinguish between external and internal actions. We also

omit mechanisms used to reason about fairness.

3.2 Execution

Now that we have a definition of automata, we can describe what it means for

an automaton to “run”. We define an execution fragment of an automaton 𝐴 as

a sequence [𝑠0, 𝜋1, 𝑠1, 𝜋2, 𝑠2, . . . , 𝜋𝑛, 𝑠𝑛] of alternating states 𝑠𝑖 and actions 𝜋𝑖, where

(𝑠𝑖−1, 𝜋𝑖, 𝑠𝑖) ∈ 𝑠𝑡𝑒𝑝𝑠(𝐴). We define an execution of an automaton 𝐴 as an execu-

tion fragment of 𝐴 where the first state is a start state of 𝐴. We define a trace

corresponding to an execution fragment as the sequence with the states and internal

actions removed, i.e. just the external actions in the execution fragment. As an ex-

ample, our lossy FIFO channel automaton with a natural number message type can

produce the trace [𝑆𝑒𝑛𝑑(1), 𝑆𝑒𝑛𝑑(2), 𝑅𝑒𝑐𝑣(2)]. The automaton cannot produce the

trace [𝑆𝑒𝑛𝑑(1), 𝑅𝑒𝑐𝑣(5)].

We define the behavior of an automaton 𝐴, 𝑏𝑒ℎ(𝐴), to be the set of all traces

of that automaton. This will be our basis for reasoning about specifications and

implementations. We say that automaton 𝐴′ refines automaton 𝐴 if the behavior

of 𝐴 contains the behavior of 𝐴′: 𝑏𝑒ℎ(𝐴′) ⊆ 𝑏𝑒ℎ(𝐴). For example, we could have

a specification of a lossless FIFO channel, and we could have an implementation

over the lossy FIFO channel that uses retransmissions, so that the implementation

would behave like a lossless channel, refining the lossless FIFO spec. We formalize

refinement in Coq such that we can write refines A’ A to express this notion when

𝐴 and 𝐴′ have the same external action type.

Using this framework, we can formally reason about specifications and implemen-

tations as follows. We write specifications of systems as IO automata, and we write

implementations of systems as IO automata or collections of IO automata. To show

that an implementation satisfies a specification, we prove that the implementation

refines the specification.

28

3.3 Composition

In the IO automata mathematical model, in a composition, automata responding to

the same named action step together. We cannot directly support this behavior inside

a proof assistant with a rigid type system when different automata have overlapping

sets of actions. Instead, we provide a mechanism that allows for “wiring” automata

together appropriately.

Composing two automata 𝐴 and 𝐵 produces a new IO automaton. In CoqIOA,

composition is not just a function of the component automata: we must provide

wiring information as well. When composing automata 𝐴 and 𝐵, we provide a new

external action type 𝑇 for the composed automata, along with two mappings, 𝑇 →

𝑒𝑥𝑡(𝐴)∪{𝑁𝑜𝑛𝑒} and 𝑇 → 𝑒𝑥𝑡(𝐵)∪{𝑁𝑜𝑛𝑒} that describe how the new external action

type maps to the external action types of the individual automata. The mappings

return 𝑁𝑜𝑛𝑒 if a given action from 𝑇 does not correspond with an action for the

component automata. Given these, the composition is defined as an IO automaton

as follows. The state type is 𝑠𝑡𝑎𝑡𝑒𝑠(𝐴) × 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵). The external action type is 𝑇 .

The internal action type is 𝑖𝑛𝑡(𝐴) ∪ 𝑖𝑛𝑡(𝐵). The start states contain (𝑎, 𝑏) if and

only if 𝑎 ∈ 𝑠𝑡𝑎𝑟𝑡(𝐴) and 𝑏 ∈ 𝑠𝑡𝑎𝑟𝑡(𝐵). The transition relation steps the appropriate

component automata for internal actions, and it steps the appropriate component

automata (or both) for external actions according to the two mapping functions.

CoqIOA implements this wiring scheme as a compose function. In addition to a

compose operation, CoqIOA also provides a rename operation that we can use to hide

external actions by reclassifying them as internal actions. The interface is similar to

that of the composition operation: the user supplies a new type for external actions,

a new type for hidden actions, and functions describing the mapping from these new

types to the original external action type. We defer an example of using the compose

and refine machinery to Chapter 5.

29

3.4 Proof techniques

We use a number of different techniques to prove automata correct, i.e. showing that

an implementation refines a specification. We use simulation relations in combination

with high-level theorems about composition to enable compositional reasoning and

proof reuse.

We can only describe automata refining other automata when both automata have

the same external action type: it only makes sense to compare automata with the

same API.

3.4.1 Simulation

Simulation relations are a standard technique for proving correctness of IO automata [23,

24, 25]. We formalize forward simulation and backward simulation in Coq.

A forward simulation between two automata 𝐴 and 𝐵 that have the same external

action type is a relation 𝑅 ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐴)× 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵) between states of 𝐴 and 𝐵 such

that:

1. Every 𝑠𝐴 ∈ 𝑠𝑡𝑎𝑟𝑡(𝐴) is related by 𝑅 to some 𝑠𝐵 ∈ 𝑠𝑡𝑎𝑟𝑡(𝐵).

2. For each step (𝑠′𝐴, 𝜋, 𝑠𝐴) ∈ 𝑠𝑡𝑒𝑝𝑠(𝐴) and each 𝑠′𝐵 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵) where (𝑠′𝐴, 𝑠
′
𝐵) ∈

𝑅, there exists a state 𝑠𝐵 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵) such that (𝑠𝐴, 𝑠𝐵) ∈ 𝑅 and:

∙ If 𝜋 ∈ 𝑒𝑥𝑡(𝐴), then there exists some execution fragment of 𝐵 starting

with 𝑠′𝐵 and ending with 𝑠𝐵 corresponding to the trace [𝜋].

∙ If 𝜋 ∈ 𝑖𝑛𝑡(𝐴), then there exists some execution fragment of 𝐵 starting

with 𝑠′𝐵 and ending with 𝑠𝐵 corresponding to the empty trace.

A backward simulation between two automata 𝐴 and 𝐵 that have the same ex-

ternal action type is a relation 𝑅 ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐴) × 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵) between states of 𝐴 and

𝐵 such that:

1. Every 𝑠𝐴 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐴) is related by 𝑅 to some 𝑠𝐵 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵).

30

Theorem forward_simulation :
forall (E : Type) (A’ A : AutomatonDef E)

(f : (StateType A’) → (StateType A) → Prop),
forward_simulation_relation f →
refines A’ A.

Figure 3-4: Statement of the forward simulation theorem in Coq.

2. If a state 𝑠𝐴 ∈ 𝑠𝑡𝑎𝑟𝑡(𝐴) is related by 𝑅 to some 𝑠𝐵 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵), then 𝑠𝐵 ∈

𝑠𝑡𝑎𝑟𝑡(𝐵).

3. For each step (𝑠′𝐴, 𝜋, 𝑠𝐴) ∈ 𝑠𝑡𝑒𝑝𝑠(𝐴) and each 𝑠𝐵 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵) where (𝑠𝐴, 𝑠𝐵) ∈

𝑅, there exists a state 𝑠′𝐵 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠(𝐵) such that (𝑠′𝐴, 𝑠
′
𝐵) ∈ 𝑅 and:

∙ If 𝜋 ∈ 𝑒𝑥𝑡(𝐴), then there exists some execution fragment of 𝐵 starting

with 𝑠′𝐵 and ending with 𝑠𝐵 corresponding to the trace [𝜋].

∙ If 𝜋 ∈ 𝑖𝑛𝑡(𝐴), then there exists some execution fragment of 𝐵 starting

with 𝑠′𝐵 and ending with 𝑠𝐵 corresponding to the empty trace.

We formalize forward simulation in Coq and prove that the existence of a forward

simulation from 𝐴′ to 𝐴 implies that 𝐴′ refines 𝐴. Figure 3-4 shows the statement of

this theorem in Coq. We prove a parallel theorem for backward simulation: existence

of a backward simulation from 𝐴′ to 𝐴 implies that 𝐴′ refines 𝐴.

3.4.2 Composition theorems

CoqIOA proves high-level theorems about composition that enable compositional

reasoning. In the following exposition, we write composition of 𝐴 and 𝐵 as 𝐴 + 𝐵,

and we write 𝐴′ refines 𝐴 as 𝐴′ ⊆ 𝐴. There notations do not perfectly capture our

formalism: our compose operator has additional parameters besides the automata

themselves, and our definition of refines has a requirement that the automata have

the same external action type. Still, these notations are useful for developing an

intuitive explanation of the composition theorems. CoqIOA takes these additional

complexities into account: the composition theorems are proven correct with the

31

Theorem refines_comp_comm :
forall (EA EB Ext : Type)

(A : AutomatonDef EA) (B : AutomatonDef EB)
(mapA : Ext → option EA) (mapB : Ext → option EB),

refines
(compose A B Ext mapA mapB)
(compose B A Ext mapB mapA).

Figure 3-5: Statement of the commutativity of composition theorem in Coq.

Theorem refines_comp_subst :
forall (EA EB Ext : Type)

(A A’ : AutomatonDef EA) (B : AutomatonDef EB)
(mapA : Ext → option EA) (mapB : Ext → option EB),

refines A’ A →
refines

(compose A’ B Ext mapA mapB)
(compose A B Ext mapA mapB).

Figure 3-6: Statement of the substitution in composition theorem in Coq.

additional parameters, and a usage of refines only type checks if both automata

have the same external action type.

The first composition theorem is commutativity of composition: 𝐴+𝐵 ⊆ 𝐵 +𝐴.

Figure 3-5 shows the theorem statement in Coq.

The second composition theorem is a substitution theorem: if 𝐴′ ⊆ 𝐴, then

𝐴′ +𝐵 ⊆ 𝐴+𝐵. Figure 3-6 shows the theorem statement in Coq.

Our formalization of IO automata, along with these theorems, enables composi-

tional reasoning. Chapter 5 demonstrates the use of this machinery.

32

Chapter 4

Implementation

We implement CoqIOA entirely in the Coq proof assistant. Table 4.1 shows the

components of the framework, along with the number of lines of code that comprise

each component. Only our definitions, comprising about 100 lines of code, are trusted.

All other components are mechanically verified by Coq’s proof checker: all theorems

about IO automata, including theorems on simulation relations and composition, are

proven correct in Coq.

We have used the CoqIOA framework to reason about toy systems implemented

using IO automata: we describe these examples in Chapter 5. The examples are not

included in the lines of code counts shown here.

The CoqIOA prototype currently has one major limitation: we do not have a code

extraction mechanism to produce executable code from IO automata descriptions.

This limitation is not inherent, and we plan to address it in future work.

All source for CoqIOA and examples is available on GitHub [26].

Component Lines

Definitions (trusted)

IO automaton 10
Renaming 30
Composition 60
Refinement 20

Proof tools (untrusted) Proof automation 300
Theorems 750

Table 4.1: Lines of code in CoqIOA.

33

34

Chapter 5

Evaluation

We demonstrate that CoqIOA enables compositional reasoning through a case study

of a key-value store. Through the case study, we demonstrate the use of our compo-

sition machinery, simulation relation theorems, and composition theorems.

In our example, we have a specification of a key-value store modeled as a single

automaton, and we have an implementation of a client communicating with a key-

value server over channels that reorder messages. The implementation adds send

and receive mediators to the channels to make them effectively implement reliable

channels.

We prove that the implementation satisfies the specification, and we use compo-

sitional reasoning to construct the proof. First, we prove that a mediated reordering

channel implements a reliable channel. Next, we prove a key-value server correct on

top of a specification of a reliable channel. Finally, given those two proofs, we use

our composition theorems to prove that our system communicating over mediated

reordering channels implements a key-value store.

5.1 Specification

The key-value store is specified as a single IO automaton. For simplicity, the key-value

store implements a mapping between natural numbers. Figure 5-1 shows the API of

the key-value store, written as a Coq Inductive type: it takes Put k v and Get k

35

Inductive API :=
| Put (k : nat) (v : nat)
| PutOk
| Get (k : nat)
| GetResult (v : option nat).

Figure 5-1: Key-value store API, consisting of input and output actions, specified as
an inductive type in Coq.

actions as inputs, and it produces PutOk and GetResult v actions as outputs. Fig-

ure 5-2 shows the Coq code for the specification: the key-value store is nonblocking,

but it executes requests sequentially. For example, the specification can produce the

trace [𝑃𝑢𝑡(0, 1), 𝑃𝑢𝑡𝑂𝑘,𝐺𝑒𝑡(0), 𝐺𝑒𝑡(5), 𝐺𝑒𝑡𝑅𝑒𝑠𝑢𝑙𝑡(𝑆𝑜𝑚𝑒(1)), 𝐺𝑒𝑡𝑅𝑒𝑠𝑢𝑙𝑡(𝑁𝑜𝑛𝑒)], but

the specification cannot produce the trace [𝑃𝑢𝑡(0, 1), 𝑃𝑢𝑡𝑂𝑘,𝐺𝑒𝑡(0), 𝐺𝑒𝑡𝑅𝑒𝑠𝑢𝑙𝑡(𝑁𝑜𝑛𝑒)].

5.2 Implementation

Figure 5-3 shows the components that make up the implementation of the client-

server key-value store. We write a modular proof that this implements the key-value

store specification given in Figure 5-2. First, we prove that a mediated reordering

channel implements a reliable channel. Then, we verify our client-server key-value

store on top of the reliable channel. Finally, we invoke our composition theorem to

show that the implementation in Figure 5-3 satisfies the specification.

5.2.1 Channels

Figure 5-4 defines two generic channel automata implementing a Channel API consist-

ing of Send(m) and Recv(m) actions. We have a Reliable channel that implements a

FIFO queue, and a ReliableReordering channel that implements a channel that is

allowed to reorder messages. The reliable channel is a specification of an ideal channel

that does not drop or reorder messages. The reordering channel acts as a simplified

model of a real-world network channel: one that can arbitrarily reorder messages but

not drop messages.

36

Inductive Request :=
| Req_Put (k : nat) (v : nat)
| Req_Get (k : nat).
Inductive Response :=
| Resp_Ok
| Resp_Value (v : option nat).
Inductive Internal := Execute.

Record state : Type := mkState {
requests : list Request;
responses : list Response;
data : nat → option nat;

}.
Definition start (st : state) : Prop := st = mkState [] [] (fun _ ⇒ None).

Definition step (st : state) (act : Internal + API) (st’ : state) : Prop :=
let (req, res, d) := st in
match act with
| inr (Put k v) ⇒ st’ = mkState (req ++ [Req_Put k v]) res d
| inr (Get k) ⇒ st’ = mkState (req ++ [Req_Get k]) res d
| inl Execute ⇒
exists hd tl, req = hd :: tl ∧

st’ = mkState tl
(res ++ [match hd with

| Req_Get k ⇒ Resp_Value (d k)
| _ ⇒ Resp_Ok
end])

(match hd with
| Req_Put k v ⇒
fun k’ ⇒ if eq_nat_dec k k’ then

Some v else
d k’

| _ ⇒ d
end)

| inr PutOk ⇒ exists tl, res = Resp_Ok :: tl ∧ st’ = mkState req tl d
| inr (GetResult v) ⇒ exists tl, res = (Resp_Value v) :: tl ∧ st’ = mkState

req tl d
end.

Definition KVStore : AutomatonDef API :=
mkAutomatonDef API state Internal start step.

Figure 5-2: Key-value store specified as a single automaton in Coq. The automaton
maintains an input queue of requests, an output queue of responses, and the actual
mapping from keys to values. Initially, the queues are empty and the mapping is
empty. In the transition relation, the automaton can enqueue input, execute an
enqueued operation, or send output.

37

Client-Server ChannelServer-Client Channel

Send Mediator

Reordering Channel

Receive Mediator

Server

Receive Mediator

Reordering Channel

Client

Send Mediator

Figure 5-3: Client-server key-value store implementation over reordering channels.

38

Variable T : Type.

Inductive ChannelSenderAPI :=
| Send : T → ChannelSenderAPI.
Inductive ChannelReceiverAPI :=
| Recv : T → ChannelReceiverAPI.
Definition ChannelAPI : Type := ChannelSenderAPI + ChannelReceiverAPI.

Definition Reliable : AutomatonDef ChannelAPI :=
mkAutomatonDef
ChannelAPI
(list T) (* state: list of messages *)
EmptySet
(fun st ⇒ st = []) (* start: buffer starts out empty *)
(* transition relation: *)
(fun st act st’ ⇒

match act with
| inl e ⇒ match e with end
| inr (inl (Send m)) ⇒ st’ = st ++ [m]
| inr (inr (Recv m)) ⇒ st = m :: st’
end).

Definition ReliableReordering : AutomatonDef ChannelAPI :=
mkAutomatonDef
ChannelAPI
(list T) (* state: list of messages *)
EmptySet
(fun st ⇒ st = []) (* start: buffer starts out empty *)
(* transition relation: *)
(fun st act st’ ⇒

match act with
| inl e ⇒ match e with end
| inr (inl (Send m)) ⇒ st’ = st ++ [m]
| inr (inr (Recv m)) ⇒ removed m st st’ (* can receive any message *)
end).

Figure 5-4: Coq code for reliable and reordering channels. A reliable channel is an
ideal FIFO queue, while a reordering channel models a channel that is allowed to
arbitrarily reorder messages.

39

Send Mediator

Reordering Channel

Receive Mediator

Figure 5-5: Components comprising the mediated reordering channel.

In order to make a reordering channel behave like a reliable channel, we add

send and receive mediators. The send mediator adds sequence numbers to messages,

and the receive mediator reconstructs the original order of the messages using the

sequence numbers. Figure 5-5 shows the components that make up a mediated re-

ordering channel, and Figure 5-6 shows the implementation of the mediators. The

send mediator takes input messages of type T, and it outputs messages over a channel

carrying nat * T, tagging messages with sequence numbers. On the other end of the

channel, a receive mediator takes the tagged messages, reassembles the messages in

the correct order, and delivers the raw messages with the sequence numbers stripped.

To reason about the mediated reordering channel, we first need to compose our

send and receive mediators with a reordering channel. Figure 5-7 shows the compose

operator in action: first, we compose the send mediator with the reordering channel to

form SendMediator_Channel, and then we compose that with a receive mediator to

form SendMediator_Channel_ReceiveMediator. We need to perform composition

in two steps because CoqIOA’s compose operator composes two automata at a time.

This illustrates us “wiring” automata in the composition.

The resultant automata has the wrong API: the details of the inner reordering

40

Variable T : Type. (* message type *)

(* input from world, output to channel *)
Definition ReorderingSendMediator :
AutomatonDef (ChannelSenderAPI T + ChannelSenderAPI (nat * T)) :=
mkAutomatonDef
_
(nat * list (nat * T)) (* state: next sequence number, message buffer *)
EmptySet
(fun st ⇒ st = (0, [])) (* start: seq=0, empty buffer *)
(fun st act st’ ⇒

match act with
| inl e ⇒ match e with end
| inr (inl (Send m)) ⇒
(* enqueue message tagged with sequence number in local buffer *)
st’ = (fst st + 1, snd st ++ [(fst st, m)])

| inr (inr (Send (c, m))) ⇒
(* send buffered message over channel *)
fst st’ = fst st ∧ removed (c, m) (snd st) (snd st’)

end).

(* input from channel, output to world *)
Definition ReorderingReceiveMediator :
AutomatonDef (ChannelReceiverAPI (nat * T) + ChannelReceiverAPI T) :=
mkAutomatonDef
_
(nat * list (nat * T)) (* state: next sequence number, message buffer *)
EmptySet
(fun st ⇒ st = (0, [])) (* start: seq=0, empty buffer *)
(fun st act st’ ⇒

match act with
| inl e ⇒ match e with end
| inr (inl (Recv (c, m))) ⇒
(* enqueue message *)
st’ = (fst st, snd st ++ [(c, m)])

| inr (inr (Recv m)) ⇒
(* deliver message with the current sequence number *)
fst st’ = fst st + 1 ∧ removed (fst st, m) (snd st) (snd st’)

end).

Figure 5-6: Coq code for send and receive mediators. The send mediator takes input
messages and tags them with sequence numbers. The receive mediator takes input
messages tagged with sequence numbers and delivers them in the correct order.

41

channel are exposed. We want the automata to only expose the send mediator’s input

and the receive mediator’s output. Figure 5-8 fixes this using the rename operator

to only expose a ChannelAPI T while hiding the actions corresponding to the inner

channel by reclassifying them as internal actions. MediatedReliableReordering is

the result of this hiding operation.

We prove that the mediated reordering channel implements a reliable channel. In

particular, we prove refines (MediatedReliableReordering T) (Reliable T). We

use forward simulation to prove the mediated reordering channel correct: the proof

involves reasoning about the interactions between the send and receive mediator and

showing that the receive mediator correctly reassembles reordered messages.

5.2.2 Client-server key-value store

We prove our client-server key-value store correct on top of reliable channels, as

shown in Figure 5-9, rather than directly reasoning about the key-value store built

on reordering channels. In this proof, we reason about communication between the

client and server, but we do not have to reason about messages being reordered.

This separation of concerns greatly simplifies the proof. We use forward simulation

to prove the implementation correct, and the proof ends up being quite simple: we

show that the client buffer, channel, and server buffers act like one big queue in each

direction, preserving the order and identity of operations invoked at the client and

results coming from the server.

5.2.3 System

Given the proofs of correctness of our mediated reordering channel and our key-value

store implemented on top of reliable channels, we invoke our composition theorem

to produce an end-to-end proof of correctness of the original system as described

in Figure 5-3. Our composition theorem makes this easy: because we have shown

that mediated reordering channels implement reliable channels, we can swap the

reliable channel specification for its implementation while preserving correctness. This

42

Definition SendMediator_Channel :=
compose
ReorderingSendMediator
(ReliableReordering (nat * T))
(ChannelSenderAPI T + ChannelAPI (nat * T))
(fun act ⇒ match act with

| inl act’ ⇒ Some (inl act’)
| inr act’ ⇒ match act’ with

| inl act’’ ⇒ Some (inr act’’)
| inr _ ⇒ None
end

end)
(fun act ⇒ match act with

| inl _ ⇒ None
| inr act’ ⇒ Some act’
end).

Definition SendMediator_Channel_ReceiveMediator :=
compose
SendMediator_Channel
ReorderingReceiveMediator
(ChannelSenderAPI T + ChannelAPI (nat * T) + ChannelReceiverAPI T)
(fun act ⇒ match act with

| inl act’ ⇒ Some act’
| inr _ ⇒ None
end)

(fun act ⇒ match act with
| inl act’ ⇒ match act’ with

| inl _ ⇒ None
| inr act’’ ⇒ match act’’ with

| inl _ ⇒ None
| inr act’’’ ⇒ Some (inl act’’’)
end

end
| inr act’ ⇒ Some (inr act’)
end).

Figure 5-7: Composition of components of a mediated reordering channel. The code
demonstrates “wiring” automata in a composition.

43

Definition MediatedReliableReordering : AutomatonDef (ChannelAPI T) :=
rename
SendMediator_Channel_ReceiveMediator
(ChannelAPI T)
(fun act ⇒ match act with

| inl act’ ⇒ inl (inl act’)
| inr act’ ⇒ inr act’
end)

(ChannelAPI (nat * T))
(fun act ⇒ inl (inr act)).

Figure 5-8: Hiding the internal details of the mediated reordering channel using the
rename operator. The result is a mediated channel that has the same API as the
reliable channel and the reordering channel.

Reliable Channel

Server

Reliable Channel

Client

Figure 5-9: Client-server key-value store implementation over reliable channels.

44

Component Lines

Channel
Specification (trusted) 40
Implementation (untrusted) 80
Proof 250

Key-Value Store with Reliable Channels
Specification (trusted) 50
Implementation (untrusted) 150
Proof 80

Key-Value Store with Reordering Channels Proof 10

Table 5.1: Lines of code in the key-value store implementation.

correctness result only requires a couple additional lines of proof, invoking our rename-

related and composition-related theorems to reuse the proofs of correctness of the

individual components.

5.3 Effort

Table 5.1 shows the components of the key-value store, along with the number of

lines of code comprising each component. The final proof of the key-value store with

unreliable channels required minimal effort: it required only 10 lines of code invoking

our renaming and composition theorems. This was only possible because we were able

to use our composition theorems to reuse the proofs of correctness of the individual

components.

5.4 Discussion

We demonstrate that CoqIOA enables compositional reasoning about systems in a

proof assistant, which was not possible with prior work. We show that our general-

purpose composition theorems allow us to build and verify implementations on top

of specifications and then swap out the underlying specifications for implementations

while preserving correctness of the implementation.

45

46

Chapter 6

Future Work

CoqIOA in its current form has limitations that we aim to address in future work.

Code extraction. CoqIOA provides a framework for reasoning about IO automata,

but it does not provide a mechanism for executing IO automata on real machines. In

order to build certified executable implementations of distributed systems, we plan

on building code extraction machinery for CoqIOA.

Prior work has explored translating IO automata specifications to executable code.

Musial implemented a translator from IO automata specs to Java code [27], compiling

IOA specifications from a subset of the Tempo specification language to executable

code.

It would be difficult to automatically translate IO automata specified in CoqIOA

to executable code due to the way our automata are specified. Automata can behave

nondeterministically, and the transition relation does not even need to be decidable.

This is desirable for modeling and specification, but it makes automatic code ex-

traction difficult. An approach to code extraction from CoqIOA would likely involve

defining a type of restricted IO automaton designed for code extraction. For these

restricted automata, we could limit nondeterminism and structure the automata so

that effects of actions are decidable, simplifying code extraction.

47

Larger examples. Chapter 5 demonstrates that CoqIOA is capable of composi-

tional reasoning through a toy example, but we have not yet implemented realistic

large-scale distributed systems in our framework.

Prior work has used IO automata to reason about a large class of distributed

systems, including complex designs such as Byzantine fault tolerance [28]. We could

formalize such paper proofs in CoqIOA, though it will likely involve considerable

effort to fill in the details in the paper proofs to produce machine-checkable versions.

Liveness. CoqIOA supports reasoning only about safety. The IOA mathemati-

cal model does support reasoning about liveness. It should be possible to extend

CoqIOA’s model of IO automata to include the liveness-related components and then

formalize liveness-related theorems about IO automata in Coq.

48

Chapter 7

Conclusion

This thesis contributes a methodology for compositional reasoning about distributed

systems in a theorem prover and CoqIOA, an implementation of the methodology

in the Coq proof assistant. The CoqIOA framework formalizes the theory of IO

automata in a way that enables compositional reasoning about distributed systems

within the proof assistant. CoqIOA includes a formalization of IO automata along

with theorems about automata refinement, simulation, and composition, all of which

are mechanically verified using Coq’s proof checker.

We implemented and verified a toy key-value store in a modular way using the

CoqIOA framework. The evaluation demonstrates that the CoqIOA framework en-

ables compositional reasoning and is a promising approach for building modular ver-

ified distributed systems.

49

50

Bibliography

[1] K. Kingsbury, “Jepsen analyses,” http://jepsen.io/analyses.

[2] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, pp. 133–169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[3] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety
properties with the TLA+ Proof System,” in Proceedings of the 5th
International Conference on Automated Reasoning, ser. IJCAR’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 142–148. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-14203-1_12

[4] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff,
“How Amazon web services uses formal methods,” Commun. ACM, vol. 58, no. 4,
pp. 66–73, Mar. 2015. [Online]. Available: http://doi.acm.org/10.1145/2699417

[5] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and T. Anderson,
“Planning for change in a formal verification of the Raft consensus protocol,”
in Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs
and Proofs, ser. CPP 2016. New York, NY, USA: ACM, 2016, pp. 154–165.
[Online]. Available: http://doi.acm.org/10.1145/2854065.2854081

[6] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson, “Verdi: A framework for implementing and formally verifying dis-
tributed systems,” in PLDI 2015: Proceedings of the ACM SIGPLAN 2015 Con-
ference on Programming Language Design and Implementation, Portland, OR,
USA, Jun. 2015, pp. 357–368.

[7] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,
S. Setty, and B. Zill, “IronFleet: Proving practical distributed systems correct,”
in Proceedings of the 25th Symposium on Operating Systems Principles, ser.
SOSP ’15. New York, NY, USA: ACM, 2015, pp. 1–17. [Online]. Available:
http://doi.acm.org/10.1145/2815400.2815428

[8] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, ser. USENIX ATC’14. Berkeley, CA, USA: USENIX

51

http://jepsen.io/analyses
http://doi.acm.org/10.1145/279227.279229
http://dx.doi.org/10.1007/978-3-642-14203-1_12
http://dx.doi.org/10.1007/978-3-642-14203-1_12
http://doi.acm.org/10.1145/2699417
http://doi.acm.org/10.1145/2854065.2854081
http://doi.acm.org/10.1145/2815400.2815428

Association, 2014, pp. 305–320. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2643634.2643666

[9] CoreOS, “CoreOS Raft library: Notable users,” https://github.com/coreos/etcd/
tree/master/raft#notable-users.

[10] N. A. Lynch and M. R. Tuttle, “An introduction to input/output automata,”
CWI Quarterly, vol. 2, pp. 219–246, 1989.

[11] A. Bogdanov, “Formal verification of simulations between i/o automata,” Mas-
ter’s thesis, Massachusetts Institute of Technology, Sep. 2001.

[12] H. Lim, “Translating timed I/O automata specifications for theorem proving in
PVS,” Master’s thesis, Massachusetts Institute of Technology, Feb. 2006.

[13] T. Nipkow and K. Slind, I/O automata in Isabelle/HOL. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 101–119. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-60579-7_6

[14] Coq development team, Coq Reference Manual, Version 8.6, INRIA, Dec. 2016,
https://coq.inria.fr/distrib/V8.6/refman/.

[15] D. Ongaro, “Consensus: Bridging theory and practice,” Ph.D. dissertation, Stan-
ford University, Aug. 2014.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup protocol for
internet applications,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–32, Feb.
2003. [Online]. Available: http://dx.doi.org/10.1109/TNET.2002.808407

[17] L. Lamport, “Byzantizing Paxos by refinement,” in Proceedings of the
25th International Conference on Distributed Computing, ser. DISC’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 211–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2075029.2075058

[18] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun.
ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969. [Online]. Available:
http://doi.acm.org/10.1145/363235.363259

[19] S. J. Garland and N. Lynch, “Foundations of component-based systems,” G. T.
Leavens and M. Sitaraman, Eds. New York, NY, USA: Cambridge University
Press, 2000, ch. Using I/O Automata for Developing Distributed Systems, pp.
285–312. [Online]. Available: http://dl.acm.org/citation.cfm?id=336431.336455

[20] D. K. Kaynar, N. A. Lynch, R. Segala, and F. W. Vaandrager, The Theory of
Timed I/O Automata, Second Edition, ser. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2010. [Online]. Available:
http://dx.doi.org/10.2200/S00310ED1V01Y201011DCT005

52

http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://github.com/coreos/etcd/tree/master/raft#notable-users
https://github.com/coreos/etcd/tree/master/raft#notable-users
http://dx.doi.org/10.1007/3-540-60579-7_6
http://dx.doi.org/10.1007/3-540-60579-7_6
https://coq.inria.fr/distrib/V8.6/refman/
http://dx.doi.org/10.1109/TNET.2002.808407
http://dl.acm.org/citation.cfm?id=2075029.2075058
http://doi.acm.org/10.1145/363235.363259
http://dl.acm.org/citation.cfm?id=336431.336455
http://dx.doi.org/10.2200/S00310ED1V01Y201011DCT005

[21] N. A. Lynch, S. J. Garland, D. Kaynar, L. Michel, and A. Shvartsman, The
Tempo Language User Guide and Reference Manual, Massachusetts Institute
of Technology, Oct. 2011, http://www.veromodo.com/resources/Tempo_Guide.
pdf.

[22] The Tempo Model Checker User Guide and Reference Manual, Veromodo, Inc.,
May 2010, http://www.veromodo.com/resources/MC_manual.pdf.

[23] M. Abadi and L. Lamport, “The existence of refinement mappings,” Theor.
Comput. Sci., vol. 82, no. 2, pp. 253–284, May 1991. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(91)90224-P

[24] N. Lynch and F. Vaandrager, Forward and backward simulations for timing-based
systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 397–446.
[Online]. Available: http://dx.doi.org/10.1007/BFb0032002

[25] J. F. Søgaard-Andersen, S. J. Garland, J. V. Guttag, N. A. Lynch, and
A. Pogosyants, Computer-assisted simulation proofs. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 305–319. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-56922-7_25

[26] “CoqIOA code,” https://github.com/anishathalye/coqioa, 2017.

[27] P. M. Musial, Using Timed Input/Output Automata for Implementing Distributed
Systems, http://www.veromodo.com/resources/Tempo2JavaGuide.pdf.

[28] M. Castro and B. Liskov, “A correctness proof for a practical Byzantine-Fault-
Tolerant replication algorithm,” Massachusetts Institute of Technology, Tech.
Rep., 1999.

53

http://www.veromodo.com/resources/Tempo_Guide.pdf
http://www.veromodo.com/resources/Tempo_Guide.pdf
http://www.veromodo.com/resources/MC_manual.pdf
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1007/BFb0032002
http://dx.doi.org/10.1007/3-540-56922-7_25
http://dx.doi.org/10.1007/3-540-56922-7_25
https://github.com/anishathalye/coqioa
http://www.veromodo.com/resources/Tempo2JavaGuide.pdf

	Introduction
	Implementing correct systems
	Problem and goal
	Approach
	Challenges
	Thesis contributions
	Thesis outline

	Related Work
	Distributed systems verification
	Paper proofs
	Model checking
	Deductive verification

	Input/output automata
	Theorem proving

	Design
	Input/output automata
	Execution
	Composition
	Proof techniques
	Simulation
	Composition theorems

	Implementation
	Evaluation
	Specification
	Implementation
	Channels
	Client-server key-value store
	System

	Effort
	Discussion

	Future Work
	Conclusion

