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4.3 Attaching Streams to Channels via LSIDs  1Structured Stream Transpg$ST) is a new transport pro-
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e Multiple independent streams that can run in parahat stream to download embedded items within that page
lel over a single SST session, representing differestch as images or multimedia streams. If the browser sup-
requests or logical activities for example. ports multiple tabs, it can prioritize the stream for the-cur

) o rently visible page above the streams for other pages, so

* Relative prioritizaion between streams 10 enforGgas the page the user is currently viewing loads quickly.

application-specific policies. SST delivers data in a single stream reliably and in-

e Semantically unified support for both reliable andrder with respect to other data in that stream, but main-
best-effort delivery—not just two modes shoehorndains no ordering relationship with other streams, so one
into one protocol. stream’s data may “pass” that of another. The receiver
may accept data from different streams at different rates

* Best-effort delivery imposes no formal or practicaithout losing data: for example, the application might
datagram size limit. write one stream to fast a local disk as quickly as the

« Efficient support for short (e.g., transactional) use 8gnder makes it available while delivering another stream

reliable streams: no handshake delay on setup, foan audio/video codec for playback at a constant rate.
state retention after close. Creating and destroying individual streams within an

o _ SST session is fast and inexpensive. Stream creation re-
e Streams may be arbitrarily long-running and can prguires no round-trip delay like TCP’s 3-way handshake
serve internal application-specific record marks. does, and SST can piggyback the signaling required for
- S . . _stream creation onto the initial data to be sent on the
e Built-in communication security (both authentica- . g
. ) . _stream without additional packets or header overhead.
tion and encryption) based on accepted, mdelg—. . . . . :
o : imilarly, each endpoint can immediately discard all state
scrutinized algorithms.

related to an SST stream once the stream is closed, in con-

e Ease of deployment: normally runs over UDP [21}rast with TCP’s mandatory TIME-WAIT state.
can be implemented in libraries linked into applica- An application can close a stream either gracefully or
tions with no special privileges. forcefully. When an endpoint closes a stream gracefully,
. it indicates that it has no more data to send, but SST waits
* Hole punching support [14] for transparent commug.¢. o destroying the stream to ensure that all sent data
hication across most NATs and firewalls. reliably reaches the other endpoint and still allows the ap-

e Wire efficiency: SST’s header overhead includin lication to receive further data sent by the other endpoint

UDP encapsulation is only 4 bytes larger than TCP'$he stream disappears entirely only after both endpoints
have closed the stream and all transmitted data is acknowl-

d edged. When an application forcefully closesesetsa
1.1 Structured Streams stream, SST immediately discards the stream’s state with-

The most unique aspect of SSTis its ability to manage a@iét waiting for acknowledgment of data already sent.
multiplex a dynamic hierarchy of streams onto a single An SST application requiring low-overhead best-effort
end-to-end session. As with TCP or UDP, an $8%sion delivery can send “datagrams” weg@hemeral substreams
is an association between two endpoints, each endpdintephemeral substream is semantically equivalent to an
identified by a combination of IP address and port nurardinary substream: the receiving application cannot tell
ber. An SST application typically needs to create onthe difference between an ephemeral substream and a nor-
one session for each remote host it wishes to commumial one. Since different streams have no ordering rela-
cate with. Within this session, however, the applicatidionship, SST does not delay delivery of the “datagram”
can create any number streamsat any time, each streamcontained in an ephemeral substream as a result of a lost
semantically comparable to a separate TCP connectiomr delayed packet in another ephemeral substream. Un-
SST organizes streams into a hierarchy: each sdst suitable conditions, SST can optimize delivery of an
sion automatically has mot stream and the application ephemeral substream with a stateless UDP-like delivery
creates other streams asbstream®f existing streams. mechanism for maximum efficiency. Unlike conventional
Through this hierarchy, SST enables applications to catatagram-oriented transports, however, SST imposes no
trol and prioritize concurrent network activities rel&ito limit on the size of a best-effort datagram: ephemeral sub-
each other in application-specific ways. A browser-likireams too large to deliver in datagram-oriented fashion
application might for example use one stream to downloaithout unacceptable probability of loss simply fall back
the main content for a given page, and use substream$od®ST’s normal reliable stream delivery mechanism.



1.2 Other SST Features ¢ DCCP [18] implements congestion control for UDP-
style best-effort communication, in the process in-
curring much of the same protocol complexity as
TCP without providing reliable delivery, security, or

other high-level features when they are desired.

SST is designed for deployment either at system level as
a “native transport” alongside TCP and UDP, or at appli-
cation level running atop UDP. The latter usage allows
applications to ship with a library implementation of SST
without requiring any special privileges or extensions toe SCTP [24] can multiplex multiple logical streams
existing operating systems, and they can use it as they over a single session, supports both reliable and best-
would SSL/TLS [11] or DTLS [22]. Deploying SST atop effort delivery modes, and provides fail-over across a
UDP also allows it to traverse existing NATs that only na-  group of redundant endpoints. SCTP has limitations
tively support TCP and UDP. reflecting its telecommunications focus, however:

On today’s hostile Internet, communication security
has become essential for almost every application. Since
IP-level security (IPsec) [17] is still not widely deployed
other than for corporate VPNs, however, applications
must usually supply their own security, either by incorpo-

— SCTP streams cannot be created mid-session,
only negotiated “en masse” at session initial-
ization, limiting their utility for ephemeral or
transaction-oriented activities.

rating it into their protocols or by inserting a securityday — SCTP implements only one receive window per
such as SSL/TLS [11] above an insecure legacy transport. session rather than one per stream, so the re-
SST in contrast includes communication security as a ba- ceiver cannot accept data on one stream while
sic feature, integrated into its design to minimize cost and applying back-pressure to others, further limit-
complexity and to reuse common protocol elements such ing their independence and usefulness to all but
as sequencing and feature negotiation. SST’s “baseline” fixed-rate (e.g., telecom) applications.

ciphersuite built on AES128-CTR and HMAC-SHA256, | i q
for example, requires no additional headers or other per—A SO, since DC,:CP and SCTP operate atop IP as new
packet overhead other than a 128-bit MAC. protocols alongside TCP and UDP, DCCP or SCTP ses-

Since a large percentage of hosts on the Internet todX ts Ce‘lf‘ _(t)lnly travertste;] those (CLirrentIy \{[ery rz;re) Nf‘TS
are connected behind NATs or firewalls, safe and effecti(/ EXplicitly Support these new ransports, and applica-

traversal of these barriers has become a major challe %@f’ ca_?hnott|kmpler|nent thetse trans.pcl)rts. qln emstgg_re_n d
and requirement for many applications, especially ap joSts without kernel support or Special priviieges. Sstin
contrast normally operates atop UDP, so it is immediately

cations with peer-to-peer communication patterns such ) : T
Voice-over-1P. Legacy transports generally do not addr patible with the vast majority of deployed NATS_ and
gacy P g y jewalls that only understand TCP and UDP, and it can

NAT traversal because they were designed for an ideal-" . o
ized “flat” Internet of the past that no longer exists exce £ implemented at user level by unprivileged applications
r libraries linked into them. (SST could of course be

in the minds of theorists and wishful thinkers. SST incor- . o : .

porates as a basic feature support for hole-punching [f&i]a_\pted Into a nat|ye transport operating directly atop
across BEHAVE-compliant NATs [3], which include th P, if that proves desirable.)

majority of NATs already deployed and almost all NATs

that will be on the market in the near future. 1.4 Document Structure
This document is organized as follows. Section 2 first
1.3 Why Another Transport? presents a high-level overview of the design of the

SST transports and the various sub-protocols it consists

A number of alternatives to TCP [25] and UDP [21] exigfs - Foliowing sections then describe these specific sub-
today, but none of them offer the combination of funGsotocols in detail: Section 3 describes the Channel Pro-
tionality needed by today’s highly asynchronous, medigs.| section 4 describes the Stream Protocol, Section 5

rich applications, which often need to juggle many difyescribes the Negotiation Protocol, and finally Section 6
ferent types of network communication activities at on¢g.scripes the Registration Protocol,

and must traverse NATs and firewalls. To summarize the
limitations of some existing alternatives: _ )
2 Design Overview
e SSL/TLS[11]and DTLS [22] implement connection
security atop TCP and UDP, respectively, but inhe®ST is organized into four separate but closely-related
all of the other limitations of the base protocols. protocols, organized as shown in Figure 1:



\ Aoplcaton Protoco only of an IP address, and thus an SST session is

Streams uniquely defined by the pair of IP addresses of the
‘ Stream Protocol ‘ hosts involved: (local IP, remote IP). By definition
Toames | *Straam there can be only one such “native” SST session at a
Channel | | Negotiation | __| Registration T’(ag';%""‘ tlme between any pair Of hOStS'
Protocol Protocol Protocol
Ts T T e |f SST is run atop some other network- or link-layer
‘ * TR ——— t ‘ protocol, then SST uses as its “endpoints” what-
(0. 0 1 Ik e ever the underlying protocols uses as an “address” or
) ) “host identifier.” If SST were to be run directly atop
Figure 1: SST Protocol Architecture Ethernet, for example, then SST’s endpoints would

be IEEE MAC addresses, and a session would be

e The Channel Protocolimplements a basic packet- ~ Uniquely defined by a pair of MAC addresses.

orientedchannelabstraction that provides sequenc-
ing, connection security, and congestion control. 2,1.2 Channels

e TheNegotiation Protocoprovides the mechanics ofThe channelabstraction provides the interface between
setting up channels between hosts, including symhe channel protocol and the stream protocol. The chan-
metric key agreement for channel security and negeel protocol can multiplex up to 255 distinchannels
tiating optional protocol extensions. onto a session. One 8-lthannel numbefor each di-

rection of communication distinguishes different chan-

nels for one session: thus, a channel is uniquely identi-

Rd by the 4-tuple of (local endpoint, local channel, re-

mote endpoint, remote channel). Each channel represents

e The Stream Protocolbuilds on the three proto-a separate instance of the SST channel protocol result-
cols above to implement the convenient, high-levélg from a successful key exchange and feature negoti-
stream abstraction that SST presents to applicatioB80n using the negotiation protocol; SST’s channels are

therefore analogous in function to security associations

in IPsec [17]. Different channels always use indepen-
dent symmetric keys for encryption and authentication

Providing the glue within SST and between SST and agd may use entirely different encryption and authenti-

surrounding environment are three crucial abstractioggtion schemes or other optional negotiated protocol fea-

e The Registration Protocolprovides a simple, op-
tional host registration and lookup service supporti
secure host identities and NAT traversal.

2.1 Interface Abstractions

sessionschannelsandstreams tures. A given channel always uses one set of symmet-
ric keys and negotiated parameters, however: when SST
21.1 Sessions needs to re-key a communication session (e.g., to ensure

freshness of symmetric keys), it does so by creating a new
A sessionrepresents a context in which SST runs ovehannel through a fresh run of the negotiation protocol
some underlying network protocol such as UDP or IBnd terminating use of the old channel. SST may keep
Each session represents an association between two fgittiple channels active at once to allow applications to
work endpoints A session is always uniquely defined byelect different security parameters for different stream
a pair of endpoints, but the definition of an endpoint d@slly encrypting and authenticating sensitive streams for
pends on the underlying protocol on which SST runs:  security while leaving less-sensitive streams in cleartex
?d only weakly checksummed for maximum efficiency,

e When SST is run atop UDP, an endpoint consists
r example.

an IP address paired with a 16-bit UDP port numb P
From the perspective of any given host a session is
thus uniquely defined by the 4-tuple (local IP, loc#l.1.3 Streams

port, remote IP, remote port). The session tuple for

the opposite host is obtained by swapping the |Oéa|pally, astreamis the high-level logical communication
and remote parts of the tuple abstraction that SST presents to applications. Each stream

supports two-way TCP-like communication, reliably pre-
e If SST is run directly atop IP as a “native” transporserving data content and ordering within the stream, while
alongside TCP and UDP, then an endpoint consistéowing communication on each stream to proceed inde-
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Figure 3: Channel Protocol Packet Layout
pendently of other streams. SST multiplexes all of the

application’s streams onto one or at most a few channels,
one channel for each different set of security parameters that may be desired to enhance the performance of
required; hence the limit of 255 active channels at once is  the underlying network path.
not likely to impact applications. SST places no arbitrary
limits on the number of streams an application may have®
or on the duration a given stream may be used. SST en-
hances TCP’s stream abstraction with zero-delay stream
creation and optional message/record marking, and en;
ables the application to organize streams hierarchically
according to the logical structure of its communication ac-
tivities. e The feedbacklayer sends acknowledgments for
packets received on a session, and uses these ac-

knowledgments to monitor the network’s perfor-
3 Channel Protocol mance and implement congestion control.

The optionalintegrity layer attaches a message au-
thentication check (MAC) to each packet transmit-
ted, and verifies the MAC on packet reception.

The optionalprivacy layer encrypts the payload of
each packet transmitted and decrypts it on reception.

SST's channel protocol provides a sequenced, SeCurephe sequencing component extends up the left side in
congestion-controlled, packet-oriented communicatigsy, figure because the sequence numbers it attaches to
abstraction for the stream protocol to build on. This segzkets are used by all the higher-level layers and made
tion describes the chanr_lel protocol in detalil, startin@wigva”aue to higher-level protocols (e.g., the streamgrot
the protocol's organization, header and packet StrUCIUEB)) a5 part of the channel abstraction. Thus, unlike the
and encapsulation of SST packets for transmission acrg8fional intermediate layers, the sequencing layer adds

the Internet, followed by a description of each of the chafsa mantic value” rather than simply representing a stack-

nel protocol’'s components. _ _able transparent payload transformation.
All of the details in this section describe SST'’s baseline

“version 1" channel protocol. Almost any aspect of this
protocol may be changed in the future through the use®? Packet Layout

the negotiation protocol: two communicating hosts may

. igure 3 shows the layout of a packetin SST’s basic chan-
adopt an extended or even a completely different chanﬂéi protocol. Since SST packets are normally embedded
protocol if they both support it.

in UDP datagrams for compatibility with deployed NATs
o that only support TCP and UDP, the diagram includes the
3.1 Protocol Organization UDP header to clarify the relationship between the UDP
. . . ' : nd SST headers. UDP encapsulation is not essential to
The channel protocol is organized into five functional sup., . ) ! . .
o ) ST's design, however: SST could just as easily run di-
layers, shown in Figure 2 and summarized below from | link.I | i desired
bottom to top: rectly atop IP or even a link-layer pr.otoco , if desired.
' The SST part of the packet consists of an 8-byte chan-
« The sequencindayer assigns sequence numbers R?' header, followed by a variable-length payload contain_—
each packet transmitted on a channel, and protef}@ UPper-level (e.g., stream protocol) headers and appli-
against replay attacks on packet reception. cation data, and finally a Message Authentication Check
(MAC) field that SST's integrity sublayer uses to verify
e The optionakncodingayer can implement forwardthe integrity of each packet. If privacy protection is en-

error correction (FEC) or other special encodingsbled, as it usually is by default under SST, then all but



the first 32 bits of the SST header and all of the variable-On the receive side, SST's sequencing layer uses se-
length payload is encrypted. SST determines the cryptmence numbers to protect against accidental packet du-
graphic algorithms to use for integrity and privacy proteplication or malicious packet replay attacks. Each host
tion, if any, at session negotiation time as described lataaintains in its internal state a 64-béceive sequence

in Section 5. numberrepresenting the highest-numbered packet it has
successfully received and authenticated on the channel.
3.3 Channel Identification In addition to the receive sequence number, the host may

also retain some limited amount of information about
Each channel protocol packet begins with a 32-bit worghich packets with lower sequence numbers have or have
always transmitted in cleartext, containing an 8-bit chanet been received, in order to allow reception of packets
nel number and a 24-bit transmit sequence number.  delivered out of order while still protecting against packe

SST uses the channel number field to distinguiséplay. A host typically maintains a bit mask representing
among channels multiplexed onto one session. Durithg: sequence numbers within a “sliding window” up to the
a run of the negotiation protocol, each participating hdaist received packet: if the host's current receive seqeienc
chooses a channel number and communicates it to thenber isNV and it uses a 32-bit mask, for example, then
other host; each host then places tither host’s cho- the mask represents which packets have been received in
sen channel number in all subsequent channel protog® sequence number ranlye- 31 throughV. If the host
packets on that channel. The channel number fieldrigceives a packet it has already received, or an old packet
the header could therefore be thought of as a “destinatmutside of the window for which it retains information, it
channel number,” with the corresponding “source chamust silently discard the packet. Although limited infor-
nel number” being implicit and omitted from the packeahation is presently available to guide the choice of the
header. The interpretation of all other data in the paclgite of this bit mask, some recent packet reordering mea-
depends on the channel number, so a channel might usa@ments suggest that 32 bits is likely to be sufficient for
different channel protocol from the one described here @®st purposes [27].
dictated by the results of negotiation for that channel.
The channel protocol never uses channel number ze§o;

instead, a channel field of zero in a packet indicatesa
trol packetfor one of SST's control protocols, such as thepper layers may wish at times to prevent packets from
negotiation protocol 5 or the registration protocol 6.  being delivered out-of-order around certain crucial syn-

chronization points. To this end, an upper layer may ex-
3.4 Sequencing Layer plicitly request SST's sequencing layer to sebarier

at the host’s current receive sequence number. To set a
Within each channel using this baseline channel protsarrier, the sequencing layer simply marks every packet
col, each host assigns a 64-bit sequence number to e@gho this point as having already been received for re-
packet it transmits, and includes the low 24 bits of thptay protection purposes, so that any packet that subse-
sequence number in theansmit sequence numbéeld quently arrives with a lower sequence number is uncon-
of the packet header. The 64-bit sequence number coditionally dropped. SST'’s stream layer uses this barrier
ters for a channel always start at 1 when the channehigchanism to prevent old packets from “passing” critical
first negotiated and increase by 1 for each packet transmibints where stream identifiers may be reassigned, as de-
ted. Every packet transmitted over a channel consunsesibed later in Section 4.15.
sequence numbers space, including packets that contain
only an acknowledgment or a retransmission of _pre\éij4_2 Extrapolating Sequence Numbers
ously sent data. A host never sends a packet with 64-
bit sequence number zero: instead, when it sets up a newdetermine the full 64-bit sequence number of a packet,
channel it initializes its state as if it had already sentthe receiving host extrapolates the packet’s 24-bit trans-
fictional “packet zero” and received the corresponding fimit sequence number field as follows. First the host sub-
tional “packet zero” from the other host. Sendemsst not tracts the low 24 bits of its internal receive sequence num-
allow the full 64-bit sequence number counter to wrap: lifer counter from the packet’s transmit sequence number
a host has senf* — 1 packets and exhausted its sequenealue, using two’s complement arithmetic, to yield a 24-
number space, it must stop sending new packets on thidtdelta. The host then sign-extends this delta to 64 bits,
channel and instead set up a new channel for further caand adds the result to its 64-bit receive sequence num-
munication by re-running the negotiation protocol. ber counter to yield the full 64-bit sequence number for

.1 Sequencing Barriers



the packet. This computation yields the sequence nuever; this layer can thus currently be considered a place-
ber intended by the sender as long as the intended vaioéder for future encoding extensions.
is within a window of plus or minus abo@?3 packets
from the receiver’s current receive sequence number. To
avoid getting desynchronized with the receiver, therefore
the sender must not allow its packet transmission to g_g%
too far ahead of the last packet it knows (via acknowledg-
ments) that its partner has received. In high-bandwidth, ) )
high-delay scenarios in which a window ¥ packets is N SST's integrity layer, the sender adds a Message Au-
insufficient to make full use of the available bandwidttinentication Checksum (MAC) to each packet so that the
the hosts may negotiate a variant of the SST channel pi@ceiver can verify that the packet originated from the cor-
tocol with a wider transmit sequence number field. rect source and was unmodified in transit. The details of
In practice the sender can easily avoid overrunnirq%s MAC scheme depend on the security parameters and
the sequence number window by clamping its congesti% orithms de_termmed for the channel by f[he_negotlatlon
window (described below in Section 3.8) to a suitab otocol, but in general message authentication operates
maximum. Suppose the sender’s maximum congest%%fonows'
window is M packets. If the sender’s current receive se- Once the sending host has prepared a packet payload by
guence number i, then it may potentially send sequencprocessing it through the other higher-level sublayers (in
numbers up t&' + M to fill the congestion window beforecluding optional encryption) and filling in the channel and
receiving any further acknowledgments. Suppose furttsaguence number fields in the header, the host computes a
that the sender doubles its retransmission timer on e&eyed MAC and appends it to the packet before transmis-
timeout, the minimum round-trip time that the sender caion. Upon receiving a packet and extrapolating its full
measure due to the resolution of its timer&is,,, and the 64-bit sequence number as described above, the receiving
maximum retransmission timeout before the sender givesst similarly computes a MAC over the received data and
up and closes the channells,,.. Then, if the sender compares it to the MAC field received in the packet. If the
continues to receive no acknowledgments for new dataMAC check succeeds, the receiving host trims the MAC
may send up t¢logs(Tmaz/Tmin )] additional packets in field from the packet, adjusts its information about which
retransmission attempts before receiving an acknowleggckets have been received including updating its receive
ment. If the sender uses 64-bit counters for its timers, tissquence number if appropriate, and passes the rest of the
latter value is bounded by 64, so the sender may reachpsayload on to upper layers; otherwise, the receiver sientl
guence numbers up t8 + M + 64 when the receiver is discards the packet. Note that the receivest noupdate
known to have seen sequence numbers uf.td\t this its receive sequence number or other related internal state
point, the only way the sender can transmit new packeitstil it has successfully verified the packet's MAC.

without its receive sequence number increasing is if it re- o sending and receiving hosts compute a packet's
ceives acknowledgments for some very old packets belgy~  over an 8-byte pseudo-header containing the
Sl'd I thi sendﬁr US:S B'bg mask to pre_vent replayhOfpacket’s full 64-bit transmit sequence number, followed
old palc(: etsl, ;en the sen k?r may receive ugstsuc b%the entire contents of the packet to be transmitted in-
old acknowledgments, making one new transr_mssmné ding the SST header and possibly encrypted payload,
response to each, before its bit mask is full and it can onjy. ¢, 5vn in Figure 4. Including the full 64-bit sequence
trqnsmlt new packets as a result of acknow!ngmentst fber in the MAC computation ensures that if the re-
shift the window. T.h(; sender should thus I|m|tllts MaXEeiver incorrectly extrapolates the 24-bit sequence num-
mum congestion window/ t0 2™ — 64 — B packets; a o ig|q in the packet header (e.g., due to a long-delayed

- 23 ; . .
limit of 2° is suggested as a safe conserva_tlve maX'mlﬂ)rlnmaliciously replayed packet), the MAC check fails and
for all reasonable values of the parameters involved. the receiver safely drops the packet

Integrity Layer

Regardless of what specific MAC algorithm SST uses
3.5 Encoding Layer for a particular channel, the MAC algorithm is keyed us-
ing symmetric keys agreed for the channel via the negotia-
The optional encoding layer can provide forward errdion protocol, ensuring that packets intended for one chan-
correction (FEC) or other wrapper encodings to comel instance cannot be mistaken for those of another if the
pensate for extremely lossy or corruption-prone netwoskme pair of endpoints reuse the same channel number for
paths. No actual encoding schemes are defined yet, heuecessive channel instances.
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pecudo. S ————————— sensitive schemes. Other congestion control algorithms
(;'g;‘;‘;‘;{ Transmit Sequence Number (TSN) 310 that require cooperation between sender and receiver, and
Channel p— T Seeene Namber (TN 270 perhaps extensions to the SST header, may be negotiated

(8”33{23{ Rsvd [ AckCt | Acknowiedgment Sequence Number (ASN) dynamically at channel setup time. Hosts normally treat

e rayiond Data Encrypted each chapnel ?ndependently for .congestion control, but
(5:3;7;;{ AAAAAAANNAAANAANAAN they may if desired share congestion control state between
(NN channels with compatible congestion control schemes as

Keyed MAC Algorithm l (e.0. HMAC-SHA256.128) certain TCP implementations do [26, 4], or even cooper-

ate with a system-wide Congestion Manager [5] to share
congestion control state across different transports.

| Message Authentication Check (MAC) |

Fi 4: Packet L tfor MAC C tati - .
gure acket Layoutfor omputation 3.8.1 Transmitting Acknowledgment Information

The feedback sublayer includes acknowledgment infor-
mation in every packet sent, but leaves it to upper lay-

SST's optional privacy layer encrypts the contents of eall? © decide when to send any packet—including when
packet transmitted over a channel to prevent intermelfl-Send @ packet for the sole purpose of acknowledg-
aries from snooping on communicated application dafgent: When transmitting a normal data packet whose
On the sending side, the privacy layer takes a cleart8Mary purpose 1s somethlljg other than ,to acknowledge
packet already prepared by higher-level layers, and é}ﬁ\_ta, the sender includes in the packet's Acknowledg-

crypts the entire packet except for the first four bytes B}ent Sequence Number (ASN) field the low 24 bits of

the packet header before handing the packet down to #§gPurrent receive sequence number, indicating the high-

integrity layer. On the receiving side, the privacy IayéarSt nuTb_eredkpacIie:jit has r?ceived SO falr. Wherll sending
accpets the cyphertext packet from the integrity layer, it €XPlicit acknowledgment for a particular packet (not
mediately after the integrity layer has verified and Str-[ppé]ecessanly having the highest sequence number received

the MAC field, and decrypts the packet header and p&2 far), the sender places the transmit sequence number
load (TSN) of the packet to be acknowledged into the ASN

All privacy layer parameters such as whether to eﬂ?ld of the acknowledgment.

crypt at all, the specific encryption algorithm to use, arkd ll?cf'ft.h%tﬁase’ tge sinder ma;t( indicate in the 4t')b't
the symmetric keys for the encryption algorithm, are es® e € nuMDer of CONSecUlive Sequence NUMDErS
mediately prior tahe specified ASN that it has also re-

tablished at channel setup time by the negotiation pro{mwed. In this way the sender may acknowledge multiple

col. In general, the only requirement is that the negotiat‘éﬁ " kets at d o dund
encryption algorithm represent a transformation that cyRNSeculive packets at once and provide some redundancy
ainst lost acknowledgments. Figure 5 for example illus-

successfully be reversed on the receiving end. Encrypti'?)(?]t the behavior of a host that . kets with
algorithms must be able to handle packet payloads of fptes the behavior of a host that receives packets with se-

bitrary byte lengths (which may entail padding for blocﬁuelr(wctehnumbers 1 through 7;)” oérldir,hexctehpt ;or ? m|ss_ed
encryption methods), and must preserve the original p \cket having sequence numboer 4. enthenostreceives

load length on decryption. The encryption transformati cket 2, its acknowledgment covers both packets 1 and 2;

may expand the packet if necessary, to include an initid- en thf Toslt :ﬁcelvehsgaﬁllﬁt 3, Ittr? aﬁkn?wled_gment ccl)(v-t
ization vector (1V) for example, although the currently d €S packets 1 througn 3. en he Nost recelves packe
it sees that it missed a packet (which most likely has

fined standard methods using AES in CTR (counter) moge

preserve each packet’s size exactly with no wire overhe en d”ropped but may have m_erely been delayed), and
resets” the acknowledgment window to cover only the

newly-received packet 5. If the acknowledgment for pack-
3.8 Feedback Layer ets 1 or 2 is lost, then it is redundantly covered by the ac-
knowledgment for packet 3, and the acknowledgments for
The feedback layer handles the sending of acknowlegigickets 5 and 6 are similarly covered by the acknowledg-
ments, and using acknowledgment information to implerent for packet 7.
ment congestion control. The basic channel protocol de-
fined here provides sufficient inform_ation to implemeg_&2 Delayed Acknowledgment
most sender-based forms of congestion control, including
TCP’s classic loss-based schemes and many recent deXayX explain how delayed acks apply in SST

3.7 Privacy Layer



. Packet Acknowledgment Sent in Return Packet Since SST's sequencing and feedback layers count
Time | Received (Bcknowledged seduence number range) packets instead of bytes, it is natural to implement SST

congestion control using packet counts, instead of byte

2 Ak a2 counts as TCP does, for crucial metrics such as congestion
3 Ack 1-3 window (cwnd) and slow start thresholds§t hr esh).

This approach is not quite correct in theory, since a large

packet consumes more network resources than a small

1 Ack 1

(packet 4 dropped)

Ack 5
° - packet, and a congestion window calculated over a run of
Cl .
6 small packets may be unsuitable for a run of large pack-
v 7 atstel ets and vice versa. In practice, however, most application

streams whose bandwidth use is congestion-limited, such
t12]s S I as file transfers, tend to be steady streams of maximum-
Sequence Number Space size packets anyway, and reasonable congestion control
algorithms easily adapt to occasional changes of average
Figure 5: Acknowledgment Windows Example  packet size in the transmission stream. Furthermore, the
typical maximum transmission unit (MTU) on today’s In-
ternet remains largely the same as it was decades ago—at
3.8.3 Congestion Control or below the 1500 byte frame size of classic Ethernet—

) ] even as bandwidth has grown by several orders of magni-
SST hosts must implement some suitable form of conggsge. The significance of packet size in terms of overall

tion control, such as classic TCP congestion control [Zerwork resources is therefore diminishing rapidly: the
or a more recent delay-sensitive scheme such as the Pigmet has practically become a cell-switched network
used in TCP Vegas [8]. Since the details of a particulgsih 5 cell size of 1500 bytes. For these reasons, using
congestion control scheme are largely independent of Blfcket counts instead of byte counts is probably accept-
details of the channel protocol itself, this section only-ou,pje for most purposes on today’s Internet, although an
lines the considerations uniquely applicable to SST.  jplementation of SST designed for high-bandwidth net-

SST acknowledges individual data packets by sequeRgsrks with large MTUs may wish to use byte counts for
number, when or shortly after they are received, regagflore precise congestion control.

less of whether packets transmitted earlier also arrived
successfully. Classic TCP, in (;ontrast_, uses a cumulat:lél_%_4 Fast Retransmit
acknowledgment for all bytes in a logical stream up to a
certain point, and cannot promptly acknowledge segmeR&X reinterpretation of standard "three duplicate ACKs”
received out-of-order except using the selective acknowlie, since SST can tell exactly which packets arrived. But
edgment (SACK) extension [19]. SST's feedback layesally preferred to make the rule adaptive [7, 28].
in effect provides the information benefits of selective ac- XXX what "acks for new data” means
knowledgment without the implementation complexity or XXX no need for congestion window inflation
wire overhead of TCP’s variable-length SACK header op-
_tlon. SST h_os_ts should _naturally tal_<e advantage of tl?_i,sg Path MTU Detection
information in implementing congestion control [20].

Techniques already explored in the context of TCP fatiXX dynamic path MTU versus maximum segment size
adapting dynamically to Internet packet reordering congMSS)...
tions [7, 28] are even easier to implement in SST. Since allThere’s two MTU issues: detecting the dynamic MTU
packets in SST including retransmissions get fresh packéthe underlying IP-level path, and negotiating a suitable
sequence numbers, upon receiving an acknowledgmigahsport-level maximum segment size (MSS).
the sender can tell exactlyhich copy(or copies) of a  For the first, in theory there’s really nothing new in SST
retransmitted packet arrived at the receiver. The senderelation to TCP: the transport tries sending packets at
can use this information to detect quickly when it has isome suitable initial size, with the "Don’t Fragment” flag
correctly retransmitted a packet that was in fact meredgt, and responds to ICMP MTU exceeded messages by
delayed rather than dropped, and dynamically adjust iieslucing its dynamic MTU setting for the channel ap-
“packet delay threshold” for fast retransmission accorgropriately. The only practical challenge is actually im-
ing to observed line conditions instead of just using TCH¥ementing this functionality above UDP in a "portable”
conventional “three duplicate ACK” rule [2]. user-space transport protocol implementation: different
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Channel Transmit Sequence Number (TSN)
Header

ing UDP applications to request path MTU discovery, and  byes
some Operating systems may not (yet)prOVide this func- f.‘e'fﬁ'e“,{ [ Local stream identiier (Ls1D) | Type [subtype]  window |
tionality at all. So for SST implementations that run in ~ “>* ———

. . itional Header an ayloa ata
language environments or on operating systems that don’t rgicei 4 |\ A A AAAAAAAAAAAAN

expose path MTU discovery over UDP, SST will probably " | (MM VANV

operating systems probably have different ways of allow- .o {

Rsvd ‘ AckCt Acknowledgment Sequence Number (ASN)

Encrypted
(optionally)

just have to "guess” at a suitable MTU and risk having its | Message Authentication Check (MAC) |
UDP datagrams fragmented at the IP level.
For the second issue, | haven't yet but have been mean- Figure 6: Stream Protocol Packet Layout

ing to add MSS negotiation to SST as part of the negotia-

tion of a new channel, comparable to the MSS negotiation .
TCP performs during its 3-way handshake. This is obv4—'1 Stream Layer Header Information

ously needed so that both endpoints can agree on a Ig&jjystrated in Figure 6, each stream protocol packet
sonable maximum they both can handle with or withodpnsists of a 4-byte fixed stream header and a variable-
dynamic path MTU discovery. The negotiated MSS al§gngth area for additional headers and payload data. The
affects flqw control: if the sender sees _the receiver’s ﬂ%ure includes the channel protocol header as well for ref-
control window drop below the MSS, it is allowed to waigrence. The 32-bit fixed stream header contains a 16-bit
for a flow control update increasing the window above the)ca| Stream Identifier (LSID), a 4-bit Packet Type, a 4-
MSS before it sends more data. This rule ensures tBﬁtSubtype field, and an 8-bit Window field. The size
the sender never unnecessarily fragments packets jusiig content of the packet payload following the fixed SST

fitin a temporarily small receive window, thereby avoicheader depends on the packet's type. The following type

also implies that the receiver’s overall receive buffeesiz
MUST be at least the next power-of-two in size above Type | Description Format
the initially negotiated MSS: if it were smaller, then the 0 Invalid Packet Type N/A
sender might wait forever for the receiver to increase its 1 Init Packet Figure 10
window above the MSS, while the receiver waits forever 2 Reply Packet Figure 11
for the sender to send some data. Thus, the negotiated 3 Data Packet Figure 12
MSS is crucial to establishing a "dividing line” determin- 4 Datagram Packet | Figure 16

5

6

7

8

ing who is responsible in what circumstances for ensuring Ack Packet Figure 13
that the protocol can make progress. Reset Packet Figure 14

Besides MSS negotiation, there are other elements of Attach Packet Figure??
stream-level negotiation that need to be added to the pro- Detach Packet Figure??
tocol, such as negotiating optional extensions like fat 9-15 | Reserved
headers and chunk bundling. Someone (you?) also sug-

gested making the datagram optimization a negotiated @02  Unique Stream Identifiers (USIDs)
tional extension, which | completely agree with.

SST assigns each logical stream a permanémtue

Stream Identifie(USID) when the stream is first created,
4 Stream Protocol and uses this identifier to refer to the stream if it becomes

necessary to detach the stream from its original channel
The stream layer is responsible for multiplexing the apr migrate it to another channel. A USID consists of two
plication’s potentially many logical streams onto one or@mponents, as illustrated in Figure 7: a cryptographic
few channels managed by the channel protocol. Althoulgalf-channel identifieand a 64-bistream counterEach
streams are always initiated in the context of some adrannel has two half-channel identifiers, one for each di-
tive channel, a stream can outlive the channel in whichction of information flow, both of which the negotiation
it was created. If an SST host runs out of transmit sprotocol computes for the channel as part of its gener-
guence number space or the channel’s symmetric authation of symmetric key material. Which of a channel’s
tication/encryption keys expire, for example, SST indgat half-channel identifiers is assigned to a given stream de-
a new channel to the same communication partner and pgnds on which participant host originated the stream.
grates the active streams to the new channel transpareftlg stream counter value, in turn, distinguishes among
to the application. streams created by that host during the channel’s lifetime.
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struct ServicePair {
S“e(aﬁrz g:’;;”ter string service; /1 service name
string protocol; /] protocol nane
H
Half-Channel Identifier
(variable-length) enum Servi ceReqType {
RegPor t Nunber = 0x0001,
ReqgServi cePair = 0x0002,

b
Figure 7: Unique Stream Identifier (USID) layout ~uni on ServiceReq
switch (ServiceReqType type) {

case RegPort Nunber: unsi gned int port;
case ReqgServicePair: ServicePair pair;
Although in theory every stream has a USID, in praé-

tice for most short-lived streams that remain attached
to their original channel throughout their lifetimes, the
stream’s USID is never actually transmitted or used by
the wire protocol. Within the context of a particular chan-
nel, SST normally identifies streams using shorter 16-Rjt4 Special Internal Streams
Local Stream Identifierer LSIDs, described in the next
section. Not all streams managed by the stream protocol are visi-
ble to applications. There are two special typemtdrnal
streamghat the stream protocol creates and uses invisibly
to the application:channel rootstreams andervice re-
gueststreams.

Figure 8: Service request message format

4.3 Attaching Streams to Channels via
LSIDs

At a given point in time a stream may have between zefgt-1  The Channel Root

a}nd fourattachmentstwo for egch direction of informa- Whenever a pair of SST hosts set up a new channel via the
tion flow. Each attachrr_1ent binds the stream to a pa_‘rtPFégotiation protocol, the hosts implicitly create a specia
ular channel and associates a 16tlmtal Stream Identi- stream for the channel called tkbannel root A chan-

fier (LSID) to the stream for the purpose of transmittinge | 1ot stream is always attached to the channel with an
stream data over that channel. The scope of an LSID §|p of 0 in each direction, and never detaches or mi-

Iogal to a particular channel ar_1d flow direction: each ,en&fates to other channels. The channel itself terminates
point host on a channel has its own LSID space, W'thﬂ?'nce its root stream is closed in both directions.

which it may assign LSIDs independently of the other Applications are not generally aware of the existence of

endpointand of other channels. channel root streams at all: channel roots merely provide
SST allows a stream to have up to two attachmenfg outermost context in each channel that the stream layer

in each direction so that a host can transmit data on,&es to exchange control messages and initiate (or migrate
stream continuously using one attachment while settig) other streams on behalf of applications.

up a second attachment to a different channel, in order

to migrate streams from one channel to another smoothly

and transparently to the application. Hosts may detach 42 Service Request Streams

tive streams not only to migrate them but also to free yghen the application makescamnnect request to open
LSID space; long-lived but inactive streams may remagnnew top-level stream to a given target host and service,
unattached in one or both flow directions for arbitrary péne stream protocol on the initiating host creatsemice
riods of time. request streamas a substream of a suitable channel’s root
A future negotiable extension to the SST protocol magream. The initiating stream protocol then sendea
allow streams to have more than four attachments at ondege request messaga this new stream, whose format is
allowing hosts to set up multiple channels over differedefined by the XDR [23] definition shown in Figure 8.
network interfaces or paths and attach streams to sever@ST currently provides two types of service request
or all of them at once, using the redundant channels foessages, representing different ways of naming the ser-
fast fail-over as in SCTP [24], or for load-balanced simuldce on the responding host to which the application
taneous transmission (analogous to link layer port aggvéshes to connect. WitReqPor t Nunber , the initiator
gation or “trunking”). specifies a 32-bit port number, the |@¥ values of which
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enum Ser Vi CeRepl yType { Channel Transmit Sequence Number (TSN)
Repl yO( = 0x00, Data Packet Rsvd ‘AckC! Acknowledgment Sequence Number (ASN)
Repl yNOSGT Vi ce = OX 10: (1:;;(‘;2; Parent Stream Identifier (PSID) Typezo‘-‘P‘M‘C‘ Window
Repl yNOPI’ Ot OCOI = OXZO, New Stream Identifier (NSID) Byte Sequence Number (BSN)
/] XXX others...? s
} ; Application Application Data
uni on Servi ceReply (varigt;?){ AAAAALAAALALILILIDIDIN
owi oh ( Ser vi cemenl yType type) { (NNINANINNNANANNNNNANN
case Repl yO( voi d; | Message Authentication Check (MAC) |
case Repl yNoService: string errornsg;
case Repl yNoProtocol: string errornmsg; Subtype Flags:
b ¢ Cose
- Reserved
F|gure 9: Service reply message format Figure 10: Init Packet Format

are intended to correspond to the IANA's traditional 16-bifiteraction with a given logical service, and perhaps ob-

port space used by TCP and UDP, while providing rooggin human-readable descriptions of those services on be-
for expansion to a full 32-bit port space in SST. half of the user.

With ReqSer vi cePai r, in contrast, the initiator
specifies a pair of UTF-8 strings: the first names a log- e
icgl servicesuch asthmil’ or \%/eb while the second 15 Initiating Streams
names a specific protocol to be used to communicate Withher host participating in an existing stream may intiat
the indicated service, such &0P3’ or ‘“HTTP/ 1. 1’. a new substream at any time. A host creates a new “top-

Upon receipt of the service request, the responder lodégel” application stream, aapplication root by negoti-
up the specified port number or service pair in its tating a channel with the desired endpoint if none exists
ble of available services, and responds on the serviceyet and then initiating a new substream of the channel’s
quest stream with a message described in Figure 9 indiet stream. The application can then initiate further sub-
cating whether the requested service is available. Ergaweams as children of streams it already has open.
responses may contain an optional human-readable UTF¥o initiate a new stream, a host sends one or more Init
8 encoded string describing the error. packets, which have a packet type of 0 and and the lay-

Upon receiving Repl yCk message from the responeut shown in Figure 10. In an Init packet, the primary
der, the initiating stream protocol finally initiates a newSID field in the SST header indicates the parent of the
child stream of the service request stream (a grandchilchefv stream to be created, and tew Stream Identifesr
the channel root), and hands off the use of this streamN&ID field indicates the LSID that the sender has assigned
the application to become the “top-level” stream the atp the new stream. Both of these LSIDs are interpreted in
plication requested. The initiating stream protocol malie sender’s LSID space.
close the service request stream once the responder hathe host initiating a stream assigns the new stream’s
acknowledged the initiation of the application stream, @SID and LSID at the same time, using a 64<tieam
it may cache the service request stream in case the @punterthat the host maintains in association with each
plication subsequently makes additional requests for nehannel. In the simple case, the initiator simply incre-
top-level streams connecting to the same service on thents the channel’s stream counter by one, then appends
same target host. In the latter case, the initiating stre@me appropriate half-channel identifier to form the new
protocol simply initiates a new substream from the aptream’s USID, as shown in Figure 7. The initiator then
propriate service request stream each time the applicatiges the bottom 16 bits of the resulting stream counter as
requests a new top-level stream connecting to that servi¢e new stream’s LSID.

(XXX how is the end of the service request and reply Since the LSID is only 16 bits, however, the desired
marked? Would be nice if could use FIN markers, whileSID may conflict with an existing attachment to the same
still holding stream "open” for creation of child streams ehannel for the same flow direction. In this case, the initia-
perhaps need multiple notions of "close...) tor skips the conflicting value and continues incrementing

It is anticipated that additional service request and réae counter until it finds an available LSID. If the desired
sponse message types will be added in the future perretteam counter is 0x12345 but LSID 0x2345 is already
ting the initiator to, for example, query the names of avaik use, for example, the initiator must skip that counter
able services, query the names of protocols available f@lue and try LSIDs 0x2346, 0x2347, and so on. The new
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stream’s USID is derived from the final stream countstream always begin at zero.
value corresponding to the first free LSID. When a host receives the first Init packet for an un-

When a host receives the first Init packet for a nenown LSID, it sets up its internal state for the new stream
stream, it extrapolates the 16-bit LSID in the headegs described above and immediately begins collecting
NSID field to determine the new stream’s full USIDdata segments for the new stream. If the host receives
For this purpose, the receiver maintains a 64rbieive the new stream’s Init packets in order starting with an Init
stream countemssociated with the channel, in which ipacket having a BSN of zero, then the receiving host may
records the highest stream counter value it has seenimgediately start delivering this data to the application.
peer assign so far. To extrapolate a new stream’s 64{bthe receiving host obtains some other Init packet first, it
stream counter, the receiver forms a 16-bit two’s complgtill sets up the new stream as usual but buffers any appli-
ment delta from its current receive stream counter and gaiion data the packet contains until the lower-numbered
received NSID, and then adds the sign-extended deltedlia segments arrive or the sender retransmits them.
its receive stream counter, in the same way that the seSince an Init packet’'s BSN field is 16 bits wide, the
quencing layer extrapolates the TSN and ASN fields. initiator may send up t@'® — 1 + MTU bytes of data

As with packet sequence numbers, the host initiatingramediately during stream initiation before it must start
new stream must avoid getting too far ahead of its peeryfing regular data packets. The initiator cannot start-send
stream counter space and causing the receiver to extrdp@-regular data packets, however, until it is certain that
late a received NSID incorrectly. For this purpose, ealii Peer knows about the new stream—i.e., until it has re-
host must keep track of its highest stream counter valegived an acknowledgment for at least one of its Init pack-
that its peer definitely knows about—i.e., the highedtts for the new stream. Thus, a host can send slightly more
numbered stream for which the initiator has received #n2'® bytes on a brand-new stream with no round-trip
acknowledgment for one of the stream’s Init packets. ThR@ndshaking delay. (An future extension to the SST wire
initiator must in no event assign a new LSID that exceeBgotocol for for high-bandwidth, high-latency networks
the current highest acknowledged stream numbe2'py may increase the size of the BSN field both for Init and
or more. If the initiator runs out of free LSIDs in thishon-Init packets to allow for larger in-flight windows.)
range, it must delay the initiation of new streams until one
or more LSIDs within this range become free. 4.7 Response to Stream Initiation

The initiator does not have to assign stream numbers ) ] )
in strictly ascending order: it may go back and ass%(hen ahost receives the first Init packet for a new stream,
stream counter values that were previously skipped d{}§ receiver must send one or more Reply packets to or-
to LSID conflicts, as long as it assigns each individual 648" t0 @ssign an LSID to the stream for use in the return

bit stream counter value at most once to ensure that egéfgction. Reply packets have a packet type of 1 and the

stream’s USID is unique. The initiator can explicitly deformat shown in Figure 11. The packet's Initiator Stream

tach old streams that are still active but not in frequeli? (ISID) field indicates the LSID the initiator assigned to
use in order to free up LSID space, as described laterlijf NeW stream via the NSID field in its Init packet. The
Section 4.18. To avoid the possibility of overflowing thBacket's Reply Stream ID (RSID) field in turn indicates
receiver's 16-bit counter arithmetic, the sender must g€ corresponding LSID the responder has assigned the
assign stream counter values that are less than the high§%f Stream from its own LSID namespace, on the same

stream counter it has assigned so fabyor more. channel but for the opposite flow direction. _
As with Init packets, Reply packets may contain ap-

plication data, which is sequenced via the packet's 16-bit
4.6 Initial Stream Data Byte Sequence Number (BSN) field. The responder may
send up tR'6 — 1 + MTU response bytes on the new
The Init packets a host sends to initiate a new stream nzyeam before it must switch to using ordinary data pack-
also contain application data: unlike TCP, SST does ratt, which it may do only after it has received an acknowl-
require a round-trip handshaking delay before the apmidgment for at least one of its Reply packets.
cation can begin sending data on a new stream. The 16-bit
Byte Sequence_ Number (BSN) field in each Init packet_i S Post-Initiation Data Transmission
dicates the logical byte offset in the new stream at whic
the payload data is to be placed. Unlike TCP, whose initigfter setting up a new stream, the participating hosts must
sequence numbers the endpoint hosts negotiate via tlsgiitch to using regular Data packets to transmit data be-
SYN packets, the byte sequence numbers for a new S®hd the 16-bit BSN limits of Init and Reply packets.
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Channel Transmit Sequence Number (TSN)

Reply Packet
Header
(16 bytes)

Rsvd ‘ AckCt Acknowledgment Sequence Number (ASN)

Initiator Stream Identifier (ISID) | Type=1 ‘- ‘P‘M‘C‘ Window

Reply Stream Identifier (RSID)

Byte Sequence Number (BSN)

Encrypted
(optionally)

Application Application Data
I A AAAAAAAAAAAAAAA

warable) | NINANANNANNANNNNANANNANN

| Message Authentication Check (MAC) |

Subtype Flags:
P Push
M Mark

C Close
- Reserved

Figure 11: Reply Packet Format

Channel Transmit Sequence Number (TSN) 24-0

Acknowledgment Sequence Number (ASN)

Rsvd ‘ AckCt

Ack Packet

Header

(12 bytes)
Window

} Encrypted
i )

Figure 13: Acknowledgment Packet Format

Sender Stream Identifier (SSID) ‘Type:B‘ — ‘

| Message Authentication Check (MAC) |

plication, for example—then the host may drop the packet
without acknowledgment. Receivers should not generally
have to do this, however, if both sender and receiver im-
plement flow control properly as described later in Sec-
tion 4.10.1. Using flow control to avoid buffer exchaus-

tionis much preferred over dropping packets, because lost
packets trigger the sender’s congestion control and throt-
tle data transmission fall streams sharing the channel.

A piggybacked acknowledgment for a data segment

Channel Transmit Sequence Number (TSN)

Data Packet
Header
(16 bytes)

Rsvd ‘ AckCt Acknowledgment Sequence Number (ASN)

Local Stream Identifier (LSID) ‘Typezz‘- ‘P‘M‘C‘ Window

Byte Sequence Number (BSN)

Encrypted

N PR eeionaly)  0Nly needs to be on the same stream as the acknowledged
A":’"‘f’ééi!){ A A A AN A ANAAAAAN data if the receiver wishes to adjust its receive window for
(NN the stream, as described below in Section 4.10.1. Oth-

| Message Authentication Check (MAC) |

erwise, acknowledgments are stream-independent since
they refer to the channel’'s packet sequence numbers and
not the stream’s byte sequence numbers. Through the ac-
knowledgment window defined by the AckCt field, any
packet flowing in one direction may acknowledge several
packets sent on various streams in the other direction.
When a host needs to send an explicit, non-
piggybacked acknowledgment, it sends an Ack packet
Regular Data packets have a type of 2 and the layquth a Type field of 3 and the format shown in Figure 13.
shown in Figure 12. The host specifies in the Ack packet’s Sender Stream ID
In contrast with Init and Reply packets, Data packe{SSID) field the LSID of the appropriate stream in the
have a 32-bit Byte Sequence Number (BSN) field for thgher host's LSID space—i.e., in the LSID space of the
purpose of ordering data segments comprising the stre&wst that sent the data being acknowledged. A host can
SST uses 32-bit wraparound arithmetic to handle byte sieas send Ack packets containing flow control informa-
quence numbers and reorder data at the receiver, exagtli even on streams that currently have no associated
as in TCP, so there is no limit on the total amount of dat&ID in its own space.
the application may send on a given stream. A host obviously must not send an Ack packet just to
acknowledge another Ack packet, since doing so would
result in an endless acknowledgment loop. Ack packets
may however be acknowledged incidentally as part of the

A host must acknowledge every Init, Reply, or Datg_ckno_wledgment window of a packet sent in the opposite

packet it receives and successfully processes, includffiggction for some other purpose.

zero-length data segments. Hosts may acknowledge re-

ceived data segments eith_er by sending an explicit Aﬁ'.‘lO Retransmitting Lost Segments

packet or, preferrably, by piggybacking the acknowledg-

ment onto the next packet it sends for some other purpobke stream layer normally stores each application data

Hosts should use standard delayed acknowledgment tesdgment it has transmitted until it receives an acknowledg-

niques to minimize the number of explicit Ack packetment for the packet containing that segment, and period-

they need to send [9]. ically retransmits segments that appear to have been lost.
If a host receives a data packet but cannot successfidipce SST acknowledgments refer to packet sequence

process it due to a temporary resource shortage—becausabers and not byte sequence numbers, the sender needs

it does not have enough buffer space to store it for the ap-keep track of the packet sequence number that the se-

Subtype Flags:
P Push
M Mark
C Close
- Reserved

Figure 12: Data Packet Format

4.9 Acknowledging Data Segments
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guencing layer assigned to each data segment the last tiatige receive position. This exponential encoding allows
it was transmitted, so that it can look up and free that sabe receiver to express large windows efficiently with only
ment once a matching acknowledgment arrives. a few header bits: the sender does not need much preci-

The receiver uses the BSN fields of incoming segmesisn when the window is large because it will take a while
on the stream to determine the correct order of the fer it to fill the window anyway, but the receiver’s window
ceived segments and to deliver them reliably to the appize indications become more precise as its buffers fill and
cation in that order. If the receiver obtains one or motke window shrinks. As in TCP, the window size must al-
segments in a stream out of order, it must hold thos&ys be less tha2'® bytes to avoid overflowing the 32-bit
segments and delay delivering them to the applicatisaquence arithmetic [16], so a host must not send a value
until any gaps in the sequence are filled. The receinarthe Window field greater thar28 + 30 = 158.

need not take any explicit action to request retransmissionmhe sender’s idea of the cumulative receive position
of specific data segments: the sender knows which da{gy occasionally be smaller than the receiver’s due to lost
segments to retransmit based on which segments havggiinowledgments, as described above in Section 4.10,
been acknowledged. The SST receiver does not send gglysing the sender to underestimate the receive window
explicit form of “cumulative acknowledgment” operatingyorizon by the same amount. This situation is not likely
in a stream’s byte number space like TCP does; SST ingf-occur often or to last very long, however, because of
fect relies exclusively on selective acknowledgment [19,e redundancy in the receiver’s overlapping acknowledg-
To calculate a conservative estimate of the receiveffents. If the sender does unncessarily throttle its trans-
cumulative receive pOSitiQDr the first pOint in the Streammission as a result of underestimating the receive win-
at which the receiver is missing data, the sender simpfyy, it will at any rate obtain the correct receive window
uses the BSN of its oldest data segment that has not ygéition automatically as soon as it has retransmitted and
been acknowledged. The sender’s idea of the cumulaceived fresh acknowledgments for any data segments

tive receive position may be less than the receiver's aghose original acknowledgments were lost.
tual value, due to network delay or lost acknowledgments

One or a few lost acknowledgments are not likely to ma§

the sender see a ficticious “gap” in a contiguous run ive window (a problem known as “silly window syn-
sequence numbers tha_t actually arrived successful_ly, h(ally'me” [9]), the sender should avoid sending segments
ever, because the receiver's acknowledgments during sych., . «v.2 - the current MTU just to make them fit into

arun will have_ large AckCt values an_d thus highly redu[i'ﬁe remaining receive window. Instead the sender should
dant overlapping acknowledgment windows. merely send as many complete segments as will fit into

the receive window and buffer any further segments until
4.10.1 Flow Control the window increases.

While congestion control operates at a channel granularlf @ segment contains a special marker such as a push,
ity, SST provides flow control in a model similar to TCP'§nessage boundary, or end of stream, the sender should
at the granularity of individual streams. Each host (in thansmit the segment as soon as it fits into the current re-
ory at least) reserves some amount of buffer space for e&gfye window. In addition, if such a segment does not fit
stream, in which it stores data it has received but not yBto the receive window but is less than twice the size of
delivered to the application. The receiver regularly idbe current receive window, then the sender should im-
dicates how much buffer space it has available, and thediately send the part of the segment that does fit into
sender must not send data beyond the receiver's specifftgicurrent window. Because of the exponential window
receive window. encoding, the sender’s notion of the receive window may
Whenever the stream sublayer sends a packet reldldess than the receiver’s actual window by just under a
to a stream, it uses the 8-bit Window field in the pack@tCtor of two; the above rule allows the sender to make
header to indicate its current receive window. A valudrogress and obtain a further-refined window update on
n less than 128 in the Window field indicates that the ré€ next round-trip when it cannot be sure whether the
ceiver has at least bytes of buffer space available beyongushed segment fits into the actual window.
the receiver’s current cumulative receive position. Aealu For flow control purposes, hosts treat the data in any
of zero in particular indicates that all buffers are full anbhit packet as belonging to th@arentstream—the stream
the sender must not send any new data on this stream.specified in the packet's main LSID field—even though
A value ofn > 128 on the other hand indicates that ahe data itself is semantically associated with the new
least2("—128) _ 1 pytes are available beyond the cumwehild stream being created. In effect, when a host im-

‘To avoid sending an unnecessarily large number of
all packets when transmission rate is limited by the re-
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mediately sends data on a new stream without waiting #ush markers) the receiving host is guaranteed to preserve
the responder to acknowledge the Init packet and provighile delivering data to the receiving application.
a starting window size for the new stream, the sender ef\When the sending application writes data to the stream
fectively “borrows” from the parent stream’s receive winand indicates the end of a record, the SST stream layer
dow to send this initial data. This borrowing behavior isets the Mark (M) flag in the packet containing the last
essential to maintaining proper flow control and avoidirgegment of that data. Init, Reply, and Data packets all
overrunning the receiver’s buffers while allowing streammave Mark flags for this purpose. Upon receiving a packet
creation with no round-trip handshaking delay. with the Mark flag set, the receiver delivers stream data
Issue: we probably need to negotiate a transport-leviel the application only up to the end of the marked seg-
maximum segment size on channel setup as in TCPment, andnevercombines the segment with subsequent
avoid deadlock in case the MTU one host observes s cleggments for delivery, even if subsequent segments are
to or larger than the other host’'s maximum receive wiimmmediately available. The receiving stream sublayer ex-
dow size. plicitly indicates to the application that the deliveredala
Issue: we also need a flow control mechanism for nesonstitutes the end of a record, if the API in use supports
substream initiations, not just for new data transmissiosigch an indication.
on this stream.
Issue: hosts might wish to retain the “borrowing” be-

havior throughout the lifetimes of certain substreams, iﬁ-‘l3 Closing Streams

stead of always establishing separate receive windowsgéwith TCP, SST allows the two participants in a stream
ter the first round-trip. to close their respective “ends” of the stream indepen-
dently. In a transaction-oriented application protocalsu

as HTTP for example [13], it is often convenient for the
client to open a stream, issue a request, and close its end

Init, Reply, and Data packets all have a Push (P) flag in tAkthe stream to indicate to the server that the request is
packet's subtype field. This flag works the same way &8mplete; the client then awaits and receives the server’s
in TCP, indicating that the receiver should “push” the datg@sponse on the nohalf-openstream.
contained in this segment up to the receiving applicationWhen an application closes its end of an SST stream,
as quickly as possible, without waiting for further seghe stream sublayer sets the Close (C) flag to mark the fi-
ments to follow. The sender normally sets the Push flag! data segment it sends on the stream. Init, Reply, and
automatically at the end of every atomic “write” operatioRata packets all have Close flags: a host may set the Close
the application performs, unless the application specffiag in an Init or Reply packet to close the stream even
cally requests otherwise. before the new stream’s round-trip handshaking has com-
If the sender doenot set the Push flag or any of thePleted. The sender must not send any further data packets
other marker flags described below, then the receiver nféythe closed stream other than retransmissions of old seg-
hold the data segment arbitrarily long in order to colleftents. On a full-duplex stream, the sender may still ex-
additional segments and combine them for more efficig#ftCt to receive data segments from its peer until the peer
delivery to the application. Even if a segment's Push flagso closes the stream, and the sender must continue to
is set, the receiver may still combine the segment's d&@nd acknowledgments and receive window adjustments
with subsequent segments for delivery to the applicatigf appropriate for data it receives on a half-open stream.
if those subsequent segments are already buffered due # host may consider a stream to be “fully closed” in
out of order delivery, or if the application is not ready t§oth directions, and may notify the application as such if
accept data at the time the pushed segment first arrive@ppropriate and/or garbage collect its internal statetfer t
stream, as soon as the following conditions are met;

4.11 Pushing Data to the Application

4.12 Marking Messages or Records o Ifthe hostis the initiator of the stream, it has received

o ] o ] ) at least one Reply packet from the responder.
Many applications logically divide their streams into mes-

sages or records, which traditionally requires introdgcin e The host has received a Close segment from its peer

an explicit record marking facility above TCP's homoge-  and every data segment leading up to it in the incom-
neous byte streams. To simplify these applications, SST ing data stream.

provides a simple facility by which the sendor can in-
sert explicit record marks into the stream, which (unlike ¢ The host has received acknowledgments from its
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Ack Packet Channel Transmit Sequence Number (TSN) 24-0 LSID field and with the Direction flag set (because
azbyes RL“I‘kaCm"d”ATLSIW;)“Q‘”W;SS‘*‘_ ‘E‘"’bw‘f:’o }i%ﬁ?n”aﬁfy") the unknown PSID refers to the peer’s LSID space).
Subiype Flags: e Upon receiving a Reply packet whose Initiator
Resenved Stream ID (ISID) is unknown, the receiver responds

with a Reset packet containing the unknown ISID in

Figure 14: Reset Packet Format the LSID field and with the Direction flag cleared

(because the unknown ISID refers to the LSID space

peer for every data segment it has transmitted includ- of the host that received the Reply packet).

ing for its own final Close segment. e Upon receiving a Data packet whose LSID is un-
known, the receiver responds with a Reset packet
containing the unknown LSID and with the packet’s
Direction flag set.

Once a host has determined a stream to be fully closed,
it may immediately reuse any LSIDs it had assigned to the
stream: SST does not require hosts to delay reuse of old

LSIDs as with TCP’s TIME-WAIT state [25]. When a host receives a Reset packet referring to an ac-
tive stream, it acknowledges the Reset packet and then
4.14 Forceful Reset immediately transitions the stream to the “fully closed”

state, at which point it may garbage collect the stream'’s
As in TCP, either participant may reset an SST streagtate at any time. The host may notify the application of
forcefully to terminate data transmission in both dire¢he forceful reset via some appropriate error indication,
tions at the same time and discard any outstanding das@ept in one situation: if the host has already closed its
still in transit. To reset an active stream, a host sendgd of the strearandhas received every data segment its
packet with a Type of 5 and the layout shown in Figure 1geer has sent up to the peer’s final Close marker, and is
The Direction (D) flag in packet’s subtype field indicateserely waiting for acknowledgments to one or more data
to which host's LSID space the packet’s LSID field refergsegments it has sent, then upon receiving a Reset the host
if cleared, the LSID is in the sender’s LSID space, if sataust consider the stream to have been “gracefully closed”
the LSID is in the receiver’s LSID space. The Windows far as the application is concerned.
field must in a Reset packet must always be zero. XXX Reset packets should contain optional descriptive

A host should normally specify the LSID of the streanfreason” message

to reset in its own space and clear the Direction flag when
resetting a stream it believes to be still active. After sen .
ing the ?irst Reset for an active stream, the sender m Sg'5 Rules for Reusing LSIDs

retain the stream’s state and retransmit the Reset padkgprevent confusion between packets referring to differ-
as necessary until it receives an acknowledgment for asiet streams that may successively use the same LSID, as

of its Reset packets. At this point the host may discailflistrated in Figure 15, hostmustobserve the following
all internal state associated with the stream and reuse ajigs:

LSIDs it had assigned to the stream.

If a host receives a data segment referring to an un- When a host receives the first Init packet for a new
known LSID, the host must send a Reset packet in re- stream, it must set a sequencing barrier as described
sponse to clear any stale stream state its peer may be in Section 3.4. This sequencing barrier prevents stale
holding. This situation can occur in particular if acknowl-  Data packets the peer might have sent on a previous
edgments are lost during a graceful close, for example, as stream using the same LSID from arriving after the
described earlier in Section 4.13. When responding to a Init packet and being misinterpreted as data for the
data segment with an unknown LSID, the responding host new stream.
need not retain any state related to the unknown stream: it o ) .
merely sends one Reset packet and then drops the invali®f A Stream’s initiator must set a sequencing barrier

data segment. Three specific types of data segments may When it receives the first acknowledgment to one of
trigger a Reset in this way: its own Init packets, and must silently ignore any Re-

ply or Reset packets apparently referring to the new
e Upon receiving an Init packet whose Parent Stream stream that arrive before this point. Such a packet
ID (PSID) is unknown, the receiver responds with  may refer to an earlier stream with the same LSID in

a Reset packet containing the unknown PSID in the the initiator’s space. (The initiator should of course
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Host A Host B to be useless after incurring a round-trip retransmission

QS0 1254 | |Coib 1204 LsiDT3e| | Cld Stream delay, so it is better for the receiver just to skip or try
- to “fill in” for lost frames. For this purpose, SST al-
I Init LSID 432 lows applications to sendatagramswith best-effort de-
NreiD 1254 livery semantics. In SST, a datagram is semantically just
IBarrieM an ephemeral stream that the application creates, uses to
(oetore Rey New Steam transmit a sequence of bytes all at once, and then force-
nere) fully resets without ensuring that the data arrives suecess
Reset 4321 fully or waiting for any associated response from the re-
ceiver. When the application transmits a datagram, the
Barrior 2 - b ‘rg,ﬁlyfk stream layer need not set up or maintain internal state for
the ephemeral stream it represents, and need not buffer or
itator s Barrier 3 retransmit the data segments comprising the stream. SST
knows still guarantees that the bytes comprising a single data-
4321 Crome Lsneﬁv??"def gram are delivered completely, accurately, and in-order if
Knows. the datagram is delivered at all.
Ack LSID 4321
Since an SST datagram is semantically just a restricted
Ea form of stream, the application on the receiving end can-

not generally tell the difference between a received data-
gram and a regular stream whose content was received
all at once. SST can therefore treat the sending applica-
tion’s request for best-effort delivery as merely a hine th

accept a Reply or Reset that itself carries a pigg§tream layer may choose to ignore this hint and instead

backed acknowledgment of one of its Init packets.)se”d the datagram as an ordinary reliable stream. In par-
ticular, the stream layer falls back to reliable delivery if

A stream’s responder must similarly set a sequenciaglatagram is so big that best-effort delivery would re-
barrier when it receives the first acknowledgment tult in an unacceptably low probability of successful de-
one of its own Reply packets, and must silently idivery. SST in this way solves transparently to the ap-
nore any packets it receives before this point that gplication the classic “large datagram” problem: because
parently refer to its newly-assigned response LSIDthe loss of one fragment of a datagram entails the loss
. , , of the whole datagram, the probabiliy of datagram loss
Each endpoint must set a sequencing barrier WhgRieases rapidly with datagram size, to the point where
it determines a stream to be fully closed. The regy gatagram is almost certain to be lost as its fragment
sponder in particular relies on this barrier to prevegl,nt reaches the inverse of the packet loss rate. Because
a stale Init packet from arriving after the respondefs can transparently switch to reliable delivery in spite
has garbage coIIe“cted the stream's sate, causing 8P€he application’s best-effort hint, SST supports data-
creation of a new “phantom” stream. grams of arbitrary size while ensuring that they always
I{Elrrive with reasonable probability. The transport layer is
ideally positioned to make this decision, since it tends to
ﬁollect the relevant packet loss rate information anyway to

Figure 15: Sequencing Barriers at Critical Points

A stream’s initiator must not send any more In
packets on the stream once it receives the resp
der’s first legitimate Reply packet for that stream. f
the initiator must subsequently retransmit any da@plement congestion control.
segments that it originally sent as Init packets, thenA host transmits a datagram by sending a series of
it must convert them to regular Data packets befoBmtagram Packets, each having the format shown in Fig-
retransmission. ure 16. The series of packets representing a single data-
gram must be contiguous in packet sequence number

4.16 Best-Effort Datagrams space, and thus cannot be intermixed with packets for

other streams sent on the same channel. The first packet

Many applications wish to transmit certain types of datathe series has the Begin (B) flag set, and the last packet
without incurring the overhead of storing and retransmitas the End (E) bit set; a datagram that fits entirely in
ting lost packets in the sender. In real-time streaming mane packet has both flags set. Each packet contains the
dia applications, for example, a lost data frame is likelySID of the parent stream within which the datagram is to
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b Channel Transmit Sequence Number (TSN) t ypedef Opaque Chunk<>;
:ac:et Rsvd ‘ AckCt Acknowledgment Sequence Number (ASN)
16 ﬁ;eg Local Stream Identifier (LSID) |Type=4‘ — ‘B‘E‘ Window str U_Ct Nbssage { . .
Encrypted int magi c; /1 24-bit magic val ue
Application Application Data (optonall) Chunk  chunks<>, // Message chunks
o I AVAVAVAAZAZAVAVAVAVAVAZAAAA };
(variable) (\/\/\/\/\/\/\/\/\/\/\/\/\/M ’

| Message Authentication Check (MAC) |

Figure 17: Top-level negotiation protocol message format

Subtype Flags:
B Begin
E End

Figure 16: Datagram Packet Format 5.1 Basic Design Properties

The negotiation protocol is asymmetric in that the two
participants have clearly delineated “initiator” and “re-
be transmitted: i.e., the parent of the implicit, epheme@ondern roles. The protocol supports peer-to-peer as
stream logically containing the datagram’s content itselfye|| as client/server styles of communication, however,
Upon receiving one or more Datagram packets, the &hd the channels resulting from negotiation are symmetric
ceiver can tell easily from the packet sequence numbgrsi can be used by either endpoint to initiate new logical
and the Begin and End flags whether it properly receivegteams to the other endpoint.
the entire datagram or if one or more packets were lost. ASSST currently defines two specific methods of negotia-
with Init packets containing data for a new stream, boffdn: a non-cryptographic method that provides fast, sim-
participants borrow from the parent stream’s receive wigfe connection setup usable when the underlying network
dow for flow control purposes. is sufficiently trusted, and a cryptographic method using
Issue: should the datagram-oriented delivery mech®iffie-Helman key exchange, based on the Just Fast Key-
nism support record marking? It certainly could (just addg (JFK) algorithm [1]. Additional negotiation methods
an M flag), but it is unclear whether it is worth the addethay be added in the future, and SST is designed so that
complexity given that most datagram-oriented protocdl®o hosts can successfully negotiate as long as they sup-
effectively transmit exactly one “record” per datagram. port at least one negotiation method in common.
In general, the host initiating a connection should al-
ways support secure cryptographic negotiation whenever
4.17 Attaching Streams it knows the cryptographic identity of the target host, and
in this case shoulanly support cryptographic negotia-
To attach a stream, a host sends an Ack packet contgin unless specifically configured for an insecure mode
ing the LSID to assign to the attachment and the streargispperation. If the initator knows the target host only by
full USID as the packet's variable-length payload. Eagh |p address or un-authenticated domain name records,
stream may have up to two attachments at o¢&X fill it may use either negotiation method, but the negotiation
out.) will in any case be vulnerable to man-in-the-middle at-
tacks. The cryptographic negotiation method is capable
] of setting up non-cryptographic channels, thereby provid-
4.18 Detaching Streams ing secure endpoint authentication during initial channel

setup while avoiding the costs of encrypting and/or cryp-

To detach a stream, just re-assign the LSID with a ngyy, o ohically authenticating every subsequently transmi
Init or Reply packet?XXX fill out.) ted packet.

5 The Negotiation Protocol 5.2 Message Structure

All packets used by the negotiation protocol have a com-
SST's negotiation protocol is responsible for setting upon top-level layout, described by the XDR [23] defini-
new channels for use by the channel and stream prdion shown in Figure 17:
cols. When cryptographic integrity and/or privacy pro- In order to support NAT traversal via UDP hole punch-
tection is desired, the negotiation protocol is respomsitihg [15], the negotiation protocol must be able to use the
for performing symmetric key agreement and host idesame local UDP port as the registration protocol uses for
tity verification. registering the client host, and must again use the same lo-
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cal UDP port for data communication via the channel afgu™m chunkType { o
/1 Lightwei ght checksum negoti ation

stream protocols once the negotiation protocol has com- chynksuni 1 = 0x0011,
pleted and set up the channel. Timegi c field serves ChunkSunR1 0x0012,
to distinguish among packets for the different SST sub- o ]
. ] // Diffie-Hellman key agreement via JFK
protocols that must share the same underlying session. v i 1

= 0x0021,

Although the SST negotiation and channel protocols chunkDhRL = 0x0022,
were designed as a substrate for SST’s stream protocol, Chunkbhi 2 = 0x0023,
= 0x0024

they provide basic services useful to many transport pro- ChunkDhR2

tocols and thus could in theory be used as well by UpP€f; on chunk swi t ch (ChunkType type) {

level protocols other than the SST stream protocol. If case ChunkSum 1: ChunkSum 1Data sumi 1;

this occurs, there is a risk that one upper-level protocol case ChunkSunRl: ChunkSumRlData sunrl;

m|ght. accidentally conne_ct to and.try to neg.otlate_a chan- case ChunkDhl 1 ChunkDnl 1Data dhi 1

nel with a remote endpoint on which an entirely different  _,<¢ chunkbhRl:  ChunkDhRiDat a dhr 1:

upper-level protocol is listening, which would cause con- case ChunkDhl2:  ChunkDhl 2Dat a dhi 2;

fusion at the upper layer even if both endpoints are using case ChunkDhR2:  ChunkDhR2Dat a dhr 2;

compatible channel and negotiation protocols. For this

reason, theragi ¢ value the negotiation protocol uses to

ider_ntify its pa_ck_ets is not fixed by the nego_tiatio_n proto- Figure 18: Negotiation protocol chunk format

col itself, but is instead a parameter to be filled in by the

upper-level protocol. A negotiation protocol instance-run

ning on behalf of the SST stream protocol usemgi ¢ ) . ) o

value of 0x00535354, 0SST’ in ASCII; negotiation pro- first one it supports, ignoring the rest. |If t_he initiator

tocol instances running on behalf of different upper-levBléfers quick, insecure channel setup but is willing to

protocols must use other magic values. In any case, Bfgform cryptographic negotiation if the responder re-

upper 8 bits of the magic value (the first byte transmf@uires it, for example, the initiator’s first message con-

ted in the packet) must always be zero—an illegal chanf@in's @ChunkSum 1 followed by aChunkDhi 1. If the

number—to distinguish the negotiation protocol’s channigjtiator requires secure communication, it sends only a

setup packets from data packets transmitted over alreagg}u”kDhI 1

negotiated channels. Note that although the initiator is technically free to
Themagi c field is followed by a list othunkscontain-  send aChunkDhl 1 followed by aChunkSuml 1, do-

ing the content of the negotiation protocol message. Edgl so is not recommended, because a man-in-the-middle

chunk is separately XDR-encoded and packaged into @tacker could easily force the negotiation protocol into

XDR opaque field, consisting of a 32-bit length fol-its insecure mode even when both “real” parties in fact

lowed by a sequence of bytes padded to a 32-bit boundappport secure mode. If security is desired, then the ini-

allowing hosts to skip chunks that they cannot decode. tiator mustonly includel 1 chunks for secure negotiation

methods in its initial message.

5.3 Chunk Structure

The XDR definition in Figure 18 describes the currently
defined types of negotiation protocol chunks. Addition

chunk types may be added in the future. g.S Lightweight Checksum Negotiation

The lightweight checksum negotiation method consists of
a simple one-phase request/response protocol, which can
To begin negotiation of a new channel, the initiator sentle extended on demand by the receiver to a cookie-based
a message containing ohé chunk for each method of challenge/response protocol for DoS protection. The ini-
negotiation it is willing to use. In the current version dfiator includes a&ChunkSum 1 chunk in its initial mes-
SST supporting the simple checksuBu(r) and Diffie- sage to indicate its support for lightweight checksum ne-
Hellman Oh) methods, this means that the initiator magotiation, and the responder replies with a message con-
include aChunkSumi 1, aChunkDhl 1 chunk, or both. taining aChunkSunmR1 chunk to indicate acceptance of

Upon receiving the initiation message, the respondbis negotiation method. The structure of each of these
examines the received chunks in order and processesdhanks is shown in Figure 19.

5.4 Initiation and Method Selection
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struct Sum 1Data { mits on the channel, including the MAC in any channel

unsigned int ni; /1 Initiator nonce .
unsi gned char chani ; /1 Initiator channel Packet piggybacked onto tiaum 1Dat a chunk as de-
opaque cooki e<>; // Responder cookie scribed below.
opaque ul'pi <> /] Upper-layer info This method of “keying” SST’s channel packet check-
opaque cpkt <>; /1 Channel packet . .,
¥ sums essentially corresponds to Bellovin's method of
“keying” TCP’s initial sequence numbers [6], the main
struct SunRlData { o difference being that in SST the resulting “key” will be
unsigned int ni; [T Initiator nonce  zqded to the channel protocol's checksum field instead of
unsigned int nr; /1 Responder nonce h b inTC h btle diff
unsi gned char chanr; /1 Responder channel theseégquencenumberas in TCP. Another subtle difference
opaque cooki e<>; // Responder cookie from TCP is that the initator cannot include the receiver's
opaque ulpr<>  // Upper-layer info channel ID in its hash, because it does not know the re-
opaque cpkt<> /7 Channel packet ceiver’s channel ID until the receiver has responded with

its SunR1Dat a chunk. This difference should not cause
a security weakness unless different, mutually antagonis-
Figure 19: Lightweight checksum negotiation chunkstic entities were to control different channel IDs at the
same receiver endpoint, which does not seem like a likely
or even viable design point in practice.
5.5.1 Initiating Checksum-Authenticated Channels In the firstSunl 1Dat a chunk the initiator sends, it
o . o _assigns a Channel ID to its end of the new channel and
The initiator includes in itsSum 1Dat a chunk a 32-bit sends this channel number in tbkani field, but sends
nonceni that serves to identify this run of the negotiatiog, emptycooki e field (zero bytes in length). The pi
protocol uniquely for a given set of source and destinatiggq may contain arbitrary data the upper-layer protocol
endpoints and a given channel ID at the initiator. Once thg the initiator wishes to pass to the upper-layer proto-
channel is established, this nonce also serves as a "kgyf on the responder as part of the connection negotiation
for 32-bit checksum in each data packet the initiator traNsocess. The initiator may set tpdt field to empty, or
mits on the channel, to provide protection against packgtgay include the contents of a channel packet it wishes
for old channel instances being misinterpreted as pa%"‘piggyback" onto theSumi 1Dat a chunk. This pig-
ets for newer instances. Keying the data packet cheglghacked packet includes the standard channel headers
sums this way also provides protection against connectifBlyding packet sequence number and acknowledgment
hijacking by “off-path” attackers who can blindly injectnformation, except with the Channel ID field set to zero
forged packets into the network but cannot eavesdrop QAce the initiator does not yet know the Channel ID the
legitimate packets between the endpoints. The receiyggejver will assign to the new channel. The piggybacked
computes a similar nonce to protect packets on the retyayiet also includes the trailing 32-bit MAC field, com-
path, as described below. puted as described below in Section 5.5.4.

To compute its nonce, the initiator first uses a keyed
cryptographic hash algorithm such as HMAC—SHAS
256 [12], keyed on a secret known only to the initiator
and ideally stored persistently across restarts, to genéthen the responder receives the initiat@isn 1Dat a
ate a secure hash of an information block containing &tunk, it first checks the chunk for syntactic validity: in
least the responder’s endpoint identifier (e.g., the respparticular, the least-significant bit of the initiator'snmee
der’s IP address if SST is running directly over IP, or thaust be cleared to zero, otherwise the responder must re-
responder’s IP address and UDP port number if SSTjést the chunk by ignoring it. If the responder is not un-
running atop UDP), and the Channel ID the initiator is ader heavy load, it may ignore theooki e field in the
signing to its end of the new channel. The initiator theBum 1Dat a chunk and allocate state for the new chan-
extracts 32 bits of the resulting hash, then adds the coel immediately. Alternatively, to protect itself from DoS
rent value of a timer that increments approximately eveagtacks, the responder may return a cookie challenge to
4 microseconds, and finally clears the least-significant térify bidirectional connectivity with the initiator befe
(bit 0) to zero to produce its value for tme field in its allocating state for the new channel.

Suml 1Dat a chunk. All initiator nonces have their least- To generate its cookie, the responder maintains a secret
significant bit cleared to distinguish them from respondknown only to itself, which is distinct from the secret used

nonces. The initiator subsequently adds the value of thisove to compute nonces, and which changes periodically
ni field to the 32-bit MAC field in every packet it transto prevent cookie-jar attacks. Using a keyed secure hash

5.2 Responding to Checksum Negotiation Chunks
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algorithm keyed with this secret, the responder hashescaiches the initiator’'s nonce and its reply and just replays
information block containing at least the initiator’s endts old reply if it receives further duplicates of the initia
point identifier from which theSum 1Dat a chunk ar- tor’s request.
rived, and the values of theki andchani fields of XXX Wesley wrote: The responder could also already
that chunk. The responder then checks the resulting hastsending me packets via the channel (if only his negoti-
against thecooki e field in the receivedSund 1Dat a ation response was lost). | can’t ack these packets because
chunk, and if they don't match, returns the correct hasdon’t know his channel id. Should I just ignore them?
in the cooki e field of a SunR1Dat a chunk with its  Yes. So this may be a reason the responder might
ni field set to the initiator'sii , with its nr andchanr  want to piggyback its first few return-path channel pack-
fields setto zero, and with itd pr andpkt fields empty. ets into (otherwise-duplicate) negotiation response pack
When the initiator receives suchSunR1Dat a chunk ets, potentially up until it gets the first valid "raw” chan-
with ani matching its prior request andchanr field nel packets from the initiator and thus knows that the ini-
of zero, it saves the returnexboki e in its negotiation tiator got the negotiation response - that way, no matter
state and sends a né&unl 1Dat a chunk containing the which subset of these channel packets get lost, the initia-
cookie. (XXX specify maximum cookie length?) tor still obtains the negotiation response as soon as any
Once the responder receiveSanR1Dat a chunk with of them get through. The same applies to the initiator,
avalid cookie, it sets up its internal state for the new chaof course, which could in theory fire off multiple 11 ne-
nel, allocates a Channel ID for the channel at its own engbtiation packets from the start with the same negotiation
point, and computes its own nonce to protect subsequeomtent but different piggybacked channel packets.
packets it sends on the channel’s return path. The resporiFhe extent to which either endpoishoulddo this of
der computes its nonce in the same fashion as the initaurse brings up congestion control issues, in particular
tor does, combining the result of a keyed hash of an itle fact that both sides are presumably at the beginning
formation block specific to the initiator with the value obf slow-start and thus "in theory” shouldn’t be sending
a 4-microsecond timer, but the responder sets the leastt more than maybe two packets during the first round
significant bit (bit 0) in its nonce instead of clearing ittrip anyway. On the other hand, in practice | would think
The responder then replies withSunmR1Dat a chunk it should be acceptable to send at least 8-9KB worth of
containin the initiator'sni value, the responder’s noncegackets in an initial burst, the same as what happens when
in thenr field, the responder’s chosen (nonzero) channalu send a multi-fragment UDP datagram containing an
ID in the chanr field, an emptycooki e field, and any RPC request or reply at widely-accepted NFS message
data it wishes to pass to the upper-layer protocol on thiges, for example. Also, if SST was working in coop-
initiator side in theul pr field. eration with a Congestion Manager on the local host, it
The responder may also include a piggybacked chanméght not have to slow start even a brand-new channel
packet to send to the initiator as part of thenR1Dat a from scratch but could reuse congestion state from prior
chunk; in this case the piggybacked packet must be fohannels or even other transport protocols.
matted exactly as it would have been if the responder were
to send it as a separate packet, including the initiator's 85 4 computing Checksums
lected Channel ID in the packet's channel header and a
32-bit MAC keyed on the responder’s nonce. Piggybackhe responder can commence sending regular packets on
ing a channel packet does not save a round-trip in cd8e new channel as soon as it accepts a \&lidR1Dat a
as it can for the initiator, since the responder could ighunk and allocates the new state for the channel. The ini-
stead simply send the channel packetimmediately aftertigfor can commence sending regular packets on the chan-
SunR1Dat a negotiation response, but it does permit dtel once it receives a valilunR1Dat a response chunk
initiator and responder to set up a new channel and co#ith a nonzerochanr field, at which point it knows
plete an entire application-level request/responsea@nghe correct receiver channel ID to include in the pack-
tion with only one packet in each direction (probably foets it sends. For greater network efficiency during chan-
lowed later by a delayed ACK from the initiator to thé€l setup, either side can additionally piggyback channel

responder’s initial application-level data packet). data packets into the negotiation packets they send, as de-
scribed above.

To compute the 32-bit keyed MAC for a channel packet,
the sender first computes a basic checksum over the
XXX initiator keeps same nonce for retransmits. Aftgugseudo-header and packet as described in Section 3.6
receiver accepts SumR1Data and creates channel statndtillustrated in Figure 4, then “keys” the checksum by

5.5.3 Retransmitting Negotiation Packets
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checksun(i nt 64 seqno,
byt e<> payl oad,
i nt 32 nonce):

/1 Build data bl ock on which to run checksum
data <- concat (seqno, payl oad)
data <- concat(data, "\0x80")
if length(data) is odd:
data <- concat(data, "\0x00")
/1 Conput e unkeyed checksum
int32 a <- 0
int32 b <- 0
for each intl16 word win data:
a <- (a+ w %65537
b <- (b + a) % 65537
cksum<- (a & Oxffff) | ((b & Oxffff) << 16)

/1 Conputed keyed MAC based on ni or nr
mac <- cksum + nonce
return nmac

5.6 Reusing Channel IDs

XXX A given channel ID cannot be reused more than
once every 8 milliseconds, to ensure that successive chan-
nel instances have distinct nonces.

6 Registration Protocol

SST's registration protocol provides a simple but efficient
method for clients that are potentially mobile and/or con-
nected by NATSs to register securely with one or more des-
ignated servers in order to rendezvous with other clients.
The registration protocol supports NAT traversal through
UDP hole punching [15], and provides strong security
by indexing clients by their self-assigned cryptographic
SST identities rather than using forgeable or centrally-

administered names.
To be written...

Figure 20: 32-hit Lightweight Checksum Algorithm
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