
Persistent Personal Names for Globally Connected Mobile Devices

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, Robert Morris
Massachusetts Institute of Technology

Abstract

TheUnmanaged Internet Architecture(UIA) provides
zero-configuration connectivity among mobile devices
throughpersonal names. Users assign personal names
through an ad hoc device introduction process requiring
no central allocation. Once assigned, names bind se-
curely to the global identities of their target devices in-
dependent of network location. Each user manages one
namespace, shared among all the user’s devices and al-
ways available on each device. Users can also name
other users to share resources with trusted acquaintances.
Devices with naming relationships automatically arrange
connectivity when possible, both in ad hoc networks and
using global infrastructure when available. A UIA pro-
totype demonstrates these capabilities using optimistic
replication for name resolution and group management
and a routing algorithm exploiting the user’s social net-
work for connectivity.

1 Introduction

Network-enabled mobile devices such as laptops, smart
phones, media players, personal digital assistants, gam-
ing consoles, and digital cameras are becoming ubiqui-
tous in the lives of ordinary people. The proliferation
of these devices makes secure global peer-to-peer con-
nectivity between them increasingly important. While on
a trip, for example, a user in a cyber cafe may wish to
copy photos from his WiFi-enabled camera to his PC at
home for storage and backup. Two users who meet in a
park or other off-Internet location may wish to connect
their WiFi devices to exchange photos or other informa-
tion, and later re-establish a connection between the same
devices over the Internet after returning to their homes,
without the risk of a third party intercepting the connec-
tion. A Voice-over-IP user would like his WiMax phone
to be easily reachable by his friends wherever he and they
are located, but not to be reachable by telemarketers.

Convenient global communication over the Internet,
however, currently requires the target device to have
both a global name and a static, public IP address.
Users must register with central naming authorities to
obtain global names, and mobile personal devices usu-
ally have dynamic IP addresses behind firewalls or net-
work address translators [27]. Protocols such as Dy-

namic DNS [49], Mobile IP [37], and Virtual Private Net-
works [22] provide piecemeal solutions to these prob-
lems, but the configuration effort and technical exper-
tise they require makes them deployable only by or-
ganizations with dedicated network administration staff.
User interface refinements alone cannot overcome this
deployment roadblock, because the protocols depend on
centralized resources—global domain names and static,
public “home” IP addresses—that are not part of most
consumer-oriented Internet service packages. Ordinary
users require a solution that “just works.”

TheUnmanaged Internet Architecture(UIA) is a peer-
to-peer connectivity architecture that gives nontechnical
users a simple and intuitive way to connect their mo-
bile personal devices via convenientpersonal namesor-
ganized intopersonal groups. A user canmergemultiple
UIA devices to form a personal group, after which the de-
vices work together to offer secure remote access to any
device in the group from any other. The devices forming
the group present the user with a shared personal names-
pace, which they optimistically replicate [26, 28, 47] to
ensure constant availability on each device whether on or
off the Internet. The devices gossip namespace changes
as connectivity permits [12], and can propagate updates
via mobile devices carried by the user [36].

UIA interprets personal names relative to personal
groups, so users can assign concise, meaningful names
like ipod instead of long globally unique names like
ipod.alicesm5186.myisp.com. In this way UIA
conforms to the intuitive model with which users already
manage their cell phones’ address books. Users normally
create personal names byintroducingdevices locally, on
a common WiFi network for example. Once created,
these names remain persistently bound to their targets
as devices move. Personal names are intended to sup-
plement and not replace global DNS names [33]: users
can refer to personal names likephone alongside global
names likeusenix.org in the same applications.

Different users can introduce their devices to name
other users and link their respective personal groups. Bob
can refer to his friend Alice asAlice, and if Alice
calls her VoIP phonephone then Bob can make calls
to Alice’s phone using the namephone.Alice. In
this way, UIA adapts peer-to-peer social networking ideas
previously explored for other purposes [10,29,31,38,39]

to form a user-friendly peer-to-peer naming infrastruc-
ture. Users can also create and collect names into ad
hoc shared groupsto reflect common interests or infor-
mal organizations.

UIA devices cooperate in an overlay routing proto-
col to provide robust location-independent connectivity
in the face of changing IP addresses, Internet routing
failures, network address translators, or isolation from
central network infrastructure. Although scalable rout-
ing with location-independent node identities is inher-
ently challenging in general [21], UIA focuses on routing
among friends and nearby neighbors in the user’s social
network. We expect the UIA routing algorithm to scale
well because each node only consumes storage and band-
width to track other nodes in its immediate neighborhood.

UIA makes the following primary contributions, ex-
panding on previously proposed ideas [19]. First, UIA
introduces a simple and intuitive model for connecting
mobile devices intopersonal groups, providing ad hoc
user identities, personal names, and secure remote access,
without requiring the user to manage keys or certificates
explicitly. Second, UIA presents a novel gossip and repli-
cation protocol to manage the naming and group state
required by this user model, adapting optimistic replica-
tion principles previously developed for file systems and
databases. Third, UIA leverages social networking to cre-
ate a scalable overlay routing algorithm that can provide
robust connectivity among social friends and neighbors
without relying on central infrastructure.

The next section introduces the operation of UIA de-
vices from a non-technical user’s viewpoint. Section 3
describes UIA’s design at a high level, Section 4 presents
UIA’s naming system in depth, followed by the routing
layer design in Section 5. Section 6 summarizes imple-
mentation status and Section 7 evaluates the performance
of the prototype. Section 8 discusses future work, Sec-
tion 9 presents related work, and Section 10 concludes.

2 User Experience

This section describes UIA’s operating principles from
the perspective of a non-technical user; later sections de-
tail how the system provides this user experience.

2.1 Introducing Devices

A UIA device ideally ships from its manufacturer pre-
configured with a name for itself such aslaptop or
phone, which the user can keep or change as desired.
The device learns additional names as its userintroduces
it to other devices owned by the same user or different
users. The introduction process assigns persistent names
by which the device can securely refer to other devices.

In a typical introduction, the owner(s) of two devices
bring the devices together physically and connect them
to a common local-area network. Each user then invokes

a local-area rendezvous tool similar to Bonjour’s [2] on
his device, finds the other device on the network, and se-
lects “Introduce.” Each device displays anintroduction
key consisting of three words chosen randomly from a
dictionary, as shown in Figure 1. Each user then picks
the other device’s introduction key from a list of three
random keys. If one of the devices has unintentionally
connected to the wrong endpoint, such as an imperson-
ator on the same network, then the matching key is un-
likely to appear on the list, so the user picks “None of
the above” and the introduction procedure aborts. Unlike
other analogous procedures [13], UIA uses short, user-
friendly “one-time” keys that only need to withstand on-
line and not offline attacks, and its multiple-choice design
prevents users from just clicking “OK” without actually
comparing the keys.

Users can follow the same procedure to introduce UIA
devices remotely across the Internet, as long as one de-
vice has a global DNS name or IP address and the users
have a trustworthy channel through which to exchange in-
troduction keys: e.g., a phone conversation or an authenti-
cated chat session. We also envision alternative introduc-
tion mechanisms adapted to specific rendezvous channels
such as E-mail, web sites, SMS messages, or short-range
wireless links; the details of particular introduction mech-
anisms are not crucial to the UIA architecture.

A user can introduce UIA devices either tomergehis
own devices into apersonal groupsharing a common
namespace, or to create namedlinks from his own group
to other users’ personal groups. The following sections
describe these two forms of introduction, and other im-
portant group management actions, with the help of an
example scenario illustrated in Figure 2.

2.2 Device Names and Personal Groups

At Time 1 in the scenario, Bob purchases a new lap-
top and Internet phone, which come pre-configured with
the default nameslaptop andphone, respectively. At
Time 2, Bob uses UIA’s local rendezvous tool on each
device to find the other device on his home WiFi network
and selects “Introduce devices” on each. Bob chooses the
“Merge devices” option in the introduction dialogs (see
Figure 1) to merge the devices into a personal group.

The devices in Bob’s group gossip both existing names
and subsequent changes to the group’s namespace as
physical network connectivity permits. Each device at-
tempts to preserve connectivity to other named devices
as they leave the network and reappear at other locations,
without user intervention whenever possible. Bob now
sees his two personal namesphone andlaptop on both
devices, and can use these names for local and remote ac-
cess. Working on his laptop at home, he uses his personal
namephone to reach the phone via his home WiFi LAN.
When Bob subsequently takes his laptop on a trip, he can

Figure 1: Bob and Alice introduce their devices

remotely access his home phone from his laptop over the
Internet (e.g., to check his voice messages), still using
the namephone. UIA uses cryptography to guarantee
that an adversary cannot impersonate the device Bob calls
phone, and cannot eavesdrop on his communication.

2.3 User Names and Social Networking

With the second form of introduction, users link their
personal groups together and assignuser namesto each
other, but retain exclusive control over their respective
personal groups. In the example scenario, Bob pur-
chases a new WiFi-enabled cell phone at Time 3 and
meets Alice at a cafe before he has merged his cell phone
with his other devices. Bob finds Alice’s iPod using
his cell phone’s local rendezvous tool and selects “Intro-
duce as a new contact” (see Figure 1), and Alice does
likewise. Bob’s phone suggests Alice’s self-chosen user
nameAlice, but Bob can override this default (e.g., to
Alice-Smith or Alice-from-OSDI) if he already
knows another Alice.

Bob and Alice can now refer to each others’ devices
by combining device names with user names in DNS-like
dotted notation. If Alice runs a web server on her home
PC, namedPC in Alice’s personal namespace, then Bob
can connect to Alice’s server by typingPC.Alice into
his laptop’s web browser, exactly as he would use a global
DNS name likeusenix.org.

If Alice’s personal web server is UIA-aware, she can
use her nameBob in the server’s access control lists so
that only Bob’s personal devices may browse certain pri-
vate areas. UIA authenticates clients so that no one can
impersonate Bob’s devices to gain access to these areas.

2.4 Transitive Merging and Gossip

Bob now returns home and merges his cell phone with his
home phone, as shown at Time 4 in Figure 2. Bob’s home
phone in turn gossips the cell phone’s group membership
to Bob’s laptop, so the laptop and cell phone can name

each other without him having to merge them explicitly.
Alice’s devices similarly gossip her new link namedBob
and learn about Bob’s three devices, after which she can,
for example, refer to Bob’s laptop aslaptop.Bob.

Users can access or edit their personal groups from any
of their devices while other devices are unreachable. If
Bob and Alice are on a bus together and disconnected
from the Internet, Alice can still reach Bob’s laptop from
her iPod via her namelaptop.Bob, even if they have
left their other devices at home. Bob and Alice can con-
tinue adding names for contacts they meet on the bus, and
their other devices learn the new names via gossip later
when they re-connect.

2.5 Resolving Conflicts

Unfortunately, both of Bob’s phones happened to have
identical default names ofphone, resulting in their
names conflicting in his newly merged namespace. UIA
notifies Bob of the conflict, and he can continue using
the non-conflicting namelaptop, but must resolve the
conflict before the namephone will work again. Bob
resolves the conflict on his cell phone at Time 5, by re-
naming itcell while leaving the home phone with the
namephone. Bob’s other devices learn the resolved
name bindings via gossip, as do Alice’s devices, so Alice
now sees Bob’s phones asphone.Bob andcell.Bob.

If Bob makes conflicting namespace changes on two
of his devices while they are partitioned from each other,
UIA detects the conflict once the devices reconnect. Bob
can continue using other non-conflicting names in the
same group while conflicts exist, and he can resolve such
conflicts at leisure on any of his devices.

2.6 Shared Groups

In addition to personal groups, users can createshared
groupsto help organize and share their personal names.
Bob and Alice discover at Time 6 that they share an in-
terest in photography, and decide to start a photo club for

Figure 2: Example Personal Device Scenario

Figure 3: Groups and Ownership

themselves and other friends sharing this interest. To en-
able members of the club to find each other easily and
share photos among their personal devices, Bob uses his
laptop to create a shared group namedPhotoClub in
his personal namespace. On creation, the shared group’s
only member is Bob himself. To add Alice to the group,
Bob drags the nameAlice from his personal group into
PhotoClub, copying his name binding for Alice into
the shared group and making her the second member.
Bob can similarly add other friends toPhotoClub, and
these names automatically appear in Alice’s view of the
group the devices gossip the changes.

Although Alice can now refer to the new group as
PhotoClub.Bob, she might like this group to appear
directly in her own personal group instead of naming it
relative to Bob. Alice drags thePhotoClub name from
Bob’s personal group into her own, giving herself a copy
of the name leading to the same shared group. She can
now refer to group members using the same names that
Bob uses, such asCharlie.PhotoClub.

2.7 Group Ownership

One or more members of a UIA group may be designated
asowners, or members allowed to modify the group. As
Figure 3 illustrates, Bob’s deviceslaptop, phone, and
cell are owners of his personal group by default, al-
lowing Bob to edit his personal group using any of his
devices. The namesAlice andPhotoClub are not
owners, so Alice and members ofPhotoClub can only
browse and resolve names in Bob’s namespace.

Groups can own other groups. When Bob creates his
sharedPhotoClub group, UIA automatically includes
a nameBob in the new group that gives Bob’s personal
group ownership of the new group. After adding Alice to
the group, Bob can give her co-ownership by clicking the
owner flag by her name in the group listing, enabling her
to add or remove other members herself. Ownership is
transitive: Bob can modifyPhotoClub using his laptop
because Bob’s laptop is an owner of Bob’s personal group
and Bob’s personal group is an owner ofPhotoClub.

2.8 Security and Ownership Revocation

Returning to the scenario in Figure 2, Bob loses his cell
phone at Time 7, and he is not sure whether it was stolen
or just temporarily misplaced. If the cell phone was stolen
and has no local user authentication such as a password or
fingerprint reader, the thief might obtain not only Bob’s
data on the cell phone itself, but also remote access to
services authorized to his personal group via UIA names.
UIA devices capable of accessing sensitive information
remotely should therefore provide strong local user au-
thentication, and should encrypt personal data (including
UIA state) stored on the device, as Apple’s FileVault does
for example [3]. The details of local user authentication
and encryption are orthogonal to UIA, however.

To minimize potential damage if a thief does break into
Bob’s user account on his cell phone, Bob can revoke
the cell phone’s ownership of his personal group. If the
cell phone re-appears and Bob realizes that he just mis-
placed it, then he can “undo” the revocation and return
the phone to its normal status. If the cell phone remains
missing, however, UIA ensures that no one can remotely
access personal information or services on Bob’s other
devices via the lost phone once the revocation announce-
ment has propagated to those devices. Similarly, the cell
phone loses its access to the files Alice shared with Bob
as soon as Alice’s PC, on which the files reside, learns of
the revocation from any of Bob’s remaining devices.

2.9 Ownership Disputes

Revocation cuts both ways: a thief might try to “hijack”
Bob’s personal group, using the stolen cell phone to re-
voke the ownership of Bob’s other devices before Bob
finds that the phone is missing. In UIA’s current owner-
ship scheme in which all owners have full and equal au-
thority over a group, Bob’s devices cannot distinguish the
“real” Bob from an impostor once a stolen device’s local
access control is broken. UIA therefore allows any device
to disputeanother device’s revocation of its ownership.

In the example scenario, when Bob next uses his lap-
top, UIA informs him that his laptop’s ownership of his
personal group has been revoked by the cell phone, which
Bob realizes was stolen. In response, Bob issues a re-
vocation of the cell phone’s ownership from his laptop.
The two mutual revocations effectively split Bob’s orig-
inal personal group into two new, independent groups:
one containing only the cell phone, the other contain-
ing Bob’s remaining devices. All existing UIA names
referring to Bob’s old personal group, and any access au-
thorizations based on those names, become unusable and
must be manually updated to point to the appropriate new
group. Alice’s nameBob for example is now marked
“disputed” in Alice’s namespace, and Alice’s PC rejects
attempts by any of Bob’s devices to access the files she
shared with Bob earlier using that UIA name. To update

her name for Bob and safely renew his access, Alice can
re-introduce her devices directly to Bob’s the next time
they meet, or obtain a fresh link to Bob’s new personal
group from a trusted mutual friend who already has one.

Group ownership disputes need not be permanent.
Suppose two people who co-own a shared group get into
an argument, and split the group by issuing mutual re-
vocations. If the original co-owners later settle their dif-
ferences, they can undo their conflicting revocations or
simply merge their respective “splinter” groups back to-
gether via UIA’s normal merge mechanism. Links to the
original group become unusable during the dispute, but
function again normally after the dispute is resolved.

3 Basic Design

This section outlines UIA’s high-level design, which con-
sists of separate naming and routing layers that together
realize the user experience described above. Sections 4
and 5 detail the naming and routing layers, respectively.

3.1 Personal Endpoint Identities

UIA devices identify each other using cryptographically
uniqueendpoint identifiersor EIDs. Whereas DNS maps
a name to an IP address, UIA maps a personal device
name such as Bob’slaptop to an EID. Unlike IP ad-
dresses, EIDs arestableand do not change when devices
re-connect or move. UIA’s routing layer tracks mobile
hosts by their EIDs as they change IP addresses, and can
forward traffic by EID when IP-level communication fails
due to NAT or other Internet routing discontinuities.

A UIA device creates each EID it needs automati-
cally by generating a fresh public/private key pair and
then computing a cryptographic hash of the public key.
As in SFS [32], EIDs are cryptographically unique, self-
configuring, and self-certifying, but not human-readable.
As in HIP [34], UIA-aware network transports and ap-
plications use EIDs in place of IP addresses to identify
communication endpoints. (UIA can also disguise EIDs
as “actual” IP addresses for compatibility with unmodi-
fied legacy applications, as described later in Section 6.)

An EID corresponds to a particular user’s presence on
a particular device. A user who owns or has access to
several devices has a separate EID for each. A device
accessed by only one user needs only one EID, but a de-
vice shared among multiple users via some form of lo-
gin mechanism creates a separate EID for each user ac-
count. Unlike cryptographic host identifiers in SFS and
HIP, therefore, EIDs are not only stable butpersonal.

Personal EIDs allow multiple users of a shared UIA
host to run independent network services on the device.
Since each user’s services bind to the user’s EID rather
than to a host-wide IP address, UIA-aware network ap-
plications can run exclusively in the context of the user
and rely on UIA to provide user-granularity authentica-

tion and access control. When Bob connects his laptop to
the HTTP port at the EID to whichPC.Alice resolves,
he knows he is connecting toAlice’spersonal web server
and not that of another user with an account on the same
PC. Alice’s web server similarly knows that the connec-
tion is coming from Bob and not from someone else us-
ing laptop, because her namelaptop.Bob resolves to
an EID specific to Bob’s account on his laptop.

3.2 Naming Principles

Each UIA device acts as an ad hoc name server to support
name lookups and synchronize namespace state across
devices. UIA names follow the same formatting rules as
DNS names, consisting of a series oflabelsseparated by
dots, and devices resolve UIA names one label at a time
from right to left. To resolve the namePC.Alice, for
example, Bob’s laptop first resolves the rightmost com-
ponentAlice to find Alice’s personal group, and from
there resolves the second componentPC to find the EID
for Alice’s PC as named in Alice’s personal group.

Whereas DNS resolution traverses a strictly hierarchi-
cal tree of “zones” starting from a centrally-managed
global root zone, each UIA device has a unique root for
resolving UIA names, and users can link UIA groups to
form arbitrary graphs. After Bob meets Alice at Time 3 in
Figure 2, for example, Bob’s “root” group for UIA name
resolution, corresponding to his personal group, appears
to Alice as a “sub-group” namedBob. Conversely, Al-
ice’s “root” group appears to Bob as a “sub-group” named
Alice. Since Bob’s and Alice’s naming relationship
forms a cycle in the graph of UIA groups, Bob could for
example refer to his own phone via the redundant name
phone.Bob.Alice.

UIA groups may at times containlabel conflicts, or
bindings of a single name to multiple distinct targets.
When Bob at Time 4 merges his new cell phone with
its default namephone into his personal group, which
already contains another device namedphone, the two
phone bindings result in a label conflict. Label conflicts
also arise if an ownership dispute splits thetarget that a
group name refers to, as described in Section 2.9. Name
resolution fails if it encounters a label conflict, preventing
the user from following ambiguous links before resolving
the conflict. A conflict on one label does not affect the us-
ability of other labels in the same group, however.

3.3 State Management

UIA uses optimistic replication [26, 28, 47] to maintain a
user’s personal UIA namespace across multiple devices,
guarding namespace state against device loss or failure
and keeping the namespace available on all devices dur-
ing periods of disconnection or network partitions. Each
device stores in an append-only log all persistent naming
state for its user’s personal group and any other groups of

Type Type-specific Record Content
Create Owner: endpoint ID (EID) of owner device

Nonce:ensures uniqueness of new series ID
Link Label: human-readable string

Target: device (EID) or group (series ID)
OwnerFlag:grants group ownership if true

Merge Target: series ID (SID) to merge with
Cancel Target: record ID to cancel

Figure 4: Log Record Format

interest to the user, and uses an epidemic protocol [12] to
distribute updates of each group’s state among the devices
interested in that group.

UIA’s epidemic protocol uses a classic two-phase
“push/pull” algorithm. In the “push” phase, when a de-
vice creates a new log record or obtains a previously un-
known one from another device, it repeatedly pushes the
new record to a randomly-chosen peer until it contacts a
peer that already has the record. Thisrumor mongering
technique works well when few devices have the record,
propagating the “rumor” aggressively until it is no longer
“hot.” In the “pull” phase, each device periodically con-
tacts a randomly-chosen peer to obtain any records it is
missing. Theseanti-entropyexchanges work best when
most devices already have a record, complementing the
rumor mongering phase and ensuring that every device
reliably obtains all available records.

4 Naming and Group Management

This section describes in detail how UIA devices man-
age and synchronize the namespace state comprising their
users’ personal and shared groups.

4.1 Device Log Structure

UIA organizes the records comprising a device’s log into
series, each series representing the sequence of changes
a particular device writes to a particular group. The state
defining a group consists of one or more series, one for
each device that has written to the group. All devices par-
ticipating in a group gossip and replicate all records in
each of the group’s series, preserving the order of records
in a given series, but do not enforce any order between
records in different series. Since UIA separates the nam-
ing state for each group by series, devices can limit gossip
to the records relating to groups they’re interested in, in-
stead of scanning their neighbors’ entire device logs.

As shown in Figure 4, each log record contains a series
ID, a sequence number, data specific to the record type,
and a signature. The series ID (SID) uniquely identifies
the series to which the record belongs. The sequence
number orders records within a series. The device that
owns a series signs each record in that series with its pri-
vate key, so that other devices can authenticate copies of
records they receive indirectly. A cryptographic hash of
the record yields aRecord ID, which uniquely identifies
the record for various purposes described later.

UIA currently defines four record types, listed in Fig-
ure 4 and summarized briefly below:

• Create: A createrecord initiates a new series owned
by the device writing the record, as identified in the
record’s owner field. The owner EID fixes the pub-
lic/private key pair other devices use to authenticate
records in the new series. The record ID of the cre-
ate record becomes the new series ID; a random nonce
ensures the new SID’s cryptographic uniqueness. The
create record itself is not part of the new series: its own
series ID field is usually empty to indicate that it is not
part of any series, but it can be non-empty for revoca-
tion purposes as described later.

• Link: A link record binds a human-readable label
such asAlice to an endpoint ID or series ID denot-
ing the link’s target. Links to devices, such as Bob’s
nameslaptop andphone, contain the EID of the
target device. Links to groups, such asAlice and
PhotoClub, contain the SID of some series in the
target group. A link record has an owner flag indicat-
ing whether the link grants ownership to the link’s tar-
get, allowing the target to write changes to the group
containing the link record. We refer to a link with its
owner flag set as alink-owner record.

• Merge: A mergerecord joins two series to form a sin-
gle UIA group. The union of all link and cancel records
in all merged series determines the set of names that
appear in the group, forming a common distributed
namespace. A merge takes effect only if the device
that wrote the merge record also owns the target group,
or if there is a corresponding merge record in the target
group pointing back to the first group.

• Cancel: A cancelrecord nullifies the effect of a spe-
cific previous record, specified by the target’s record
ID. With certain restrictions described below, link
records can be canceled to delete or rename group
members. Create, merge, and cancel records cannot
be canceled.

4.2 Namespace Operations

This section describes how UIA devices implement the
important user-visible namespace control operations, in
terms of the specific records the devices write to their logs

at the events in the example scenario from Figure 2. The
following section will then explain how devices evaluate
the contents of their logs to determine the effective state
of each group at any point in time.

Device Initialization: When Bob and Alice install or
first start UIA on a device at Time 1, the device first writes
a create record to its log, forming a new series to repre-
sent the user’s personal “root” group on that device. The
device then writes a link record to the new series, giving
itself a suitable default name such aslaptop. The de-
vice sets the owner flag in this link record to make itself
the sole initial owner of the group.

Merging Device Groups: When Bob introduces and
merges his devices at Time 2 to form a personal group,
each device writes to its own root series a merge record
pointing to the other device’s root series. These cross-
referencing merge records result in amerge relation-
shipbetween the two devices, which begin to gossip the
records comprising both series so that each device eventu-
ally holds a complete copy of each. This merging process
does not actually create any new link records, but causes
each device to obtain copies of the other device’s existing
link records (the laptop’s link record for its default name
laptop and the phone’s record for its namephone) and
incorporate those names into its own root group.

Aside from merging devices’ root series via introduc-
tion, a user can use a single device to merge two arbitrary
groups, provided the same device already has ownership
of both groups. If Bob creates two shared sub-groups and
later decides they should be combined, for example, he
can merge them on any of his devices. The device writes
cross-referencing merge records to the relevant series, ex-
actly as in the introduction scenario.

Meeting Other Users: When Bob and Alice introduce
their devices to each other at Time 3, the devices ex-
change the series IDs of their respective root series, and
each device writes a link record to its own root series re-
ferring to the other device’s root series. Bob’s new link
record namedAlice gives Alice a name in his personal
group, and Alice’s new link record namedBob likewise
gives Bob a name in her group. The devices do not set the
owner flags in these new link records, giving Alice and
Bob only read-only access to each others’ namespaces.

Transitive Merge: Individual merge relationships in
UIA are always pairwise, between exactly two series,
but merge relationships combine transitively to determine
effective group membership. When Bob introduces his
cell phone to his home phone at Time 4, the two de-
vices form a merge relationship between their respective
root series. Since Bob’s home phone and laptop already
have a merge relationship, Bob’s laptop and cell phone
transitively learn about each other via gossiped records
they receive from the home phone, and the union of the

records in the three root series determine the contents of
the resulting group. Since the merged group has two link
records namedphone with different target EIDs, the de-
vices flag a label conflict onphone and refuse to resolve
this name.

Renaming Labels and Resolving Conflicts: When
Bob renames his cell phone tocell at Time 5 to resolve
the conflict, his device writes to its root series a cancel
record containing the record ID of the link record defin-
ing the cell phone’s previous name, then writes a new
link namedcell that is otherwise identical to the orig-
inal link. Since one of the two conflicting link records
is now canceled, the label conflict disappears, and the
namesphone andcell become usable on all of Bob’s
devices once they receive the new records via gossip. Bob
can resolve the conflict on any of his devices, because any
group owner can cancel a link written by another device.

The user can also delete a name from a group outright,
in which case the device writes a cancel record without a
new link. The ownership granted by a link-owner record,
however, can only be nullified by the revocation process
described later in Section 4.3.1.

Because UIA implements renames non-atomically
with a cancel record coupled with a new link record, if
Bob renamesAlice to Alice1 on his laptop and re-
namesAlice to Alice2 on his phone while the two
devices are temporarily partitioned, on reconnection he
will have two namesAlice1 andAlice2 with no con-
flict detected. This corner-case behavior, while perhaps
slightly surprising, seems acceptable since it “loses” no
information and at worst requires Bob to delete one of
the resulting redundant names.

Creating Groups: Bob uses his laptop at Time 6 to cre-
ate his sharedPhotoClub group. To create the group,
the laptop first writes a create record to generate a fresh
series ID. The laptop then writes two link records: first,
a link namedPhotoClub in its root series pointing to
the new series, and second, a link namedBob in the new
series pointing back to the root series. The laptop sets the
owner flag in only the latter link record, giving Bob’s per-
sonal group ownership of the new group,withoutgiving
PhotoGroup ownership of Bob’s personal group.

Suppose that Bob now uses a different device, his cell
phone for example, to add Alice toPhotoClub. Bob’s
cell phone is already an indirect owner ofPhotoClub,
because the cell phone is an owner of Bob’s personal
group and Bob’s personal group ownsPhotoClub. The
cell phone does not yet have a series inPhotoClub,
however, to which it can write records: initially only the
laptop, which created the new group, has a series in the
group, and only it can sign records into that series. The
cell phone therefore creates its ownPhotoClub series,
by writing a create record to form a new series owned

by itself, and then writing a merge record to this new
series pointing to the laptop’sPhotoClub series. Al-
though no corresponding merge record in the laptop’s
PhotoClub series points back to the cell phone’s new
series (in fact the laptop may be offline and unable to sign
such a record), the cell phone’s merge record takes ef-
fect “unilaterally” by virtue of the cell phone’s indirect
ownership ofPhotoClub. The cell phone then writes
a copy of Bob’s link to Alice into its newPhotoClub
series, and other devices learn of the new series and the
new name as they gossip records forPhotoClub.

Revoking Ownership: When Bob learns at Time 7 that
his cell phone is missing, he uses his laptop to revoke
the cell phone’s ownership of his personal group, either
by deleting the namecell from his personal group or
by clearing its owner flag. To implement this revoca-
tion, however, Bob’s laptop cannot merely write a can-
cel record pointing to the link record forcell: the cell
phone would still own a series in Bob’s personal group
and thus retain “hidden” control over the group.

To revoke the cell phone’s ownership, therefore, Bob’s
laptop creates a new personal group for Bob and copies
the original group’s name content into it. To create the
new group, the laptop writes a create record whose series
ID field is not empty as usual, but instead contains the
SID of the laptop’s original root series. The laptop then
writes link records to the new series corresponding to all
the active links in the old series, omitting links or own-
ership flags to be revoked. The create record written into
the old root series indicates to all interested devices that
the new series forms a group that is intended to replace or
act as asuccessorto the original group.

As long as only one such “create successor” record ex-
ists in Bob’s old personal group, all devices treat links to
any series in the old group as if they linked to the succes-
sor group instead. Upon receiving via gossip the records
describing Bob’s new group, for example, Alice’s devices
subsequently resolve her nameBob to the new group, and
use it to calculate which devices should be given access
to resources she has authorized Bob to access, effectively
revoking the cell phone’s access.

If the cell phone writes a conflicting “create successor”
record toits series in Bob’s original group, however, then
the original group becomesdisputed, and other devices
refuse to resolve links to any series in the original group
as soon as they learn about the dispute. Alice’s devices
thus refuse to resolve her nameBob and deny access to
any resources she authorized using that name. Once Al-
ice updates her broken link to refer to the correct succes-
sor group, either by re-introducing with Bob or by copy-
ing a fresh link from a mutual friend, her device writes a
new link referring to a series in Bob’s new group, the old
group becomes irrelevant and Bob can again access Al-
ice’s resources via the devices in his new personal group.

global M : membership table: SID→ SID set
global O: ownership table: SID set→ EID set
function eval membershipownership():

for each known seriessid:
M [sid]← {sid}
O[{sid}]← EID of device that owns seriessid

do:
for each link-owner record in each seriessid:

if link target is a deviceteid:
O[M [sid]]← O[M [sid]] ∪ teid

else if target is a seriestsid:
O[M [sid]]← O[M [sid]] ∪O[M [tsid]]

for each merge record in each seriessid:
tsid← target series ID of merge record
O[M [sid]]← O[M [sid]] ∪ O[M [tsid]]
if owner EID of seriessid ∈ O[M [tsid]]:

O[M [sid] ∪M [tsid]]← O[M [sid]] ∪O[M [tsid]]
for each series IDmsid ∈M [sid] ∪M [tsid]:

M [msid]←M [sid] ∪M [tsid]
until M andO stop changing

Figure 5: Membership and ownership evaluation pseudocode

If link or cancel records exist on Bob’s other devices
that his laptop has not yet received at the time of revo-
cation, the laptop cannot copy these change records into
the new group and they becomeorphaned. Bob’s devices
continue to monitor and gossip records in the old group
after the revocation, however, to detect both orphans and
ownership disputes. If a device with ownership of the
new group detects an orphaned record written by itself or
another device with ownership of the new group (not a re-
vokee), it automatically “forwards” the change by writing
a corresponding record to the new group.

4.3 Group State Evaluation

This section describes the algorithms UIA devices use to
determine the current state of a given group from the set
of log records they have on hand. Devices evaluate group
state in three stages: (1) membership and ownership, (2)
group successorship, and (3) name content.

4.3.1 Membership and Ownership

In the first stage, a UIA device collects the series IDs re-
ferred to by all records in its log, and clusters them into
sets based on merge relationships to form UIA groups. At
the same time, the device computes the set of device EIDs
to be considered owners of each group, either directly or
transitively. Group membership and ownership must be
computed at the same time because they are mutually de-
pendent: group membership expansion via merge can in-
troduce additional owners, and owner set expansion can
place additional merge records under consideration.

Figure 5 shows pseudocode for membership and own-
ership evaluation. The algorithm uses a membership table
M mapping each known series ID to a set of series IDs

sharing a group, and an ownership tableO mapping each
group (represented by a set of series IDs) to a set of owner
device EIDs. The algorithm first initializes the entry in
M for each series to a singleton set containing only that
series, and initializes the owner set entry inO for each
such singleton group to the EID of the device that owns
that series. The algorithm then repeatedly merges groups
and expands ownership sets until it reaches a fixed point.
The algorithm terminates because member and owner sets
only grow, and each device knows of a finite number of
series IDs at a given time.

In each iteration, the algorithm first follows link-owner
records, expanding the ownership set of the group con-
taining a link-owner record according to the target device
EID or the current ownership set of the target group, as
applicable. Across iterations, this step handles transitive
propagation of ownership across multiple groups, such
as Bob’s laptop’s ownership ofPhotoClub via the lap-
top’s ownership of Bob’s personal group.

Second, for each merge record, the algorithm expands
the ownership set of the group containing the merge
record to include the ownership set of the target group,
then checks whether the device that wrote the merge
record isauthorizedby virtue of having ownership of the
target group. The authorization check prevents a device
from merging a series into an arbitrary group without per-
mission. In the symmetric case where two merge records
refer to each others’ series IDs, each merge is authorized
by the fact that the other merge grants ownership of its
own series to its target. Once a merge is authorized, the
algorithm combines the SID sets of the respective groups
to form one group containing all the merged SIDs, and
similarly combines the respective owner sets.

4.3.2 Group Successorship

In the second stage, a device computes thesuccessorship
status of each group resulting from the first stage, in order
to handle revocations and ownership disputes. The device
first forms a directed graph reflecting immediate succes-
sor relationships: a create record in seriesA yielding a
new seriesB makes the group containingB a successor
to the group containingA. Next, the device takes the
transitive closure of this graph to form a transitive suc-
cessorship relation: ifB succeedsA andC succeedsB,
thenC transitively succeedsA.

The device now assigns to every groupG one of three
states as follows. IfG has no successors, it is ahead
group: no revocations have been performed in the group,
and links to series IDs in the group resolve normally. On
the other hand, if there is a second groupG′ that is a tran-
sitive successor toG and is also a transitive successor to
all other transitive successors toG, thenG′ is theundis-
puted successorto G. In this case, links to series IDs in
groupG resolve to groupG′ instead. Finally, ifG has

Figure 6: Example Group Successorship Scenarios

successors but no undisputed successor, then groupG is
disputed, and links to series IDs inG do not resolve at all.

Figure 6 illustrates several group successorship sce-
narios and the corresponding results of this algorithm.
In scenario (1), two conflicting revocations have placed
group A under dispute; A’s successor B also has a succes-
sor due a second revocation in B but B is not under dis-
pute. Scenario (2) is like (1) except a revocation has also
been performed in group C, forming a new head group E.
Scenario (3) shows the result after the warring owners in
(2) settle their differences and merge their head groups D
and E, resolving the original dispute over group A.

4.3.3 Name Content

In the third and final stage, for each head group to be
used for name resolution, a device computes the group’s
namespace state as follows. Given the set of all link
records in every series in the group, the device removes
all link records targeted by a cancel record in any series of
the group to form the set ofactivelinks. Any device that
owns a group can cancel a link written by another device,
but a cancel cannot revoke ownership.

The set ofactive labelsin a group, shown in a names-
pace browser for example, is the set of labels appearing
in any active link record in the group. To beusable, all
active links for a given label must have the same permis-
sions, and must target the same device EID or SIDs in the
same group. Otherwise the label isin conflict, as Bob’s
home and cell phone are at Time 4 in the example. If Bob
creates identical links on different devices independently,
such as by separately introducing both his cell phone and
his laptop to Alice to yield duplicateAlice links, this
action does not create a label conflict when Bob merges
his home and cell phone together because the redundant
links have the same target and permissions.

5 Routing and Forwarding

Once the naming layer has resolved a device name to a
location-independent EID, UIA’s routing layer is respon-
sible forlocatingthe target device—finding its current IP
address—andforwarding traffic to it through other de-
vices if direct connectivity is unavailable.

Many designs are conceivable that would perform
these two functions, such as a general-purpose overlay
routing algorithm we explored previously [16]. In this
work, however, we adopt a simple design that does not at-
tempt to provide connectivity between arbitrary devices,
but is optimized for connecting to devices in the user’s
immediatesocial neighborhood: primarily the user’s own
devices and those of friends named in the user’s personal
group, and occasionally “friends of friends,” but rarely
more indirect contacts. In practice we expect users to
create (or copy from other users) names in their own per-
sonal groups for others with whom they wish to interact
regularly, justifying our assumed usage model.

In brief, UIA builds an overlay network between de-
vices in its social neighborhood. To locate a remote de-
vice by its EID, a device floods alocationrequest through
the overlay to discover the EIDs, IP addresses, and ports
of devices forming a path through the overlay to the tar-
get. The originating device then connects directly to the
target’s discovered IP address and port, or if the target
is not directly reachable (e.g., because of an intervening
NAT), forwardstraffic to it by source-routing data via the
existing connections in the discovered path.

5.1 Overlay Construction and Maintenance

Each UIA device maintains an open TCP connection with
up to a configurable number of overlaypeers. Ideally,
these peers should be on the public Internet, so that a
device behind a NAT can receive messages from de-
vices outside via its active peering connections. A device
should choose other devices when none on the public In-
ternet are reachable, however, so that the overlay remains
useful in ad hoc environments. Furthermore, the devices
of friends should be close to each other in the overlay, so
that location or forwarding paths between them are short.

To meet these goals, a device first prefers as peers de-
vices that arestable, and secondarily prefers those that
are closest to it infriendship distance. A device is con-
sideredstableif it does not have a private IP address [41]
and has met a threshold level of availability in the recent
past. A peer’sfriendship distanceis roughly the number
of labels in the local device’s shortest name for that peer.
The rest of this section explains how a device discovers
stable peers and calculates friendship distances.

Each device maintains apotential peer setthat contains
potential peers’ EIDs and the times, IP addresses, and
ports at which the device has connected to those peers in
the past. Initially, a device populates this set with the de-
vices to which the user has directly introduced the device.
To discover new potential peers, a device periodically ex-
changes its potential peer set with those of other devices
within a configurable maximum friendship distance. A
device adds to the set only those devices to which it is able
to establish a TCP connection when it discovers them.

A device classifies a potential peer asstableif it meets
an availability threshold (e.g., 90%) at the same public IP
address and port in the recent past (e.g., the last week). To
monitor availability, a device periodically chooses a ran-
dom potential peer and attempts a connection to its last
known location. A device need not have a static IP ad-
dress to be classified as stable: a device with a dynamic
non-private IP address that changes infrequently, such as
a home PC left on and connected via a DSL or cable mo-
dem, will also typically be classified as stable.

A device computes thefriendship distanceof each of
its potential peers by assigning a distance of 1 to itsdirect
peers: those the naming layer identifies as devices in the
user’s personal group and in groups to which the user has
linked (the user’s immediate friends). The device then
assigns distances to indirect peers transitively, giving the
direct peer of a direct peer a distance of 2, for example.

To improve robustness, a device manufacturer can seed
the potential peer sets of its products with a set ofdefault
peers, which devices treat as having an infinite friend-
ship distance. Two newly-purchased mobile devices, af-
ter being introduced and exchanging potential peer sets,
thus have at least one stable peer in common at the outset
to help them re-connect after a move. Once the mobile
devices discover other stable peers at smaller friendship
distances, however, they prefer the new devices over the
default peers, mitigating the manufacturer’s cost in pro-
viding this robustness-enhancing service.

5.2 Token-limited Flooding

To communicate with a remote device, a device first at-
tempts a direct TCP connection to the IP address and port
at which it last connected to the target, if any. If this con-
nection fails or the originator has no address information
for the target device, it floods a location request through
the overlay to locate the target by its EID.

UIA uses atoken count, in place of the traditional hop
count [6], to limit the scope of location request floods.
The token count bounds the total number ofdevicesto
which a request may be forwarded, rather than the num-
ber of times each request may be re-broadcast. This dis-
tinction is important for two reasons. First, although de-
vices seek to connect with a fixed number of peers, the
number of devices that choose a given device depends
on the target’s stability and popularity, so the overlay’s
degree is highly non-uniform. Hop count is thus a poor
predictor of the number of devices a request will reach.
Second, the overlay network is highly redundant: two
friends’ devices are likely to share many common peers,
for example, so searchingall devices within some dis-
tance of a request’s source is often unnecessary.

Location requests contain the EIDs, IP addresses, and
ports of devices they have traversed; devices forward re-
sponses back through the overlay along the same path.

A device with an open TCP connection to a request’s
target immediately responds with the target’s IP address
and port. Otherwise, it subtracts one token for itself, di-
vides the other tokens among its peers not already in the
path, distributing any remainder randomly, and forwards
the request to those peers that receive a non-zero count.
The device retains the request’s target EID and return path
for a short period, waiting for the forwarded requests to
complete, and replying to the original request whenany
of the forwarded ones succeed or whenall of them have
failed. A request also fails if the source has not received a
successful response within a timeout. If a device receives
a duplicate request for the same EID as an outstanding
request (e.g., along a different path), it forwards the new
request anyway according to its token count, giving peers
for which there were not enough tokens in previous in-
stances another chance to receive the request.

As shown in Section 7, most location requests succeed
within the near vicinity of the source in the overlay net-
work. To limit the cost of the search, a device thus ini-
tially sends each request with a limited number of tokens
and retries after each failure with a multiplicatively in-
creased number, up to some maximum.

5.3 Source-Routed Forwarding

To communicate with the target device after receiving a
successful location response, the originator tries to open
a direct connection to each device in the response path,
starting with the target itself and proceeding backwards
along the path until a connection succeeds. The originator
then source-routes messages to the target along the tail of
the path starting with the device to which it connected.

Consider for example two devicesa andb behind dif-
ferent NATs, both of which peer with a common stable
devices. Whena performs a location request forb’s EID,
it discovers the patha → s → b. Devicea then tries to
open a direct connection tob, but b’s NAT blocks that
connection, soa forwards traffic tob throughs instead.
Devices itself initiates no location requests, but merely
forwards traffic along the path specified bya.

6 Implementation

A prototype UIA implementation currently runs on Linux
and Mac OS X. As illustrated in Figure 7, the prototype
consists of two user-level daemons implementing UIA’s
naming and routing layers, respectively, and a graphi-
cal application for browsing and controlling devices and
groups. The control application and other UIA-aware ap-
plications on the device interface directly to the naming
and routing daemons via Sun RPC. Through these inter-
faces, UIA-aware applications can resolve UIA names to
EIDs, explore and modify groups on behalf of the user,
send packets to EIDs, receive packets on the device’s
EID, and discover peers on the local-area network.

Figure 7: Structure of UIA Prototype Implementation

6.1 Prototype Status

The name daemon is written in Python and implements
the design described in Section 4, providing group cre-
ation, merging, named links between groups, naming
state gossip, state evaluation, multi-component name res-
olution, and ownership revocation. The name daemon
does not yet detect and copy orphaned change records
across revocations as described in Section 4.2, however.

The prototype routing daemon implements in C++ the
algorithms described in Section 5. The router uses Bon-
jour for local-area device discovery, and uses SSL over
TCP connections for secure communication.

The UIA control application allows the user to browse
the UIA namespace and create and modify groups, as il-
lustrated earlier in Figure 3, and supervises the device in-
troduction process as illustrated in Figure 1. The control
application is still unpolished and does not yet fully sup-
port shared groups or revocation, however.

6.2 Support for Smaller Devices

We have ported the UIA prototype to the Nokia 770 In-
ternet Tablet, a Linux-based Internet appliance with an
ARM processor. The naming and routing layers have
the full functionality of the regular Linux/Mac version of
UIA, but the port of the GUI control application is not yet
complete. In general, we expect the routing and naming
modules to port easily among smaller devices, while the
GUI component requires more modifications because of
the more specialized and restrictive user interface frame-
works available on each class of mobile device. UIA does
not rely on extensive data entry or other forms of user
interaction that are fundamentally difficult to achieve on
small devices, however.

6.3 Legacy Application Support

The UIA prototype supports legacy applications through
a tun wrapper and DNS proxy. Thetun wrapper dis-
guises EIDs as device-local IP addresses and uses the ker-
nel’stun device to forward applications’ TCP and UDP

packets for these special IP addresses over UIA’s routing
layer. The DNS proxy similarly intercepts name lookups
made by local applications and resolves UIA names to
device-local IP addresses for the corresponding EIDs. We
have run Apache, Firefox, OpenSSH, and Apple’s Per-
sonal File Sharing over UIA using this legacy interface
without modification or recompilation.

UIA’s legacy application support layer makes the user’s
personal group appear to applications like a global virtual
private network, by intercepting network-local broadcast
packets that applications send to UIA’s special IP ad-
dresses and forwarding them securely to each of the
user’s personal devices. Because of this feature, many
broadcast-based “local-area” service discovery protocols
such as Bonjour automatically work across all the devices
in the user’s personal group, even when some of the de-
vices are in fact remote. We have used Apple’s Bonjour-
based Personal File Sharing, for example, to locate and
share files remotely between devices in a UIA personal
group as if they were present on the same LAN.

6.4 Experience with UIA

We currently run the UIA prototype on a number of desk-
top and laptop machines in our lab, and regularly run ex-
isting applications such as SSH over UIA to reach our
mobile devices via their short personal device names.
UIA automatically accounts for IP address changes and
traverses NATs as necessary; SSH connections open
when we take a laptop home need not be restarted. Al-
though these uses are already possible via alternate pro-
tocols such as mobile IP, the complexity of configuring
these alternatives has generally deterred even those of us
with the necessary technical knowledge from deploying
them. We feel that UIA’s zero-configuration paradigm
for personal naming and connectivity provides a crucial
missing element in making mobile devices usable.

7 Evaluation
UIA’s primary goal is convenience and usability by non-
technical users, a goal that can only be evaluated ef-
fectively once UIA has been deployed longer and more
widely in the field. We can however evaluate key perfor-
mance characteristics of the routing layer through sim-
ulation, to verify that the proposed design is capable of
providing the desired connectivity on realistic networks.

7.1 Experimental Setup

We use as our simulated network a crawl of the social
networking site Orkut gathered by Li and Dabek [29].
This graph is merely suggestive; until UIA is more widely
deployed, it will not be clear how accurately the Orkut
graph characterizes UIA’s likely usage model. The graph
has 2,363 users, which we take to represent devices, as
if each user owned one device. Friend relationships are
bidirectional, and the number of friends per user is highly

skewed: the median is only 7, but the most popular user
has over 1,000.

Our simulator takes as input apercent stableparame-
ter and randomly chooses that percent of the devices to
be stableand publicly accessible. All other devices the
simulator considers to bemobileand inaccessible except
through some stable device, as if behind a NAT. We as-
sume that all devices agree as to which devices are stable.

Each device chooses 16 peers and allows at most 64
devices to choose it, to limit each device’s overlay main-
tenance cost in a real network. Devices choose peers in
order of friendship distance. A device can only choose a
given target as a peer if the target does not already have
64 peers, or if the new device is closer than one of the
target’s existing peers, in which case the target discards a
random peer at higher friendship distance. Since we do
not yet have traces with which to simulate the network’s
evolution, the simulated devices choose peers in random
order, iterating until the network reaches a fixed point.

The simulator then performs token-limited location re-
quests on the resulting overlay between 10,000 random
pairs at friendship distances 1, 2, and 3. Each lookup
starts with 16 tokens, and doubles after each failure, up
to a maximum of 256 tokens. The simulator records the
percentage of requests that succeed after a given number
of rounds and the total number of messages sent.

7.2 Location Success Rate

An important performance metric for the location algo-
rithm is the number of tokens needed to locate a target
device successfully. Using more tokens increases the
chance of success (assuming that the overlay is in fact
connected), but also increases the cost of concluding that
an unreachable device is offline. Figure 8 shows the suc-
cess rate measured in the simulation for locating devices
at friendship distance 1. Using 256 tokens, the location
algorithm achieves greater than a 99.5% success rate for
10% or more stable devices. Using 64 tokens the algo-
rithm achieves 97.5% success for 10% or more stable de-
vices. The vast majority of requests—80% of requests
at 10% or more stable devices—succeed within the first
inexpensive round of 16 tokens.

At the far left of the graph where few stable devices
are available, the success rate drops off because each sta-
ble device can only support 64 peers, and there are not
enough stable devices for each mobile device to choose
a full 16 peers, or in some cases any. As the percentage
of stable devices increases, a linearly increasing number
of location requests are to stable devices that can be con-
tacted directly without flooding, thus requiring no tokens.

We also measured the success rates for locating de-
vices at friendship distances of 2 and 3, though we omit
these graphs for space reasons. The results for distance
2 are almost as good as for distance 1, presumably be-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
ra

ct
io

n
 o

f
C

o
n
n
ec

ti
o
n
s

S
u
cc

es
sf

u
l

Percent Stable Nodes

256 Tokens
64 Tokens
32 Tokens
16 Tokens
0 Tokens

Figure 8: Location request success rate

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100

M
ea

n
 M

es
sa

g
es

 S
en

t
P

er
 C

o
n
n
ec

ti
o
n

Percent Stable Nodes

Ideal hop count-limited
256 Tokens

Figure 9: Mean messages sent per location request

cause two devices at friendship distance 2 are likely to
peer with some common stable device at distance 1 from
each of them. Success rate drops considerably at distance
3, however, achieving only 50% success with 256 tokens
in networks of 40% or more stable devices, for example.

7.3 Messages Sent

The lower line in Figure 9 shows the total number of
messages sent during successful token-limited lookup re-
quests for devices at friendship distance 1. A request’s
message count is ultimately bounded by its token count,
but is often much less because successful lookups usually
do not require all available tokens.

At the left edge of the graph, there are not enough sta-
ble devices for every mobile device to have a peer, so few
requests succeed. Those that do succeed do so cheaply,
however, because all of the connected mobile devices
have clustered around the same few stable devices. The
message count peaks near the point where the number of
stable devices becomes barely sufficient to serve all of
the mobile devices, so the requests usually succeed but
only after contacting many devices. As the number of
stable devices increases further, more requests complete
without flooding at all, since stable targets are reachable
directly at their last known IP addresses.

To contrast UIA’s token-limited scheme with flood-
ing limited by hop count [6], the upper line in the fig-

ure shows the total number of messages sent for suc-
cessful hop count-controlled location requests in which
the originating device knows via an oracle the exact hop
count required for the search to succeed in one round.
As the graph shows, the token-based scheme requires far
fewer messages than even this “ideal” hop count-limited
scheme. The inefficiency of the hop count scheme results
from the skewed popularity distribution and redundancy
of the friendship graph, as discussed in Section 5.2.

8 Future Work

Although we feel that the current UIA prototype demon-
strates a promising approach to naming and connecting
personal devices, many avenues for future work remain,
some of which are highlighted in this section.

8.1 Naming

UIA currently provides no read access control for its
namespaces, only write access control via group owner-
ship. Users may wish to hide certain names, such as links
to business partners, from view of the general public, or
limit visibility of devices at work to business colleagues
while allowing family members to see devices at home.

The naming layer currently assumes that groups are
small and change infrequently, so that it is reasonable
for devices always to gossip entire groups and store
change records forever (or until the device is replaced
or the user’s account wiped). A traditional DNS-like
remote name resolution protocol might usefully supple-
ment UIA’s gossip protocol, allowing devices to resolve
names in large or rarely accessed groups held on other de-
vices without replicating the entire group. A UIA device
might also keep a separate log for each group or series,
and garbage collect logs of groups the device does not
own and has not accessed recently. A state checkpoint
mechanism might similarly enable devices to garbage
collect old change records for groups they own.

UIA currently assumes that groups are owned by one
person or a few people managing the group by consensus:
any group owner can modify the group without restric-
tion. Users may wish to configure groups so that changes
require approval from multiple distinct owners, or to
make some owners more “trusted” than others. Treating a
PC locked up in a data center as more trustworthy than a
laptop or cell phone could eliminate the risk of ownership
disputes if the mobile device is stolen, for example. The
user would have to think ahead and perform more man-
ual configuration, however, and the consequences might
be worse if the trusted PC is compromised.

As an alternative to the digital signature algorithm with
which UIA normally signs namespace change records,
we are experimenting with a security framework based on
proof-carrying authentication [1]. In this framework, in-
stead of a signature, a change record contains a structured

proof that the record’s meaning (e.g., “resolve namex to
EID y”) has been endorsed by the group owner. Proof-
carrying authentication enables new types of proofs to
be created and deployed without changing the verifier’s
code. We have used this mechanism for example to create
a UIA group whose records are certified by MIT’s central
X.509 certification authority (CA), so thatalice.mit
securely maps to the person the MIT CA has endorsed as
alice@mit.edu even though UIA contains no explicit
code to check X.509 certificates.

8.2 Routing

The UIA routing layer currently uses forwarding for NAT
traversal, which is a general but inefficient solution. As an
optimization, we plan to incorporate hole punching [18],
a technique that can build direct peer-to-peer connections
across many types of NAT without forwarding. Since this
and other NAT traversal techniques [8,48] only work with
certain NATs, however, UIA will still need forwarding as
a fallback to provide robust connectivity.

The routing layer currently uses TCP for all UIA con-
nectivity, including for tunneling the UDP datagrams of
legacy applications, limiting the prototype’s effectiveness
for handling real-time data such as streaming media. We
intend to introduce a UDP-based UIA connectivity proto-
col to provide more effective best-effort delivery.

The routing layer’s search algorithm could use addi-
tional hints from the naming layer to improve its per-
formance. To locatelaptop.Charlie.Bob.Alice,
for example, it might first locate some device belonging
toBob and ask that device to locatelaptop.Charlie.

8.3 Legacy Application Support

UIA’s legacy application interface currently cannot pro-
vide each user of a multi-user machine with a fully sep-
arate TCP/UDP port space for its own EID, because
the kernel’s protocol stack offers no way to ensure that
only a particular user’s applications can bind a socket to
the device-local IP address representing that user’s EID.
Thus, without enhancing the kernel’s transport protocols,
only UIA-aware applications can make full use of per-
sonal EIDs. Fixing this issue requires changes to kernel-
level code and is thus less portable.

9 Related Work

UIA builds on a large body of related work in the areas of
naming systems, location-independent identifiers, gossip
and optimistic replication protocols, and social networks.

UIA’s personal naming model is inspired in part by
SDSI/SPKI [14, 42]. Like SDSI, UIA allows users to
define locally-scoped personal names bound to crypto-
graphic targets and groups to form decentralized, com-
posable namespaces. While SDSI associates public keys
with users (principals) and expects users to know about

and manage their own public keys, however, UIA simpli-
fies key management by making each device responsible
for creating and managing its own device-specific key in-
visibly to the user. UIA devices formuser identities out
of cooperating groups of personal devices, which the user
builds through simple device introduction and merge.

Existing Internet protocols can provide some of UIA’s
connectivity features, but they require configuration ef-
fort and technical expertise that deters even sophisticated
users. Dynamic DNS [49] can name devices with dy-
namic IP addresses, but requires configuration on both the
name server and the named device, and devices still be-
come inaccessible when behind NAT. DNS Security [4]
cryptographically authenticates DNS names, but its ad-
ministration cost has hindered deployment even by the
Internet’s root naming authorities, let alone by ordinary
users. Mobile IP [37] gives a mobile device the illusion of
a fixed IP address, but requires setting up a dedicated for-
warding server at a static, public IP address. Virtual Pri-
vate Networks (VPNs) [22] provide secure remote access
to corporate networks, but their infrastructure and admin-
istration requirements make them unsuitable for deploy-
ment by average consumers for their personal networks.

Uniform Communication Identifiers [15] provide a
common identifier for phone, E-mail, and other forms of
communication, along with a central address book share-
able among communication devices. HINTS [30] uses
name-history trails to map obsolete user names to current
ones. These systems still rely on globally unique names
with centralized registration and management, however.

Bonjour [2] allows devices to choose their own names
on local-area networks, but these names are insecure and
ephemeral: any device can claim any name, and its name
becomes invalid as soon as it moves to a different net-
work. UIA uses Bonjour libraries to discover new devices
on the local network, but UIA names persist and remain
bound to the original target device despite later migration.

UIA builds on host identity ideas developed in
SFS [32], HIP [34], JXTA [23], andi3 [45], introduc-
ing cryptographic EIDs that securely identify not just a
host but a particularuseron that host. Different users of
a shared UIA host can run independent personal network
services without conflicting or requiring host-wide con-
figuration, and network services can leverage UIA names
and EIDs to authenticate clients at user granularity.

Distributed hash tables (DHTs) [5,43,44] provide scal-
able lookup of arbitrary flat identifiers in large distributed
address spaces, but tolerate only limited asymmetry or
non-transitivity in the underlying network [20]. UIA’s
router in contrast handles asymmetries such as those
caused by NATs, but does not attempt to resolvearbi-
trary identifiers reliably: UIA instead focuses on reliable
routing to devices nearby in the user’s social network, for
which scoped flooding [6] is more suitable.

DHT-based naming systems such as DDNS [9],
i3 [45], and CoDoNS [40] provide new mechanisms for
resolving global names. TRIAD [7] provides content
delivery and NAT traversal by routing on global DNS
names. In place of global names, UIA focuses on global
connectivity viapersonalnames, which users can choose
without the restriction of global uniqueness. In addition,
UIA’s optimistic replication of naming state keeps the
user’s namespace available on his devices even while dis-
connected from the Internet and its global name services.

Ficus [24, 26], Coda [28], and Ivy [35] develop
optimistic replication algorithms for file systems, and
Bayou [47] does so for databases. Rumor [25] and P-
Grid [11] explore optimistic data replication on mobile
devices, Roma [46] uses one mobile device to offer cen-
tral management of data on other devices, and Foot-
loose [36] uses mobile devices the user carries to prop-
agate updates among other devices. UIA builds on all
of this work to address distributed naming and ad hoc
group management, confronting the additional challenge
of maintaining consistency when not only thedata con-
tentbut theset of participantsmay change independently
on different devices.

UIA is a continuation of work begun with Unmanaged
Internet Protocol [16, 17]. UIA extends the earlier work
with its personal naming system, and by leveraging the
user’s social network for routing purposes as in sybil-
resistant DHTs [10] and social data sharing systems such
as Turtle [38], SPROUT [31], F2F [29], and Tribler [39].

10 Conclusion

This paper proposes the Unmanaged Internet Architec-
ture for introducing, naming, and globally connecting
mobile devices. UIA gives users persistent personal
names for conveniently finding and expressing who they
want to talk to, what devices they wish to access, and who
can access their own devices.

Each device starts with a generic name for itself, such
aslaptop, and a cryptographic end-system identifier to
provide authentic and private communication. A user can
merge devices to form personal groups, which cooperate
to maintain a distributed namespace by gossiping logs of
the user’s changes. A user’s group can name both the
user’s devices and other users’ groups; users can form
links securely either by physical device introduction or
via other trusted channels. Since UIA names are local and
personal, users need not register with central authorities
to obtain scarce globally unique names.

UIA uses ad hoc routing through social neighbors’ de-
vices to cope with a spectrum of connectivity environ-
ments. Scoped flooding ensures robustness when groups
of devices form isolated islands of connectivity, and a so-
cial overlay enables devices to find a target’s current IP
address efficiently when they have Internet connectivity.

Acknowledgments

This research is sponsored by the T-Party Project, a joint
research program between MIT and Quanta Computer
Inc., Taiwan, and by the National Science Foundation un-
der Cooperative Agreement ANI-0225660 (Project IRIS).
We would like to thank Martin Abadi, Tom Rodeheffer,
Nokia Research Center Cambridge, and the USENIX re-
viewers for support and feedback on early paper drafts.

References

[1] Andrew W. Appel and Edward W. Felten. Proof-carrying authen-
tication. In6th ACM CCS, November 1999.

[2] Apple Computer, Inc. Bonjour.
http://developer.apple.com/networking/bonjour/.

[3] Apple Computer, Inc. FileVault.
http://www.apple.com/macosx/features/filevault/.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS
Security Introduction and Requirements, March 2005. RFC 4033.

[5] Hari Balakrishnan et al. Looking up data in P2P systems.Com-
munications of the ACM, February 2003.

[6] Yatin Chawathe et al. Making Gnutella-like P2P systems scalable.
In ACM SIGCOMM, pages 407–418, August 2003.

[7] David R. Cheriton and Mark Gritter. TRIAD: A new next-
generation Internet architecture, July 2000.

[8] Stuart Cheshire, Marc Krochmal, and Kiren Sekar. NAT port map-
ping protocol, June 2005. Internet-Draft (Work in Progress).

[9] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using
Chord. In1st IPTPS, March 2002.

[10] G. Danezis, C. Lesniewski-Laas, F. Kaashoek, and R. Anderson.
Sybil-resistant DHT routing. InESORICS, 2005.

[11] A. Datta, M. Hauswirth, and K. Aberer. Updates in highlyunreli-
able, replicated peer-to-peer systems. In23rd ICDCS, 2003.

[12] Alan Demers et al. Epidemic algorithms for replicated database
maintenance. In6th PODC, pages 1–12, New York, NY, 1987.

[13] Steve Dohrmann and Carl Ellison. Public-key support for collabo-
rative groups. In1st Annual PKI Research Workshop, April 2002.

[14] C. Ellison et al. SPKI Certificate Theory, 1999. RFC 2693.
[15] European Telecommunications Standards Institute. User identifi-

cation solutions in converging networks, April 2001.
[16] Bryan Ford. Scalable Internet routing on topology-independent

node identities. Technical Report 926, MIT LCS, October 2003.
[17] Bryan Ford. Unmanaged Internet protocol: Taming the edge net-

work management crisis. InHotNets-II, 2003.
[18] Bryan Ford. Peer-to-peer communication across network address

translators. InUSENIX, Anaheim, CA, April 2005.
[19] Bryan Ford et al. User-Relative Names for Globally Connected

Personal Devices. In5th IPTPS, February 2006.
[20] Michael J. Freedman et al. Non-transitive connectivity and DHTs.

In USENIX WORLDS 2005, December 2005.
[21] Cyril Gavoille and Marc Gengler. Space-efficiency for routing

schemes of stretch factor three.JPDC, 61(5):679–687, 2001.
[22] B. Gleeson et al. A Framework for IP Based Virtual Private Net-

works, February 2000. RFC 2764.
[23] Li Gong. JXTA: A network programming environment.IEEE

Internet Computing, 5(3):88–95, May 2001.
[24] R. G. Guy, G. J. Popek, and T. W. Page, Jr. Consistency algorithms

for optimisic replication. InFirst International Conference on
Network Protocols, 1993.

[25] Richard Guy et al. Rumor: Mobile data access through optimistic
peer-to-peer replication. InER Workshops, pages 254–265, 1998.

[26] Richard G. Guy et al. Implementation of the Ficus replicated file
system. InUSENIX Summer Conference, pages 63–71, June 1990.

[27] M. Holdrege and P. Srisuresh. Protocol complications with the IP
network address translator, January 2001. RFC 3027.

[28] James J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. In13th SOSP, pages 213–225, 1991.

[29] Jinyang Li and Frank Dabek. F2F: Reliable storage in open net-
works. In5th IPTPS, Santa Barbara, CA, February 2006.

[30] Petros Maniatis and Mary Baker. A historic name-trail service. In
5th WMCSA, October 2003.

[31] Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina.
SPROUT: P2P routing with social networks. InP2P&DB, 2004.

[32] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Sep-
arating key management from file system security. InSOSP, 1999.

[33] P. Mockapetris. Domain names: concepts and facilities, Novem-
ber 1987. RFC 1034.

[34] R. Moskowitz and P. Nikander. Host identity protocol architec-
ture, April 2003. Internet-Draft (Work in Progress).

[35] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. In5th OSDI, 2002.

[36] J.M. Paluska et al. Footloose: A case for physical eventual con-
sistency and selective conflict resolution. In5th WMCSA, 2003.

[37] C. Perkins, Editor. IP mobility support for IPv4, August 2002.
RFC 3344.

[38] B. Popescu, B. Crispo, and A. Tanenbaum. Safe and private data
sharing with Turtle. In12th Workshop on Security Protocols,
2004.

[39] J.A. Pouwelse et al. Tribler: A social-based peer-to-peer system.
In 5th IPTPS, February 2006.

[40] Venugopalan Ramasubramanian and Emin Gün Sirer. The design
and implementation of a next generation name service for theIn-
ternet. InACM SIGCOMM, August 2004.

[41] Y. Rekhter et al. Address allocation for private internets, February
1996. RFC 1918.

[42] R.L. Rivest and B. Lampson. SDSI: A simple distributed security
infrastructure, April 1996. http://theory.lcs.mit.edu/˜cis/sdsi.html.

[43] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems. In
Middleware, 2001.

[44] Ion Stoica et al. Chord: A scalable peer-to-peer lookupservice for
Internet applications. InSIGCOMM, 2001.

[45] Ion Stoica et al. Internet indirection infrastructure. In SIGCOMM,
August 2002.

[46] E. Swierk, E. Kıcıman, V. Laviano, and M. Baker. The Roma
personal metadata service. In3rd WMCSA, December 2000.

[47] Douglas B. Terry et al. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In15th SOSP, 1995.

[48] UPnP Forum. Internet gateway device (IGD) standardized device
control protocol, November 2001. http://www.upnp.org/.

[49] P. Vixie, Editor, S. Thomson, Y. Rekhter, and J. Bound. Dynamic
updates in the domain name system, April 1997. RFC 2136.

