
Structured Stream Transport
Preliminary Protocol Specification

November 23, 2007

Contents

1 Introduction 1
1.1 Structured Streams 2
1.2 Other SST Features 3
1.3 Why Another Transport? 3
1.4 Document Structure 3

2 Design Overview 3
2.1 Interface Abstractions 4

2.1.1 Sessions 4
2.1.2 Channels 4
2.1.3 Streams 4

3 Channel Protocol 5
3.1 Protocol Organization 5
3.2 Packet Layout 5
3.3 Channel Identification 6
3.4 Sequencing Layer 6

3.4.1 Sequencing Barriers 6
3.4.2 Extrapolating Sequence Numbers 6

3.5 Encoding Layer 7
3.6 Integrity Layer 7
3.7 Privacy Layer 8
3.8 Feedback Layer 8

3.8.1 Transmitting Acknowledgment
Information 8

3.8.2 Delayed Acknowledgment 8
3.8.3 Congestion Control 9
3.8.4 Fast Retransmit 9

3.9 Path MTU Detection 9

4 Stream Protocol 10
4.1 Stream Layer Header Information 10
4.2 Unique Stream Identifiers (USIDs) 10
4.3 Attaching Streams to Channels via LSIDs 11
4.4 Special Internal Streams 11

4.4.1 The Channel Root 11
4.4.2 Service Request Streams 11

4.5 Initiating Streams 12

4.6 Initial Stream Data 13
4.7 Response to Stream Initiation 13
4.8 Post-Initiation Data Transmission 13
4.9 Acknowledging Data Segments 14
4.10 Retransmitting Lost Segments 14

4.10.1 Flow Control 15
4.11 Pushing Data to the Application 16
4.12 Marking Messages or Records 16
4.13 Closing Streams 16
4.14 Forceful Reset 17
4.15 Rules for Reusing LSIDs 17
4.16 Best-Effort Datagrams 18
4.17 Attaching Streams 19
4.18 Detaching Streams 19

5 The Negotiation Protocol 19
5.1 Basic Design Properties 19
5.2 Message Structure 19
5.3 Chunk Structure 20
5.4 Initiation and Method Selection 20
5.5 Lightweight Checksum Negotiation . . . 20

5.5.1 Initiating Checksum-
Authenticated Channels 21

5.5.2 Responding to Checksum Negoti-
ation Chunks 21

5.5.3 Retransmitting Negotiation Packets 22
5.5.4 Computing Checksums 22

5.6 Reusing Channel IDs 23

6 Registration Protocol 23

1 Introduction

Structured Stream Transport(SST) is a new transport pro-
tocol designed to give today’s sophisticated Internet ap-
plications the communication tools they need to operate
effectively on today’s fragmented and hostile Internet. In
brief, SST offers:

1

• Multiple independent streams that can run in paral-
lel over a single SST session, representing different
requests or logical activities for example.

• Relative prioritizaion between streams to enforce
application-specific policies.

• Semantically unified support for both reliable and
best-effort delivery—not just two modes shoehorned
into one protocol.

• Best-effort delivery imposes no formal or practical
datagram size limit.

• Efficient support for short (e.g., transactional) use of
reliable streams: no handshake delay on setup, no
state retention after close.

• Streams may be arbitrarily long-running and can pre-
serve internal application-specific record marks.

• Built-in communication security (both authentica-
tion and encryption) based on accepted, widely-
scrutinized algorithms.

• Ease of deployment: normally runs over UDP [21];
can be implemented in libraries linked into applica-
tions with no special privileges.

• Hole punching support [14] for transparent commu-
nication across most NATs and firewalls.

• Wire efficiency: SST’s header overhead including
UDP encapsulation is only 4 bytes larger than TCP’s.

1.1 Structured Streams

The most unique aspect of SST is its ability to manage and
multiplex a dynamic hierarchy of streams onto a single
end-to-end session. As with TCP or UDP, an SSTsession
is an association between two endpoints, each endpoint
identified by a combination of IP address and port num-
ber. An SST application typically needs to create only
one session for each remote host it wishes to communi-
cate with. Within this session, however, the application
can create any number ofstreamsat any time, each stream
semantically comparable to a separate TCP connection.

SST organizes streams into a hierarchy: each ses-
sion automatically has aroot stream, and the application
creates other streams assubstreamsof existing streams.
Through this hierarchy, SST enables applications to con-
trol and prioritize concurrent network activities relative to
each other in application-specific ways. A browser-like
application might for example use one stream to download
the main content for a given page, and use substreams of

that stream to download embedded items within that page
such as images or multimedia streams. If the browser sup-
ports multiple tabs, it can prioritize the stream for the cur-
rently visible page above the streams for other pages, so
that the page the user is currently viewing loads quickly.

SST delivers data in a single stream reliably and in-
order with respect to other data in that stream, but main-
tains no ordering relationship with other streams, so one
stream’s data may “pass” that of another. The receiver
may accept data from different streams at different rates
without losing data: for example, the application might
write one stream to fast a local disk as quickly as the
sender makes it available while delivering another stream
to an audio/video codec for playback at a constant rate.

Creating and destroying individual streams within an
SST session is fast and inexpensive. Stream creation re-
quires no round-trip delay like TCP’s 3-way handshake
does, and SST can piggyback the signaling required for
stream creation onto the initial data to be sent on the
stream without additional packets or header overhead.
Similarly, each endpoint can immediately discard all state
related to an SST stream once the stream is closed, in con-
trast with TCP’s mandatory TIME-WAIT state.

An application can close a stream either gracefully or
forcefully. When an endpoint closes a stream gracefully,
it indicates that it has no more data to send, but SST waits
before destroying the stream to ensure that all sent data
reliably reaches the other endpoint and still allows the ap-
plication to receive further data sent by the other endpoint.
The stream disappears entirely only after both endpoints
have closed the stream and all transmitted data is acknowl-
edged. When an application forcefully closes orresetsa
stream, SST immediately discards the stream’s state with-
out waiting for acknowledgment of data already sent.

An SST application requiring low-overhead best-effort
delivery can send “datagrams” viaephemeral substreams.
An ephemeral substream is semantically equivalent to an
ordinary substream: the receiving application cannot tell
the difference between an ephemeral substream and a nor-
mal one. Since different streams have no ordering rela-
tionship, SST does not delay delivery of the “datagram”
contained in an ephemeral substream as a result of a lost
or delayed packet in another ephemeral substream. Un-
der suitable conditions, SST can optimize delivery of an
ephemeral substream with a stateless UDP-like delivery
mechanism for maximum efficiency. Unlike conventional
datagram-oriented transports, however, SST imposes no
limit on the size of a best-effort datagram: ephemeral sub-
streams too large to deliver in datagram-oriented fashion
without unacceptable probability of loss simply fall back
to SST’s normal reliable stream delivery mechanism.

2

1.2 Other SST Features

SST is designed for deployment either at system level as
a “native transport” alongside TCP and UDP, or at appli-
cation level running atop UDP. The latter usage allows
applications to ship with a library implementation of SST
without requiring any special privileges or extensions to
existing operating systems, and they can use it as they
would SSL/TLS [11] or DTLS [22]. Deploying SST atop
UDP also allows it to traverse existing NATs that only na-
tively support TCP and UDP.

On today’s hostile Internet, communication security
has become essential for almost every application. Since
IP-level security (IPsec) [17] is still not widely deployed
other than for corporate VPNs, however, applications
must usually supply their own security, either by incorpo-
rating it into their protocols or by inserting a security layer
such as SSL/TLS [11] above an insecure legacy transport.
SST in contrast includes communication security as a ba-
sic feature, integrated into its design to minimize cost and
complexity and to reuse common protocol elements such
as sequencing and feature negotiation. SST’s “baseline”
ciphersuite built on AES128-CTR and HMAC-SHA256,
for example, requires no additional headers or other per-
packet overhead other than a 128-bit MAC.

Since a large percentage of hosts on the Internet today
are connected behind NATs or firewalls, safe and effective
traversal of these barriers has become a major challenge
and requirement for many applications, especially appli-
cations with peer-to-peer communication patterns such as
Voice-over-IP. Legacy transports generally do not address
NAT traversal because they were designed for an ideal-
ized “flat” Internet of the past that no longer exists except
in the minds of theorists and wishful thinkers. SST incor-
porates as a basic feature support for hole-punching [14]
across BEHAVE-compliant NATs [3], which include the
majority of NATs already deployed and almost all NATs
that will be on the market in the near future.

1.3 Why Another Transport?

A number of alternatives to TCP [25] and UDP [21] exist
today, but none of them offer the combination of func-
tionality needed by today’s highly asynchronous, media-
rich applications, which often need to juggle many dif-
ferent types of network communication activities at once
and must traverse NATs and firewalls. To summarize the
limitations of some existing alternatives:

• SSL/TLS [11] and DTLS [22] implement connection
security atop TCP and UDP, respectively, but inherit
all of the other limitations of the base protocols.

• DCCP [18] implements congestion control for UDP-
style best-effort communication, in the process in-
curring much of the same protocol complexity as
TCP without providing reliable delivery, security, or
other high-level features when they are desired.

• SCTP [24] can multiplex multiple logical streams
over a single session, supports both reliable and best-
effort delivery modes, and provides fail-over across a
group of redundant endpoints. SCTP has limitations
reflecting its telecommunications focus, however:

– SCTP streams cannot be created mid-session,
only negotiated “en masse” at session initial-
ization, limiting their utility for ephemeral or
transaction-oriented activities.

– SCTP implements only one receive window per
session rather than one per stream, so the re-
ceiver cannot accept data on one stream while
applying back-pressure to others, further limit-
ing their independence and usefulness to all but
fixed-rate (e.g., telecom) applications.

Also, since DCCP and SCTP operate atop IP as new
protocols alongside TCP and UDP, DCCP or SCTP ses-
sions can only traverse those (currently very rare) NATs
that explicitly support these new transports, and applica-
tions cannot implement these transports on existing end
hosts without kernel support or special privileges. SST in
contrast normally operates atop UDP, so it is immediately
compatible with the vast majority of deployed NATs and
firewalls that only understand TCP and UDP, and it can
be implemented at user level by unprivileged applications
or libraries linked into them. (SST could of course be
adapted into a “native” transport operating directly atop
IP, if that proves desirable.)

1.4 Document Structure

This document is organized as follows. Section 2 first
presents a high-level overview of the design of the
SST transports and the various sub-protocols it consists
of. Following sections then describe these specific sub-
protocols in detail: Section 3 describes the Channel Pro-
tocol, Section 4 describes the Stream Protocol, Section 5
describes the Negotiation Protocol, and finally Section 6
describes the Registration Protocol.

2 Design Overview

SST is organized into four separate but closely-related
protocols, organized as shown in Figure 1:

3

Figure 1: SST Protocol Architecture

• The Channel Protocolimplements a basic packet-
orientedchannelabstraction that provides sequenc-
ing, connection security, and congestion control.

• TheNegotiation Protocolprovides the mechanics of
setting up channels between hosts, including sym-
metric key agreement for channel security and nego-
tiating optional protocol extensions.

• The Registration Protocolprovides a simple, op-
tional host registration and lookup service supporting
secure host identities and NAT traversal.

• The Stream Protocolbuilds on the three proto-
cols above to implement the convenient, high-level
stream abstraction that SST presents to applications.

2.1 Interface Abstractions

Providing the glue within SST and between SST and its
surrounding environment are three crucial abstractions:
sessions, channels, andstreams.

2.1.1 Sessions

A sessionrepresents a context in which SST runs over
some underlying network protocol such as UDP or IP.
Each session represents an association between two net-
work endpoints. A session is always uniquely defined by
a pair of endpoints, but the definition of an endpoint de-
pends on the underlying protocol on which SST runs:

• When SST is run atop UDP, an endpoint consists of
an IP address paired with a 16-bit UDP port number.
From the perspective of any given host a session is
thus uniquely defined by the 4-tuple (local IP, local
port, remote IP, remote port). The session tuple for
the opposite host is obtained by swapping the local
and remote parts of the tuple.

• If SST is run directly atop IP as a “native” transport
alongside TCP and UDP, then an endpoint consists

only of an IP address, and thus an SST session is
uniquely defined by the pair of IP addresses of the
hosts involved: (local IP, remote IP). By definition
there can be only one such “native” SST session at a
time between any pair of hosts.

• If SST is run atop some other network- or link-layer
protocol, then SST uses as its “endpoints” what-
ever the underlying protocols uses as an “address” or
“host identifier.” If SST were to be run directly atop
Ethernet, for example, then SST’s endpoints would
be IEEE MAC addresses, and a session would be
uniquely defined by a pair of MAC addresses.

2.1.2 Channels

The channelabstraction provides the interface between
the channel protocol and the stream protocol. The chan-
nel protocol can multiplex up to 255 distinctchannels
onto a session. One 8-bitchannel numberfor each di-
rection of communication distinguishes different chan-
nels for one session: thus, a channel is uniquely identi-
fied by the 4-tuple of (local endpoint, local channel, re-
mote endpoint, remote channel). Each channel represents
a separate instance of the SST channel protocol result-
ing from a successful key exchange and feature negoti-
ation using the negotiation protocol; SST’s channels are
therefore analogous in function to security associations
in IPsec [17]. Different channels always use indepen-
dent symmetric keys for encryption and authentication
and may use entirely different encryption and authenti-
cation schemes or other optional negotiated protocol fea-
tures. A given channel always uses one set of symmet-
ric keys and negotiated parameters, however: when SST
needs to re-key a communication session (e.g., to ensure
freshness of symmetric keys), it does so by creating a new
channel through a fresh run of the negotiation protocol
and terminating use of the old channel. SST may keep
multiple channels active at once to allow applications to
select different security parameters for different streams,
fully encrypting and authenticating sensitive streams for
security while leaving less-sensitive streams in cleartext
and only weakly checksummed for maximum efficiency,
for example.

2.1.3 Streams

Finally, astreamis the high-level logical communication
abstraction that SST presents to applications. Each stream
supports two-way TCP-like communication, reliably pre-
serving data content and ordering within the stream, while
allowing communication on each stream to proceed inde-

4

Figure 2: Channel Protocol Sublayers

pendently of other streams. SST multiplexes all of the
application’s streams onto one or at most a few channels,
one channel for each different set of security parameters
required; hence the limit of 255 active channels at once is
not likely to impact applications. SST places no arbitrary
limits on the number of streams an application may have
or on the duration a given stream may be used. SST en-
hances TCP’s stream abstraction with zero-delay stream
creation and optional message/record marking, and en-
ables the application to organize streams hierarchically
according to the logical structure of its communication ac-
tivities.

3 Channel Protocol

SST’s channel protocol provides a sequenced, secure,
congestion-controlled, packet-oriented communication
abstraction for the stream protocol to build on. This sec-
tion describes the channel protocol in detail, starting with
the protocol’s organization, header and packet structure,
and encapsulation of SST packets for transmission across
the Internet, followed by a description of each of the chan-
nel protocol’s components.

All of the details in this section describe SST’s baseline
“version 1” channel protocol. Almost any aspect of this
protocol may be changed in the future through the use of
the negotiation protocol: two communicating hosts may
adopt an extended or even a completely different channel
protocol if they both support it.

3.1 Protocol Organization

The channel protocol is organized into five functional sub-
layers, shown in Figure 2 and summarized below from
bottom to top:

• The sequencinglayer assigns sequence numbers to
each packet transmitted on a channel, and protects
against replay attacks on packet reception.

• The optionalencodinglayer can implement forward
error correction (FEC) or other special encodings

Figure 3: Channel Protocol Packet Layout

that may be desired to enhance the performance of
the underlying network path.

• The optionalintegrity layer attaches a message au-
thentication check (MAC) to each packet transmit-
ted, and verifies the MAC on packet reception.

• The optionalprivacy layer encrypts the payload of
each packet transmitted and decrypts it on reception.

• The feedback layer sends acknowledgments for
packets received on a session, and uses these ac-
knowledgments to monitor the network’s perfor-
mance and implement congestion control.

The sequencing component extends up the left side in
the figure because the sequence numbers it attaches to
packets are used by all the higher-level layers and made
available to higher-level protocols (e.g., the stream proto-
col) as part of the channel abstraction. Thus, unlike the
optional intermediate layers, the sequencing layer adds
“semantic value” rather than simply representing a stack-
able transparent payload transformation.

3.2 Packet Layout

Figure 3 shows the layout of a packet in SST’s basic chan-
nel protocol. Since SST packets are normally embedded
in UDP datagrams for compatibility with deployed NATs
that only support TCP and UDP, the diagram includes the
UDP header to clarify the relationship between the UDP
and SST headers. UDP encapsulation is not essential to
SST’s design, however: SST could just as easily run di-
rectly atop IP or even a link-layer protocol, if desired.

The SST part of the packet consists of an 8-byte chan-
nel header, followed by a variable-length payload contain-
ing upper-level (e.g., stream protocol) headers and appli-
cation data, and finally a Message Authentication Check
(MAC) field that SST’s integrity sublayer uses to verify
the integrity of each packet. If privacy protection is en-
abled, as it usually is by default under SST, then all but

5

the first 32 bits of the SST header and all of the variable-
length payload is encrypted. SST determines the crypto-
graphic algorithms to use for integrity and privacy protec-
tion, if any, at session negotiation time as described later
in Section 5.

3.3 Channel Identification

Each channel protocol packet begins with a 32-bit word,
always transmitted in cleartext, containing an 8-bit chan-
nel number and a 24-bit transmit sequence number.

SST uses the channel number field to distinguish
among channels multiplexed onto one session. During
a run of the negotiation protocol, each participating host
chooses a channel number and communicates it to the
other host; each host then places theother host’s cho-
sen channel number in all subsequent channel protocol
packets on that channel. The channel number field in
the header could therefore be thought of as a “destination
channel number,” with the corresponding “source chan-
nel number” being implicit and omitted from the packet
header. The interpretation of all other data in the packet
depends on the channel number, so a channel might use a
different channel protocol from the one described here as
dictated by the results of negotiation for that channel.

The channel protocol never uses channel number zero:
instead, a channel field of zero in a packet indicates acon-
trol packetfor one of SST’s control protocols, such as the
negotiation protocol 5 or the registration protocol 6.

3.4 Sequencing Layer

Within each channel using this baseline channel proto-
col, each host assigns a 64-bit sequence number to each
packet it transmits, and includes the low 24 bits of that
sequence number in thetransmit sequence numberfield
of the packet header. The 64-bit sequence number coun-
ters for a channel always start at 1 when the channel is
first negotiated and increase by 1 for each packet transmit-
ted. Every packet transmitted over a channel consumes
sequence numbers space, including packets that contain
only an acknowledgment or a retransmission of previ-
ously sent data. A host never sends a packet with 64-
bit sequence number zero: instead, when it sets up a new
channel it initializes its state as if it had already sent a
fictional “packet zero” and received the corresponding fic-
tional “packet zero” from the other host. Sendersmust not
allow the full 64-bit sequence number counter to wrap: if
a host has sent264−1 packets and exhausted its sequence
number space, it must stop sending new packets on that
channel and instead set up a new channel for further com-
munication by re-running the negotiation protocol.

On the receive side, SST’s sequencing layer uses se-
quence numbers to protect against accidental packet du-
plication or malicious packet replay attacks. Each host
maintains in its internal state a 64-bitreceive sequence
numberrepresenting the highest-numbered packet it has
successfully received and authenticated on the channel.
In addition to the receive sequence number, the host may
also retain some limited amount of information about
which packets with lower sequence numbers have or have
not been received, in order to allow reception of packets
delivered out of order while still protecting against packet
replay. A host typically maintains a bit mask representing
the sequence numbers within a “sliding window” up to the
last received packet: if the host’s current receive sequence
number isN and it uses a 32-bit mask, for example, then
the mask represents which packets have been received in
the sequence number rangeN −31 throughN . If the host
receives a packet it has already received, or an old packet
outside of the window for which it retains information, it
must silently discard the packet. Although limited infor-
mation is presently available to guide the choice of the
size of this bit mask, some recent packet reordering mea-
surements suggest that 32 bits is likely to be sufficient for
most purposes [27].

3.4.1 Sequencing Barriers

Upper layers may wish at times to prevent packets from
being delivered out-of-order around certain crucial syn-
chronization points. To this end, an upper layer may ex-
plicitly request SST’s sequencing layer to set abarrier
at the host’s current receive sequence number. To set a
barrier, the sequencing layer simply marks every packet
up to this point as having already been received for re-
play protection purposes, so that any packet that subse-
quently arrives with a lower sequence number is uncon-
ditionally dropped. SST’s stream layer uses this barrier
mechanism to prevent old packets from “passing” critical
points where stream identifiers may be reassigned, as de-
scribed later in Section 4.15.

3.4.2 Extrapolating Sequence Numbers

To determine the full 64-bit sequence number of a packet,
the receiving host extrapolates the packet’s 24-bit trans-
mit sequence number field as follows. First the host sub-
tracts the low 24 bits of its internal receive sequence num-
ber counter from the packet’s transmit sequence number
value, using two’s complement arithmetic, to yield a 24-
bit delta. The host then sign-extends this delta to 64 bits,
and adds the result to its 64-bit receive sequence num-
ber counter to yield the full 64-bit sequence number for

6

the packet. This computation yields the sequence num-
ber intended by the sender as long as the intended value
is within a window of plus or minus about223 packets
from the receiver’s current receive sequence number. To
avoid getting desynchronized with the receiver, therefore,
the sender must not allow its packet transmission to get
too far ahead of the last packet it knows (via acknowledg-
ments) that its partner has received. In high-bandwidth,
high-delay scenarios in which a window of223 packets is
insufficient to make full use of the available bandwidth,
the hosts may negotiate a variant of the SST channel pro-
tocol with a wider transmit sequence number field.

In practice the sender can easily avoid overrunning
the sequence number window by clamping its congestion
window (described below in Section 3.8) to a suitable
maximum. Suppose the sender’s maximum congestion
window isM packets. If the sender’s current receive se-
quence number isS, then it may potentially send sequence
numbers up toS+M to fill the congestion window before
receiving any further acknowledgments. Suppose further
that the sender doubles its retransmission timer on each
timeout, the minimum round-trip time that the sender can
measure due to the resolution of its timers isTmin, and the
maximum retransmission timeout before the sender gives
up and closes the channel isTmax. Then, if the sender
continues to receive no acknowledgments for new data, it
may send up to⌈log2(Tmax/Tmin)⌉ additional packets in
retransmission attempts before receiving an acknowledg-
ment. If the sender uses 64-bit counters for its timers, this
latter value is bounded by 64, so the sender may reach se-
quence numbers up toS + M + 64 when the receiver is
known to have seen sequence numbers up toS. At this
point, the only way the sender can transmit new packets
without its receive sequence number increasing is if it re-
ceives acknowledgments for some very old packets below
S. If the sender uses aB-bit mask to prevent replay of
old packets, then the sender may receive up toB such
old acknowledgments, making one new transmission in
response to each, before its bit mask is full and it can only
transmit new packets as a result of acknowledgments that
shift the window. The sender should thus limit its maxi-
mum congestion windowM to 223 − 64 − B packets; a
limit of 222 is suggested as a safe conservative maximum
for all reasonable values of the parameters involved.

3.5 Encoding Layer

The optional encoding layer can provide forward error
correction (FEC) or other wrapper encodings to com-
pensate for extremely lossy or corruption-prone network
paths. No actual encoding schemes are defined yet, how-

ever; this layer can thus currently be considered a place-
holder for future encoding extensions.

3.6 Integrity Layer

In SST’s integrity layer, the sender adds a Message Au-
thentication Checksum (MAC) to each packet so that the
receiver can verify that the packet originated from the cor-
rect source and was unmodified in transit. The details of
the MAC scheme depend on the security parameters and
algorithms determined for the channel by the negotiation
protocol, but in general message authentication operates
as follows.

Once the sending host has prepared a packet payload by
processing it through the other higher-level sublayers (in-
cluding optional encryption) and filling in the channel and
sequence number fields in the header, the host computes a
kayed MAC and appends it to the packet before transmis-
sion. Upon receiving a packet and extrapolating its full
64-bit sequence number as described above, the receiving
host similarly computes a MAC over the received data and
compares it to the MAC field received in the packet. If the
MAC check succeeds, the receiving host trims the MAC
field from the packet, adjusts its information about which
packets have been received including updating its receive
sequence number if appropriate, and passes the rest of the
payload on to upper layers; otherwise, the receiver silently
discards the packet. Note that the receivermust notupdate
its receive sequence number or other related internal state
until it has successfully verified the packet’s MAC.

The sending and receiving hosts compute a packet’s
MAC over an 8-byte pseudo-header containing the
packet’s full 64-bit transmit sequence number, followed
by the entire contents of the packet to be transmitted in-
cluding the SST header and possibly encrypted payload,
as shown in Figure 4. Including the full 64-bit sequence
number in the MAC computation ensures that if the re-
ceiver incorrectly extrapolates the 24-bit sequence num-
ber field in the packet header (e.g., due to a long-delayed
or maliciously replayed packet), the MAC check fails and
the receiver safely drops the packet.

Regardless of what specific MAC algorithm SST uses
for a particular channel, the MAC algorithm is keyed us-
ing symmetric keys agreed for the channel via the negotia-
tion protocol, ensuring that packets intended for one chan-
nel instance cannot be mistaken for those of another if the
same pair of endpoints reuse the same channel number for
successive channel instances.

7

Figure 4: Packet Layout for MAC Computation

3.7 Privacy Layer

SST’s optional privacy layer encrypts the contents of each
packet transmitted over a channel to prevent intermedi-
aries from snooping on communicated application data.
On the sending side, the privacy layer takes a cleartext
packet already prepared by higher-level layers, and en-
crypts the entire packet except for the first four bytes of
the packet header before handing the packet down to the
integrity layer. On the receiving side, the privacy layer
accpets the cyphertext packet from the integrity layer, im-
mediately after the integrity layer has verified and stripped
the MAC field, and decrypts the packet header and pay-
load.

All privacy layer parameters such as whether to en-
crypt at all, the specific encryption algorithm to use, and
the symmetric keys for the encryption algorithm, are es-
tablished at channel setup time by the negotiation proto-
col. In general, the only requirement is that the negotiated
encryption algorithm represent a transformation that can
successfully be reversed on the receiving end. Encryption
algorithms must be able to handle packet payloads of ar-
bitrary byte lengths (which may entail padding for block
encryption methods), and must preserve the original pay-
load length on decryption. The encryption transformation
may expand the packet if necessary, to include an initial-
ization vector (IV) for example, although the currently de-
fined standard methods using AES in CTR (counter) mode
preserve each packet’s size exactly with no wire overhead.

3.8 Feedback Layer

The feedback layer handles the sending of acknowledg-
ments, and using acknowledgment information to imple-
ment congestion control. The basic channel protocol de-
fined here provides sufficient information to implement
most sender-based forms of congestion control, including
TCP’s classic loss-based schemes and many recent delay-

sensitive schemes. Other congestion control algorithms
that require cooperation between sender and receiver, and
perhaps extensions to the SST header, may be negotiated
dynamically at channel setup time. Hosts normally treat
each channel independently for congestion control, but
they may if desired share congestion control state between
channels with compatible congestion control schemes as
certain TCP implementations do [26, 4], or even cooper-
ate with a system-wide Congestion Manager [5] to share
congestion control state across different transports.

3.8.1 Transmitting Acknowledgment Information

The feedback sublayer includes acknowledgment infor-
mation in every packet sent, but leaves it to upper lay-
ers to decide when to send any packet—including when
to send a packet for the sole purpose of acknowledg-
ment. When transmitting a normal data packet whose
primary purpose is something other than to acknowledge
data, the sender includes in the packet’s Acknowledg-
ment Sequence Number (ASN) field the low 24 bits of
its current receive sequence number, indicating the high-
est numbered packet it has received so far. When sending
an explicit acknowledgment for a particular packet (not
necessarily having the highest sequence number received
so far), the sender places the transmit sequence number
(TSN) of the packet to be acknowledged into the ASN
field of the acknowledgment.

In either case, the sender may indicate in the 4-bit
AckCt field the number of consecutive sequence numbers
immediately prior tothe specified ASN that it has also re-
ceived. In this way the sender may acknowledge multiple
consecutive packets at once and provide some redundancy
against lost acknowledgments. Figure 5 for example illus-
trates the behavior of a host that receives packets with se-
quence numbers 1 through 7 in order, except for a missed
packet having sequence number 4. When the host receives
packet 2, its acknowledgment covers both packets 1 and 2;
when the host receives packet 3, its acknowledgment cov-
ers packets 1 through 3. When the host receives packet
5, it sees that it missed a packet (which most likely has
been dropped but may have merely been delayed), and
“resets” the acknowledgment window to cover only the
newly-received packet 5. If the acknowledgment for pack-
ets 1 or 2 is lost, then it is redundantly covered by the ac-
knowledgment for packet 3, and the acknowledgments for
packets 5 and 6 are similarly covered by the acknowledg-
ment for packet 7.

3.8.2 Delayed Acknowledgment

XXX explain how delayed acks apply in SST

8

Figure 5: Acknowledgment Windows Example

3.8.3 Congestion Control

SST hosts must implement some suitable form of conges-
tion control, such as classic TCP congestion control [2],
or a more recent delay-sensitive scheme such as the one
used in TCP Vegas [8]. Since the details of a particular
congestion control scheme are largely independent of the
details of the channel protocol itself, this section only out-
lines the considerations uniquely applicable to SST.

SST acknowledges individual data packets by sequence
number, when or shortly after they are received, regard-
less of whether packets transmitted earlier also arrived
successfully. Classic TCP, in contrast, uses a cumulative
acknowledgment for all bytes in a logical stream up to a
certain point, and cannot promptly acknowledge segments
received out-of-order except using the selective acknowl-
edgment (SACK) extension [19]. SST’s feedback layer
in effect provides the information benefits of selective ac-
knowledgment without the implementation complexity or
wire overhead of TCP’s variable-length SACK header op-
tion. SST hosts should naturally take advantage of this
information in implementing congestion control [20].

Techniques already explored in the context of TCP for
adapting dynamically to Internet packet reordering condi-
tions [7, 28] are even easier to implement in SST. Since all
packets in SST including retransmissions get fresh packet
sequence numbers, upon receiving an acknowledgment
the sender can tell exactlywhich copy(or copies) of a
retransmitted packet arrived at the receiver. The sender
can use this information to detect quickly when it has in-
correctly retransmitted a packet that was in fact merely
delayed rather than dropped, and dynamically adjust its
“packet delay threshold” for fast retransmission accord-
ing to observed line conditions instead of just using TCP’s
conventional “three duplicate ACK” rule [2].

Since SST’s sequencing and feedback layers count
packets instead of bytes, it is natural to implement SST
congestion control using packet counts, instead of byte
counts as TCP does, for crucial metrics such as congestion
window (cwnd) and slow start threshold (ssthresh).
This approach is not quite correct in theory, since a large
packet consumes more network resources than a small
packet, and a congestion window calculated over a run of
small packets may be unsuitable for a run of large pack-
ets and vice versa. In practice, however, most application
streams whose bandwidth use is congestion-limited, such
as file transfers, tend to be steady streams of maximum-
size packets anyway, and reasonable congestion control
algorithms easily adapt to occasional changes of average
packet size in the transmission stream. Furthermore, the
typical maximum transmission unit (MTU) on today’s In-
ternet remains largely the same as it was decades ago—at
or below the 1500 byte frame size of classic Ethernet—
even as bandwidth has grown by several orders of magni-
tude. The significance of packet size in terms of overall
network resources is therefore diminishing rapidly: the
Internet has practically become a cell-switched network
with a cell size of 1500 bytes. For these reasons, using
packet counts instead of byte counts is probably accept-
able for most purposes on today’s Internet, although an
implementation of SST designed for high-bandwidth net-
works with large MTUs may wish to use byte counts for
more precise congestion control.

3.8.4 Fast Retransmit

XXX reinterpretation of standard ”three duplicate ACKs”
rule, since SST can tell exactly which packets arrived. But
really preferred to make the rule adaptive [7, 28].

XXX what ”acks for new data” means
XXX no need for congestion window inflation

3.9 Path MTU Detection

XXX dynamic path MTU versus maximum segment size
(MSS)...

There’s two MTU issues: detecting the dynamic MTU
of the underlying IP-level path, and negotiating a suitable
transport-level maximum segment size (MSS).

For the first, in theory there’s really nothing new in SST
in relation to TCP: the transport tries sending packets at
some suitable initial size, with the ”Don’t Fragment” flag
set, and responds to ICMP MTU exceeded messages by
reducing its dynamic MTU setting for the channel ap-
propriately. The only practical challenge is actually im-
plementing this functionality above UDP in a ”portable”
user-space transport protocol implementation: different

9

operating systems probably have different ways of allow-
ing UDP applications to request path MTU discovery, and
some operating systems may not (yet)provide this func-
tionality at all. So for SST implementations that run in
language environments or on operating systems that don’t
expose path MTU discovery over UDP, SST will probably
just have to ”guess” at a suitable MTU and risk having its
UDP datagrams fragmented at the IP level.

For the second issue, I haven’t yet but have been mean-
ing to add MSS negotiation to SST as part of the negotia-
tion of a new channel, comparable to the MSS negotiation
TCP performs during its 3-way handshake. This is obvi-
ously needed so that both endpoints can agree on a rea-
sonable maximum they both can handle with or without
dynamic path MTU discovery. The negotiated MSS also
affects flow control: if the sender sees the receiver’s flow
control window drop below the MSS, it is allowed to wait
for a flow control update increasing the window above the
MSS before it sends more data. This rule ensures that
the sender never unnecessarily fragments packets just to
fit in a temporarily small receive window, thereby avoid-
ing silly-window syndrome. On the other hand, this rule
also implies that the receiver’s overall receive buffer size
MUST be at least the next power-of-two in size above
the initially negotiated MSS: if it were smaller, then the
sender might wait forever for the receiver to increase its
window above the MSS, while the receiver waits forever
for the sender to send some data. Thus, the negotiated
MSS is crucial to establishing a ”dividing line” determin-
ing who is responsible in what circumstances for ensuring
that the protocol can make progress.

Besides MSS negotiation, there are other elements of
stream-level negotiation that need to be added to the pro-
tocol, such as negotiating optional extensions like fat
headers and chunk bundling. Someone (you?) also sug-
gested making the datagram optimization a negotiated op-
tional extension, which I completely agree with.

4 Stream Protocol

The stream layer is responsible for multiplexing the ap-
plication’s potentially many logical streams onto one or a
few channels managed by the channel protocol. Although
streams are always initiated in the context of some ac-
tive channel, a stream can outlive the channel in which
it was created. If an SST host runs out of transmit se-
quence number space or the channel’s symmetric authen-
tication/encryption keys expire, for example, SST initiates
a new channel to the same communication partner and mi-
grates the active streams to the new channel transparently
to the application.

Figure 6: Stream Protocol Packet Layout

4.1 Stream Layer Header Information

As illustrated in Figure 6, each stream protocol packet
consists of a 4-byte fixed stream header and a variable-
length area for additional headers and payload data. The
figure includes the channel protocol header as well for ref-
erence. The 32-bit fixed stream header contains a 16-bit
Local Stream Identifier (LSID), a 4-bit Packet Type, a 4-
bit Subtype field, and an 8-bit Window field. The size
and content of the packet payload following the fixed SST
header depends on the packet’s type. The following type
values are currently assigned:

Type Description Format
0 Invalid Packet Type N/A
1 Init Packet Figure 10
2 Reply Packet Figure 11
3 Data Packet Figure 12
4 Datagram Packet Figure 16
5 Ack Packet Figure 13
6 Reset Packet Figure 14
7 Attach Packet Figure??
8 Detach Packet Figure??

9–15 Reserved

4.2 Unique Stream Identifiers (USIDs)

SST assigns each logical stream a permanentUnique
Stream Identifier(USID) when the stream is first created,
and uses this identifier to refer to the stream if it becomes
necessary to detach the stream from its original channel
or migrate it to another channel. A USID consists of two
components, as illustrated in Figure 7: a cryptographic
half-channel identifierand a 64-bitstream counter. Each
channel has two half-channel identifiers, one for each di-
rection of information flow, both of which the negotiation
protocol computes for the channel as part of its gener-
ation of symmetric key material. Which of a channel’s
half-channel identifiers is assigned to a given stream de-
pends on which participant host originated the stream.
The stream counter value, in turn, distinguishes among
streams created by that host during the channel’s lifetime.

10

Figure 7: Unique Stream Identifier (USID) layout

Although in theory every stream has a USID, in prac-
tice for most short-lived streams that remain attached
to their original channel throughout their lifetimes, the
stream’s USID is never actually transmitted or used by
the wire protocol. Within the context of a particular chan-
nel, SST normally identifies streams using shorter 16-bit
Local Stream Identifiersor LSIDs, described in the next
section.

4.3 Attaching Streams to Channels via
LSIDs

At a given point in time a stream may have between zero
and fourattachments, two for each direction of informa-
tion flow. Each attachment binds the stream to a partic-
ular channel and associates a 16-bitLocal Stream Identi-
fier (LSID) to the stream for the purpose of transmitting
stream data over that channel. The scope of an LSID is
local to a particular channel and flow direction: each end-
point host on a channel has its own LSID space, within
which it may assign LSIDs independently of the other
endpoint and of other channels.

SST allows a stream to have up to two attachments
in each direction so that a host can transmit data on a
stream continuously using one attachment while setting
up a second attachment to a different channel, in order
to migrate streams from one channel to another smoothly
and transparently to the application. Hosts may detach ac-
tive streams not only to migrate them but also to free up
LSID space; long-lived but inactive streams may remain
unattached in one or both flow directions for arbitrary pe-
riods of time.

A future negotiable extension to the SST protocol may
allow streams to have more than four attachments at once,
allowing hosts to set up multiple channels over different
network interfaces or paths and attach streams to several
or all of them at once, using the redundant channels for
fast fail-over as in SCTP [24], or for load-balanced simul-
taneous transmission (analogous to link layer port aggre-
gation or “trunking”).

struct ServicePair {
string service; // service name
string protocol; // protocol name

};

enum ServiceReqType {
ReqPortNumber = 0x0001,
ReqServicePair = 0x0002,

};
union ServiceReq
switch (ServiceReqType type) {

case ReqPortNumber: unsigned int port;
case ReqServicePair: ServicePair pair;

};

Figure 8: Service request message format

4.4 Special Internal Streams

Not all streams managed by the stream protocol are visi-
ble to applications. There are two special types ofinternal
streamsthat the stream protocol creates and uses invisibly
to the application:channel rootstreams andservice re-
queststreams.

4.4.1 The Channel Root

Whenever a pair of SST hosts set up a new channel via the
negotiation protocol, the hosts implicitly create a special
stream for the channel called thechannel root. A chan-
nel’s root stream is always attached to the channel with an
LSID of 0 in each direction, and never detaches or mi-
grates to other channels. The channel itself terminates
once its root stream is closed in both directions.

Applications are not generally aware of the existence of
channel root streams at all: channel roots merely provide
an outermost context in each channel that the stream layer
uses to exchange control messages and initiate (or migrate
in) other streams on behalf of applications.

4.4.2 Service Request Streams

When the application makes aconnect request to open
a new top-level stream to a given target host and service,
the stream protocol on the initiating host creates aservice
request streamas a substream of a suitable channel’s root
stream. The initiating stream protocol then sends aser-
vice request messageon this new stream, whose format is
defined by the XDR [23] definition shown in Figure 8.

SST currently provides two types of service request
messages, representing different ways of naming the ser-
vice on the responding host to which the application
wishes to connect. WithReqPortNumber, the initiator
specifies a 32-bit port number, the low216 values of which

11

enum ServiceReplyType {
ReplyOk = 0x00,
ReplyNoService = 0x10,
ReplyNoProtocol = 0x20,
// XXX others...?

};
union ServiceReply
switch (ServiceReplyType type) {

case ReplyOk: void;
case ReplyNoService: string errormsg;
case ReplyNoProtocol: string errormsg;

};

Figure 9: Service reply message format

are intended to correspond to the IANA’s traditional 16-bit
port space used by TCP and UDP, while providing room
for expansion to a full 32-bit port space in SST.

With ReqServicePair, in contrast, the initiator
specifies a pair of UTF-8 strings: the first names a log-
ical servicesuch as ‘mail’ or ‘web’, while the second
names a specific protocol to be used to communicate with
the indicated service, such as ‘POP3’ or ‘HTTP/1.1’.

Upon receipt of the service request, the responder looks
up the specified port number or service pair in its ta-
ble of available services, and responds on the service re-
quest stream with a message described in Figure 9 indi-
cating whether the requested service is available. Error
responses may contain an optional human-readable UTF-
8 encoded string describing the error.

Upon receiving aReplyOk message from the respon-
der, the initiating stream protocol finally initiates a new
child stream of the service request stream (a grandchild of
the channel root), and hands off the use of this stream to
the application to become the “top-level” stream the ap-
plication requested. The initiating stream protocol may
close the service request stream once the responder has
acknowledged the initiation of the application stream, or
it may cache the service request stream in case the ap-
plication subsequently makes additional requests for new
top-level streams connecting to the same service on the
same target host. In the latter case, the initiating stream
protocol simply initiates a new substream from the ap-
propriate service request stream each time the application
requests a new top-level stream connecting to that service.

(XXX how is the end of the service request and reply
marked? Would be nice if could use FIN markers, while
still holding stream ”open” for creation of child streams -
perhaps need multiple notions of ”close...)

It is anticipated that additional service request and re-
sponse message types will be added in the future permit-
ting the initiator to, for example, query the names of avail-
able services, query the names of protocols available for

Figure 10: Init Packet Format

interaction with a given logical service, and perhaps ob-
tain human-readable descriptions of those services on be-
half of the user.

4.5 Initiating Streams

Either host participating in an existing stream may initiate
a new substream at any time. A host creates a new “top-
level” application stream, orapplication root, by negoti-
ating a channel with the desired endpoint if none exists
yet and then initiating a new substream of the channel’s
root stream. The application can then initiate further sub-
streams as children of streams it already has open.

To initiate a new stream, a host sends one or more Init
packets, which have a packet type of 0 and and the lay-
out shown in Figure 10. In an Init packet, the primary
LSID field in the SST header indicates the parent of the
new stream to be created, and theNew Stream Identiferor
NSID field indicates the LSID that the sender has assigned
to the new stream. Both of these LSIDs are interpreted in
the sender’s LSID space.

The host initiating a stream assigns the new stream’s
USID and LSID at the same time, using a 64-bitstream
counterthat the host maintains in association with each
channel. In the simple case, the initiator simply incre-
ments the channel’s stream counter by one, then appends
the appropriate half-channel identifier to form the new
stream’s USID, as shown in Figure 7. The initiator then
uses the bottom 16 bits of the resulting stream counter as
the new stream’s LSID.

Since the LSID is only 16 bits, however, the desired
LSID may conflict with an existing attachment to the same
channel for the same flow direction. In this case, the initia-
tor skips the conflicting value and continues incrementing
the counter until it finds an available LSID. If the desired
stream counter is 0x12345 but LSID 0x2345 is already
in use, for example, the initiator must skip that counter
value and try LSIDs 0x2346, 0x2347, and so on. The new

12

stream’s USID is derived from the final stream counter
value corresponding to the first free LSID.

When a host receives the first Init packet for a new
stream, it extrapolates the 16-bit LSID in the header’s
NSID field to determine the new stream’s full USID.
For this purpose, the receiver maintains a 64-bitreceive
stream counterassociated with the channel, in which it
records the highest stream counter value it has seen its
peer assign so far. To extrapolate a new stream’s 64-bit
stream counter, the receiver forms a 16-bit two’s comple-
ment delta from its current receive stream counter and the
received NSID, and then adds the sign-extended delta to
its receive stream counter, in the same way that the se-
quencing layer extrapolates the TSN and ASN fields.

As with packet sequence numbers, the host initiating a
new stream must avoid getting too far ahead of its peer in
stream counter space and causing the receiver to extrapo-
late a received NSID incorrectly. For this purpose, each
host must keep track of its highest stream counter value
that its peer definitely knows about—i.e., the highest-
numbered stream for which the initiator has received an
acknowledgment for one of the stream’s Init packets. The
initiator must in no event assign a new LSID that exceeds
the current highest acknowledged stream number by215

or more. If the initiator runs out of free LSIDs in this
range, it must delay the initiation of new streams until one
or more LSIDs within this range become free.

The initiator does not have to assign stream numbers
in strictly ascending order: it may go back and assign
stream counter values that were previously skipped due
to LSID conflicts, as long as it assigns each individual 64-
bit stream counter value at most once to ensure that each
stream’s USID is unique. The initiator can explicitly de-
tach old streams that are still active but not in frequent
use in order to free up LSID space, as described later in
Section 4.18. To avoid the possibility of overflowing the
receiver’s 16-bit counter arithmetic, the sender must not
assign stream counter values that are less than the highest
stream counter it has assigned so far by215 or more.

4.6 Initial Stream Data

The Init packets a host sends to initiate a new stream may
also contain application data: unlike TCP, SST does not
require a round-trip handshaking delay before the appli-
cation can begin sending data on a new stream. The 16-bit
Byte Sequence Number (BSN) field in each Init packet in-
dicates the logical byte offset in the new stream at which
the payload data is to be placed. Unlike TCP, whose initial
sequence numbers the endpoint hosts negotiate via their
SYN packets, the byte sequence numbers for a new SST

stream always begin at zero.
When a host receives the first Init packet for an un-

known LSID, it sets up its internal state for the new stream
as described above and immediately begins collecting
data segments for the new stream. If the host receives
the new stream’s Init packets in order starting with an Init
packet having a BSN of zero, then the receiving host may
immediately start delivering this data to the application.
If the receiving host obtains some other Init packet first, it
still sets up the new stream as usual but buffers any appli-
cation data the packet contains until the lower-numbered
data segments arrive or the sender retransmits them.

Since an Init packet’s BSN field is 16 bits wide, the
initiator may send up to216 − 1 + MTU bytes of data
immediately during stream initiation before it must start
using regular data packets. The initiator cannot start send-
ing regular data packets, however, until it is certain that
its peer knows about the new stream—i.e., until it has re-
ceived an acknowledgment for at least one of its Init pack-
ets for the new stream. Thus, a host can send slightly more
than216 bytes on a brand-new stream with no round-trip
handshaking delay. (An future extension to the SST wire
protocol for for high-bandwidth, high-latency networks
may increase the size of the BSN field both for Init and
non-Init packets to allow for larger in-flight windows.)

4.7 Response to Stream Initiation

When a host receives the first Init packet for a new stream,
the receiver must send one or more Reply packets to or-
der to assign an LSID to the stream for use in the return
direction. Reply packets have a packet type of 1 and the
format shown in Figure 11. The packet’s Initiator Stream
ID (ISID) field indicates the LSID the initiator assigned to
the new stream via the NSID field in its Init packet. The
packet’s Reply Stream ID (RSID) field in turn indicates
the corresponding LSID the responder has assigned the
new stream from its own LSID namespace, on the same
channel but for the opposite flow direction.

As with Init packets, Reply packets may contain ap-
plication data, which is sequenced via the packet’s 16-bit
Byte Sequence Number (BSN) field. The responder may
send up to216 − 1 + MTU response bytes on the new
stream before it must switch to using ordinary data pack-
ets, which it may do only after it has received an acknowl-
edgment for at least one of its Reply packets.

4.8 Post-Initiation Data Transmission

After setting up a new stream, the participating hosts must
switch to using regular Data packets to transmit data be-
yond the 16-bit BSN limits of Init and Reply packets.

13

Figure 11: Reply Packet Format

Figure 12: Data Packet Format

Regular Data packets have a type of 2 and the layout
shown in Figure 12.

In contrast with Init and Reply packets, Data packets
have a 32-bit Byte Sequence Number (BSN) field for the
purpose of ordering data segments comprising the stream.
SST uses 32-bit wraparound arithmetic to handle byte se-
quence numbers and reorder data at the receiver, exactly
as in TCP, so there is no limit on the total amount of data
the application may send on a given stream.

4.9 Acknowledging Data Segments

A host must acknowledge every Init, Reply, or Data
packet it receives and successfully processes, including
zero-length data segments. Hosts may acknowledge re-
ceived data segments either by sending an explicit Ack
packet or, preferrably, by piggybacking the acknowledg-
ment onto the next packet it sends for some other purpose.
Hosts should use standard delayed acknowledgment tech-
niques to minimize the number of explicit Ack packets
they need to send [9].

If a host receives a data packet but cannot successfully
process it due to a temporary resource shortage—because
it does not have enough buffer space to store it for the ap-

Figure 13: Acknowledgment Packet Format

plication, for example—then the host may drop the packet
without acknowledgment. Receivers should not generally
have to do this, however, if both sender and receiver im-
plement flow control properly as described later in Sec-
tion 4.10.1. Using flow control to avoid buffer exchaus-
tion is much preferred over dropping packets, because lost
packets trigger the sender’s congestion control and throt-
tle data transmission forall streams sharing the channel.

A piggybacked acknowledgment for a data segment
only needs to be on the same stream as the acknowledged
data if the receiver wishes to adjust its receive window for
the stream, as described below in Section 4.10.1. Oth-
erwise, acknowledgments are stream-independent since
they refer to the channel’s packet sequence numbers and
not the stream’s byte sequence numbers. Through the ac-
knowledgment window defined by the AckCt field, any
packet flowing in one direction may acknowledge several
packets sent on various streams in the other direction.

When a host needs to send an explicit, non-
piggybacked acknowledgment, it sends an Ack packet
with a Type field of 3 and the format shown in Figure 13.
The host specifies in the Ack packet’s Sender Stream ID
(SSID) field the LSID of the appropriate stream in the
other host’s LSID space—i.e., in the LSID space of the
host that sent the data being acknowledged. A host can
thus send Ack packets containing flow control informa-
tion even on streams that currently have no associated
LSID in its own space.

A host obviously must not send an Ack packet just to
acknowledge another Ack packet, since doing so would
result in an endless acknowledgment loop. Ack packets
may however be acknowledged incidentally as part of the
acknowledgment window of a packet sent in the opposite
direction for some other purpose.

4.10 Retransmitting Lost Segments

The stream layer normally stores each application data
segment it has transmitted until it receives an acknowledg-
ment for the packet containing that segment, and period-
ically retransmits segments that appear to have been lost.
Since SST acknowledgments refer to packet sequence
numbers and not byte sequence numbers, the sender needs
to keep track of the packet sequence number that the se-

14

quencing layer assigned to each data segment the last time
it was transmitted, so that it can look up and free that seg-
ment once a matching acknowledgment arrives.

The receiver uses the BSN fields of incoming segments
on the stream to determine the correct order of the re-
ceived segments and to deliver them reliably to the appli-
cation in that order. If the receiver obtains one or more
segments in a stream out of order, it must hold those
segments and delay delivering them to the application
until any gaps in the sequence are filled. The receiver
need not take any explicit action to request retransmission
of specific data segments: the sender knows which data
segments to retransmit based on which segments haven’t
been acknowledged. The SST receiver does not send any
explicit form of “cumulative acknowledgment” operating
in a stream’s byte number space like TCP does; SST in ef-
fect relies exclusively on selective acknowledgment [19].

To calculate a conservative estimate of the receiver’s
cumulative receive position, or the first point in the stream
at which the receiver is missing data, the sender simply
uses the BSN of its oldest data segment that has not yet
been acknowledged. The sender’s idea of the cumula-
tive receive position may be less than the receiver’s ac-
tual value, due to network delay or lost acknowledgments.
One or a few lost acknowledgments are not likely to make
the sender see a ficticious “gap” in a contiguous run of
sequence numbers that actually arrived successfully, how-
ever, because the receiver’s acknowledgments during such
a run will have large AckCt values and thus highly redun-
dant overlapping acknowledgment windows.

4.10.1 Flow Control

While congestion control operates at a channel granular-
ity, SST provides flow control in a model similar to TCP’s
at the granularity of individual streams. Each host (in the-
ory at least) reserves some amount of buffer space for each
stream, in which it stores data it has received but not yet
delivered to the application. The receiver regularly in-
dicates how much buffer space it has available, and the
sender must not send data beyond the receiver’s specified
receive window.

Whenever the stream sublayer sends a packet related
to a stream, it uses the 8-bit Window field in the packet
header to indicate its current receive window. A value
n less than 128 in the Window field indicates that the re-
ceiver has at leastn bytes of buffer space available beyond
the receiver’s current cumulative receive position. A value
of zero in particular indicates that all buffers are full and
the sender must not send any new data on this stream.

A value ofn ≥ 128 on the other hand indicates that at
least2(n−128) − 1 bytes are available beyond the cumu-

lative receive position. This exponential encoding allows
the receiver to express large windows efficiently with only
a few header bits: the sender does not need much preci-
sion when the window is large because it will take a while
for it to fill the window anyway, but the receiver’s window
size indications become more precise as its buffers fill and
the window shrinks. As in TCP, the window size must al-
ways be less than230 bytes to avoid overflowing the 32-bit
sequence arithmetic [16], so a host must not send a value
in the Window field greater than128 + 30 = 158.

The sender’s idea of the cumulative receive position
may occasionally be smaller than the receiver’s due to lost
acknowledgments, as described above in Section 4.10,
causing the sender to underestimate the receive window
horizon by the same amount. This situation is not likely
to occur often or to last very long, however, because of
the redundancy in the receiver’s overlapping acknowledg-
ments. If the sender does unncessarily throttle its trans-
mission as a result of underestimating the receive win-
dow, it will at any rate obtain the correct receive window
position automatically as soon as it has retransmitted and
received fresh acknowledgments for any data segments
whose original acknowledgments were lost.

To avoid sending an unnecessarily large number of
small packets when transmission rate is limited by the re-
ceive window (a problem known as “silly window syn-
drome” [9]), the sender should avoid sending segments
smaller than the current MTU just to make them fit into
the remaining receive window. Instead the sender should
merely send as many complete segments as will fit into
the receive window and buffer any further segments until
the window increases.

If a segment contains a special marker such as a push,
message boundary, or end of stream, the sender should
transmit the segment as soon as it fits into the current re-
ceive window. In addition, if such a segment does not fit
into the receive window but is less than twice the size of
the current receive window, then the sender should im-
mediately send the part of the segment that does fit into
the current window. Because of the exponential window
encoding, the sender’s notion of the receive window may
be less than the receiver’s actual window by just under a
factor of two; the above rule allows the sender to make
progress and obtain a further-refined window update on
the next round-trip when it cannot be sure whether the
pushed segment fits into the actual window.

For flow control purposes, hosts treat the data in any
Init packet as belonging to theparentstream—the stream
specified in the packet’s main LSID field—even though
the data itself is semantically associated with the new
child stream being created. In effect, when a host im-

15

mediately sends data on a new stream without waiting for
the responder to acknowledge the Init packet and provide
a starting window size for the new stream, the sender ef-
fectively “borrows” from the parent stream’s receive win-
dow to send this initial data. This borrowing behavior is
essential to maintaining proper flow control and avoiding
overrunning the receiver’s buffers while allowing stream
creation with no round-trip handshaking delay.

Issue: we probably need to negotiate a transport-level
maximum segment size on channel setup as in TCP, to
avoid deadlock in case the MTU one host observes is close
to or larger than the other host’s maximum receive win-
dow size.

Issue: we also need a flow control mechanism for new
substream initiations, not just for new data transmissions
on this stream.

Issue: hosts might wish to retain the “borrowing” be-
havior throughout the lifetimes of certain substreams, in-
stead of always establishing separate receive windows af-
ter the first round-trip.

4.11 Pushing Data to the Application

Init, Reply, and Data packets all have a Push (P) flag in the
packet’s subtype field. This flag works the same way as
in TCP, indicating that the receiver should “push” the data
contained in this segment up to the receiving application
as quickly as possible, without waiting for further seg-
ments to follow. The sender normally sets the Push flag
automatically at the end of every atomic “write” operation
the application performs, unless the application specifi-
cally requests otherwise.

If the sender doesnot set the Push flag or any of the
other marker flags described below, then the receiver may
hold the data segment arbitrarily long in order to collect
additional segments and combine them for more efficient
delivery to the application. Even if a segment’s Push flag
is set, the receiver may still combine the segment’s data
with subsequent segments for delivery to the application
if those subsequent segments are already buffered due to
out of order delivery, or if the application is not ready to
accept data at the time the pushed segment first arrives.

4.12 Marking Messages or Records

Many applications logically divide their streams into mes-
sages or records, which traditionally requires introducing
an explicit record marking facility above TCP’s homoge-
neous byte streams. To simplify these applications, SST
provides a simple facility by which the sendor can in-
sert explicit record marks into the stream, which (unlike

Push markers) the receiving host is guaranteed to preserve
while delivering data to the receiving application.

When the sending application writes data to the stream
and indicates the end of a record, the SST stream layer
sets the Mark (M) flag in the packet containing the last
segment of that data. Init, Reply, and Data packets all
have Mark flags for this purpose. Upon receiving a packet
with the Mark flag set, the receiver delivers stream data
to the application only up to the end of the marked seg-
ment, andnevercombines the segment with subsequent
segments for delivery, even if subsequent segments are
immediately available. The receiving stream sublayer ex-
plicitly indicates to the application that the delivered data
constitutes the end of a record, if the API in use supports
such an indication.

4.13 Closing Streams

As with TCP, SST allows the two participants in a stream
to close their respective “ends” of the stream indepen-
dently. In a transaction-oriented application protocol such
as HTTP for example [13], it is often convenient for the
client to open a stream, issue a request, and close its end
of the stream to indicate to the server that the request is
complete; the client then awaits and receives the server’s
response on the nowhalf-openstream.

When an application closes its end of an SST stream,
the stream sublayer sets the Close (C) flag to mark the fi-
nal data segment it sends on the stream. Init, Reply, and
Data packets all have Close flags: a host may set the Close
flag in an Init or Reply packet to close the stream even
before the new stream’s round-trip handshaking has com-
pleted. The sender must not send any further data packets
on the closed stream other than retransmissions of old seg-
ments. On a full-duplex stream, the sender may still ex-
pect to receive data segments from its peer until the peer
also closes the stream, and the sender must continue to
send acknowledgments and receive window adjustments
as appropriate for data it receives on a half-open stream.

A host may consider a stream to be “fully closed” in
both directions, and may notify the application as such if
appropriate and/or garbage collect its internal state for the
stream, as soon as the following conditions are met:

• If the host is the initiator of the stream, it has received
at least one Reply packet from the responder.

• The host has received a Close segment from its peer
and every data segment leading up to it in the incom-
ing data stream.

• The host has received acknowledgments from its

16

Figure 14: Reset Packet Format

peer for every data segment it has transmitted includ-
ing for its own final Close segment.

Once a host has determined a stream to be fully closed,
it may immediately reuse any LSIDs it had assigned to the
stream: SST does not require hosts to delay reuse of old
LSIDs as with TCP’s TIME-WAIT state [25].

4.14 Forceful Reset

As in TCP, either participant may reset an SST stream
forcefully to terminate data transmission in both direc-
tions at the same time and discard any outstanding data
still in transit. To reset an active stream, a host sends a
packet with a Type of 5 and the layout shown in Figure 14.
The Direction (D) flag in packet’s subtype field indicates
to which host’s LSID space the packet’s LSID field refers:
if cleared, the LSID is in the sender’s LSID space; if set,
the LSID is in the receiver’s LSID space. The Window
field must in a Reset packet must always be zero.

A host should normally specify the LSID of the stream
to reset in its own space and clear the Direction flag when
resetting a stream it believes to be still active. After send-
ing the first Reset for an active stream, the sender must
retain the stream’s state and retransmit the Reset packet
as necessary until it receives an acknowledgment for one
of its Reset packets. At this point the host may discard
all internal state associated with the stream and reuse any
LSIDs it had assigned to the stream.

If a host receives a data segment referring to an un-
known LSID, the host must send a Reset packet in re-
sponse to clear any stale stream state its peer may be
holding. This situation can occur in particular if acknowl-
edgments are lost during a graceful close, for example, as
described earlier in Section 4.13. When responding to a
data segment with an unknown LSID, the responding host
need not retain any state related to the unknown stream: it
merely sends one Reset packet and then drops the invalid
data segment. Three specific types of data segments may
trigger a Reset in this way:

• Upon receiving an Init packet whose Parent Stream
ID (PSID) is unknown, the receiver responds with
a Reset packet containing the unknown PSID in the

LSID field and with the Direction flag set (because
the unknown PSID refers to the peer’s LSID space).

• Upon receiving a Reply packet whose Initiator
Stream ID (ISID) is unknown, the receiver responds
with a Reset packet containing the unknown ISID in
the LSID field and with the Direction flag cleared
(because the unknown ISID refers to the LSID space
of the host that received the Reply packet).

• Upon receiving a Data packet whose LSID is un-
known, the receiver responds with a Reset packet
containing the unknown LSID and with the packet’s
Direction flag set.

When a host receives a Reset packet referring to an ac-
tive stream, it acknowledges the Reset packet and then
immediately transitions the stream to the “fully closed”
state, at which point it may garbage collect the stream’s
state at any time. The host may notify the application of
the forceful reset via some appropriate error indication,
except in one situation: if the host has already closed its
end of the streamandhas received every data segment its
peer has sent up to the peer’s final Close marker, and is
merely waiting for acknowledgments to one or more data
segments it has sent, then upon receiving a Reset the host
must consider the stream to have been “gracefully closed”
as far as the application is concerned.

XXX Reset packets should contain optional descriptive
”reason” message

4.15 Rules for Reusing LSIDs

To prevent confusion between packets referring to differ-
ent streams that may successively use the same LSID, as
illustrated in Figure 15, hostsmustobserve the following
rules:

• When a host receives the first Init packet for a new
stream, it must set a sequencing barrier as described
in Section 3.4. This sequencing barrier prevents stale
Data packets the peer might have sent on a previous
stream using the same LSID from arriving after the
Init packet and being misinterpreted as data for the
new stream.

• A stream’s initiator must set a sequencing barrier
when it receives the first acknowledgment to one of
its own Init packets, and must silently ignore any Re-
ply or Reset packets apparently referring to the new
stream that arrive before this point. Such a packet
may refer to an earlier stream with the same LSID in
the initiator’s space. (The initiator should of course

17

Figure 15: Sequencing Barriers at Critical Points

accept a Reply or Reset that itself carries a piggy-
backed acknowledgment of one of its Init packets.)

• A stream’s responder must similarly set a sequencing
barrier when it receives the first acknowledgment to
one of its own Reply packets, and must silently ig-
nore any packets it receives before this point that ap-
parently refer to its newly-assigned response LSID.

• Each endpoint must set a sequencing barrier when
it determines a stream to be fully closed. The re-
sponder in particular relies on this barrier to prevent
a stale Init packet from arriving after the responder
has garbage collected the stream’s sate, causing the
creation of a new “phantom” stream.

• A stream’s initiator must not send any more Init
packets on the stream once it receives the respon-
der’s first legitimate Reply packet for that stream. If
the initiator must subsequently retransmit any data
segments that it originally sent as Init packets, then
it must convert them to regular Data packets before
retransmission.

4.16 Best-Effort Datagrams

Many applications wish to transmit certain types of data
without incurring the overhead of storing and retransmit-
ting lost packets in the sender. In real-time streaming me-
dia applications, for example, a lost data frame is likely

to be useless after incurring a round-trip retransmission
delay, so it is better for the receiver just to skip or try
to “fill in” for lost frames. For this purpose, SST al-
lows applications to senddatagramswith best-effort de-
livery semantics. In SST, a datagram is semantically just
an ephemeral stream that the application creates, uses to
transmit a sequence of bytes all at once, and then force-
fully resets without ensuring that the data arrives success-
fully or waiting for any associated response from the re-
ceiver. When the application transmits a datagram, the
stream layer need not set up or maintain internal state for
the ephemeral stream it represents, and need not buffer or
retransmit the data segments comprising the stream. SST
still guarantees that the bytes comprising a single data-
gram are delivered completely, accurately, and in-order if
the datagram is delivered at all.

Since an SST datagram is semantically just a restricted
form of stream, the application on the receiving end can-
not generally tell the difference between a received data-
gram and a regular stream whose content was received
all at once. SST can therefore treat the sending applica-
tion’s request for best-effort delivery as merely a hint: the
stream layer may choose to ignore this hint and instead
send the datagram as an ordinary reliable stream. In par-
ticular, the stream layer falls back to reliable delivery if
a datagram is so big that best-effort delivery would re-
sult in an unacceptably low probability of successful de-
livery. SST in this way solves transparently to the ap-
plication the classic “large datagram” problem: because
the loss of one fragment of a datagram entails the loss
of the whole datagram, the probabiliy of datagram loss
increases rapidly with datagram size, to the point where
any datagram is almost certain to be lost as its fragment
count reaches the inverse of the packet loss rate. Because
SST can transparently switch to reliable delivery in spite
of the application’s best-effort hint, SST supports data-
grams of arbitrary size while ensuring that they always
arrive with reasonable probability. The transport layer is
ideally positioned to make this decision, since it tends to
collect the relevant packet loss rate information anyway to
implement congestion control.

A host transmits a datagram by sending a series of
Datagram Packets, each having the format shown in Fig-
ure 16. The series of packets representing a single data-
gram must be contiguous in packet sequence number
space, and thus cannot be intermixed with packets for
other streams sent on the same channel. The first packet
in the series has the Begin (B) flag set, and the last packet
has the End (E) bit set; a datagram that fits entirely in
one packet has both flags set. Each packet contains the
LSID of the parent stream within which the datagram is to

18

Figure 16: Datagram Packet Format

be transmitted: i.e., the parent of the implicit, ephemeral
stream logically containing the datagram’s content itself.

Upon receiving one or more Datagram packets, the re-
ceiver can tell easily from the packet sequence numbers
and the Begin and End flags whether it properly received
the entire datagram or if one or more packets were lost. As
with Init packets containing data for a new stream, both
participants borrow from the parent stream’s receive win-
dow for flow control purposes.

Issue: should the datagram-oriented delivery mecha-
nism support record marking? It certainly could (just add
an M flag), but it is unclear whether it is worth the added
complexity given that most datagram-oriented protocols
effectively transmit exactly one “record” per datagram.

4.17 Attaching Streams

To attach a stream, a host sends an Ack packet contain-
ing the LSID to assign to the attachment and the stream’s
full USID as the packet’s variable-length payload. Each
stream may have up to two attachments at once.(XXX fill
out.)

4.18 Detaching Streams

To detach a stream, just re-assign the LSID with a new
Init or Reply packet?(XXX fill out.)

5 The Negotiation Protocol

SST’s negotiation protocol is responsible for setting up
new channels for use by the channel and stream proto-
cols. When cryptographic integrity and/or privacy pro-
tection is desired, the negotiation protocol is responsible
for performing symmetric key agreement and host iden-
tity verification.

typedef opaque Chunk<>;

struct Message {
int magic; // 24-bit magic value
Chunk chunks<>; // Message chunks

};

Figure 17: Top-level negotiation protocol message format

5.1 Basic Design Properties

The negotiation protocol is asymmetric in that the two
participants have clearly delineated “initiator” and “re-
sponder” roles. The protocol supports peer-to-peer as
well as client/server styles of communication, however,
and the channels resulting from negotiation are symmetric
and can be used by either endpoint to initiate new logical
streams to the other endpoint.

SST currently defines two specific methods of negotia-
tion: a non-cryptographic method that provides fast, sim-
ple connection setup usable when the underlying network
is sufficiently trusted, and a cryptographic method using
Diffie-Helman key exchange, based on the Just Fast Key-
ing (JFK) algorithm [1]. Additional negotiation methods
may be added in the future, and SST is designed so that
two hosts can successfully negotiate as long as they sup-
port at least one negotiation method in common.

In general, the host initiating a connection should al-
ways support secure cryptographic negotiation whenever
it knows the cryptographic identity of the target host, and
in this case shouldonly support cryptographic negotia-
tion unless specifically configured for an insecure mode
of operation. If the initator knows the target host only by
an IP address or un-authenticated domain name records,
it may use either negotiation method, but the negotiation
will in any case be vulnerable to man-in-the-middle at-
tacks. The cryptographic negotiation method is capable
of setting up non-cryptographic channels, thereby provid-
ing secure endpoint authentication during initial channel
setup while avoiding the costs of encrypting and/or cryp-
tographically authenticating every subsequently transmit-
ted packet.

5.2 Message Structure

All packets used by the negotiation protocol have a com-
mon top-level layout, described by the XDR [23] defini-
tion shown in Figure 17:

In order to support NAT traversal via UDP hole punch-
ing [15], the negotiation protocol must be able to use the
same local UDP port as the registration protocol uses for
registering the client host, and must again use the same lo-

19

cal UDP port for data communication via the channel and
stream protocols once the negotiation protocol has com-
pleted and set up the channel. Themagic field serves
to distinguish among packets for the different SST sub-
protocols that must share the same underlying session.

Although the SST negotiation and channel protocols
were designed as a substrate for SST’s stream protocol,
they provide basic services useful to many transport pro-
tocols and thus could in theory be used as well by upper-
level protocols other than the SST stream protocol. If
this occurs, there is a risk that one upper-level protocol
might accidentally connect to and try to negotiate a chan-
nel with a remote endpoint on which an entirely different
upper-level protocol is listening, which would cause con-
fusion at the upper layer even if both endpoints are using
compatible channel and negotiation protocols. For this
reason, themagic value the negotiation protocol uses to
identify its packets is not fixed by the negotiation proto-
col itself, but is instead a parameter to be filled in by the
upper-level protocol. A negotiation protocol instance run-
ning on behalf of the SST stream protocol uses amagic
value of 0x00535354, or ‘SST’ in ASCII; negotiation pro-
tocol instances running on behalf of different upper-level
protocols must use other magic values. In any case, the
upper 8 bits of the magic value (the first byte transmit-
ted in the packet) must always be zero—an illegal channel
number—to distinguish the negotiation protocol’s channel
setup packets from data packets transmitted over already-
negotiated channels.

Themagic field is followed by a list ofchunkscontain-
ing the content of the negotiation protocol message. Each
chunk is separately XDR-encoded and packaged into an
XDR opaque field, consisting of a 32-bit length fol-
lowed by a sequence of bytes padded to a 32-bit boundary,
allowing hosts to skip chunks that they cannot decode.

5.3 Chunk Structure

The XDR definition in Figure 18 describes the currently
defined types of negotiation protocol chunks. Additional
chunk types may be added in the future.

5.4 Initiation and Method Selection

To begin negotiation of a new channel, the initiator sends
a message containing oneI1 chunk for each method of
negotiation it is willing to use. In the current version of
SST supporting the simple checksum (Sum) and Diffie-
Hellman (Dh) methods, this means that the initiator may
include aChunkSumI1, aChunkDhI1 chunk, or both.

Upon receiving the initiation message, the responder
examines the received chunks in order and processes the

enum ChunkType {
// Lightweight checksum negotiation
ChunkSumI1 = 0x0011,
ChunkSumR1 = 0x0012,

// Diffie-Hellman key agreement via JFK
ChunkDhI1 = 0x0021,
ChunkDhR1 = 0x0022,
ChunkDhI2 = 0x0023,
ChunkDhR2 = 0x0024

};
union Chunk switch (ChunkType type) {

case ChunkSumI1: ChunkSumI1Data sumi1;
case ChunkSumR1: ChunkSumR1Data sumr1;

case ChunkDhI1: ChunkDhI1Data dhi1;
case ChunkDhR1: ChunkDhR1Data dhr1;
case ChunkDhI2: ChunkDhI2Data dhi2;
case ChunkDhR2: ChunkDhR2Data dhr2;

};

Figure 18: Negotiation protocol chunk format

first one it supports, ignoring the rest. If the initiator
prefers quick, insecure channel setup but is willing to
perform cryptographic negotiation if the responder re-
quires it, for example, the initiator’s first message con-
tains aChunkSumI1 followed by aChunkDhI1. If the
initiator requires secure communication, it sends only a
ChunkDhI1.

Note that although the initiator is technically free to
send aChunkDhI1 followed by aChunkSumI1, do-
ing so is not recommended, because a man-in-the-middle
attacker could easily force the negotiation protocol into
its insecure mode even when both “real” parties in fact
support secure mode. If security is desired, then the ini-
tiator mustonly includeI1 chunks for secure negotiation
methods in its initial message.

5.5 Lightweight Checksum Negotiation

The lightweight checksum negotiation method consists of
a simple one-phase request/response protocol, which can
be extended on demand by the receiver to a cookie-based
challenge/response protocol for DoS protection. The ini-
tiator includes aChunkSumI1 chunk in its initial mes-
sage to indicate its support for lightweight checksum ne-
gotiation, and the responder replies with a message con-
taining aChunkSumR1 chunk to indicate acceptance of
this negotiation method. The structure of each of these
chunks is shown in Figure 19.

20

struct SumI1Data {
unsigned int ni; // Initiator nonce
unsigned char chani; // Initiator channel
opaque cookie<>; // Responder cookie
opaque ulpi<>; // Upper-layer info
opaque cpkt<>; // Channel packet

};

struct SumR1Data {
unsigned int ni; // Initiator nonce
unsigned int nr; // Responder nonce
unsigned char chanr; // Responder channel
opaque cookie<>; // Responder cookie
opaque ulpr<>; // Upper-layer info
opaque cpkt<>; // Channel packet

};

Figure 19: Lightweight checksum negotiation chunks

5.5.1 Initiating Checksum-Authenticated Channels

The initiator includes in itsSumI1Data chunk a 32-bit
nonceni that serves to identify this run of the negotiation
protocol uniquely for a given set of source and destination
endpoints and a given channel ID at the initiator. Once the
channel is established, this nonce also serves as a “key”
for 32-bit checksum in each data packet the initiator trans-
mits on the channel, to provide protection against packets
for old channel instances being misinterpreted as pack-
ets for newer instances. Keying the data packet check-
sums this way also provides protection against connection
hijacking by “off-path” attackers who can blindly inject
forged packets into the network but cannot eavesdrop on
legitimate packets between the endpoints. The receiver
computes a similar nonce to protect packets on the return
path, as described below.

To compute its nonce, the initiator first uses a keyed
cryptographic hash algorithm such as HMAC-SHA-
256 [12], keyed on a secret known only to the initiator
and ideally stored persistently across restarts, to gener-
ate a secure hash of an information block containing at
least the responder’s endpoint identifier (e.g., the respon-
der’s IP address if SST is running directly over IP, or the
responder’s IP address and UDP port number if SST is
running atop UDP), and the Channel ID the initiator is as-
signing to its end of the new channel. The initiator then
extracts 32 bits of the resulting hash, then adds the cur-
rent value of a timer that increments approximately every
4 microseconds, and finally clears the least-significant bit
(bit 0) to zero to produce its value for theni field in its
SumI1Data chunk. All initiator nonces have their least-
significant bit cleared to distinguish them from responder
nonces. The initiator subsequently adds the value of this
ni field to the 32-bit MAC field in every packet it trans-

mits on the channel, including the MAC in any channel
packet piggybacked onto theSumI1Data chunk as de-
scribed below.

This method of “keying” SST’s channel packet check-
sums essentially corresponds to Bellovin’s method of
“keying” TCP’s initial sequence numbers [6], the main
difference being that in SST the resulting “key” will be
added to the channel protocol’s checksum field instead of
the sequence number as in TCP. Another subtle difference
from TCP is that the initator cannot include the receiver’s
channel ID in its hash, because it does not know the re-
ceiver’s channel ID until the receiver has responded with
its SumR1Data chunk. This difference should not cause
a security weakness unless different, mutually antagonis-
tic entities were to control different channel IDs at the
same receiver endpoint, which does not seem like a likely
or even viable design point in practice.

In the firstSumI1Data chunk the initiator sends, it
assigns a Channel ID to its end of the new channel and
sends this channel number in thechani field, but sends
an emptycookie field (zero bytes in length). Theulpi
field may contain arbitrary data the upper-layer protocol
on the initiator wishes to pass to the upper-layer proto-
col on the responder as part of the connection negotiation
process. The initiator may set thepkt field to empty, or
it may include the contents of a channel packet it wishes
to “piggyback” onto theSumI1Data chunk. This pig-
gybacked packet includes the standard channel headers
including packet sequence number and acknowledgment
information, except with the Channel ID field set to zero
since the initiator does not yet know the Channel ID the
receiver will assign to the new channel. The piggybacked
packet also includes the trailing 32-bit MAC field, com-
puted as described below in Section 5.5.4.

5.5.2 Responding to Checksum Negotiation Chunks

When the responder receives the initiator’sSumI1Data
chunk, it first checks the chunk for syntactic validity: in
particular, the least-significant bit of the initiator’s nonce
must be cleared to zero, otherwise the responder must re-
ject the chunk by ignoring it. If the responder is not un-
der heavy load, it may ignore thecookie field in the
SumI1Data chunk and allocate state for the new chan-
nel immediately. Alternatively, to protect itself from DoS
attacks, the responder may return a cookie challenge to
verify bidirectional connectivity with the initiator before
allocating state for the new channel.

To generate its cookie, the responder maintains a secret
known only to itself, which is distinct from the secret used
above to compute nonces, and which changes periodically
to prevent cookie-jar attacks. Using a keyed secure hash

21

algorithm keyed with this secret, the responder hashes an
information block containing at least the initiator’s end-
point identifier from which theSumI1Data chunk ar-
rived, and the values of thecki and chani fields of
that chunk. The responder then checks the resulting hash
against thecookie field in the receivedSumI1Data
chunk, and if they don’t match, returns the correct hash
in the cookie field of a SumR1Data chunk with its
ni field set to the initiator’sni, with its nr andchanr
fields set to zero, and with itsulpr andpkt fields empty.
When the initiator receives such aSumR1Data chunk
with a ni matching its prior request and achanr field
of zero, it saves the returnedcookie in its negotiation
state and sends a newSumI1Data chunk containing the
cookie. (XXX specify maximum cookie length?)

Once the responder receives aSumR1Data chunk with
a valid cookie, it sets up its internal state for the new chan-
nel, allocates a Channel ID for the channel at its own end-
point, and computes its own nonce to protect subsequent
packets it sends on the channel’s return path. The respon-
der computes its nonce in the same fashion as the initia-
tor does, combining the result of a keyed hash of an in-
formation block specific to the initiator with the value of
a 4-microsecond timer, but the responder sets the least-
significant bit (bit 0) in its nonce instead of clearing it.
The responder then replies with aSumR1Data chunk
containin the initiator’sni value, the responder’s nonce
in thenr field, the responder’s chosen (nonzero) channel
ID in thechanr field, an emptycookie field, and any
data it wishes to pass to the upper-layer protocol on the
initiator side in theulpr field.

The responder may also include a piggybacked channel
packet to send to the initiator as part of theSumR1Data
chunk; in this case the piggybacked packet must be for-
matted exactly as it would have been if the responder were
to send it as a separate packet, including the initiator’s se-
lected Channel ID in the packet’s channel header and a
32-bit MAC keyed on the responder’s nonce. Piggyback-
ing a channel packet does not save a round-trip in case
as it can for the initiator, since the responder could in-
stead simply send the channel packet immediately after its
SumR1Data negotiation response, but it does permit an
initiator and responder to set up a new channel and com-
plete an entire application-level request/response transac-
tion with only one packet in each direction (probably fol-
lowed later by a delayed ACK from the initiator to the
responder’s initial application-level data packet).

5.5.3 Retransmitting Negotiation Packets

XXX initiator keeps same nonce for retransmits. After
receiver accepts SumR1Data and creates channel state, it

caches the initiator’s nonce and its reply and just replays
its old reply if it receives further duplicates of the initia-
tor’s request.

XXX Wesley wrote: The responder could also already
be sending me packets via the channel (if only his negoti-
ation response was lost). I can’t ack these packets because
I don’t know his channel id. Should I just ignore them?

Yes. So this may be a reason the responder might
want to piggyback its first few return-path channel pack-
ets into (otherwise-duplicate) negotiation response pack-
ets, potentially up until it gets the first valid ”raw” chan-
nel packets from the initiator and thus knows that the ini-
tiator got the negotiation response - that way, no matter
which subset of these channel packets get lost, the initia-
tor still obtains the negotiation response as soon as any
of them get through. The same applies to the initiator,
of course, which could in theory fire off multiple I1 ne-
gotiation packets from the start with the same negotiation
content but different piggybacked channel packets.

The extent to which either endpointshoulddo this of
course brings up congestion control issues, in particular
the fact that both sides are presumably at the beginning
of slow-start and thus ”in theory” shouldn’t be sending
out more than maybe two packets during the first round
trip anyway. On the other hand, in practice I would think
it should be acceptable to send at least 8-9KB worth of
packets in an initial burst, the same as what happens when
you send a multi-fragment UDP datagram containing an
RPC request or reply at widely-accepted NFS message
sizes, for example. Also, if SST was working in coop-
eration with a Congestion Manager on the local host, it
might not have to slow start even a brand-new channel
from scratch but could reuse congestion state from prior
channels or even other transport protocols.

5.5.4 Computing Checksums

The responder can commence sending regular packets on
the new channel as soon as it accepts a validSumR1Data
chunk and allocates the new state for the channel. The ini-
tiator can commence sending regular packets on the chan-
nel once it receives a validSumR1Data response chunk
with a nonzerochanr field, at which point it knows
the correct receiver channel ID to include in the pack-
ets it sends. For greater network efficiency during chan-
nel setup, either side can additionally piggyback channel
data packets into the negotiation packets they send, as de-
scribed above.

To compute the 32-bit keyed MAC for a channel packet,
the sender first computes a basic checksum over the
pseudo-header and packet as described in Section 3.6
and illustrated in Figure 4, then “keys” the checksum by

22

checksum(int64 seqno,
byte<> payload,
int32 nonce):

// Build data block on which to run checksum
data <- concat(seqno, payload)
data <- concat(data, "\0x80")
if length(data) is odd:
data <- concat(data, "\0x00")

// Compute unkeyed checksum
int32 a <- 0
int32 b <- 0
for each int16 word w in data:
a <- (a + w) % 65537
b <- (b + a) % 65537

cksum <- (a & 0xffff) | ((b & 0xffff) << 16)

// Computed keyed MAC based on ni or nr
mac <- cksum + nonce
return mac

Figure 20: 32-bit Lightweight Checksum Algorithm

adding its own 32-bit nonce:ni for channel packets sent
by the initiator, andnr for channel packets sent by the re-
sponder. The receiver drops any packet it receives having
an invalid checksum.

The checksum algorithm used is inspired by the Adler-
32 algorithm [10], but modified to increase its entropy for
small payloads, which are likely to be common in the case
of SST’s channel protocol. In essence, the modified algo-
rithm operates on sequence of 16-bit words insstead of
bytes, padded with a trailing 0x80 byte or 0x8000 word
depending on whether the length of the input is odd or
even, and it uses a prime modulus of 65537 instead of
65521 to ensure that all216 input data values are distin-
guishable. Since this is a 17-bit rather than a 16-bit prime
modulus, the final checksum consists of the low 16 bits of
each of the two resulting 17-bit counters. Pseudocode for
the algorithm is shown in Figure 20.

As with Adler-32, the modulo operations can be re-
moved from the inner loop by using larger counters and
performing the modulo operation less frequently. With
unsigned 32-bit counters, the modulo operation needs
to be performed once every 361 words to prevent the
counters from overflowing; with unsigned 64-bit coun-
ters, the modulo operation is necessary only once every
23,730,841 words. If the counters are signed, the period
is 254 words for 32-bit counters and 16,781,438 words for
64-bit counters.

5.6 Reusing Channel IDs

XXX A given channel ID cannot be reused more than
once every 8 milliseconds, to ensure that successive chan-
nel instances have distinct nonces.

6 Registration Protocol

SST’s registration protocol provides a simple but efficient
method for clients that are potentially mobile and/or con-
nected by NATs to register securely with one or more des-
ignated servers in order to rendezvous with other clients.
The registration protocol supports NAT traversal through
UDP hole punching [15], and provides strong security
by indexing clients by their self-assigned cryptographic
SST identities rather than using forgeable or centrally-
administered names.

To be written...

References

[1] William Aiello et al. Just Fast Keying: Key Agree-
ment In A Hostile Internet.ACM Transactions on
Information and System Security (TISSEC), 7(2):1–
32, May 2004.

[2] M. Allman, V. Paxson, and W. Stevens. TCP con-
gestion control, April 1999. RFC 2581.

[3] F. Audet, ed. and C. Jennings. Nat behavioral re-
quirements for unicast udp, October 2006. Internet-
Draft (Work in Progress).

[4] Hari Balakrishnan et al. TCP behavior of a busy In-
ternet server: Analysis and improvements. InIEEE
INFOCOM, March 1998.

[5] Hari Balakrishnan, Hariharan S. Rahul, and Srini-
vasan Seshan. An integrated congestion manage-
ment architecture for Internet hosts. InACM SIG-
COMM, September 1999.

[6] S. Bellovin. Defending against sequence number at-
tacks, May 1996. RFC 1948.

[7] E. Blanton and M. Allman. On making TCP more
robust to packet reordering.Computer Communica-
tions Review, 32(1), January 2002.

[8] L. Brakmo and L. Peterson. TCP Vegas: End
to end congestion avoidance on a global Internet.
IEEE Journal on Selected Areas in Communication,
13(8):1465–1480, October 1995.

23

[9] David D. Clark. Window and acknowledgement
strategy in TCP, July 1982. RFC 813.

[10] P. Deutsch and J-L. Gailly. ZLIB compressed data
format specification version 3.3, May 1996. RFC
1950.

[11] T. Dierks and C. Allen. The TLS protocol version
1.0, January 1999. RFC 2246.

[12] D. Eastlake 3rd and T. Hansen. US secure hash al-
gorithms (SHA and HMAC-SHA), July 2006. RFC
4634.

[13] R. Fielding et al. Hypertext transfer protocol —
HTTP/1.1, June 1999. RFC 2616.

[14] Bryan Ford. Peer-to-peer (P2P) communication
across network address translators (NATs), June
2004. Internet-Draft (Work in Progress).

[15] Bryan Ford. Peer-to-peer communication across net-
work address translators. InUSENIX Annual Tech-
nical Conference, Anaheim, CA, April 2005.

[16] V. Jacobson, R. Braden, and D. Borman. TCP exten-
sions for high performance, May 1992. RFC 1323.

[17] S. Kent and R. Atkinson. Security architecture for
the Internet Protocol, November 1998. RFC 2401.

[18] E. Kohler, M. Handley, and S. Floyd. Datagram con-
gestion control protocol (DCCP), March 2006. RFC
4340.

[19] M. Mathis, J. Mahdav, S. Floyd, and A. Romanow.
TCP selective acknowledgment options, October
1996. RFC 2018.

[20] M. Mathis and J. Mahdavi. Forward acknowledge-
ment: Refining TCP congestion control. InACM
SIGCOMM, August 1996.

[21] J. Postel. User datagram protocol, August 1980.
RFC 768.

[22] E. Rescorla and N. Modadugu. Datagram transport
layer security, April 2006. RFC 4347.

[23] R. Srinivasan. XDR: external data representation
standard, August 1995. RFC 1832.

[24] R. Stewart et al. Stream control transmission proto-
col, October 2000. RFC 2960.

[25] Transmission control protocol, September 1981.
RFC 793.

[26] J. Touch. TCP control block interdependence, April
1997. RFC 2140.

[27] Bin Ye, Anura P. Jayasumana, and Nischal M. Pi-
ratla. On monitoring of end-to-end packet reorder-
ing over the Internet. InInternational Conference on
Networking and Services, July 2006.

[28] Ming Zhang, Brad Karp, Sally Floyd, and Larry
Peterson. Improving TCP’s performance under re-
ordering with DSACK. Technical Report TR-02-
006, International Computer Science Institute, July
2002.

24

