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ABSTRACT
This paper addresses a set of serious performance problems
observed on the CityMesh 50-node 802.11b urban rooftop
network that existing routing protocols do not consider. The
original CityMesh routing protocol, based on DSR and ETX,
delivered median TCP throughput of 20 kilobytes per sec-
ond, despite the use of radios that could drive most individ-
ual links at much higher rates. The key problems included
varying link loss rates, transient bursts of losses on other-
wise high-quality links, poor transmit bit-rate selection at
the 802.11 level, failure to identify high throughput routes
in the multiple bit-rate network, and interference between
bulk data traffic and routing protocol updates.

The paper describes SrcRR, a new routing protocol that
includes solutions to these problems. SrcRR extends ETX
by predicting the best 802.11 transmission bit-rate on each
link. SrcRR monitors the loss rates of the links in each path
it is using, as well as the loss rates of nearby alternate links,
to ensure that it continues to use the best route. SrcRR
switches to a new route only if the new route’s metric is sig-
nificantly better than that of the existing route. SrcRR per-
forms more aggressive link-level retransmission than 802.11,
and does not switch routes in response to modest numbers of
lost packets. SrcRR uses its own transmit bit-rate selection
algorithm based on medium-term loss rate measurements,
replacing the algorithm built into the radio firmware.

The paper presents an experimental evaluation of SrcRR
on CityMesh. SrcRR improves the median bulk TCP through-
put between pairs of nodes from 20 KB/s to 110 KB/s.
SrcRR achieves these improvements primarily by reducing
the loss rate visible to TCP, which avoids TCP timeouts
and consequent idle time, and by improved choice of link
transmission bit-rate.

1. INTRODUCTION
This paper presents techniques to route and forward bulk

data efficiently on multi-hop mesh wireless networks with
stationary nodes. A typical use of such networks is to pro-
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vide last-mile Internet access, either commercially [1, 17, 4]
or in the form of community mesh networks sharing a few
wired connections [18].

One such network, CityMesh, is a 50-node 802.11b rooftop
network in an urban environment. The first-generation rout-
ing protocol on CityMesh was based on DSR [14] with the
ETX routing metric [12]. Given the “static” nature of the
network, one might expect that an ad hoc routing protocol
such as DSR would be more than sufficient to provide good
performance.

When the original CityMesh protocol was used for bulk
TCP transfers, however, performance was disappointing. The
median TCP throughput in the network was about 20 kilo-
bytes per second, even though most links in the network
could provide far higher bit-rates when used individually.

This paper pinpoints the problems which caused CityMesh
to perform poorly. The problems include the routing met-
ric’s inability to incorporate link bit-rate predictions; poor
bit-rate selection on individual links; transient bursts of
packet loss on otherwise high-quality links, which result in
link-level transmission failures; and collisions between data
packets and routing broadcasts. None of these problems is
specific to the protocols CityMesh used; indeed, any mesh
network designer will probably face similar issues if high-
throughput, bulk data transfer is a goal.

The paper presents techniques which address each of these
issues. They are implemented and evaluated in the form of
a new routing protocol, SrcRR. SrcRR uses DSR-like reac-
tive queries to find routes initially, and a variant of ETX to
predict which routes are likely to work the best.

SrcRR contributes the following new techniques:

• It uses an adaptive transmit rate control algorithm
that performs much better than the one common in
802.11b cards, and chooses routes in cooperation with
that algorithm.

• It detects failing routes with continuous measurement,
rather than with 802.11 transmission failure, to avoid
being misled by transient bursts of errors.

• It monitors the loss rate of alternate links for quick
fail-over without the expense of a full flooded query.

• It uses heuristics to avoid switching routes due to in-
terference between data and routing packets.

As a result of these techniques, SrcRR improves the me-
dian TCP throughput on CityMesh to about 110 kilobytes/second
— a factor of five improvement.
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Figure 1: A scale map of CityMesh, with the black
dots representing the nodes that participated in the
experiments for this paper. [An underlying city
map, showing city blocks, streets and buildings, is
omitted for anonymity.]

The structure of the paper is as follows. Section 2 provides
an overview of the CityMesh network. Section 3 discusses
some of the specific performance problems found when us-
ing the first-generation protocol based on DSR with ETX.
Section 4 presents the techniques that address each of these
problems. Section 5 describes some implementation details.
Section 6 evaluates the performance of SrcRR. Section 7
discusses related work, and Section 8 concludes.

2. CITYMESH OVERVIEW
SrcRR was developed for the CityMesh1 network, which

also serves as the experimental environment in which this
paper evaluates SrcRR. CityMesh provides last-mile Inter-
net access to graduate students living in an urban area
around a university. In order to maximize the growth of
the network, the equipment is designed so that each user
can install his or her own node. In particular, nodes are
equipped with omni-directional antennas which require no
aiming. Users mount the antenna on the roof, run cable
into their apartment, and plug in their node, a dedicated
PC with an 802.11b card.

The network is contained in an urban, residential area of
about four square kilometers, dominated by tightly-packed
three and four story homes. Trees, other homes, schools,
churches and office buildings commonly obstruct line-of-sight
signal propagation between nodes. Most of the antennas
are mounted on the chimneys of three- or four-story homes.
Seven of the nodes are on taller buildings. The network in-
cludes three gateways to the wired Internet; most nodes
must forward packets through multiple hops in order to
reach the nearest gateway.

Each of the 50 CityMesh nodes uses an Engenius 802.11b
card based on the Intersil Prism 2.5 chip-set. The cards

1Name changed for anonymity.
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Figure 2: Delivery rate over time for a sample link.
The y-axis indicates the fraction of packets deliv-
ered, averaged over 5-second intervals. The x-axis
indicates time in seconds. Even without mobility,
link loss rates change enough that routing protocols
need to adapt to link quality changes.

are configured with RTS/CTS off, because experiments do
not show that turning it on improves performance. The
omni-directional antennas on the rooftops provide 8 dBi of
gain with a 20-degree -3 dB vertical beam-width, and the
intermediate cabling and lightning arrestors introduce an
attenuation of 6 to 10 dB, depending on the length of cable.
For all the measurements in this paper, the cards transmit
using +23 dBm (200 milliwatts) transmission power.

3. PROBLEMS
This section presents the performance problems observed

in early versions of CityMesh, along with the underlying
causes of those problems.

CityMesh requires an adaptive routing protocol even though
the nodes are stationary. Figure 2 shows how the fraction of
packets delivered varies over time for a sample pair of nodes,
measured by one of the nodes sending 1000-byte 802.11b
broadcast packets as fast as possible at a bit-rate of eleven
megabits per second for 1200 seconds. The values are aver-
ages over five-second intervals. The data show that the de-
livery ratio changes significantly over short periods of time,
so the routing protocol must be able to switch routes on the
same time scale.

Initially CityMesh used the DSR [14] routing protocol,
modified to use the ETX metric [12]. DSR was chosen be-
cause almost all CityMesh nodes will only ever want to route
data to the gateway nodes. As such, using a full link-state
protocol would incur a great deal of unnecessary overhead.

ETX continuously measures each link’s loss rate using pe-
riodic broadcast probes, and uses the loss rates of a route’s
links to predict how many total transmissions would be re-
quired to deliver a packet along the route (including link-
layer retransmissions). This prediction is the ETX metric
for the route. The route with the lowest ETX metric should
in principle deliver the highest throughput. The rest of this
paper will refer to this initial protocol as DSR+ETX, more
details of which are presented in Section 4.

Using DSR+ETX, interactive performance of the CityMesh
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network was good, with latency of about ten milliseconds per
hop, and end-to-end losses (after 802.11 retransmissions) of
only a few percent. However, bulk TCP transfers often had
very low throughput, even over routes whose links individu-
ally delivered high throughput, and even accounting for the
fact that only one node along a multi-hop path can typically
transmit at a time. The end-to-end loss rate experienced
by TCP during bulk transfers was often high, regardless of
whether RTS/CTS was enabled. For example, one two-hop
path delivered 40 kilobytes/second to TCP with DSR+ETX,
with a 10% loss rate observed by TCP; testing each of the
links in isolation suggested that the route should have been
able to carry at least 120 kilobytes/second with essentially
no losses.

Closer investigation revealed four underlying causes, de-
scribed qualitatively in the next four sub-sections. Section 6
provides a quantitative assessment of their relative impor-
tances by evaluating the effect of solutions.

3.1 Transient Packet Loss Bursts
DSR+ETX frequently re-queried and switched routes due

to link-level transmission failure, even though the links it
was using had low average loss rate. A transmission failure
means that the 802.11 radio sent a packet eight times with-
out receiving an 802.11 link-level acknowledgment. In such
a situation the node that just failed to forward the packet
sends a DSR+ETX Route Error message to the sender,
which deletes the offending link from its link-state cache
and runs Dijkstra’s algorithm to find a new route from that
cache. If no such route exists, the sender floods a fresh
query.

The intuition behind the Route Error mechanism in the
original DSR is that repeated failures suggest that the next-
hop node has moved out of radio range, or has crashed.
Close observation of DSR+ETX on CityMesh showed that
typically the radio link to the next hop was still working,
but had merely suffered a transient burst of errors. Typi-
cally the alternate route that DSR+ETX switched to had
lower throughput than the original route would have pro-
vided (this was verified in a number of examples by disabling
Route Error messages). Of course sometimes persistent er-
rors do indicate that propagation conditions have changed
and that the link is no longer useful, so they cannot be com-
pletely ignored.

The source of the error bursts is not known. They may be
caused by interference among the different hops in the route
that DSR+ETX is using, or they might result from other
802.11 users on overlapping channels. Routing based on
link quality measurements, such as those performed by ETX,
does not necessarily aim to avoid links exhibiting these error
bursts, because the best route choice may involve imperfect
links.

3.2 ETX Metric Fragility
ETX measures link loss rate with periodic broadcast probes.

When the network is idle, the probe loss rate is likely to be
a good predictor of data loss rate. However, when the net-
work is 100% busy with data packets, the data packets can
cause a high fraction of the periodic probes to be lost due to
collisions. This is not a serious problem for the data pack-
ets, which 802.11 re-sends, but 802.11 does not re-send the
broadcast probes and ETX counts them as lost. As a result,
ETX may assign low-quality metrics to links that actually
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Figure 3: The relationship between transmission
bit-rate and throughput for four different CityMesh
links, using 1500-byte UDP packets. The through-
puts are less than the bit-rates due to lost packets,
802.11 retransmissions, and 802.11 overhead. The
Auto bar corresponds to the Prism 2.5 firmware’s
automatic rate selection algorithm; it often results
in much less than the best possible throughput.

deliver a high proportion of data packets. This may have
no immediate effect on routes in active use, but may cause
a subsequent DSR+ETX re-query to avoid what is actually
the best route. Again, enabling RTS/CTS does not seem to
solve this problem.

3.3 Bit Rate Selection
The Prism 2.5 802.11 firmware selects the transmission

bit-rate in the following way [3]. The firmware maintains a
current bit-rate for each station it talks to, which starts at
11 megabits/second. If a packet fails to be acknowledged af-
ter eight transmissions at the current bit-rate, the firmware
reduces the current bit-rate to the next lowest. If a packet is
ACKed, and no subsequent failures occur, and ten seconds
elapse, the firmware returns to 11 megabits/second.

Figure 3 shows the throughputs that result from manual
selection of each rate on four different CityMesh links, as
well as the throughput resulting from using the Prism 2.5
firmware algorithm. The firmware algorithm works well on
links that lose few packets at 11 megabits/second. On most
other links, the firmware provides significantly less through-
put than the ideal. One possibility is that the cards are
sending more slowly than they should, because they are too
sensitive to transient bursts of errors. It is also possible that
the Prism algorithm sometimes runs links at too high a bit-
rate; a link that drops 60% of packets at 11 megabits might
have more throughput at 5.5 megabits, but might not drop
the eight packets in a row required for the firmware to fall
back.

The Prism algorithm may be justified in an environment
in which losses are due only to low signal-to-noise ratio be-
cause of attenuation. In that case, most links would be ei-
ther perfect or non-existent at any given bit rate, since the
Prism manufacturer asserts that the range of S/N ratios in
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which links are marginal is very narrow [2]. However, loss in
outdoor 802.11 networks appears to be dominated by multi-
path inter-symbol interference, not low S/N, which results
in large numbers of marginal links [10, 11]. With marginal
links it is not sufficient to choose the transmit bit-rate based
on a simple working-vs-broken decision.

3.4 Bit-rate Aware Routing
ETX assigns metrics based on broadcast probes sent at

1 megabit/second, and does not explicitly favor links that
would work well at higher bit-rates. ETX does have a slight
bias in favor of potentially high bit-rate links, since it penal-
izes links that are lossy at 1 megabit and thus are unlikely
to work well at higher bit-rates. However, it cannot distin-
guish among the links that are loss-free at 1 megabit, only
some of which will work well at higher rates. As a result,
routes did not take much advantage of high bit-rate links.

4. DESIGN
This section discusses the design of SrcRR. It starts by

describing the basic protocol. It then introduces a sequence
of improvements that address the problems described in the
previous section. Each improvement has a shorthand name
which will be used in the evaluation section.

4.1 Baseline SrcRR
The basic operation of SrcRR is similar to DSR with link

caches: SrcRR is a reactive routing protocol with source-
routed data traffic. [9]

Every node running SrcRR maintains a link cache, which
tracks the ETX metric values for links it has heard about
recently. Whenever a change is made to the link cache,
the node locally runs Dijkstra’s weighted shortest-path algo-
rithm on this database to find the current, minimum-metric
routes to all other nodes in the network. To ensure only
fresh information is used for routing, if a link metric has not
been updated within 30 seconds it is dropped from the link
cache.

When a node wants to send data to a node to which it
does not have a route, it floods a route request. When a
node receives a route request, it appends its own node ID, as
well as the current ETX metric from the node from which it
received the request, and rebroadcasts it. A node will always
forward a given route request the first time it receives it. If it
receives the same route request again over a different route,
it will forward it again if the accumulated route metric is
better than the best metric it has forwarded so far. This
ensures that the target of the route request will receive the
best routes.

When a node receives a route request for which it is the
target, it reverses the accumulated route and uses this as
the source-route for a route reply. When the original source
node receives this reply, it adds each of the links to its link
cache, and then source-routes data over the minimum-metric
path to the destination.

When a SrcRR node forwards a source-routed data packet,
it updates its entry in the source route to contain the latest
ETX metric for the link on which it received the packet.
This allows the source and destination to maintain up-to-
date link caches, and discover when a route’s quality has
declined enough that an alternate route would be better. In
addition, each data packet includes a field to hold one extra
link metric; a forwarding node will randomly, with proba-

bility 1

n
, where n is the number of nodes in the route, fill in

that field with the ETX metric to one of its neighbors. This
allows the source and destination to learn of the existence
and metric of some alternate links. As with all changes to
the link cache, this prompts recomputation of all the best
routes using Dijkstra’s algorithm.

All query and data packets contain ETX metrics for the
links they have traversed so far. Any node that receives such
a packet (including forwarding nodes) copies those metrics
to its link cache.

Baseline SrcRR broadcasts a 300-byte ETX probe packet
at randomized intervals averaging every ten seconds. ETX
measures the loss rate from each neighbor by counting the
fraction of probes received over the last three minutes (18
probes).

4.2 Ignoring Link Failure
The first improvement to SrcRR, hereafter referred to as

ignore-fail, makes the protocol resistant to transient peri-
ods of high packet loss. If ignore-fail is disabled, SrcRR
sends a route error message after the first transmission fail-
ure notification, causing the sender to switch to a different
route. When ignore-fail is enabled, however, SrcRR does
nothing special when the device indicates a 802.11 transmis-
sion failure (i.e. no 802.11 ACK after 8 attempts).

The effect of ignore-fail is to give more control to the
ETX metric. The SrcRR sender will make its routing deci-
sions based only on long-term ETX measurements, not as a
result of temporary link conditions.

4.3 Transmit Bit-Rate Control
The next improvement, rate-ctl, overrides the trans-

mit bit-rate control scheme built into the 802.11 firmware.
A SrcRR node determines the best bit-rate to each of its
neighbors, and explicitly tells the card to send data at that
bit-rate.

To determine the bit-rate, each node periodically sends
broadcast probes at each possible bit-rate, as an extension
of the ETX mechanism. Each node records what fraction
of probes it receives from each of its neighbors at each bit-
rate. SrcRR estimates the throughput at each bit-rate by
multiplying the bit-rate by the probe delivery rate at the
throughput. SrcRR then sends data packets at the bit-rate
with the maximum predicted throughput.

In our implementation, for each bit-rate, a probe (1, 2, 5.5
and 11 megabits per second) is sent at randomized intervals
that average every ten seconds.

4.4 Persistent Retries
The next improvement, persistence, aims to reduce end-

to-end loss in order to avoid TCP timeouts and consequent
under-utilization. When the 802.11 device indicates a trans-
mission failure, SrcRR places the packet at the head of the
output queue to the device instead of discarding it. This
means that the device will soon attempt to send the packet
again. SrcRR only gives up on a packet after giving it to the
device 40 times (for a total of 320 transmissions). 2 When
SrcRR gives up it sends a Route Error message to the source

2The chosen value of 40 for the retransmit limit is a mistake,
since it would cause delays longer than a typical TCP time-
out. We do not, however, believe that this limit was ever
reached. For a final version of this paper, we would redo the
experiments with a much smaller value.
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(regardless of whether the ignore-fail feature is enabled).
Because the device maintains a small internal queue, the

subsequent attempts for a given packet are interleaved with
other packets. This helps avoid head-of-line blocking when
packets from different routes are interleaved in the output
queue. On the other hand, it can re-order packets, the sub-
ject of Section 4.6.

4.5 Route Damping
Route damping (damping) prevents flapping among routes

which have similar metrics. Once SrcRR chooses a route, it
will only switch to a new route after five seconds, or if it finds
a new route with an ETX metric at least one full expected
transmission lower than the existing route’s metric. That is,
the new route must consist of links with significantly lower
loss rates.

The original reason for damping was to reduce the impact
of ETX probe packets being lost due to collisions with data
traffic (see Section 3.2). Section 6.4 describes additional
unexpected benefits of damping.

4.6 Packet Reordering at Receiver
SrcRR re-orders packets (reorder) in order to correct

out of order delivery introduced by its persistent retries.
Out-of-order packet arrival can cause TCP to reduce its win-
dow or time out.

Each SrcRR source maintains a sequence number for each
route it is using, and tags each packet with that route’s
next sequence number. Each forwarding node inserts newly
arrived packets into its outgoing queue in a way that keeps
sequence numbers ordered for the corresponding route.

At the far end of a route, the SrcRR destination re-orders
arriving packets before handing them off to the IP layer. In
order to do this, the destination must retain out-of-order
packets until all preceding packets on the same route have
arrived. If an out-of-order packet sits in the re-order queue
for more than 500 milliseconds, the receiver releases it any-
way. 500 milliseconds is longer than most delays within the
network, but shorter than the minimum TCP retransmission
timeout.

In order to avoid this re-ordering delay when the real prob-
lem is packet discard due to queue overflow, each SrcRR
forwarding node remembers when it has discarded a packet
on a particular route due to queue overflow. It then sets
a “congestion” bit in the next packet on that route, which
causes the destination to immediately release all the packet
in the re-order queue for that route.

Each SrcRR node also detects and suppresses duplicate
packets which could result from SrcRR’s aggressive retry
scheme. Each node keeps track of the last 100 data packet
sequence numbers for each source route, and drops any du-
plicate incoming packets.

4.7 Big Probe Packets
ETX measures loss rates with 300-byte probe packets,

while TCP bulk transfers send 1500-byte packets. This
means that ETX probably underestimates loss rates. As-
suming the underestimate is consistent, it may make little
difference when comparing two individual links or two routes
with the same number of links. However, the actual loss rate
values are important when comparing routes with different
numbers of hops. For this reason the SrcRR big-probes

feature sends probes that are 1500 bytes long instead of 300

bytes.
In certain cases, it would be possible to modify SrcRR to

use data packets directly to obtain delivery ratio estimates
over a given link. This technique does not remove the need
for probe packets, however; the protocol needs to use probes
to evaluate links that are not currently in use.

4.8 Estimated Transmission Time
In order to favor routes with higher bit-rate links, SrcRR

evaluates routes with an “estimated transmission time” (ETT)
metric instead of ETX. The goal of the ETT metric is to es-
timate the amount of time that each packet will keep the
radio medium busy; minimizing this per-packet time should
maximize throughput. SrcRR sums link ETT metrics to
form a route ETT metric.

As described in Section 4.3, each SrcRR node periodically
sends broadcast probes at all 802.11b bit-rates and predicts
the best possible throughput to each neighbor given each
bit-rate’s loss rate. When ETT is enabled, SrcRR multi-
plies for each neighbor the estimate of the highest possible
effective throughput by the delivery probability of ACKs in
the reverse direction, and inverts:

ETT =
1

P (ack) × rt

rt = max(r1, r2, r5.5, r11)

P (ack) is the probability of delivery of an ACK based on
probe losses in the reverse direction, and rt is the estimated
throughput of broadcast packets in the forward direction at
bit-rate t megabits/second. ETT predicts the loss rate for
802.11 ACK packets by broadcasting small probes consisting
of just 32 bytes of Ethernet payload.

In total, when using ETT, SrcRR sends an average of
five probe packets every ten seconds: one small probe at
one megabit, and one 1500-byte probe at each of 1, 2, 5.5,
and 11 megabits. ETT sends each of the five probes at
independent random intervals averaging ten seconds.

5. IMPLEMENTATION
SrcRR is implemented using the Click modular software

router [15], running on Linux 2.4.20. The SrcRR imple-
mentation consists of about 5,000 lines of new C++ code,
in addition to Click’s existing code for IP processing other
standard functions.

SrcRR does not follow the DSR standard closely. SrcRR
defines its own headers rather than using DSR-style IP header
options, and encapsulates IP packets. SrcRR does not run
the interface in promiscuous mode, does not reply to Route
Requests from cached information, does not salvage pack-
ets, does not remove all packets to a failed destination from
the output queue, does not shorten routes, and does not
piggy-back Route Errors on subsequent Route Requests.

Click is loaded as a Linux kernel module, which allows for
fine-grained control of packet queuing: the SrcRR Click code
hands packets directly to the device driver, and gets 802.11
transmission failures back from the driver. SrcRR uses the
HostAP driver [16] in 802.11 “ad-hoc” mode, with the AP
features turned off. The HostAP driver has been modified
to report transmission failure and to allow transmit bit-rate
to be specified per packet.

6. EVALUATION
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This section evaluates the extent to which SrcRR im-
proves throughput, as well as the effectiveness of each of
its techniques.

6.1 Experimental Setup
The measurements described throughout this section were

taken on a 31-node subset of the CityMesh network. Most
of the throughput data reported are the median throughput
among 14 randomly selected node pairs; the pairs are the
same in all of the tests presented.3

The following procedure was used to measure throughput
between each pair. The routing protocol was reset and al-
lowed to run on an idle network for three minutes, to let the
route metric (ETX or ETT) estimator collect link statistics.
The sender next sent 10 ping packets to the receiver to estab-
lish an initial route. The sending node then started a TCP
connection to the receiving node, and sent as much data as
it could. The receiving node terminated the experiment 30
seconds after it first saw the TCP connection initiated, and
recorded how much data it received.

Most of the following evaluation compares throughput be-
tween pairs of different SrcRR variants (that is, different sets
of enabled features). For each node pair, evaluations of the
two protocol variants were conducted one after the other
with only two minutes intervening, to minimize the effects
of any environmental changes.

While CityMesh ordinarily provides Internet access to its
users, this traffic was disabled during these experiments. It
can be expected that there was an unknown amount of in-
terference from other nearby users of 802.11.

6.2 Overall Improvement
Figure 4 compares baseline SrcRR against SrcRR with

all features enabled (full SrcRR). The graph shows TCP
throughput between each of the 14 node pairs: the bottom
line shows throughput provided by baseline SrcRR, and the
top line shows throughput provided by full SrcRR. The node
pairs are sorted by the higher of the two values. Full SrcRR
out-performs baseline SrcRR by a large margin for almost
all the node pairs.

The median full SrcRR performance has five times higher
throughput than the median baseline performance. This
improvement is more easily seen in the left and rightmost
bars in Figure 6.

All the pairs with throughput of over 200 KB/s are one
hop routes; this includes node pairs 11 through 13. Pair 13
involves a link that can run at 11 Mb/s, and both SrcRR
variants used this rate; the reason baseline SrcRR does slightly
better is probably due to a change in link conditions between
runs. Node pairs 0 through 10 used routes with hop counts
ranging from 2 to 6.

One of the nodes in pair 2 is connected to the rest of
the network through a single low-quality link. That link
dominates the throughput and the choice of the rest of the
route does not make much difference. For this pairs, route
selection improvements such as ETT and big probes have
little effect, and the modest improvement come from the
other features that prevent TCP from going into timeout so
often.

3We tested only 14 node pairs due to time constraints; we
would evaluate a larger, more representative sample for a
final paper version.
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Figure 4: Bulk TCP throughput between each of
the 14 CityMesh node pairs. The solid line repre-
sents baseline SrcRR, while the dashed line repre-
sents SrcRR with all features enabled (full SrcRR).
Full SrcRR obtains the higher throughput for almost
all of the pairs.

As an external point of comparison, Figure 5 compares the
throughput of baseline SrcRR with the standards-compliant
DSR in the Click distribution using the ETX metric. While
not identical, the two routing protocols provide comparable
throughputs.

6.3 Incremental Feature Addition
Figure 6 shows the TCP throughput provided by SrcRR as

features are added one by one. The improvement provided
by ignore-fail suggests that bursty losses are significant
on high-quality links. The rate-ctl result confirms that
SrcRR does a better job of transmit bit-rate selection than
the Prism firmware, and the ETT result shows the impor-
tance of bit-rate aware route selection.

Figure 8 sheds some light on why ETT is successful. It
shows the distribution of metrics of links in the CityMesh
network; each bar corresponds to one link, and the two ends
indicate the ETT metrics in the two directions on that link.
The asymmetry of many of the links validates the ETT de-
sign decision to measure loss rates with two different probe
packet sizes to predict data and 802.11 ACK losses sepa-
rately.

Figure 6 shows that persistence has a negative impact
by itself. The persistent retries, without reorder, arrive at
the TCP receiver out of order, trigger TCP’s fast retransmis-
sion mechanism, and cause TCP to waste bandwidth with
unnecessary re-transmissions.

big-probes alone is also detrimental. Increasing the ETX
probe packet size causes ETX to predict the data packet
loss rate more accurately, but the 802.11 ACK loss rate less
accurately. big-probes is only useful when coupled with
ETT’s probing with both large and small sizes.

In total, the addition of the various improvements to SrcRR
results in a factor of five improvement in the median through-
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Figure 5: Throughput of baseline SrcRR compared
with the Click standards-compliant DSR combined
with ETX. The two protocols provide comparable
throughputs.

put over the 14 node pairs.

6.4 Feature Interdependence
SrcRR features persistence and big probes decrease

performance when they are added in Figure 6. To show that
they are beneficial when combined with the rest of SrcRR,
Figure 7 shows the effect on throughput of eliminating each
individual feature from full SrcRR.

Eliminating persistence decreases median throughput
by 50%, because it eliminates losses that might otherwise
cause TCP to time out; persistence only works well when
combined with reorder. It’s also the case that reorder

only works well when damping is enabled, since the SrcRR
re-order mechanism relies on the route not changing to allow
it to distinguish out-of-order packets from packets lost due
to queue overflow.

Turning off rate-ctl decreases performance almost down
to the level of Baseline SrcRR; the other features do lit-
tle good if the links are running at dramatically reduced
bit-rates. Ignore-fail is almost as important, since with-
out it SrcRR inappropriately switches away from the best
routes. rate-ctl works particularly well with ignore-fail

and persistence, since rate-ctl intentionally operates links
at high bit-rates that may cause significant losses.

7. RELATED WORK
SrcRR uses a variant of the ETX metric devised by De Couto

et al. [12] SrcRR extends ETX to take link bit-rate into ac-
count, and to reflect the fact that 802.11 ACK packets are
much smaller than data packets and thus are likely to have
different probability of loss. SrcRR’s ETT is similar to the
medium-time metric proposed by Awerbuch et al [5]; one of
ETT’s advantages is that it takes losses into account.

The Receiver Based Auto Rate (RBAR) protocol [13] se-
lects the transmit bit-rate for each 802.11 packet by observ-
ing the signal-to-noise ratio of the preceding RTS at the
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Figure 6: Cumulative effect on throughput of SrcRR
features. Each bar shows the median throughput
over the 14 node pairs; from left to right, each suc-
cessive bar represents the cumulative addition of one
more SrcRR feature. Rate control, damping, and
ETT have the most effect. Persistent retries and
large link probes have little effect by themselves,
though Figure 7 shows that they are effective in
combination with other features.

receiver. This approach works well if the nodes are mobile,
so that longer-term measurements aren’t appropriate, and
if the relationship between S/N and error rate at each bit-
rate is predictable. SrcRR is tailored for stationary nodes,
so it can afford to make decisions based on recent loss rate
history at the current transmit rate. More fundamentally,
loss rates in the CityMesh environment do not appear to
be predictable from S/N; this is consistent with the analysis
by Clark et al. [10] showing that outdoor 802.11 error rates
are dominated by multi-path inter-symbol interference, not
S/N.

A number of solutions exist to improve the performance
of TCP over lossy wireless networks [6, 8, 19], typically
by hiding or repairing losses with TCP-specific mechanisms
running in the wired gateway. The general lesson is that
local repair is preferable to end-to-end TCP-level retrans-
mission [7]. SrcRR adapts this idea to multi-hop networks
with its aggressive link-level retransmission. It does not use
TCP-specific knowledge, partially because that approach is
not attractive when the wireless route can change during the
lifetime of a TCP connection.

There are a number of other projects to build wireless
mesh Internet access networks. For example, Wireless Lei-
den [18] is a 25-node 802.11 network spread over 25 square
kilometers, using OSPF and the FreeBSD IP implementa-
tion for routing. The likely reason that the Leiden net-
work can use routing techniques intended for wired net-
works is that their inter-node links are built with direc-
tional antennas. Much of SrcRR’s complexity springs from
CityMesh’s use of omni-directional antennas and the result-
ing intermediate-quality links, but in principle it should be
easier to expand CityMesh as a result.

8. CONCLUSIONS
This paper introduces SrcRR, a new routing protocol for

multi-hop wireless networks. SrcRR finds high-throughput
routes among multi-bit-rate links using an estimated trans-
mission time routing metric, selects good bit-rates, and tol-
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Figure 7: Full SrcRR compared to full SrcRR with-
out each individual feature. The shorter the bar, the
more the corresponding feature improves through-
put when combined with all the other features. Us-
ing SrcRR’s rate control and ignoring single link-
level failures improves performance the most. Even
persistent retries and large link probes, which do not
help by themselves, do increase throughput when
used in combination with the other features.

erates transient bursty packet loss. Measurements on the
CityMesh metropolitan wireless mesh network demonstrate
that SrcRR’s technique increase bulk TCP throughput on
multi-hop routes by a factor of five.
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