
User-Relative Names for
Globally Connected Personal Devices

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas,
Sean Rhea, Frans Kaashoek, and Robert Morris

Massachusetts Institute of Technology

1. INTRODUCTION

Personal devices such as mobile phones, digital mu-
sic players, personal digital assistants, console gaming
systems, and digital cameras are now ubiquitous in the
lives of ordinary people. As these devices prolifer-
ate, peer-to-peer connectivity between them is increas-
ingly important. For example, a user may copy pho-
tos from a camera to a PC for storage, to a web page
for publishing, or to a photo iPod to take on the road,
and perhaps from there to a friend’s iPod. One cur-
rent transfer mechanism—plugging devices together via
USB cable—is both straightforward and secure: the ca-
ble itself physically indicates which devices should par-
ticipate in the transfer, and the isolated physical medium
guarantees its security.

As personal devices begin to support wireless network-
ing and Internet connectivity, we would like to extend
the simplicity and security of a USB cable to device
connectivity on a global scale. Alice should be able to
connect her WiFi-enabled iPod to her home PC via a
“virtual cable,” so that she can browse photos or play
music stored there from a WiFi-enabled coffee shop or
friend’s house. Setting up this “virtual cable” should not
require technical knowledge or special configuration on
Alice’s part, and it should continue working even when
the devices it connects are behind firewalls or NATs.

If Alice meets Bob in a coffee shop, she should easily
be able to share with him information or services located
on any of her personal devices. Bob should be able to
connect to Alice’s devices even after he leaves the coffee
shop, until she chooses to sever their relationship. No
one else should be able to impersonate Bob, however, in
order to gain access to Alice’s shared resources.

The User Information Architecture, or UIA, is a peer-
to-peer connectivity architecture that provides users a
simple, intuitive, and secure way to share information
and services between personal devices by assigning ad
hoc names that act like “virtual cables.” Users assign
names by “introducing” devices to each other on a com-
mon network. Unlike the ephemeral names used in ren-
dezvous schemes such as Apple Bonjour [1], however,
UIA names persist and remain securely bound to the
global cryptographic identities of their targets [11,12,16]
as devices migrate. Once Alice introduces her iPod to
her home PC, her iPod can continue accessing her PC by
the same name from anywhere she finds Internet access.

In a network of billions of users, globally unique
names would inevitably have to look something like
ipod.alicesm5186.myisp.com, substantially limit-

ing their conciseness and readability. UIA names are in-
steaduser-relative: users control their own private names-
paces much as they control their mobile phones’ address
books today. Unlike a conventional address book, how-
ever, a UIA namespace is shared across all the devices
a user owns: changes made on one device automatically
propagate to the others.

Users assign user-relative UIA names not only to their
own devices but also to other users. Bob might know
Alice as “Alice”, her company directory might list her
as “Alice Smith, Marketing”, and her son might simply
name her “Mom”. If Alice gives Bob access to some
files on her PC, he accesses them via a name analogous
to “Alice’s PC”. In this way, UIA adapts peer-to-peer
social networking ideas previously explored for other
purposes [3,10,15] to form a secure peer-to-peer naming
infrastructure.

The next section presents the goals of UIA’s naming
system, and Section 3 describes its operation from a
non-technical user’s viewpoint. Section 4 develops the
technical details of UIA’s design, and Section 5 summa-
rizes implementation status. Section 6 presents related
work, and Section 7 concludes.

2. GOALS OF UIA
The purpose of UIA is to provide users with a conve-

nient and intuitive way to name and communicate with
their own and their friends’ personal devices. To this
end, UIA must satisfy the following goals:

• Names must beuser-relativeso as not to require
global uniqueness. If Alice owns only one laptop
and has only one friend named Bob, she should be
able to refer to them aslaptop andbob, despite
the millions of other laptops and people named Bob
in the world.

• Names must havestrong bindingsto the identities
of the objects named, independent of their cur-
rent physical location or network attachment point.
When Alice refers to her namelaptop, the name
should always resolve toherlaptop or fail to resolve
(e.g., if it is turned off); no other device should be
able to impersonate it.

• Assigning names must be asimple and intuitivepro-
cess. If Alice meets Bob at a conference and their
laptops share a common WiFi network, assigning
a name to Bob should be as simple as looking him
up in a local network browser window and clicking
“Bookmark”.



• A user should only have to manageone namespace.
If Alice already owns several devices, she should
only have to name a newly purchased device once,
not once on each existing device.

• Users should easily be able tosharetheir personal
namespaces and device resources selectively with
trusted friends and acquaintances. If Alice gives
Bob permission to access some files on her desktop
PC, he should have access to them via a name as
simple as “Alice’s PC”.

• When physically possible, UIA shouldautomati-
cally provide connectivityamong devices that have
naming relationships, including between Internet-
connected private LANs and within ad hoc net-
works disconnected from the Internet (e.g., among
passengers in an airplane).

• Finally, UIA shouldcoexist cleanlywith DNS, so
that a user can use personal names likelaptop
alongside global names likeamazon.com within
the same application.

3. USER EXPERIENCE
This section describes UIA’s key operating principles

from the perspective of a non-technical user, demonstrat-
ing how it satisfies the goals listed above with the help
of an example scenario illustrated in Figure 1. Technical
details of how the system provides this user experience
follow in the next section.

3.1 Local Introduction, Remote Access
Each UIA device ideally ships from its manufacturer

UIA-enabled and pre-configured with a generic name for
itself such aslaptop or phone that the user can accept
or change as desired. After purchase, the device acquires
names for other devices as its userintroducesit to them
on a local-area network. These introductions assign per-
sistent names by which one device can securely refer to
the other, and these names subsequently facilitate remote
access as the devices migrate to different networks.

Users can introduce UIA devices in two different
ways: they canmergetwo or more of their own devices to
form a personal device clustersharing a common logical
namespace, and they can create namedsocial linksfrom
their own clusters to other users’ personal users.

3.2 Personal Device Clusters
At Time 1 in the scenario shown in Figure 1, Bob

purchases and brings home a new laptop and Internet
phone, having default nameslaptop andphone respec-
tively. At Time 2 Bob uses UIA’s local rendezvous tool
on each device, similar to those already available with
Bonjour [1], to find the other device on his home WiFi
network and selects the UIA “Merge Devices” command
on each. This action merges the two devices into a single
personal device cluster, allowing names already known
to or subsequently entered on each device to be used on
the other device as well.

While working on his laptop, for example, Bob can
now refer to his phone by its manufacturer-configured
name,phone. Furthermore, the merge operation is per-
sistent and secure; when Bob subsequently takes his

Figure 1: Example Personal Device Scenario

laptop on a trip, he can remotely access his home phone
from his laptop anywhere he finds Internet access, to
check his voice messages for example, still using the
same name,phone.

3.3 Name Sharing and Social Networking
Users can also create named links from their personal

device clusters to those of other users in order to reflect
social relationships and facilitate information sharing.
With this second form of introduction, users retain ex-
clusive control over their clusters’ private namespaces,
but can selectively grant access to known acquaintances,
without making their devices vulnerable to unknown
hosts that may inhabit the same physical network.

In the example scenario, Bob purchases a new WiFi-
enabled cell phone at Time 3 and meets Alice at a cof-
fee shop on his way home, before he has merged his
cell phone with his other devices. Bob finds Alice’s
iPod using his cell phone’s local rendezvous tool and se-
lects UIA’s “Link to Another User’s Device” command,



and Alice does likewise. Bob’s phone presents Alice’s
self-chosen user name if available, such asAlice, as a
suggestion for Bob’s new name for Alice, but Bob can
override this hint as desired—using an alternative like
Alice Smith or Alice from IPTPS for example if
Bob already knows other Alices. If Alice now grants Bob
access to some files on her desktop PC at home (which
is namedPC in Alice’s personal namespace), then Bob
can subsequently access these files from his cell phone
under the “Bob-relative” namePC.Alice.

Bob then returns home and merges his new cell phone
with his home phone, as shown at Time 4 in Figure 1.
Bob’s laptop transitively learns about the cell phone’s
membership in the cluster without him having to merge
them explicitly, and Alice can now name Bob’s laptop
on her devices via the Alice-relative namelaptop.Bob.

3.4 Resolving Conflicts
Unfortunately, both of Bob’s phones happened to have

identical default names ofphone, resulting in their names
conflicting in his newly merged namespace. UIA no-
tifies Bob of the conflict, and he can continue using
the non-conflicting namelaptop but must resolve the
conflict before the namephone will work again. Bob
resolves the conflict on his cell phone at Time 5, by re-
naming itcell while leaving the home phone with the
namephone. Bob’s other devices learn the resolved
name bindings automatically, and Alice’s devices now
see Bob’s phones asphone.Bob andcell.Bob.

If Bob makes conflicting namespace changes on two
of his devices while they are disconnected from each
other, UIA similarly detects the conflict once the devices
reconnect. Bob can continue using other names while
conflicts exist, and he can resolve such conflicts at leisure
on any of his devices.

3.5 Removing Devices
When Bob loses his cell phone at Time 6, he uses

his laptop to remove the cell phone from his personal
cluster. The laptop notifies Bob’s other devices as well
as Alice’s, protecting them from subsequent access via
the cell phone. If Bob’s phone was stolen and Bob does
not remove it from his cluster promptly, the thief could
gain remote access to Bob’s other devices, illustrating
one inherent risk of greater connectivity.

4. DESIGN
This section outlines the elements of UIA’s design that

are key to realizing the user experience described above.

4.1 Device Identity and State Management
To give UIA devices strong, decentralized identities,

each device hashes the public key of a locally-generated
key pair to construct itsendpoint identifier, or EID. As in
similar identity schemes [11, 12, 16], EIDs are crypto-
graphically unique, self-configuring, and self-certifying,
but not human-readable.

To manage user-friendly names and their associations
with secure EIDs, a UIA device generateschange records
in response to user actions affecting the namespace and
stores these records in an append-only per-device log.

Each device signs the change records it creates, and
devices with namespace sharing relationships replicate
each other’s logs via gossip. To resolve user-relative
names, a device examines both the records in its own
log and those in its replicas of other device’s logs; no
network communication is performed during name res-
olution. Replicating logs in this manner guards users’
state against device loss or failure and keeps the names-
pace available during periods of disconnection.

Table 1 summarizes the essential information con-
tained in the most common types of change records.
This table is not intended to be complete or definitive,
but merely to illustrate the general design strategy. Ad-
ditional information and record types may be needed in
the future, for example, to support more sophisticated
namespace sharing and access control policies.

4.2 Name Resolution
To resolve UIA names, each device maintains a tree

representing the names embodied in its log and in its
replicas of other devices’ logs. The internal nodes of this
tree consist ofcreate namespacerecords that have been
transitively merged viamergerecords, and the branches
of the tree consist of namedlink records that join these
merged namespaces. Each device designates a single
create namespacerecord as the root of its local tree.

For compatibility with DNS, UIA names follow the
same formatting rules as DNS names, consisting of a
series oflabelsseparated by dots. To resolve a specific
name such asPC.Alice on Bob’s phone, for example,
Bob’s phone first parses the name into its component
labels,PC andAlice. Starting from its own root names-
pace, Bob’s phone then traverses its namespace tree by
following successive links corresponding to the labels in
the name, working from right to left as in DNS: from
Bob’s root namespace to Alice’s root namespace via the
labelAlice, then from Alice’s root namespace to Alice’s
PC via the labelPC.

The remainder of this section clarifies the above rough
summary of the name resolution process, by following
the sequence of events shown in Figure 1.

4.3 Naming Devices and Building Clusters
To implement the preconfigured name for Bob’s VoIP

phone in Figure 1, UIA writes acreate namespacerecord
at the beginning of the phone’s log, designates it as the
root of the phone’s namespace, then writes aname de-
vice record with the phone’s EID, a pointer to the root
namespace record, and the namephone. In this way,
the phone’s local name for itself is justphone: the name
phone is contained in thename devicerecord, and there
are no namedlink records between it and the root.

When users introduce devices to form clusters, each
device writes amergerecord merging its local root with
that of the other.Bothdevices must write, digitally sign,
and exchange correspondingmergerecords in order ei-
ther device to consider the merge process complete. If a
device encounters an unpairedmergerecord, which could
happen due to a hardware failure or loss of connectiv-
ity during a merge, for example, the device treats the
unpairedmergerecord as a “conflict” that the user can
resolve at leisure by completing or canceling the merge.



Record Type Fields Purpose
create namespace creates a new empty namespace

link parent pointer, mapsnameto the namespacechild pointer in the namespace pointed to
child pointer, name by parent pointer

name device parent pointer, mapsnameto the devicedevice EIDin the namespace pointed to
device EID, name by parent pointer

merge local pointer, merges the namespaces pointed to bylocal pointerandremote pointer
remote pointer so that they share device names and social links placed into either one

unlink pointer unmaps the namespace linked in the record pointed to bypointer
remove name pointer removes the device name created in the record pointed to bypointer
stop merge pointer, stop seq., stops importing new records from the namespace imported atpointer

stop hash after the record with sequencestop seq.and hashstop hash

Table 1: The primary types of log records in UIA. In addition to the fields shown, each record contains the device EID, a
sequence number, and the secure hash of the record that preceded it. Pointers to records are implemented as the triple of
these three fields.

When Bob introduces his laptop to his phone at Time 2
in the figure, for example, the two devices merge each
other’s root namespaces. Since their root namespaces
are now linked by correspondingmerge records, they
are treated as the same node in the logical namespace
tree, and each device can now refer to the other vianame
devicerecords taken from either original namespace. The
laptop, for example, refers to the phone simply asphone,
since that is the name in the phone’sname devicerecord,
and there are no namedlink records between it and the
newly-merged root.

4.4 Introducing and Naming Users
UIA uses thelink record type to provide access from

one user’s devices to those of another. When Alice and
Bob link their devices at Time 3 in the figure, Alice’s
iPod links Bob’s root namespace into her own by writ-
ing a link record with the nameBob and pointers to the
two relevant namespaces. Bob’s phone similarly mir-
rors these actions, linking its own root namespace to the
iPod’s root namespace via the nameAlice.

Alice can now refer to Bob’s phone, for example, as
phone.Bob. To resolve this name, Alice’s iPod follows
its new link record for the labelBob, from Alice’s root
namespace to Bob’s root namespace, then from Bob’s
namespace to Bob’s phone via Bob’s originalname device
record forphone, originally written on Bob’s phone but
gossiped to Alice’s iPod after the introduction.

4.5 Merging Clusters
At Time 4 in the figure, Bob returns home and merges

his new cell phone with his home phone. Bob’s logical
root namespace, and in effect Bob’s “user identity” for
UIA’s purposes, is now transitively defined according
the set of validmergerecord pairs that link together the
root namespaces of Bob’s devices: namely themerge
pair Bob generated earlier at time 2, and the newmerge
pair from Time 4. Bob’s laptop and cell phone thus
discover each other through gossip with the home phone
and begin gossiping together in turn. Likewise, Bob’s
laptop and home phone learn of Alice’s devices through
his cell phone, and Alice’s devices similarly learn of
Bob’s additional devices.

Although Alice’s existinglink record forBob only di-
rectly contains the EID of Bob’s new cell phone, all UIA
devices now treat thislink record as logically referring to
all of Bob’s merged root namespaces as defined accord-
ing to hismergerecords, giving Alice a convenient name
for Bob’s implicit “user identity.” Any UIA device now
treats records affecting any of Bob’s merged root names-
paces as affecting all of them, making Alice’slink record
for Bob in effect name Bobas a userrather than Bob’s
cell phone. To resolve the namelaptop.Bob on Alice’s
iPod, for example, the iPod follows Alice’slink to the
root namespace of Bob’s cell phone, then follows Bob’s
name devicelink for laptop to find the laptop’s EID,
even though the lattername devicerecord was originally
written with reference to Bob’s laptop’s root namespace.

By identifying users indirectly via their clusters in this
way, UIA avoids imposing on users the burden of hav-
ing to manage any kind of explicituser identifiers, or the
per-user cryptographic key pairs that would presumably
be needed to generate such identifiers securely. UIA can
therefore give logical identities and meaningful names
to both users and devices, but only devices actually need
to have explicit identifiers, which they can create auto-
matically for themselves.

4.6 Groups
Though not illustrated in the figure, UIA easily sup-

ports shared groups as well. For example, the members
of a household may list their common devices under the
suffix .home by creating a new namespace on each de-
vice, linking from the device’s root namespace to the
new namespace via the namehome, and then merging
all of the new namespaces together. Moreover, the de-
vices need not all merge directly to each other; a single
spanning tree suffices to join all the devices’ respective
home namespaces.

4.7 Resolving Conflicts
By merging his home and cell phones at Time 4, Bob

creates a conflict in his cluster, as the namephone is
now mapped to two different EIDs, and he renames one
devicecell to resolve it. To accomplish this renaming,
UIA logs a newname devicerecord for the namecell,



followed by aremove namerecord pointing to the original
name devicerecord for that EID. Theremove namerecord
does not actually delete the originalname devicerecord,
but merely causes all devices that see it to ignore the
originalname devicerecord for purposes of name resolu-
tion and conflict detection. Since there is now only one
“active” name devicerecord for the namephone in Bob’s
root namespace, the conflict is effectively resolved on
each device as soon as that device obtains theremove
namerecord via gossip.

4.8 Lost or Stolen Devices
To remove the lost cell phone from Bob’s cluster at

Time 6 in the figure, his laptop logs astop mergerecord
pointing to the last known legitimate entry in the cell
phone’s log. This record instructs Bob’s devices to con-
tinue using old names that the cell phone created, while
ignoring any subsequent records that may be created by
the phone, if the cell phone falls into the hands of a thief
for example. To prevent the cell phone from introducing
conflicting versions of old records, each UIA log record
contains the secure hash of the record that preceded it.
The secure hash of a single record thus secures an entire
prefix of the log.

Bob’s laptop also logs aremove namerecord to delete
the cell phone’s EID from his namespace. The pointer
to the initial creation record in the remove record allows
Bob to reuse the name “cell” later with no ambiguity as
to which one of thename devicerecords theremove name
record actually refers to.

4.9 Routing
In order to gossip, devices must be able to communi-

cate. To this end, they keep track of the IP addresses
of others to which they have been introduced in a local
table. To find a peer that is no longer reachable at its
last known IP address, a device uses a Gnutella-like ex-
panding ring search through the network of its reachable
peers. Each device also remembers old IP addresses to
which a peer might have returned in case a search is
unsuccessful.

A successful search result includes the full path taken
by the search. If a device cannot establish a direct IP-
level connection to a peer itself—perhaps because the
peer is behind a NAT or firewall and cannot accept in-
coming connections—the device asks the next-to-last
node in the search path to forward traffic to the peer on
its behalf. The devices then use this channel to establish
a direct connection by “punching a hole” through the
NAT [8] if possible; otherwise they continue communi-
cating through the intermediary.

Since UIA devices can route opportunistically through
their social neighbors, the ability of any two frequently-
moving devices on the Internet to locate each other re-
liably does not depend on any centralized or manually-
configured servers, but only on the existence ofsomeUIA
device somewhere in the two devices’ common “social
neighborhood” with an accessible and relatively stable IP
address. This “rendezvous device” could happen to be a
public server of some kind, perhaps even one specifically
set up to help other UIA devices rendezvous, but UIA
does not depend on this being the case; the rendezvous

device could just as well be a friend’s home PC attached
via DSL a “well-behaved” or suitably configured NAT.

Each UIA device by default actively monitors the IP
addresses only of itsimmediatesocial neighbors—i.e.,
the user’s own devices and those of his “first-degree”
contacts. Since most users are expected to have tens or
at most a few hundred immediate contacts, each node’s
routing traffic burden should be manageable, and thus
the system should scale well even if the total size of
the interconnected UIA network is orders of magnitude
larger. The time required to locate an arbitrary device
naturally increases with “social distance,” and its chance
of success similarly decreases, but this property is ap-
propriate since we expect people to use UIA mostly to
communicate within their immediate social neighbor-
hood. Nonetheless, efficient routing to arbitrary EIDs is
an important direction for future work.

5. IMPLEMENTATION
A protoype UIA implementation currently runs on

Linux and Mac OS X. This prototype is divided into
separate routing and naming layers, both of which run as
user-level daemons to which UIA-aware applications on
the device can directly interface via Sun RPC. Through
these interfaces, a UIA-aware application can send pack-
ets to EIDs of its choice, listen for packets on its own
EID, discover potential peers on the local-area network,
enter new names into its namespace, and resolve UIA
names to EIDs. The prototype uses Apple’s Bonjour li-
brary for local-area device discovery and SSL for secure
communication between peers.

Furthermore, the UIA prototype provides support for
legacy applications that support IPv6. We have success-
fully used Apache, Firefox, and OpenSSH over UIA,
without modification or even recompilation, via this
legacy interface. For routing, UIA uses thetun device
to disguise EIDs as IPv6 addresses. In this way, appli-
cations can bind a socket to the local device’s EID or
connect to a remote device by EID. For naming, UIA
provides a local DNS proxy that sends each lookup re-
quest to both the UIA naming layer and the device’s
normal DNS server and returns a combined result.

Currently, users perform device discovery and intro-
duction using command-line programs. A graphical user
interface is under development.

6. RELATED WORK
Existing Internet mobility mechanisms require con-

figuration effort and technical expertise that deters even
many sophisticated users. Dynamic DNS [19] supports
automatic IP address updates, but devices still become
inaccessible when behind a NAT [9]. Mobile IP [14]
gives a mobile device the illusion of a fixed IP address,
but requires a dedicated forwarding server at a static,
public IP address. UIA in contrast relies on user-relative
names, self-configuring EIDs, and opportunistic use of
peer devices for rendezvous and traffic forwarding to
support mobility.

Ad hoc naming schemes such as Bonjour [1] allow de-
vices to choose their own names on local-area networks,
but these names are insecure and ephemeral: any device



joining a network can claim any unused name, and a
device’s name becomes invalid as soon as it moves to a
different network. UIA uses the Bonjour libraries to dis-
cover new devices on the local network, but UIA names
persist and remain securely bound to the original target
device despite later migration of the devices involved.

UIA’s user-relative naming model may be useful to
other systems that use cryptographic host identifiers,
such as HIP [12],i3 [17], and SFR [2]. Though UIA
takes advantage of global infrastructure when available,
UIA does not depend on it and can continue providing
naming and communication among local devices even
when disconnected from the Internet.

UIA’s user-relative naming model is inspired in part by
SDSI/SPKI [4,5,16]. Like SDSI, UIA identifies devices
by their public keys, and allows users to define relative
names. SDSI’s model for designated certificate servers
does not adapt well to disconnected mobile devices, how-
ever. UIA also simplifies key management by identify-
ing users implicitly via their personal clusters instead
of requiring them to manage per-user public/private key
pairs explicitly, and UIA handles lost or stolen devices
without rekeying and thus losing the user’s identity.

UIA’s relaxed consistency model is partially inspired
by Bayou [18] and Ivy [13]. The semantics of UIA’s log
records do not require devices to converge on a single
total ordering of their logs, however, simplifying conflict
detection and resolution.

Finally, UIA is a continuation of work begun with the
Unmanaged Internet Protocol [6, 7]. Unlike the earlier
work, however, UIA routes along overlay links that mir-
ror the social trust relationships of the devices involved,
as in Turtle [15] and SPROUT [10].

7. CONCLUSION
UIA is a connectivity architecture that facilitates global

peer-to-peer sharing of information and services be-
tween personal devices by giving technically unsophis-
ticated users a simple, intuitive, and secure way to name
both their devices and other users. By combining lo-
cal device introduction and user-relative naming with
self-certifying global device identities and globally dis-
tributed personal namespaces, UIA represents a unique
application of social networking concepts to the problem
of ad hoc peer-to-peer naming.

ACKNOWLEDGEMENTS
This research is sponsored by the T-Party Project, a joint
research program between MIT and Quanta Computer
Inc., Taiwan, and by the National Science Foundation un-
der Cooperative Agreement No. ANI-0225660 (Project
IRIS).

REFERENCES
[1] Apple. Bonjour.

http://developer.apple.com/networking/bonjour/.
[2] Hari Balakrishnan, Scott Shenker, and Michael

Walfish. Semantic-Free Referencing in Linked
Distributed Systems. InIPTPS, 2003.

[3] G. Danezis, C. Lesniewski-Laas, F. Kaashoek, and
R. Anderson. Sybil-resistant DHT routing. In
ESORICS, 2005.

[4] C. Ellison. SPKI Requirements, 1999. RFC 2692.
[5] C. Ellison et al. SPKI Certificate Theory, 1999.

RFC 2693.
[6] Bryan Ford. Scalable Internet routing on

topology-independent node identities. Technical
Report MIT-LCS-TR-926, MIT Laboratory for
Computer Science, October 2003.

[7] Bryan Ford. Unmanaged Internet protocol:
Taming the edge network management crisis. In
HotNets, 2003.

[8] Bryan Ford. Peer-to-peer communication across
network address translators. InUSENIX Annual
Technical Conference, 2005.

[9] M. Holdrege and P. Srisuresh. Protocol
complications with the IP network address
translator, 2001. RFC 3027.

[10] Sergio Marti, Prasanna Ganesan, and Hector
Garcia-Molina. SPROUT: P2P routing with social
networks. InP2P&DB, 2004.

[11] David Mazìeres, Michael Kaminsky, M. Frans
Kaashoek, and Emmett Witchel. Separating key
management from file system security. InSOSP,
1999.

[12] R. Moskowitz and P. Nikander. Host identity
protocol architecture, April 2003. Internet-Draft
(Work in Progress).

[13] Athicha Muthitacharoen, Robert Morris, Thomer
Gil, and Benjie Chen. Ivy: A read/write
peer-to-peer file system. InOSDI, 2002.

[14] C. Perkins, Editor. IP mobility support for IPv4,
August 2002. RFC 3344.

[15] B. Popescu, B. Crispo, and A. Tanenbaum. Safe
and private data sharing with Turtle: Friends
team-up and beat the system. InProc. of the 12th
Cambridge Intl. Workshop on Security Protocols, 2004.

[16] Ronald L. Rivest and Butler Lampson. SDSI – A
Simple Distributed Security Infrastructure, 1996.
http://theory.lcs.mit.edu/˜rivest/sdsi10.html.

[17] Ion Stoica et al. Internet indirection infrastructure.
In ACM SIGCOMM, 2002.

[18] Douglas Terry et al. Managing update conflicts in
Bayou, a weakly connected replicated storage
system. InSOSP, 1995.

[19] P. Vixie, Editor, S. Thomson, Y. Rekhter, and
J. Bound. Dynamic updates in the domain name
system (DNS UPDATE), April 1997. RFC 2136.


